Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10023
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞峰
dc.contributor.authorYu-Wei Hsuen
dc.contributor.author徐佑維zh_TW
dc.date.accessioned2021-05-20T20:56:26Z-
dc.date.available2016-08-04
dc.date.available2021-05-20T20:56:26Z-
dc.date.copyright2011-08-04
dc.date.issued2011
dc.date.submitted2011-07-28
dc.identifier.citation[1] D. M. Regner, et al., 'Breast lesions: evaluation with US strain imaging--clinical experience of multiple observers,' Radiology, vol. 238, pp. 425-37, Feb 2006.
[2] T. J. Hall, et al., 'In vivo real-time freehand palpation imaging,' Ultrasound in Medicine and Biology, vol. 29, pp. 427-35, Mar 2003.
[3] J. Ophir, et al., 'Elastography: a quantitative method for imaging the elasticity of biological tissues,' Ultrasonic Imaging, vol. 13, pp. 111-34, Apr 1991.
[4] B. S. Garra, et al., 'Elastography of breast lesions: Initial clinical results,' Radiology, vol. 202, pp. 79-86, Jan 1997.
[5] R. C. Booi, et al., 'Characterization of cysts using differential correlation coefficient values from two dimensional breast elastography: preliminary study,' Ultrasound in Medicine and Biology, vol. 34, pp. 12-21, Jan 2008.
[6] N. Cho, et al., 'Nonpalpable breast masses: Evaluation by US elastography,' Korean Journal of Radiology, vol. 9, pp. 111-118, 2008.
[7] Y. M. Sohn, et al., 'Sonographic Elastography Combined With Conventional Sonography How Much Is It Helpful for Diagnostic Performance?,' Journal of Ultrasound in Medicine, vol. 28, pp. 413-420, 2009.
[8] A. Itoh, et al., 'Breast disease: Clinical application of US elastography for diagnosis,' Radiology, vol. 239, pp. 341-350, May 2006.
[9] S. Raza, et al., 'Using Real-time Tissue Elastography for Breast Lesion Evaluation Our Initial Experience,' Journal of Ultrasound in Medicine, vol. 29, pp. 551-563, 2010.
[10] A. Thomas, et al., 'Real-time elastography - an advanced method of ultrasound: first results in 108 patients with breast lesions,' Ultrasound in Obstetrics & Gynecology, vol. 28, pp. 335-340, Sep 2006.
[11] H. Zhi, et al., 'Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions,' Journal of Ultrasound in Medicine, vol. 26, pp. 807-815, 2007.
[12] Q. L. Zhu, et al., 'Real-time ultrasound elastography: Its potential role in assessment of breast lesions,' Ultrasound in Medicine and Biology, vol. 34, pp. 1232-1238, 2008.
[13] A. Thomas, et al., 'Tissue Doppler and strain imaging for evaluating tissue elasticity of breast lesions,' Academic Radiology, vol. 14, pp. 522-529, 2007.
[14] W. K. Moon, et al., 'Analysis of elastographic and B-mode features at sonoelastography for breast tumor classification,' Ultrasound in Medicine and Biology, vol. 35, pp. 1794-802, Nov 2009.
[15] J. M. Chang, et al., 'Breast mass evaluation: factors influencing the quality of US elastography,' Radiology, vol. 259, pp. 59-64, Apr 2011.
[16] W. K. Moon, et al., 'Breast tumor classification using fuzzy clustering for breast elastography,' Ultrasound in Medicine and Biology, vol. 37, pp. 700-8, May 2011.
[17] R. Malladi, et al., 'Shape Modeling with Front Propagation - a Level Set Approach,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, pp. 158-175, Feb 1995.
[18] S. Osher and J. A. Sethian, 'Fronts Propagating with Curvature-Dependent Speed - Algorithms Based on Hamilton-Jacobi Formulations,' Journal of Computational Physics, vol. 79, pp. 12-49, Nov 1988.
[19] J. S. Suri, Advances in diagnostic and therapeutic ultrasound imaging. Boston ; London: Artech House, 2008.
[20] R. Deriche, 'Fast Algorithms for Low-Level Vision,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, pp. 78-87, Jan 1990.
[21] J. Serra, 'Biomedical Image Analysis by Mathematical Morphology,' Pathologie Biologie, vol. 27, pp. 205-207, 1979.
[22] S. R. Sternberg, 'Grayscale Morphology,' Computer Vision Graphics and Image Processing, vol. 35, pp. 333-355, Sep 1986.
[23] H. J. A. M. Heijmans, 'Theoretical Aspects of Gray-Level Morphology,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, pp. 568-582, Jun 1991.
[24] R. C. Gonzalez, et al., Digital image processing, third ed. Upper Saddle River, New Jersey: Pearson Prentice Hall, 2009.
[25] J. A. Sethian, 'Numerical Algorithms for Propagating Interfaces - Hamilton-Jacobi Equations and Conservation-Laws,' Journal of Differential Geometry, vol. 31, pp. 131-161, Jan 1990.
[26] J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function Algorithms: New York: Plenum, 1981.
[27] D. W. Hosmer and S. Lemeshow, Applied logistic regression, 2nd ed. New York: Wiley, 2000.
[28] W. C. Shen, et al., 'Breast ultrasound computer-aided diagnosis using BI-RADS features,' Academic Radiology, vol. 14, pp. 928-939, Aug 2007.
[29] E. Alpaydin, Introduction to machine learning. Cambridge, Mass.: MIT Press, 2004.
[30] A. P. Field, Discovering statistics using SPSS, 3rd ed. Los Angeles: SAGE Publications, 2009.
[31] Y. C. Chang, et al., 'Automatic selection of representative slice from cine-loops of real-time sonoelastography for classifying solid breast masses,' Ultrasound Med Biol, vol. 37, pp. 709-18, May 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10023-
dc.description.abstract乳癌一直是全球婦女的主要死因之一,而且良性和惡性腫瘤間的不同硬度已經被醫生視為在觸診的重要特徵。近年來,乳房彈性超音波已經被使用來評估病人腫瘤的彈性程度,醫生需要對腫瘤組織施與輕微的壓力以便取得一段動態彈性視訊,而軟硬資訊則根據腫瘤組織的位移得到,另外,因為健康的組織和患病的組織有不同的軟硬程度,所以由乳房彈性超音波取得的彈性資訊已經被證明對於區分良惡性腫瘤是有幫助的,診斷時醫生將會從視訊中選出一張具有代表性的影像進行腫瘤分析。此篇論文的目的是利用提出的自動選圖方法選出一張影像並且針對這張影像來擷取特徵去診斷腫瘤。首先,為了減少不同醫生的主觀性選圖的影響,我們會利用我們提出的自動選圖方法來選出一張最具代表性的彈性影像。接著,會使用Level Set方法來自動地切割出腫瘤輪廓,而不是藉由醫生來手動圈選出腫瘤以保持切割結果的一致性。最後,我們會藉由腫瘤輪廓來擷取彈性特徵去診斷腫瘤。本實驗中以80個經過病理驗證的病例進行測試,包含45個良性以及35個惡性的病例,並且比較自動選圖方法所選影像和醫生選影像的診斷結果。經由實驗可以得知,我們提出的選圖方法的準確率為71.25%,靈敏度為91.43%,專一性則為55.56%;然而,當使用醫生選圖時,準確率只有為65.00%,靈敏度為77.14%,專一性則為55.56%。雖然自動選圖的靈敏度和準確率比醫生選圖好,但根據實驗結果統計分析,二者尚未具有統計上的差異。不過因自動選圖方法和醫生選圖在統計上是有相近的診斷結果,所以我們提出的自動選圖方法是可以幫助醫生選出具有代表性的影像以減少醫生選圖的時間。zh_TW
dc.description.abstractThe breast cancer is always the main causes of death for women and different firmness of benign and malignant tumors has been treated as an important characteristic by physicians during breast palpation. In recent years, the sonoelastography has been applied to evaluate the tumor strain of patient in clinical diagnosis. The physicians need to slightly press the tumor to obtain the dynamic elastographic image sequences. The tumor strain will be acquired on elastography based on the displacement of the tumor. Because the healthy and diseased tissues have different strain information, the elasticity information provided by the elastographic image in sonoelastography video has been proved to be useful in differentiating benign and malignant tumors. The physicians will select a representative slice from the dynamic elastographic image sequences to diagnose the tumor. In this study, the main purpose is to develop an automatic slice-selection method to select the representative slice from the sonoelastography video and then to diagnose the tumor by means of the elastographic features generated from the selected slice. Firstly, the representative slice is automatically selected by the proposed slice-selection method in order to reduce the selection variability of physicians. Then, the contour of tumor segmented by the physicians is substituted with an automatic segmentation of level set method so as to improve the consistency of the segmentation between the different operators. Finally, the contour of tumor is used to compute the elastographic features for diagnosing the breast tumor. This study has collected 80 biopsy-proved breast tumors comprised of 45 benign and 35 malignant lesions to estimate the performance of the slice-selection method. The representative slice chosen by the proposed scheme will be compared with the physician-selected slice. The experiment shows that the diagnosis performances of accuracy, sensitivity, and specificity evaluated by the leave-one-out method based on the elastographic features for the representative slice selected by the proposed slice-selection method are 71.25%, 91.43% and 55.56%, whereas 65.00%, 77.14% and 55.56% for the physician-selected slice. That is, the sensitivity and accuracy of proposed slice-selection method is better than physician-selected slice and the specificity of these two different schemes is similar. According to the statistical analysis of experimental result, the performance of the proposed slice-selection method is similar with that of the physician’s selection. Therefore, the proposed slice-selection method could assist the physician in selecting the appropriate representative slice and decreasing the time of selection.en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:56:26Z (GMT). No. of bitstreams: 1
ntu-100-R98922117-1.pdf: 1436943 bytes, checksum: 12dc97af955373937603dcb1713aea8c (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 i
ACKNOWLEDGEMENTS ii
摘要 iv
Abstract vi
LIST OF FIGURES ix
LIST OF TABLES xii
Chapter 1 Introduction 1
Chapter 2 Materials 3
2.1 Elastographic image 3
2.2 Lesions 3
Chapter 3 The Proposed Method 5
3.1 Representative Elastographic Slice 6
3.1.1 Slice Selection Method 6
3.2 Segmentation 7
3.2.1 The Contrast-enhanced Gradient Image 8
3.2.1.1 Sigmoid image filter 9
3.2.1.2 Gradient magnitude filter 11
3.2.2 Level Set Method 12
3.2.3 Morphology Closing Operation for Hole Filling 13
3.3 Elastographic Feature Analysis 14
3.3.1 Stiffness Ratio 15
3.3.2 Average intensity of center box 16
3.3.3 Tumor boundary elasticity 16
3.3.4 Outside-tumor elasticity 17
3.3.5 Inside-tumor elasticity 18
Chapter 4 Experiment results 20
4.1 Statistical Analysis 21
4.2 Elastographic features analysis 22
4.3 Tumor classification 26
4.4 Discussion 32
Chapter 5 Conclusion and Future Works 38
References 40
dc.language.isoen
dc.title動態乳房彈性超音波之最佳影像選取與腫瘤診斷分析zh_TW
dc.titleSlice Selection and Diagnosis of Dynamic Breast Elastographyen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃俊升,張允中
dc.subject.keyword彈性超音波,乳房腫瘤,腫瘤切割,代表性影像,電腦輔助診斷,zh_TW
dc.subject.keywordsonoelastography,breast tumor,tumor segmentation,representative slice,en
dc.relation.page42
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-07-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf1.4 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved