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摘要 

 

乳癌一直是全球婦女的主要死因之一，而且良性和惡性腫瘤間的不同硬度已

經被醫生視為在觸診的重要特徵。近年來，乳房彈性超音波已經被使用來評估病

人腫瘤的彈性程度，醫生需要對腫瘤組織施與輕微的壓力以便取得一段動態彈性

視訊，而軟硬資訊則根據腫瘤組織的位移得到，另外，因為健康的組織和患病的

組織有不同的軟硬程度，所以由乳房彈性超音波取得的彈性資訊已經被證明對於

區分良惡性腫瘤是有幫助的，診斷時醫生將會從視訊中選出一張具有代表性的影

像進行腫瘤分析。此篇論文的目的是利用提出的自動選圖方法選出一張影像並且

針對這張影像來擷取特徵去診斷腫瘤。首先，為了減少不同醫生的主觀性選圖的

影響，我們會利用我們提出的自動選圖方法來選出一張最具代表性的彈性影像。

接著，會使用 Level Set 方法來自動地切割出腫瘤輪廓，而不是藉由醫生來手動圈

選出腫瘤以保持切割結果的一致性。最後，我們會藉由腫瘤輪廓來擷取彈性特徵

去診斷腫瘤。本實驗中以 80 個經過病理驗證的病例進行測試，包含 45 個良性以

及 35 個惡性的病例，並且比較自動選圖方法所選影像和醫生選影像的診斷結果。

經由實驗可以得知，我們提出的選圖方法的準確率為 71.25%，靈敏度為 91.43%，
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專一性則為 55.56%;然而，當使用醫生選圖時，準確率只有為 65.00%，靈敏度為

77.14%，專一性則為 55.56%。雖然自動選圖的靈敏度和準確率比醫生選圖好，但

根據實驗結果統計分析，二者尚未具有統計上的差異。不過因自動選圖方法和醫

生選圖在統計上是有相近的診斷結果，所以我們提出的自動選圖方法是可以幫助

醫生選出具有代表性的影像以減少醫生選圖的時間。 

 

關鍵詞： 彈性超音波、乳房腫瘤、腫瘤切割、代表性影像、電腦輔助診斷。 
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Abstract 

 

The breast cancer is always the main causes of death for women and different 

firmness of benign and malignant tumors has been treated as an important 

characteristic by physicians during breast palpation. In recent years, the 

sonoelastography has been applied to evaluate the tumor strain of patient in clinical 

diagnosis. The physicians need to slightly press the tumor to obtain the dynamic 

elastographic image sequences. The tumor strain will be acquired on elastography 

based on the displacement of the tumor. Because the healthy and diseased tissues have 

different strain information, the elasticity information provided by the elastographic 

image in sonoelastography video has been proved to be useful in differentiating benign 

and malignant tumors. The physicians will select a representative slice from the 

dynamic elastographic image sequences to diagnose the tumor. In this study, the main 

purpose is to develop an automatic slice-selection method to select the representative 

slice from the sonoelastography video and then to diagnose the tumor by means of the 

elastographic features generated from the selected slice. Firstly, the representative slice 

is automatically selected by the proposed slice-selection method in order to reduce the 
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selection variability of physicians. Then, the contour of tumor segmented by the 

physicians is substituted with an automatic segmentation of level set method so as to 

improve the consistency of the segmentation between the different operators. Finally, 

the contour of tumor is used to compute the elastographic features for diagnosing the 

breast tumor. This study has collected 80 biopsy-proved breast tumors comprised of 45 

benign and 35 malignant lesions to estimate the performance of the slice-selection 

method. The representative slice chosen by the proposed scheme will be compared 

with the physician-selected slice. The experiment shows that the diagnosis 

performances of accuracy, sensitivity, and specificity evaluated by the leave-one-out 

method based on the elastographic features for the representative slice selected by the 

proposed slice-selection method are 71.25%, 91.43% and 55.56%, whereas 65.00%, 

77.14% and 55.56% for the physician-selected slice. That is, the sensitivity and 

accuracy of proposed slice-selection method is better than physician-selected slice and 

the specificity of these two different schemes is similar. According to the statistical 

analysis of experimental result, the performance of the proposed slice-selection method 

is similar with that of the physician’s selection. Therefore, the proposed slice-selection 

method could assist the physician in selecting the appropriate representative slice and 

decreasing the time of selection. 

 

Keywords：sonoelastography, breast tumor, tumor segmentation, representative slice. 
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Chapter 1 

Introduction 

Different firmness of benign and malignant tumors has been treated as an 

important characteristic by physicians during breast palpation [1]. The stiffer and less 

mobile tumors are more likely considered as malignant ones. A dynamic ultrasound 

imaging technique named elastography measures the degree of deformation under 

pressure to estimate tissue stiffness [2, 3]. It was proved that the elasticity information 

provided by the strain image in elatography is helpful in differentiating benign and 

malignant tumors [1, 4-6] since healthy and diseased tissues have different strain 

information.  

Area ratio [1, 2, 4, 7] and elasticity score [7-9] are two popular criteria adopted by 

physicians on interpreting ultrasound elastography. Area ratio refers to the ratio which 

the tumor area on the strain image divided by the tumor area on the conventional 

B-mode image. And elasticity score was classified into grade 1 to grade 5 according to 

the distribution of tissue strain within the tumor. These two generally used criteria were 

compared in [7] and concluded that the area ratio performed better than the elasticity 

score in classifying benign and malignant tumors. In addition, some researches focused 

on comparing the diagnostic performance of the conventional ultrasound and 

elastography. Most of these studies [7, 10-13] have made a conclusion that conventional 

ultrasound has higher sensitivity and the elastography has higher specificity in tumor 

diagnosing. 

Since there are multiple slices in each dynamic elastographic video, physicians 

need to select the most appropriate slice for diagnosing tumors captured in the scanned 

video. Some studies had reported that diagnosing based on elastography is dependent 
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on inter-observer variability and influenced by the image quality [6, 14]. Chang et al. 

[15] proposed a scheme to assess the qualities of elasticity images and classified into 

three categories. They had showed there are significant difference between the 

sensitivities of higher-quality and lower-quality images (87.0% vs 56.8%) in 

diagnosing tumors. Moreover, our previously proposed study [16] provided a fair 

breast tumor diagnostic system but also suffered from the same problem in slice 

selection. Therefore, to reduce the influences of different image qualities and to 

provide a stable diagnostic performance, we had developed a representative slice 

selection technique to objectively choose the image with the best quality from each 

scanned elastographic video. The representative slice of each video was selected based 

on the distribution of tissue strain within whole strain image. Moreover, the level set 

technique was applied on B-mode image to automatically segment tumor and avoid the 

variability of manually determining tumor contours between different radiologists. 

Finally, some quantitative features were extracted from the elasticity information 

within the segmented tumor region for the following tumor diagnosis. 
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Chapter 2 

Materials 

2.1 Elastographic image 

The elastographic US in this study was scanned by an experienced radiologist of 

breast ultrasound using Siemens ACUSON S2000 Ultrasound System (Siemens 

Medical Solution, Malvern, PA, USA) with a 5-14 MHz linear transducer. Each of our 

scanned elastography was saved in DICOM format, which includes at least 50 images. 

Fig. 1 illustrated the standard elastographic image captured using ACUSON S2000. 

Each image contains both B-mode (left side) and elastographic (right side) US of the 

target tumor. The elastographic image depicted tumor strain is displayed in a 

256-grayscale image, where gray-level 0 represents the hardest tissue and 255 the 

softest tissue. For each elastography sequence, we had developed an image selection 

technique to choose the most appropriate image for tumor diagnosis. 

