Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10040
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林惠雯(Hui-Wen Lin)
dc.contributor.authorKuan-Wen Laien
dc.contributor.author賴冠文zh_TW
dc.date.accessioned2021-05-20T20:57:37Z-
dc.date.available2011-07-29
dc.date.available2021-05-20T20:57:37Z-
dc.date.copyright2011-07-29
dc.date.issued2011
dc.date.submitted2011-07-28
dc.identifier.citation[1] T. Ekedahl, S. Lando, M. Shapiro, and A. Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001), 297-327.
[2] T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999), no. 2, 487V518.
[3] P. Johnson, Double Hurwitz numbers via the infinite wedge, arXiv:1008.3266
[4] V. Kac, Infinite dimensional Lie algebras, Cambridge University Press, 1990.
[5] S. Kerov and G. Olshanski, Polynomial functions on the set of Young diagrams, C. R. Acad. Sci. Paris Ser. I Math. 319 (1994), no. 2, 121-126.
[6] Y.-P. Lee, H.-W. Lin and C.-LWang, Flops, motives, and invariance of quantum rings, Ann. of Math, 172 (2010) no.1 243-290.
[7] Y.-P. Lee and R. Pandharipande, A reconstruction theorem in quantum cohomology and quantum K-theory, Amer. J. Math. 126 (2004), no. 6, 1367-1379.
[8] T. Miwa, M. Jimbo, and E. Date, Solitons: differential equations, symmetries and infinite dimensional algebras, Translated from the 1993 Japanese original by Miles Reid. Cambridge Tracts in Mathematics, 135. Cambridge University Press, Cambridge, 2000.
[9] A. Okounkov, Infinite wedge and random partitions, Selecta Math. (N.S.) 7 (2001), no. 1, 57-81.
[10] A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz numbers, and matrix models, Proc. Sympos. Pure Math., 80, Part 1, 325V414 (2009).
[11] A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006), 517-560.
[12] A. Okounkov and R. Pandharipande, The equivariant Gromov-Witten theory of P1, Ann. of Math. 163 (2006), 561-605.
[13] S. Shadrin, L. Spitz, D. Zvonkin, On double Hurwitz numbers with completed cycles, arXiv:1103.3120.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10040-
dc.description.abstract在這篇文章中,我概述了關於Gromov-Witten不變量與Hurwitz數之間如何建立對應的工作,以及詳細探討Toda階序的Hirota方程。該階序能夠提供相當程度的遞迴關係以計算射影直線上的Gromov-Witten不變量。主要的參考文獻為A. Okounkov與R. Pandharipande的一系列論文[11, 12]。zh_TW
dc.description.abstractIn this article, I would like to outline the work about the correspondence between Gromov-Witten invariants and Hurwitz numbers, and concentrate mainly on the detailed study of Hirota equations for the Toda hierarchy which provides certain recurrence relations for relative Gromov-Witten invariants of P1. The papers of A. Okounkov and R. Pandharipande [11, 12] are the main sources of my study.en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:57:37Z (GMT). No. of bitstreams: 1
ntu-100-R98221026-1.pdf: 519815 bytes, checksum: ff9932e67496b35f637cf081ad7cc51a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsAcknowledgments i
Abstract ii
Table of contents iii
Introduction 1
1. Gromov-Witten invariants and Hurwitz numbers 2
1.1. Gromov-Witten invariants . . . . . . . . . . . . . . . . . . . . . 2
1.2. Hurwitz numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3. Completed cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2. The operator formalism 9
2.1. The Fock representations. . . . . . . . . . . . . . . . . . . . . . 9
2.2. Boson-Fermion correspondence . . . . . . . . . . . . . . . . . 12
2.3. The operators E . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3. The Gromov-Witten/Hurwitz correspondence 18
3.1. Hodge integrals and equivariant n + m-point functions . . 18
3.2. The operator formula for Hodge integrals. . . . . . . . . . . 23
3.3. Special GW/H correspondence. . . . . . . . . . . . . . . . . . 25
3.4. Full GW/H correspondence . . . . . . . . . . . . . . . . . . . . 27
4. Main results 31
4.1. Hirota equations for the Toda hierarchy . . . . . . . . . . . . 32
4.2. The Toda hierarchy in the GW-theory . . . . . . . . . . . . . 33
References 40
dc.language.isoen
dc.title射影直線上的Gromov-Witten理論zh_TW
dc.titleThe Gromov-Witten theory of P1en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王金龍(Chin-Lung Wang),李元斌(Yuan-Pin Lee),莊武諺(Wu-Yen Chuang)
dc.subject.keywordELSV方程,Gromov-Witten理論,Hurwitz數,τ-函數,Toda階序,完備輪換,偏移對稱函數,無限維楔表示論,zh_TW
dc.subject.keywordcompleted cycle,ELSV formula,Gromov-Witten theory,Hurwitz number,infinite wedge representation,shifted symmetric function,τ-function,Toda hierarchy,en
dc.relation.page41
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-07-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-100-1.pdf507.63 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved