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ABSTRACT

Breast cancer has been the major cause of death for women among all kinds of
cancers in recent years. Nonetheless, the early detection and improved treatment can
significantly reduce the mortality of breast cancer. Breast ultrasound (US) is a very
important complementary imaging modality with mammography in breast cancer
detection. Recently, the automatic whole breast ultrasound (ABUS) system has been
developed to provide the proper orientation and documentation of breast lesions.
Because a large three dimension (3-D) volume image is obtained for each case, the
physician needs to spend a lot of time in reviewing all slice images. Therefore, a
computer-aided tumor detection system-is‘proposed to find the suspicious regions of
tumors and assist the physician In-diagnesis. The region-based ABUS tumor detection
method is adopted in this study.’At fi}rs.\t, the 3-D volume image is segmented into
regions and the speckle noise s remO\’TL:c’ad by the}fast 3-D mean shift method.
Subsequently, the fuzzy c-means (FCM)- cluétering classifies these regions into
different classes according to their iﬁtensities. Beéause tumors are usually darker than
normal tissues in US, the regions classified into the darkest cluster by the FCM are
regarded as the suspicious tumor regions in this study. After FCM, these suspicious
regions are merged within a merging threshold to present the segmented results.
Moreover, in order to discriminate the real tumors from the other non-tumor regions,
seven features are extracted from the suspicious tumor regions and the classification
method is adopted with 10-fold validation to reduce the false-positives. By
experimental results, almost all the tumors can be found by this system and the
sensitivity is 89.04% (130/146) with 4.92 FPs per case. Furthermore, the detection
rate for malignant tumors is up to 94.03% (63/67). The proposed tumor detection

system is useful for the diagnosis of doctors.
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Chapter 1

Introduction

Based on the incidence rates of breast cancers in the recent years, one in eight
women will develop breast cancer in their lifetime [1] and breast cancer ranks the first
as the cause of the estimated cancer death among females [2]. Earlier screening and
improved treatment are the most likely reasons for the reduced mortality rates [2]. The
early detection of the cancer provides a better chance of proper treatment [3].
Therefore, physicians suggest that women over forty years old should have the breast
cancer examination every year. Mammography [4-6] and breast ultrasound (US) [7, 8]
are the efficient methods used for breast,cancer detection and diagnose presently. The
diagnostic results with these modalitiés have given Ia great assistance to physicians for

deciding the proper treatments to patierjts\:f

=P

Mammography is the common rhod;iﬁty used for detecting breast lesions in the
early stage. However, mammograpHy is diffichIt to-screen the dense breasts with
women [9-11], and it has some drawbacké, such as high false-positive (FP) rate and
low specificity. Therefore, breast US is an important adjunct to mammography for
evaluating the dense breast cancer. Breast US does not use the ionizing radiation that
may be an invasive damage on the human body and it is non-invasive, more efficient,
relatively inexpensive, real-time, and convenient [12-14]. Additionally, it offers
interactive visualization of potential anatomical tissues in real time. Due to these
advantages, breast US is an appropriate screening tool for breast tumor detection.

The major limitation of US image is that the US probe could not fully cover the
breast width; therefore, its scanning ROI is smaller than other imaging modalities.
The automated breast ultrasound (ABUS) [11, 15-17] is a new technique to scan the

whole breast. In the study of Chou et al.[17], several advantages of ABUS are
1



indicated. The ABUS could provide better reproducibility for follow-up studies and
potential information for breast lesions. For radiologists, ABUS is ease of use without
long training time and ABUS has excellent intra- and inter-observer variability.
However, the physician needs a lot of time to review the three dimension (3-D)
images and to diagnose the ABUS images. When a large number of patients are
examined, the physician could be tired and the misdiagnosis might be occurred. In
order to reduce the misdiagnosis, computer aided detection (CADe) system could be
considered as the second reader to assist the diagnosis of the physician and could
improve more diagnostic accuracy [18, 19].

Several studies for the CADe system of breast US have been proposed in the
recent years. Mogatadakala et al. [20] proposed a method using order statistic features
from multiresolution decompoéitions of enérgy-normalized subregions  for

discriminating surrounding normal an(‘i"_{-:tul_;nor regions. Drukker et al. [21, 22]

"

investigated an automatic lesion detectioﬁ‘-[é.S/stem In two stages. The lesion candidates
were detected by using a radial grad.i;tent index fflt‘ering and were segmented by using
a region growing method initially. Subéequently, Bayesian neural network was
adopted for lesion classification. In the study of Ikedo et al. [23], a tumor detection
system for whole breast US images was proposed. Two features, the edge direction
and the density difference, were applied for tumor detection. Recently, Chang et al.
[24] proposed a CADe system for multipass automated breast US. In order to improve
the image quality, the anisotropic diffusion and stick filters were applied to reduce the
speckle noise and to enhance the tumor contour. Subsequently, the gray-level slicing
method was adopted to segment suspicious lesion regions. Finally, seven features
were used as the criteria to discriminate real lesion or non-lesion regions.

The pixel-based tumor detection method will take a lot of time for processing

and the speckle noise will also affect the detection results. Therefore, the region-based
2



ABUS tumor detection method is adopted in this study. At first, the fast 3-D mean
shift [25] method is adopted to segment the 3-D image into regions according to the
local information. Subsequently, the fuzzy c-means (FCM) clustering [26] is used to
classify the regions into different classes according to their intensities. Because
tumors are usually darker than normal tissues in US, the dark regions could be
regarded as the suspicious tumor regions. In order to discriminate the real tumors
from the other non-tumor regions, seven features are extracted from the suspicious

tumor regions and the classification method is adopted to reduce the false-positives.
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Chapter 2

Materials

The data used in the study were acquired between June 2007 and June 2008
from Seoul National University Hospital. 146 biopsy proven lesions (size range
0.2-7.0 cm, mean 1.64+1.15 cm) in 113 female subjects (ages range 20-79 years;
mean 45.18+10.59 years) were used for evaluating the performance of the tumor
detection system. The 146 lesions include 79 benign and 67 malignant lesions. The 79
benign lesions include 44 fibrocystic changes, 31 fibroadenomas and 4 papillomas.
The 67 malignant lesions include 59 infiltrating carcinomas and 8 ductal carcinoma in
situ (DCIS). These subjects were scanned by.the SomoVu ScanStation (U-system, San
Jose, CA, USA), as shown in ‘Fié. 1._ The Sqdeu ScanStation comprises a View
Station and a Scan Station. The patieﬁt i\g_h\;e:’supine position is scanned by the Scan
Station with the 10 MHz linear transd‘uce-‘r"':-.Whose width is 15.4 cm and the acquired
data is transformed to the VieW Sta;tion. Althohgh the transducer is wider than the
conventional ultrasound transducer, more ‘than one pass is needed for covering the
entire breast of the patient. The pixel resolutions of the acquired 3-D image are 0.285
mm in the transverse direction, 0.086 mm in the sagittal direction and 0.6 mm in the

coronal direction.
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Chapter 3

Region-based ABUS Tumor Detection

Because the number of pixels in the ABUS image is too large and there is speckle
noise in the US images, the pixel-based method will take a lot of time to detect the
tumors and the speckle noise will also affect its performance. Hence, a region based
method is adopted not only to reduce the detection time but also to avoid the affection
of speckle noise in this study. At first, for segmenting the 3-D image into several
regions, the fast 3-D mean shift method [25] is applied. Afterward, the fuzzy c-means
(FCM) clustering [26] is used to classify the regions into different classes according to
their grey levels. Because the tumors are darker than the normal tissue, the dark
regions might be the suspicious régions of tumo’ré. However, not all the suspicious

regions are real tumors, seven features ;arg;extracted from these suspicious regions and

-

the classification method is used to red;uce['the false-positives. The system flowchart is

!
5

shown in Fig. 2.

Region segmentation using fast
3-D mean shift method

N

Region classification using
fuzzy c-means clustering

A

False-positive reduction

A 4

Detection results

Fig. 2 The region-based ABUS tumor detection.



3.1 Region segmentation using fast 3-D mean shift method

In this stage, the fast 3-D mean shift method is applied for region segmentation;
that is, the pixels with certain local homogeneity are gathered together as a region.
Besides, there is a lot of speckle noise in the US images and the noise will affect the
performance of tumor detection. Since the mean shift method can ignore the outliers
in the data [27], it is very useful in removing the speckle noise in the US images.
Accordingly, the mean shift method is adopted in this study. After applying the region
segmentation, each pixel in a region is replaced by the mean of their intensity values.

The mean shift method [28, 29] is a feature-space analysis technique with the
ability of clustering a discrete data set over the feature-space. We assume that a data
set with n data points lying on the feature space and a spherical window of radius r are
given. For each data point, the meari shift metho’d computes the mean of the points

that lie within the window and then ;slf‘li_ij:‘ts"_:.;the window to the place of the mean,

P

repeating the above move until con\‘/eréé._hce. 'With ‘convergence guaranteed, each
point can be associated with a ce'rtain;peak that répresents a cluster.

The mean shift procedure estimates‘a probability density function using the
Parzen window density estimator [30]. Given a discrete data set with n data points
denoted as x;, i=1,2,...,n in the d-dimensional feature space R the kernel density

estimation with Epanechnikov kernel K(x) [29, 31] at the point x is given by
1 n
f(x):;ZK(x—xi). Q)
i=1

2
X=Xy, kis the profile with respect to K, ¢ is a normalization

where K (x - x,) = ck (

constant, and h is the bandwidth of the kernel.
For searching the local peak in density distribution, we focus on the gradient of

this kernel density estimation:



Vf(X)=%Zn:VK(X_Xi)=%Zn:Vki (2)

Let g(x)=—k’(x) and the formula can be represented by:

2
" X = X;
c n c n |X—X.|2 ingi( )
Vf(X)=EZVki=;[Zgi(h " ‘ )][':1n ,—— X] 3)
i i= X — X
l 1 o)
i1 h
and the mean shift vector is derived:
zxingX_hx‘ )
m(x) = izln T - X. (4)
Zgi(H h‘ )

The algorithm uses formula (4) to l'jpdaterthe wihdow center in each iteration.

In the application of meéﬁ shlftmel-hod to imag_e processing, it carries on by
employing the mean shift clustering dv:er;:[ﬁ.éucdmbinedspatial-range domain [32]. For
a 3-D gray-level image, the rhean: %hift me‘thod lworks on each pixel over the
four-dimensional feature space, i.e., three dimensions for the spatial domain and one

dimension for the range (gray-level) domain; that is, for the combined spatial-range

domain, the kernel in formula (1) becomes :

2

) -k (

2

) (5)

C r
K(X) = ——-Kk(
h?-h

S r

x® X
h, h

where x° is the spatial part, x" is the range part of a feature vector, hs and h, are the
kernel bandwidths of spatial domain and range domain respectively, and C is the
corresponding normalization constant.

However, the size of 3-D volume data sets is so large that it might take a lot of

processing time to apply the 3-D mean shift method directly. In order to reduce the

processing time, the fast 3-D mean shift [25] is applied in our implementation. The
8



fast 3-D mean shift uses the 2-D information propagation in a straight-forward manner.
Instead of using a four-dimension window directly, the fast 3-D mean shift method
uses a three-dimension window in each 2-D image slice. If the k-th slice from the
original 3-D volume image is denoted as f and its segmented result after applying the
2-D mean shift method is denoted as g*, the algorithm computes the difference of each
corresponding pixel between f and "%, If the difference is less than the threshold TH,,
the pixel in f* will be replaced by its corresponding pixel value in g*. After all pixels
in f'* are checked, it applies the 2-D mean shift method to generate the segmented
result g“**. Supposed that there are M slices in our 3-D image, the fast 3-D mean shift
method executes the above 2-D mean shift procedure starting from k=1 to k=M and
the segmented set is {g* ,..., g™}:/Because the ’ABUS volume size is large and we
want to further accelerate the s"peed of fast 3;D mean shift. For reducing the

processing time in the study, the image i~§§io§_{Vn-sampled to one-eighth of the original

St

=

size. The fast 3-D mean shift method is ;ﬁ_ﬁliedito the down-sampled image and then
the image is enlarged back to the o.r;iginal size éas an-approximate result of fast 3-D
mean shift method. ‘

There are three parameters h, hy, and TH; in the fast 3-D mean shift method to
determine the results of segmentation. In this study, three parameters is chosen to be
(hs, hy, TH.)=(7, 15, 1) and the segmentation result is shown in Fig. 3. Note that the
number of regions is large and the region size is small in Fig. 3(b). The reason is that
the used parameters are very small. If the bigger parameters are chosen, the boundary
between tumors and non-tumor regions may be disappeared and then tumors will be
connected with other regions. Besides, the most fragmental parts are the regions with
higher gray-level intensity such as the firbograndular tissue and those regions are not

considered as the suspicious tumor regions.



Fig. 3 (a) The original image (b) The image after applying fast 3-D mean shift
method (c) The regions after fast 3-D mean shift method

3.2 Region classification using fuzzy c-means clustering

After obtaining the segmented regions, the FCM [26, 33] is adopted to classify
the segmented regions into several clusters according to each region’s intensity value.
Because the intensity of the tumor is darker than that of the normal tissues, the regions
classified into the darkest cluster by the FCM are regarded as the suspicious tumor
regions in this study. Then, these suspicious regions could be merged with their

neighboring suspicious regions to represent a tumor. However, the suspicious regions

10



in the darkest cluster include not only tumor regions but also darker non-tumor
regions such as fat, shadowing, and anechoic regions. In order to avoid merging the
darker non-tumor regions with the tumor regions, a merging threshold value THymor 1S
used. That is, if the difference between two suspicious regions is smaller than THymor,
then these regions could be merged. Otherwise, one of suspicious regions might be
only the darker non-tumor region.

In this paper, the regions are classified into 4 clusters. The FCM clustering result
is shown in Fig. 4 and the regions in Fig. 3(c) classified into the darkest cluster by the
FCM is shown in Fig. 5. In Fig. 6, the darkest regions are merged with different
merging threshold values. With THymor=4, the darkest non-tumor region is not merged

with the tumor region as in Fig. 6(b).
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(d)

Fig. 4 The FCM clustering result. (a) the first cluster (b) the second cluster (c) the
third cluster (d) the fourth cluster. The tumor is circled in (d).



(b)
Fig. 6 Results of different merging threshold values () THwmor= 8 (b) THwmor= 4.

3.3 False-positive reduction

After above analyses, the suspicious tumor regions could be detected; however,
not all the suspicious regions are real tumors. Hence, several features of these regions
are extracted and used to distinguish the real tumors from the others in order to reduce
the number of false-positives (FPs). These features are the region’s volume, intensity

13



mean, standard deviation of intensity values, neighborhood mean difference, volume
ratio, long-short axis ratio, and standard deviation of radii.

In the suspicious tumor regions, some too small regions might be noise or some
too large regions might be the anechoic regions. Therefore, the region volume is used
as the feature for removing the non-tumor regions. In addition, two physical features
are obtained by computing each region’ mean and its standard deviation in gray-level
intensity. In general, the anechoic regions are darker than the tumor regions and their
standard deviations are much smaller; on the other hand, some of tumors, especial
malignant tumors, their standard deviations are large because these tumors are
disordered and have large diversities.

Moreover, the relations between each.region and its neighborhood are also
observed as features. A bounding box s a' rectangular parallelepiped that

circumscribes the suspicious tumor reg‘iof}ishpwn as Fig. 7. The feature neighborhood

P

mean difference is to compute.the intén;iigl mean difference between the suspicious
region and the area that is outside tﬁe suspicioﬁs‘ region in the bounding box. Since
most of tumors are surrounded with' the ‘brighter tissue, the feature neighborhood
mean difference is expected to be larger for tumors. As a result, the region whose
feature of neighborhood mean difference is small is likely to be the non-tumor region
and be screened out. Another feature, volume ratio, works on the ratio of the volume
of suspicious region and the volume of its bounding box. Because tumors are usually
close to the shapes of ellipses, the tumor region usually takes a certain proportion in
the bounding box and its feature of volume ratio is much larger than that of a skewed

shadow.

14



Fig. 7 A bounding box of the suspicious tumor region.

Finally, two features that describe the shapes of regions are measured. The
long-short axis ratio is defined by the length ratio of the longest edge and the shortest
edge of the bounding box. Compared with the shape of tumors that are close to
ellipses, most of fat regions are flat and narrow as shown in Fig. 8. Therefore, the
features of long-short axis are commonly Iarge? ft)r fat reglons than for tumors. The
last feature is standard devratron of r \4{-, 4 measure the diversity of the distances

(,-’ /
from the centroid to each surface"pi |ﬂith usprcrous region. If the diversity of

\

radiuses is small, it means the regron |4 close to be |n the shape of a sphere.

(b)

Fig. 8 Flat and narrow fat (a) the original slice image (b) white areas are the

suspicious regions.
15



The binary logistic regression model [34] is used to classify the suspicious
regions into tumor and non-tumor based on the proposed seven features. The
predicting values from the binary logistic regression lie between 0 and 1. We can
choose a threshold value THggisic t0 classify these suspicious regions into two
categories, tumor and non-tumor. If the predicting value of the suspicious region is
greater than the chosen threshold, the region is regarded as a tumor, otherwise, the

region is considered as a non-tumor and can be ignored.
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Chapter 4

Experimental Results and Discussion

The proposed system of tumor detection for ABUS images is implemented by the
Matlab 2008a (The Mathworks, Natick, MA) with Microsoft Windows 7 operating
system (Microsoft, Seattle, WA). The program is running on an Intel Core i7 2.67

GHz CPU with 4G RAM.

4.1 Experimental Results

In this experiment, there are 146 lesions of 113 patients used for estimating the
performance of the proposed tumor detection. method. In the stage of false-positive
reduction, the binary logistic régression mod'e.l [34] is adopted with 10-fold
cross-validation. The detection resulté Tof?gﬁu_riébroposed _method are shown in Table 1.
In this table, the numbers of true-po‘sit;\-kéfs“ (TPs), false-negatives (FNs), and false
positives (FPs) are listed for each cas;e. The sené’itivity rates for benign and malignant
tumors are listed in Table 2. The total nurhber of tumors is 146, in which 67 tumors
are malignant and 79 tumors are benign. The sensitivity rate of tumor detection is
89.04% with 4.92 FPs per case. The sensitivity rate for malignant tumors is 94.03%
and the sensitivity rate for benign tumors is 84.1%. The sensitivity rates of different
sizes for benign and malignant tumors are listed in Table 3.

For statistical analysis of the proposed features in false-positive reduction, firstly,
the Kolmogorov-Smirnov test [35] is applied to observe whether the feature is a
normal distribution or not. If the feature is a normal distribution, then the mean values
and standard deviation are calculated for the tumors and non-tumors. Differences

between the values of the features for the tumors and non-tumors are evaluated with

Student’s t test. If the distribution of a feature is not normal, the median value is listed
17



and the Mann-Whitney U test [35] is used. A p-value that is less than 0.05 is
considered to indicate a statistically significant difference. Our proposed features are
determined to be non-normal distributions by the Kolmogorov-Smirnov test. Thus, the
Mann-Whitney U test is applied and the median and p-value for respective feature is
listed in Table 4. Also, the free-response operating characteristics (FROC) [36] are
also adopted to show the performance of our tumor detection system. The FROC,
shown in Fig. 9, is generated by the predicted values from the binary logistic
regression using different threshold THiogistic. At THiogisiic=0.54, the sensitivity rate of
tumor detection is 89.04% with 4.92 FPs per case. Note that the number of FPs was
63.32 per case before the false-positive reduction.

According to Table 1, most of'the tumors identified by the radiologists could be
found through our proposed timor detection syste‘rh with lower FP rate per case. The

8 cases of true-positive examples are sho{gn ‘iir_J‘Fig. 10 - Fig. 17, 3 false-negative cases

>

=

are shown in Fig. 18 -Fig. 20,.-and Fig. 21 shows a false-positive example. In these
figures, the solid circles indicate ‘the posifion.of-the real tumors and the dot circles

indicate the FPs after FP reduction.

Table 1 The results for 113 cases with the tumors

Case No. False positive | False Negative | True positive /I\/? ;?gi]ggrg(t)zl)
1 1 0 1 .
2 6 0 1 0
3 5 0 2 0
4 3 0 1 0
5 9 0 3 0
6 10 0 1 1
7 0 0 1 .
8 6 0 ! 0
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Table 2 The sensitivity rates of tumor detection for benign and malignant tumors

Tumor Number Detected Miss detected Sensitivity
Benign 79 67 12 84.81%
Malignant 67 63 4 94.03%
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Table 3 The sensitivity rate of different sizes for benign and malignant tumors

<1.0cm 1.0-2.0cm 2.0-3.0cm =3.0cm
. 87.23% 81.48% 100% 66.67%
Benign
(41/47) (22/27) (2/2) (2/3)
Malianant 100% 100% 90% 94.44%
i
g (3/3) (16/16) (27/30) (17/18)
Total 88% 88.37% 90.63% 90.48%
(44/50) (38/43) (29/32) (19/21)

Table 4 Median value and p-value of Mann-Whitney U test for each feature

Median
Feature
Non-tumor ) p-value
. Tumor Regions
Regions
\Volume . 2‘6.\_01' 201.30 <0.001*
Mean 3785 33.20 <0.001*
SD 149 . 3.26 <0.001*
Volume Ratio P 10.26 <0.001*
. <= || | 2 :
Neighborhood Mean fi | s
. 8.66 1. |1 0 21.20 <0.001*
Difference P 55 L) ~
Long-short axis ratio ,3:55-;'; U._; 2.07 <0.001*
Variance of radiuses 0.99 1.12 0.19
* The difference was statistically significant.
FROC
100%
90% e
80% 7
V4
s 60% f
2 50%
S 40% w
2 30%
20%
10%
0%
0 5 10 15 25 30 35

FPs per case

Fig. 9 The FROC curve of the proposed system.
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(b)

»
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,)v b Y . ..
rating, duct carcinoma. (a) The original

Fig. 10 A true-positive case of 190 nir

image (b) The white areas “are sthersuspicious tumor regions before FP
reduction. (c) The white area is the result after FP reduction and the solid circle

indicates the position of the real tumor.
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Fig. 11 A true-positive case of %ng ng duct carcinoma. (a) The original

AN

infiltra
image (b) The white area i§ffhé;-é}u?:pl;féiibu?"tumbr region before FP reduction.
(c) The white area is the result after FP reduction and the solid circle indicates

the position of the real tumor.
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White areas are the susplcmus fur%zr ireglons before FP reduction. (c) The

white areas are the results after FP reductlon The solid circle indicates the

position of the real tumor and the dot circle indicates the FP.
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Fig. 13 A true-positive case of 1.3: cm ﬂubu,_l;ar_ a(‘dr n@jrﬁa‘.‘ (é) The original image (b) The
white areas are the suspicic")u,s“’tumor'"’regions before FP reduction. (c) The
white area is the result after FP reduction and the solid circle indicates the

position of the real tumor.
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-m 2, % 4
Fig. 14 A true-positive case of 3.2 emuinfiltrating duct carcinoma. (a) The original

image (b) The white areas are the suspicious tumor regions before FP
reduction. (c) The white area is the result after FP reduction and the solid circle

indicates the position of the real tumor.
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Fig. 15 A true-positive case of 3& t]n mﬁltrqt ng duct carcinoma. (a) The original

image (b) The white areas are the™ susp|C|ous tumor regions before FP

reduction. (c) The white area is the result after FP reduction and the solid circle

indicates the position of the real tumor.
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Fig. 16 A true-positive case of 7OCml IbCIS. (aj,‘l'h:e' ‘dr'iginal image (b) The white area

is the suspicious tumor region .béforé FP reduction. (c) The white area is the
result after FP reduction and the solid circle indicates the position of the real

tumor.
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Fig. 17 A true-positive case "of'5.4a‘g§n1 D yﬂiede tum"br'.'"‘(a) The original image (b) The
; r.:t | | Yoo A

white area is the suspicious ;tu'mc'riég.ib‘n‘f;befor'e FP reduction. (c) The white

area is the result after FP reduction’and the solid circle indicates the position of

the real tumor.
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white areas are the suspicious:tu

Fig. 18 A false-negative case»_cﬂ" 3 fibroade o[ﬁas; "(a) The original image (b) The
3 N y

mor.regions before FP reduction. (c) The

e A5y g ' '
result after FP reduction and the solid circle indicates the position of the real

tumor.
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\ VIR DA
Fig. 19 A false-negative case of ZOCmIDCJS (};{) The original image (b) The white

area is the suspicious tumor region‘before FP reduction. (c) The result after FP

reduction the solid circle indicates the position of the real tumor.
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© (d)

Fig. 20 A false-negative case of 2.5 cm infiltrating duct carcinoma. (a) The original

image in A-view (b) The white areas are the suspicious tumor regions before
FP reduction from (a). (c) The original image in C-view. (d) The white areas

are the suspicious tumor regions before FP reduction from (c).
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Fig. 21 A false-positive exarhp[e. '(é) e anfovl *ndicates the rib region in the original

|
image. (b) The white areas are the susplcmus tumor region before FP reduction.
(c) The white area is the result after FP reduction and the dot circle indicates

the FP. The rib is misclassified as the suspicious tumor region in this case.