 

2.2 Lesions 

This study had collected informed consents from patients and was approved by 

the local ethics committee. The experimental elastography of 80 breast tumors (45 

benign and 35 malignant) in 80 women (age range from 19 to 79 years, mean 

49.7±11.34 years) were collected from December 2009 to December 2010. There were 

29 cases of invasive ductal carcinoma, and 6 cases of ductal carcinoma in situ (DCIS) 

in malignant tumors. In addition, there were 36 cases of fibrocystic changes (including 

ductal hyperplasia, sclerosing adenosis and fibroadenomatous change), 2 cases of 

atypical ductal hyperplasia, 5 cases of papillomas, 2 cases of fibroadenomas, in benign 

tumors. The tumor size measured at the B-mode US was 4-9.7 mm in 27 lesions, 
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10-14.3 mm in 31 lesions, 15-19.4 mm in 15 lesions and 20-57 mm in 7 lesions. 

Moreover, the sizes of lesions were 4-31 mm (mean, 11.88±5.66 mm) for fibrocystic 

changes, 9-11 mm (mean, 9.62±0.88 mm) for papillomas, 12-18 mm (mean, 15±4.24 

mm) for fibroadenomas, 6-13.6 mm (mean, 9.8±5.37 mm) for atypical ductal 

hyperplasia, 5-57 mm (mean, 14.69±9.49 mm) for invasive ductal carcinoma and 8-19 

mm (mean, 13.17±4.36 mm) for DCIS. 

 

 

Fig. 1 The elastographic image. 
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Chapter 3 

The Proposed Method 

In the dynamic elastographic image, there are several 2-D slices and a 

representative slice should be selected for further diagnosis. Due to the different 

compression applied for each slice, the stiffness ratio in each slice is different. In this 

study, the stiffness ratio of each slice will be computed and sorted in the ascending 

order and the slice ranking at appropriate percentile will be selected. Then, the tumor 

segmentation method is applied for the selected representative slice to delineate the 

tumor contour based on the B-mode part of elastographic slice. Finally, by utilizing the 

elasticity information in the tumor region which is found in the B-mode part, the tumor 

stiffness ratio and other elastographic features could be evaluated. The flow chart of 

the proposed system is shown in Fig. 2. 

 

 

Fig. 2 Flow chart of the proposed system. 

 

Image data 

Representative slice  

selection 

Segmentation 

Tumor analysis 

Diagnostic result 
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3.1 Representative Elastographic Slice 

 Before diagnosing the tumor, a representative slice will be selected automatically 

by the proposed system from the dynamic elastographic image. At first, the stiffness 

ratio is computed based on the elasticity information of each slice. Next, these stiffness 

ratios are sorted in the ascending order and then the representative slice is chosen 

based on their ranking of stiffness ratios. In order to decide the better representative 

slice, the slices ranking at different percentile will be used for comparison in the 

experiment. 

 

3.1.1 Slice Selection Method 

Because of different pressure applied on the tumor during scanning process, the 

elasticity information of each slice may be different. In this study, we developed a slice 

selection method to eliminate the influence of nonuniform stress in the scanned video. 

The stiffness ratio is applied to evaluate the degree of pressure and one slice with 

appropriate elasticity will be selected as the representative slice. 

At first, a threshold value THslice_stiff is used to decide whether a pixel is stiff or not. 

A better threshold value between 10 and 30 will be decided by experiments. After 

classifying the pixels into stiff or soft, the stiffness ratio of the whole elastographic 

image could be computed by the number of stiff pixels divided by the total number of 

pixels. Next, the stiffness ratio of each slice will be sorted in the ascending order. At 

last, the slices at the 25
th

, 50
th

, and 75
th

 percentile will be selected, as shown in Fig. 3. 

To avoid selecting the incorrect over-compressed or under-compressed slices, the slice 

at the 0
th

 (lowest strain) and 100
th

 (highest strain) percentile will be abandoned. 

Furthermore, the representative slice is chosen from the above mentioned three slices 

with the most appropriate slice with enough and stable pressure. Actually, the threshold 
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value THslice_stiff will affect the selection of the above possible three slices. If a low 

threshold value is used then the slice at low percentile will be selected. The different 

combination of threshold values and percentiles will be tested at experiments. 

