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論文摘要 

 

乳癌近幾年來一直是女性癌症中的主要死因。然而，藉由早期的檢測及治療

能大幅地降低乳癌的死亡率。在許多乳房檢測儀器中，乳房超音波與乳房X光攝

影的結合能在檢查乳癌上有著互補的作用。近幾年來，自動的全乳房超音波已經

有不少的論文研究，其在腫瘤的方位顯示和記錄上都有很好的表現。因為一個病

例會有很龐大的三維影像資料，逐張檢查診斷會花費醫師許多時間。因此，此論

文提出一個電腦輔助的乳房腫瘤偵測系統偵測腫瘤可疑的區域，以協助醫生做診

斷。本論文採用的腫瘤偵測系統是以區域為基礎做運算處理。首先，fast 3-D mean 

shift方法將3維影像資料分割成區域並移除影像中的雜訊。接著，fuzzy c-means 

clustering會將這些區域依其灰階值來做分群。因為在超音波影像中，腫瘤一般會

有較低的灰階值，所以這些被分到最暗的區域會被視為是腫瘤的可疑區域。之

後，在這些可疑的區域中，如果灰階值相差在門檻值內的區域會結合在一起呈現

最後切割的結果。不僅如此，為了更進一步去區分腫瘤和非腫瘤，每個切割後腫

瘤的可疑區域會取出七個特徵，結合這七個特徵去做分類，以減少非腫瘤被誤判

為腫瘤情況的發生。在這個實驗中，大部份的腫瘤都能被找到。在平均每個病例

有4.92個非腫瘤被誤判為腫瘤的情況下，系統的腫瘤偵測準確率是89.04% 

(130/146)，其中惡性腫瘤的偵測準確率更可達到94.03% (63/67)。希望在醫師診

斷的輔助上能有所幫助。 
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ABSTRACT 

Breast cancer has been the major cause of death for women among all kinds of 

cancers in recent years. Nonetheless, the early detection and improved treatment can 

significantly reduce the mortality of breast cancer. Breast ultrasound (US) is a very 

important complementary imaging modality with mammography in breast cancer 

detection. Recently, the automatic whole breast ultrasound (ABUS) system has been 

developed to provide the proper orientation and documentation of breast lesions. 

Because a large three dimension (3-D) volume image is obtained for each case, the 

physician needs to spend a lot of time in reviewing all slice images. Therefore, a 

computer-aided tumor detection system is proposed to find the suspicious regions of 

tumors and assist the physician in diagnosis. The region-based ABUS tumor detection 

method is adopted in this study. At first, the 3-D volume image is segmented into 

regions and the speckle noise is removed by the fast 3-D mean shift method. 

Subsequently, the fuzzy c-means (FCM) clustering classifies these regions into 

different classes according to their intensities. Because tumors are usually darker than 

normal tissues in US, the regions classified into the darkest cluster by the FCM are 

regarded as the suspicious tumor regions in this study. After FCM, these suspicious 

regions are merged within a merging threshold to present the segmented results. 

Moreover, in order to discriminate the real tumors from the other non-tumor regions, 

seven features are extracted from the suspicious tumor regions and the classification 

method is adopted with 10-fold validation to reduce the false-positives. By 

experimental results, almost all the tumors can be found by this system and the 

sensitivity is 89.04% (130/146) with 4.92 FPs per case. Furthermore, the detection 

rate for malignant tumors is up to 94.03% (63/67). The proposed tumor detection 

system is useful for the diagnosis of doctors. 
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Chapter 1 

Introduction 

Based on the incidence rates of breast cancers in the recent years, one in eight 

women will develop breast cancer in their lifetime [1] and breast cancer ranks the first 

as the cause of the estimated cancer death among females [2]. Earlier screening and 

improved treatment are the most likely reasons for the reduced mortality rates [2]. The 

early detection of the cancer provides a better chance of proper treatment [3]. 

Therefore, physicians suggest that women over forty years old should have the breast 

cancer examination every year. Mammography [4-6] and breast ultrasound (US) [7, 8] 

are the efficient methods used for breast cancer detection and diagnose presently. The 

diagnostic results with these modalities have given a great assistance to physicians for 

deciding the proper treatments to patients. 

Mammography is the common modality used for detecting breast lesions in the 

early stage. However, mammography is difficult to screen the dense breasts with 

women [9-11], and it has some drawbacks, such as high false-positive (FP) rate and 

low specificity. Therefore, breast US is an important adjunct to mammography for 

evaluating the dense breast cancer. Breast US does not use the ionizing radiation that 

may be an invasive damage on the human body and it is non-invasive, more efficient, 

relatively inexpensive, real-time, and convenient [12-14]. Additionally, it offers 

interactive visualization of potential anatomical tissues in real time. Due to these 

advantages, breast US is an appropriate screening tool for breast tumor detection. 

The major limitation of US image is that the US probe could not fully cover the 

breast width; therefore, its scanning ROI is smaller than other imaging modalities. 

The automated breast ultrasound (ABUS) [11, 15-17] is a new technique to scan the 

whole breast. In the study of Chou et al.[17], several advantages of ABUS are 
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indicated. The ABUS could provide better reproducibility for follow-up studies and 

potential information for breast lesions. For radiologists, ABUS is ease of use without 

long training time and ABUS has excellent intra- and inter-observer variability. 

However, the physician needs a lot of time to review the three dimension (3-D) 

images and to diagnose the ABUS images. When a large number of patients are 

examined, the physician could be tired and the misdiagnosis might be occurred. In 

order to reduce the misdiagnosis, computer aided detection (CADe) system could be 

considered as the second reader to assist the diagnosis of the physician and could 

improve more diagnostic accuracy [18, 19].  

Several studies for the CADe system of breast US have been proposed in the 

recent years. Mogatadakala et al. [20] proposed a method using order statistic features 

from multiresolution decompositions of energy-normalized subregions for 

discriminating surrounding normal and tumor regions. Drukker et al. [21, 22] 

investigated an automatic lesion detection system in two stages. The lesion candidates 

were detected by using a radial gradient index filtering and were segmented by using 

a region growing method initially. Subsequently, Bayesian neural network was 

adopted for lesion classification. In the study of Ikedo et al. [23], a tumor detection 

system for whole breast US images was proposed. Two features, the edge direction 

and the density difference, were applied for tumor detection. Recently, Chang et al. 

[24] proposed a CADe system for multipass automated breast US. In order to improve 

the image quality, the anisotropic diffusion and stick filters were applied to reduce the 

speckle noise and to enhance the tumor contour. Subsequently, the gray-level slicing 

method was adopted to segment suspicious lesion regions. Finally, seven features 

were used as the criteria to discriminate real lesion or non-lesion regions. 

The pixel-based tumor detection method will take a lot of time for processing 

and the speckle noise will also affect the detection results. Therefore, the region-based 
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ABUS tumor detection method is adopted in this study. At first, the fast 3-D mean 

shift [25] method is adopted to segment the 3-D image into regions according to the 

local information. Subsequently, the fuzzy c-means (FCM) clustering [26] is used to 

classify the regions into different classes according to their intensities. Because 

tumors are usually darker than normal tissues in US, the dark regions could be 

regarded as the suspicious tumor regions. In order to discriminate the real tumors 

from the other non-tumor regions, seven features are extracted from the suspicious 

tumor regions and the classification method is adopted to reduce the false-positives. 
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Chapter 2 

Materials 

The data used in the study were acquired between June 2007 and June 2008 

from Seoul National University Hospital. 146 biopsy proven lesions (size range 

0.2-7.0 cm, mean 1.64±1.15 cm) in 113 female subjects (ages range 20-79 years; 

mean 45.18±10.59 years) were used for evaluating the performance of the tumor 

detection system. The 146 lesions include 79 benign and 67 malignant lesions. The 79 

benign lesions include 44 fibrocystic changes, 31 fibroadenomas and 4 papillomas. 

The 67 malignant lesions include 59 infiltrating carcinomas and 8 ductal carcinoma in 

situ (DCIS). These subjects were scanned by the SomoVu ScanStation (U-system, San 

Jose, CA, USA), as shown in Fig. 1. The SomoVu ScanStation comprises a View 

Station and a Scan Station. The patient in the supine position is scanned by the Scan 

Station with the 10 MHz linear transducer whose width is 15.4 cm and the acquired 

data is transformed to the View Station. Although the transducer is wider than the 

conventional ultrasound transducer, more than one pass is needed for covering the 

entire breast of the patient. The pixel resolutions of the acquired 3-D image are 0.285 

mm in the transverse direction, 0.086 mm in the sagittal direction and 0.6 mm in the 

coronal direction. 
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Fig. 1 The screen of the SomoVu ViewStation. 
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Chapter 3 

Region-based ABUS Tumor Detection 

Because the number of pixels in the ABUS image is too large and there is speckle 

noise in the US images, the pixel-based method will take a lot of time to detect the 

tumors and the speckle noise will also affect its performance. Hence, a region based 

method is adopted not only to reduce the detection time but also to avoid the affection 

of speckle noise in this study. At first, for segmenting the 3-D image into several 

regions, the fast 3-D mean shift method [25] is applied. Afterward, the fuzzy c-means 

(FCM) clustering [26] is used to classify the regions into different classes according to 

their grey levels. Because the tumors are darker than the normal tissue, the dark 

regions might be the suspicious regions of tumors. However, not all the suspicious 

regions are real tumors, seven features are extracted from these suspicious regions and 

the classification method is used to reduce the false-positives. The system flowchart is 

shown in Fig. 2. 

 

 

Fig. 2 The region-based ABUS tumor detection. 

 

Region segmentation using fast 

3-D mean shift method 

Region classification using  

fuzzy c-means clustering 

False-positive reduction 

Detection results 
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3.1 Region segmentation using fast 3-D mean shift method 

In this stage, the fast 3-D mean shift method is applied for region segmentation; 

that is, the pixels with certain local homogeneity are gathered together as a region. 

Besides, there is a lot of speckle noise in the US images and the noise will affect the 

performance of tumor detection. Since the mean shift method can ignore the outliers 

in the data [27], it is very useful in removing the speckle noise in the US images. 

Accordingly, the mean shift method is adopted in this study. After applying the region 

segmentation, each pixel in a region is replaced by the mean of their intensity values. 

The mean shift method [28, 29] is a feature-space analysis technique with the 

ability of clustering a discrete data set over the feature-space. We assume that a data 

set with n data points lying on the feature space and a spherical window of radius r are 

given. For each data point, the mean shift method computes the mean of the points 

that lie within the window and then shifts the window to the place of the mean, 

repeating the above move until convergence. With convergence guaranteed, each 

point can be associated with a certain peak that represents a cluster. 

The mean shift procedure estimates a probability density function using the 

Parzen window density estimator [30]. Given a discrete data set with n data points 

denoted as xi, i=1,2,…,n in the d-dimensional feature space R
d
, the kernel density 

estimation with Epanechnikov kernel K(x) [29, 31] at the point x is given by 

 
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For searching the local peak in density distribution, we focus on the gradient of 

this kernel density estimation: 
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The algorithm uses formula (4) to update the window center in each iteration. 

In the application of mean shift method to image processing, it carries on by 

employing the mean shift clustering over the combined spatial-range domain [32]. For 

a 3-D gray-level image, the mean shift method works on each pixel over the 

four-dimensional feature space, i.e., three dimensions for the spatial domain and one 

dimension for the range (gray-level) domain; that is, for the combined spatial-range 

domain, the kernel in formula (1) becomes : 
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where x
s
 is the spatial part, x

r
 is the range part of a feature vector, hs and hr are the 

kernel bandwidths of spatial domain and range domain respectively, and C is the 

corresponding normalization constant. 

However, the size of 3-D volume data sets is so large that it might take a lot of 

processing time to apply the 3-D mean shift method directly. In order to reduce the 

processing time, the fast 3-D mean shift [25] is applied in our implementation. The 
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fast 3-D mean shift uses the 2-D information propagation in a straight-forward manner. 

Instead of using a four-dimension window directly, the fast 3-D mean shift method 

uses a three-dimension window in each 2-D image slice. If the k-th slice from the 

original 3-D volume image is denoted as f
k
 and its segmented result after applying the 

2-D mean shift method is denoted as g
k
, the algorithm computes the difference of each 

corresponding pixel between f
k
 and f

k+1
. If the difference is less than the threshold THz, 

the pixel in f
k+1

 will be replaced by its corresponding pixel value in g
k 
. After all pixels 

in f
k+1

 are checked, it applies the 2-D mean shift method to generate the segmented 

result g
k+1

. Supposed that there are M slices in our 3-D image, the fast 3-D mean shift 

method executes the above 2-D mean shift procedure starting from k=1 to k=M and 

the segmented set is {g
1
 ,…, g

M
}. Because the ABUS volume size is large and we 

want to further accelerate the speed of fast 3-D mean shift. For reducing the 

processing time in the study, the image is down-sampled to one-eighth of the original 

size. The fast 3-D mean shift method is applied to the down-sampled image and then 

the image is enlarged back to the original size as an approximate result of fast 3-D 

mean shift method. 

There are three parameters hs, hr, and THz in the fast 3-D mean shift method to 

determine the results of segmentation. In this study, three parameters is chosen to be 

(hs, hr, THz)=(7, 15, 1) and the segmentation result is shown in Fig. 3. Note that the 

number of regions is large and the region size is small in Fig. 3(b). The reason is that 

the used parameters are very small. If the bigger parameters are chosen, the boundary 

between tumors and non-tumor regions may be disappeared and then tumors will be 

connected with other regions. Besides, the most fragmental parts are the regions with 

higher gray-level intensity such as the firbograndular tissue and those regions are not 

considered as the suspicious tumor regions. 
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(a) 

 
(b) 

 
(c) 

Fig. 3 (a) The original image (b) The image after applying fast 3-D mean shift 

method (c) The regions after fast 3-D mean shift method  

 

3.2 Region classification using fuzzy c-means clustering 

After obtaining the segmented regions, the FCM [26, 33] is adopted to classify 

the segmented regions into several clusters according to each region’s intensity value. 

Because the intensity of the tumor is darker than that of the normal tissues, the regions 

classified into the darkest cluster by the FCM are regarded as the suspicious tumor 

regions in this study. Then, these suspicious regions could be merged with their 

neighboring suspicious regions to represent a tumor. However, the suspicious regions 
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in the darkest cluster include not only tumor regions but also darker non-tumor 

regions such as fat, shadowing, and anechoic regions. In order to avoid merging the 

darker non-tumor regions with the tumor regions, a merging threshold value THtumor is 

used. That is, if the difference between two suspicious regions is smaller than THtumor, 

then these regions could be merged. Otherwise, one of suspicious regions might be 

only the darker non-tumor region. 

 In this paper, the regions are classified into 4 clusters. The FCM clustering result 

is shown in Fig. 4 and the regions in Fig. 3(c) classified into the darkest cluster by the 

FCM is shown in Fig. 5. In Fig. 6, the darkest regions are merged with different 

merging threshold values. With THtumor=4, the darkest non-tumor region is not merged 

with the tumor region as in Fig. 6(b). 
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(a)  

 
(b)  

 
(c)  

 
(d) 

 

Fig. 4 The FCM clustering result. (a) the first cluster (b) the second cluster (c) the 

third cluster (d) the fourth cluster. The tumor is circled in (d). 
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Fig. 5 The regions in Fig. 3(c) classified into the darkest cluster by the FCM 

  

 

(a) 

 

(b) 

Fig. 6 Results of different merging threshold values (a) THtumor= 8 (b) THtumor= 4. 

 

3.3 False-positive reduction 

 After above analyses, the suspicious tumor regions could be detected; however, 

not all the suspicious regions are real tumors. Hence, several features of these regions 

are extracted and used to distinguish the real tumors from the others in order to reduce 

the number of false-positives (FPs). These features are the region’s volume, intensity 
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mean, standard deviation of intensity values, neighborhood mean difference, volume 

ratio, long-short axis ratio, and standard deviation of radii. 

In the suspicious tumor regions, some too small regions might be noise or some 

too large regions might be the anechoic regions. Therefore, the region volume is used 

as the feature for removing the non-tumor regions. In addition, two physical features 

are obtained by computing each region’ mean and its standard deviation in gray-level 

intensity. In general, the anechoic regions are darker than the tumor regions and their 

standard deviations are much smaller; on the other hand, some of tumors, especial 

malignant tumors, their standard deviations are large because these tumors are 

disordered and have large diversities.  

Moreover, the relations between each region and its neighborhood are also 

observed as features. A bounding box is a rectangular parallelepiped that 

circumscribes the suspicious tumor region, shown as Fig. 7. The feature neighborhood 

mean difference is to compute the intensity mean difference between the suspicious 

region and the area that is outside the suspicious region in the bounding box. Since 

most of tumors are surrounded with the brighter tissue, the feature neighborhood 

mean difference is expected to be larger for tumors. As a result, the region whose 

feature of neighborhood mean difference is small is likely to be the non-tumor region 

and be screened out. Another feature, volume ratio, works on the ratio of the volume 

of suspicious region and the volume of its bounding box. Because tumors are usually 

close to the shapes of ellipses, the tumor region usually takes a certain proportion in 

the bounding box and its feature of volume ratio is much larger than that of a skewed 

shadow.  
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Fig. 7 A bounding box of the suspicious tumor region. 

Finally, two features that describe the shapes of regions are measured. The 

long-short axis ratio is defined by the length ratio of the longest edge and the shortest 

edge of the bounding box. Compared with the shape of tumors that are close to 

ellipses, most of fat regions are flat and narrow, as shown in Fig. 8. Therefore, the 

features of long-short axis are commonly larger for fat regions than for tumors. The 

last feature is standard deviation of radii. It is to measure the diversity of the distances 

from the centroid to each surface pixel in the suspicious region. If the diversity of 

radiuses is small, it means the region is close to be in the shape of a sphere. 

 
(a) 

 
(b) 

Fig. 8  Flat and narrow fat (a) the original slice image (b) white areas are the 

suspicious regions.  
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 The binary logistic regression model [34] is used to classify the suspicious 

regions into tumor and non-tumor based on the proposed seven features. The 

predicting values from the binary logistic regression lie between 0 and 1. We can 

choose a threshold value THlogistic to classify these suspicious regions into two 

categories, tumor and non-tumor. If the predicting value of the suspicious region is 

greater than the chosen threshold, the region is regarded as a tumor, otherwise, the 

region is considered as a non-tumor and can be ignored. 
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Chapter 4 

Experimental Results and Discussion 

 The proposed system of tumor detection for ABUS images is implemented by the 

Matlab 2008a (The Mathworks, Natick, MA) with Microsoft Windows 7 operating 

system (Microsoft, Seattle, WA). The program is running on an Intel Core i7 2.67 

GHz CPU with 4G RAM. 

 

4.1 Experimental Results 

 In this experiment, there are 146 lesions of 113 patients used for estimating the 

performance of the proposed tumor detection method. In the stage of false-positive 

reduction, the binary logistic regression model [34] is adopted with 10-fold 

cross-validation. The detection results of our proposed method are shown in Table 1. 

In this table, the numbers of true-positives (TPs), false-negatives (FNs), and false 

positives (FPs) are listed for each case. The sensitivity rates for benign and malignant 

tumors are listed in Table 2. The total number of tumors is 146, in which 67 tumors 

are malignant and 79 tumors are benign. The sensitivity rate of tumor detection is 

89.04% with 4.92 FPs per case. The sensitivity rate for malignant tumors is 94.03% 

and the sensitivity rate for benign tumors is 84.1%. The sensitivity rates of different 

sizes for benign and malignant tumors are listed in Table 3. 

For statistical analysis of the proposed features in false-positive reduction, firstly, 

the Kolmogorov-Smirnov test [35] is applied to observe whether the feature is a 

normal distribution or not. If the feature is a normal distribution, then the mean values 

and standard deviation are calculated for the tumors and non-tumors. Differences 

between the values of the features for the tumors and non-tumors are evaluated with 

Student’s t test. If the distribution of a feature is not normal, the median value is listed 
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and the Mann-Whitney U test [35] is used. A p-value that is less than 0.05 is 

considered to indicate a statistically significant difference. Our proposed features are 

determined to be non-normal distributions by the Kolmogorov-Smirnov test. Thus, the 

Mann-Whitney U test is applied and the median and p-value for respective feature is 

listed in Table 4. Also, the free-response operating characteristics (FROC) [36] are 

also adopted to show the performance of our tumor detection system. The FROC, 

shown in Fig. 9, is generated by the predicted values from the binary logistic 

regression using different threshold THlogistic. At THlogistic=0.54, the sensitivity rate of 

tumor detection is 89.04% with 4.92 FPs per case. Note that the number of FPs was 

63.32 per case before the false-positive reduction.   

 According to Table 1, most of the tumors identified by the radiologists could be 

found through our proposed tumor detection system with lower FP rate per case. The 

8 cases of true-positive examples are shown in Fig. 10 - Fig. 17, 3 false-negative cases 

are shown in Fig. 18 -Fig. 20, and Fig. 21 shows a false-positive example. In these 

figures, the solid circles indicate the position of the real tumors and the dot circles 

indicate the FPs after FP reduction. 

 

Table 1 The results for 113 cases with the tumors 

Case No. False positive False Negative True positive 
Benign(0) 

/Malignant(1) 

1 1 0 1 1 

2 6 0 1 0 

3 5 0 2 0 

4 3 0 1 0 

5 9 0 3 0 

6 10 0 1 1 

7 0 0 1 1 

8 6 0 1 0 
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9 1 0 1 1 

10 5 1 0 1 

11 7 0 1 0 

12 14 0 3 1 

13 5 0 3 0 

14 2 0 1 1 

15 5 1 0 1 

16 10 0 2 1 

17 3 0 1 1 

18 2 1 0 1 

19 6 0 1 0 

20 2 1 0 0 

21 1 0 2 0 

22 1 0 1 1 

23 2 0 1 1 

24 2 0 1 0 

25 6 0 1 1 

26 2 1 0 0 

27 6 1 0 0 

28 6 0 1 1 

29 12 0 1 0 

30 9 0 1 0 

31 13 0 3 0 

32 7 1 2 0 

33 6 0 1 1 

34 5 0 3 1 

35 6 0 2 1 

36 10 0 1 1 

37 6 0 1 1 

38 3 0 2 0 
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39 3 0 1 0 

40 5 0 1 1 

41 5 0 1 1 

42 3 0 1 0 

43 9 0 2 0 

44 3 0 1 1 

45 11 0 1 0 

46 6 1 0 0 

47 6 0 2 0 

48 8 0 1 0 

49 6 0 1 1 

50 0 1 1 0 

51 8 0 1 0 

52 4 0 2 1 

53 2 0 1 1 

54 4 0 1 1 

55 3 0 1 1 

56 9 0 2 0 

57 9 0 1 0 

58 0 0 1 1 

59 3 0 1 0 

60 8 0 2 1 

61 2 1 1 1 

62 4 0 1 1 

63 7 0 1 1 

64 5 0 1 1 

65 3 0 1 1 

66 7 0 2 0 

67 2 0 1 0 

68 0 0 1 0 
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69 2 1 0 0 

70 5 0 1 1 

71 2 0 1 1 

72 7 0 1 1 

73 4 0 1 0 

74 5 0 1 1 

75 5 1 1 0 

76 8 0 1 0 

77 7 1 1 0 

78 11 0 1 1 

79 4 0 1 0 

80 6 0 1 1 

81 4 0 2 1 

82 0 0 1 0 

83 9 0 1 1 

84 6 0 1 1 

85 8 0 2 1 

86 2 0 1 1 

87 4 0 1 1 

88 6 0 1 0 

89 5 0 1 1 

90 14 0 1 1 

91 3 0 1 0 

92 0 0 1 1 

93 4 0 1 1 

94 2 0 1 1 

95 7 1 0 0 

96 6 0 1 1 

97 5 1 2 1 

98 1 0 1 1 
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99 0 0 1 1 

100 11 0 1 0 

101 3 0 1 0 

102 9 0 1 1 

103 2 0 1 1 

104 2 0 1 1 

105 4 0 1 1 

106 3 0 2 0 

107 6 0 1 1 

108 2 0 1 1 

109 3 1 1 1 

110 2 0 1 1 

111 3 0 1 0 

112 3 0 1 0 

113 1 0 1 0 

Total 556 16 130 B:79/M:67 

 

Table 2 The sensitivity rates of tumor detection for benign and malignant tumors 

 Tumor Number Detected Miss detected Sensitivity 

Benign 79 67 12 84.81% 

Malignant 67 63 4 94.03% 
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Table 3 The sensitivity rate of different sizes for benign and malignant tumors 

 < 1.0 cm 1.0 – 2.0 cm 2.0 - 3.0 cm ≧3.0 cm 

Benign 
87.23% 

(41/47) 

81.48% 

(22/27) 

100% 

(2/2) 

66.67% 

(2/3) 

Malignant 
100% 

(3/3) 

100% 

(16/16) 

90% 

(27/30) 

94.44% 

(17/18) 

Total 
88% 

(44/50) 

88.37% 

(38/43) 

90.63% 

(29/32) 

90.48% 

(19/21) 

 

Table 4 Median value and p-value of Mann-Whitney U test for each feature 

Feature 

 

Median 

p-value Non-tumor 

Regions 
Tumor Regions 

Volume 26.01 201.30 <0.001* 

Mean 37.85 33.20 <0.001* 

SD 1.49 3.26 <0.001* 

Volume Ratio 0.17 0.26 <0.001* 

Neighborhood Mean 

Difference 
8.66 21.20 <0.001* 

Long-short axis ratio 3.05 2.07 <0.001* 

Variance of radiuses 0.99 1.12 0.19 

* The difference was statistically significant. 

 

 
Fig. 9 The FROC curve of the proposed system. 
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(a) 

 
(b) 

 
(c) 

Fig. 10 A true-positive case of 1.9 cm infiltrating duct carcinoma. (a) The original 

image (b) The white areas are the suspicious tumor regions before FP 

reduction. (c) The white area is the result after FP reduction and the solid circle 

indicates the position of the real tumor. 
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(a) 

 
(b) 

 
(c) 

Fig. 11 A true-positive case of 2.0 cm infiltrating duct carcinoma. (a) The original 

image (b) The white area is the suspicious tumor region before FP reduction. 

(c) The white area is the result after FP reduction and the solid circle indicates 

the position of the real tumor. 
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(a) 

 
(b) 

 
(c) 

Fig. 12 A true-positive case of 1.8 cm fibroadenomas. (a) The original image (b) 

White areas are the suspicious tumor regions before FP reduction. (c) The 

white areas are the results after FP reduction. The solid circle indicates the 

position of the real tumor and the dot circle indicates the FP.  
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(a) 

(b) 

 

Fig. 13 A true-positive case of 1.3 cm tubular adenoma. (a) The original image (b) The 

white areas are the suspicious tumor regions before FP reduction. (c) The 

white area is the result after FP reduction and the solid circle indicates the 

position of the real tumor. 
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(a) 

 

(b) 

 

(c) 

Fig. 14 A true-positive case of 3.2 cm infiltrating duct carcinoma. (a) The original 

image (b) The white areas are the suspicious tumor regions before FP 

reduction. (c) The white area is the result after FP reduction and the solid circle 

indicates the position of the real tumor. 
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(a) 

 
(b) 

 
(c) 

Fig. 15 A true-positive case of 3.5 cm infiltrating duct carcinoma. (a) The original 

image (b) The white areas are the suspicious tumor regions before FP 

reduction. (c) The white area is the result after FP reduction and the solid circle 

indicates the position of the real tumor. 
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(a) 

 
(b) 

 
(c) 

Fig. 16 A true-positive case of 7.0 cm DCIS. (a) The original image (b) The white area 

is the suspicious tumor region before FP reduction. (c) The white area is the 

result after FP reduction and the solid circle indicates the position of the real 

tumor. 
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(a) 

 
(b) 

 
(c) 

Fig. 17 A true-positive case of 5.4 cm phyllodes tumor. (a) The original image (b) The 

white area is the suspicious tumor region before FP reduction. (c) The white 

area is the result after FP reduction and the solid circle indicates the position of 

the real tumor. 
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(a) 

 
(b) 

 
(c) 

Fig. 18 A false-negative case of 3.1cm fibroadenomas. (a) The original image (b) The 

white areas are the suspicious tumor regions before FP reduction. (c) The 

result after FP reduction and the solid circle indicates the position of the real 

tumor. 
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(a) 

 
(b) 

 
(c) 

Fig. 19 A false-negative case of 2.0 cm DCIS. (a) The original image (b) The white 

area is the suspicious tumor region before FP reduction. (c) The result after FP 

reduction the solid circle indicates the position of the real tumor. 
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(a) 

 
(b) 

  
(c) (d) 

Fig. 20 A false-negative case of 2.5 cm infiltrating duct carcinoma. (a) The original 

image in A-view (b) The white areas are the suspicious tumor regions before 

FP reduction from (a). (c) The original image in C-view. (d) The white areas 

are the suspicious tumor regions before FP reduction from (c). 

  



 

35 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 21 A false-positive example. (a) The arrow indicates the rib region in the original 

image. (b) The white areas are the suspicious tumor region before FP reduction. 

(c) The white area is the result after FP reduction and the dot circle indicates 

the FP. The rib is misclassified as the suspicious tumor region in this case. 

 

4.2 Discussion 

 US has been shown to be a useful tool for breast tumor detection and has been an 

useful adjunct to mammography, especially for women with dense breast tissue [10, 

11] The ABUS has been an popular screening tool in clinical because its 

operator-independent, ease for training, time-efficient and better reproducibility for 

follow-up studies [17]. Due to large amounts of data in the 3-D US images, tumor 

detection is not an easy task for the physician and the misdiagnosis might be occurred. 

Therefore, the CADe systems have been proposed to assist the diagnosis of the 
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physician.  

 In this study, the proposed region-based method can reduce the influences of 

noises and the strategy that merging the tumor regions after FCM can prevent the 

tumor regions from connecting other non-tumor regions, improving the segmentation 

results. In above true-positive examples from Fig. 10 to Fig. 14, the tumors in these 

examples are surrounded with others darker regions that may connect with the tumor 

region and causes segmentation distortions. In our proposed method, the suspicious 

tumor regions generated by FCM are merged within the merging threshold THtumor to 

segment a real tumor, separating from other non-tumor regions. These segmentation 

results show that our proposed method can segment the tumor regions well. 

 However, it is very difficult to choose a perfect merging threshold THtumor to fit 

all the cases. A few false-negative cases are caused by the merging threshold. For the 

false-negative case shown in Fig. 18, the segmented tumor region is narrow and the 

tumor was classified as a non-tumor region in the FP reduction. Since our merging 

threshold is quite small for this case, the segmented tumor region is just the partial 

real tumor. Oppositely, the same merging threshold is too large for the case shown in 

Fig. 19. The position of the tumor in this case is right below the nipple so that the 

shadows from the nipple affect the segmentation seriously. As a result, with the same 

merging threshold, the tumor region merges with shadows and causes distortion. 

 Another false-negative case is shown in Fig. 20 and this malignant tumor is just 

adjacent to the right anechoic region. Even though the segmentation result seems 

perform very well in A-view, the tumor region connects with another darker region at 

the tumor edge. The FP reduction will consider it as a non-tumor region since the 

boundary between these two regions is ambiguous, as shown in Fig. 20(c)(d).  

 For a false-positive case shown in Fig. 21, because the rib in this case is in a 

shape that looks like a tumor, the rib is miss-classified and becomes a FP. In our 



 

37 

 

detection results, some parts of ribs are segmented as the suspicious regions that look 

like tumors; therefore, some further features should be used to classify these 

tumor-like suspicious regions to be non-tumor.  
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Chapter 5 

Conclusion and Future Works 

 

 In this study, an automatic 3-D region-based CADe system for ABUS images 

was proposed. At first, the fast 3-D mean shift method was adopted to segment 3-D 

image into several regions. Subsequently, the FCM method was applied to classify 

these regions into different classes according to their intensities. Because the 

intensities of the tumor regions were usually darker than that of the other tissue 

regions, the dark regions were regarded as the suspicious tumor regions in our study. 

Due to many FPs in the suspicious tumor regions, seven features were used to reduce 

these FPs. In the experiments, the sensitivity of the CADe system was 89.04% 

(130/146 lesions) with 4.92 FPs. The results show that the 3-D region-based CADe 

system could perform well and provide the reliable diagnosis. 

 Although the final results of tumor detection are acceptable, the proposed 

method could be further improved. After the FP reduction, some ribs are still 

miss-classified to be the tumors since the segmented regions of these ribs are 

tumor-alike. Further features should be used to discriminate these ribs from tumors. 

Because the ribs usually locates below the central horizontal of the A-view slice 

image, the features that concern with the position of the segmented region may be 

useful to further reduce the FP rate of the detection system. 
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