4.2 Discussion

US has been shown to be a useful tool for breast tumor detection and has been an
useful adjunct to mammaography, especially for women with dense breast tissue [10,
11] The ABUS has been an popular screening tool in clinical because its
operator-independent, ease for training, time-efficient and better reproducibility for
follow-up studies [17]. Due to large amounts of data in the 3-D US images, tumor
detection is not an easy task for the physician and the misdiagnosis might be occurred.

Therefore, the CADe systems have been proposed to assist the diagnosis of the
35



physician.

In this study, the proposed region-based method can reduce the influences of
noises and the strategy that merging the tumor regions after FCM can prevent the
tumor regions from connecting other non-tumor regions, improving the segmentation
results. In above true-positive examples from Fig. 10 to Fig. 14, the tumors in these
examples are surrounded with others darker regions that may connect with the tumor
region and causes segmentation distortions. In our proposed method, the suspicious
tumor regions generated by FCM are merged within the merging threshold THymor to
segment a real tumor, separating from other non-tumor regions. These segmentation
results show that our proposed method can segment the tumor regions well.

However, it is very difficult to'choose a.perfect merging threshold THiumor to fit
all the cases. A few false-negative'lcases are cause'd by the merging threshold. For the

false-negative case shown In Fig. 18, thé:segmented tumor region is narrow and the

St

=

tumor was classified as a non-tumor regl‘én in ithe FP.reduction. Since our merging
threshold is quite small for this'case;, the segménted tumor region is just the partial
real tumor. Oppositely, the same merging threshold is too large for the case shown in
Fig. 19. The position of the tumor in this case is right below the nipple so that the
shadows from the nipple affect the segmentation seriously. As a result, with the same
merging threshold, the tumor region merges with shadows and causes distortion.

Another false-negative case is shown in Fig. 20 and this malignant tumor is just
adjacent to the right anechoic region. Even though the segmentation result seems
perform very well in A-view, the tumor region connects with another darker region at
the tumor edge. The FP reduction will consider it as a non-tumor region since the
boundary between these two regions is ambiguous, as shown in Fig. 20(c)(d).

For a false-positive case shown in Fig. 21, because the rib in this case is in a

shape that looks like a tumor, the rib is miss-classified and becomes a FP. In our
36



detection results, some parts of ribs are segmented as the suspicious regions that look
like tumors; therefore, some further features should be used to classify these

tumor-like suspicious regions to be non-tumor.
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Chapter 5

Conclusion and Future Works

In this study, an automatic 3-D region-based CADe system for ABUS images
was proposed. At first, the fast 3-D mean shift method was adopted to segment 3-D
image into several regions. Subsequently, the FCM method was applied to classify
these regions into different classes according to their intensities. Because the
intensities of the tumor regions were usually darker than that of the other tissue
regions, the dark regions were regarded as the suspicious tumor regions in our study.
Due to many FPs in the suspicious tumor regions, seven features were used to reduce
these FPs. In the experiments, the sensitivity of the CADe system was 89.04%
(130/146 lesions) with 4.92 FPs. The,_re\sultg shoW that the 3-D region-based CADe
system could perform well and provide/tf_t:é‘{féii}able diagnasis.

Although the final results of ’tumc{igf': detéction’ are acceptable, the proposed
method could be further improved. After thé FP reduction, some ribs are still
miss-classified to be the tumors since the segmented regions of these ribs are
tumor-alike. Further features should be used to discriminate these ribs from tumors.
Because the ribs usually locates below the central horizontal of the A-view slice

image, the features that concern with the position of the segmented region may be

useful to further reduce the FP rate of the detection system.
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