  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 3 Examples of elastographic image with (a) the 25
th

 percentile and (b) the 50
th

 

percentile and (c) the 75
th

 percentile after sorting in the ascending order. 

(d)-(f) The produced binary image of (a)-(c) after thresholded with value 15. 

 

3.2 Segmentation 

After selecting the representative slice, in order to evaluate the tumor features for 

diagnosis, the contour of tumor should be delineated first. In this paper, the tumor 

contour will be segmented by means of the level set method [17, 18] after a series of 

preprocessing. 

At first, the sigmoid filter [19] is applied to enhance the contrast of the original 

B-mode part so as to increase the distinction between tumor and background. Then, in 

order to get the information of edge, the gradient magnitude filter [20] will be utilized 
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to obtain the gradient image. Moreover, the sigmoid filter will be employed again to 

enhance the contrast of gradient image for the better result. Finally, the contour of 

tumor in the B-mode part will be segmented by the level set method. In addition, in 

order to eliminate the holes in the tumor and smooth the contour, the morphology 

closing operation [21-24] will be applied to the image produced by the level set 

method. The flowchart of the segmentation is illustrated in Fig. 4. 

 

 

Fig. 4 Flow chart of the segmentation method 

 

3.2.1 The Contrast-enhanced Gradient Image 

 Actually, the result of segmentation will be not good if the level set method is 

directly utilized on the B-mode part of the original elastographic image. Therefore, the 

sigmoid filter is needed to enhance the contrast of image and the gradient magnitude 

filter is also required for obtaining the information of edge. Furthermore, the resulted 

image produced by the sigmoid filter and gradient magnitude filter will be treated as 

The contrast-enhanced gradient image 
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the input of the level set method. These two methods will be introduced in the 

following section. 

 

3.2.1.1 Sigmoid image filter 

Even though the level set method is applied to the image generated by the 

gradient magnitude filter, the result will still be not good because of the speckle noise 

appeared in the B-mode image. Therefore, the sigmoid filter will be utilized to enhance 

the contrast of image for preserving just the significant edge information in the resulted 

image of the gradient magnitude filter. The sigmoid function is defined as 

1
( )

1

I
I Max Min Min

e





 
 
 

    
 
 

 
 

     (1) 

where I is the input intensity of the original image, I
’
 is the output intensity, Max and 

Min are the maximum and minimum intensity values of output image, α is the width of 

the intensity window, and β whose value is equal to Min in this paper is the center of 

the intensity window. The initial seeds chosen by the user for segmenting the tumor 

will be used to evaluate α automatically. That is, the circle around each seed with 

radius of 10 pixels is applied to compute the mean of seed neighborhood and α is 

represented as the maximum of the mean of seed neighborhood. Moreover, the pixels 

whose intensity is higher than α in the background are set to Max and the distinction of 

intensities between the tumor and background will be more manifest by means of 

utilizing α and β. Further, the level set method can march faster on the homogeneous 

regions with the help of the image whose contrast has been enhanced. The result of 

sigmoid filter on the B-mode part of the original elastographic image Fig. 5(a) is 

exhibited in Fig. 5(b). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 5 Step-by-step illustration of automatic tumor segmentation. (a) Original 

B-mode image (b) Utilizing the sigmoid filter with α=7, β=0, min=0, and 

max=255 (c) Gradient magnitude filter (d) Utilizing the sigmoid filter with 

α=0.01, β=0.5, min=0, and max=255 (e) Applying the level set method 

before the morphology closing operation (f) Morphology closing operation 

(g) The determined tumor contour (h) Overlapping tumor contour onto the 

original B-mode image. 
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3.2.1.2 Gradient magnitude filter 

 In this section, the gradient magnitude filter is utilized to find the information of 

edge and segregate one uniform region from the other different regions so as to detect 

the contour of tumor and promote level set segmentation to get a better result. For the 

image I(x, y), its gradient  I(x, y) is represented as [24] 

( , )
x

y

I

g x
I x y

Ig

y

 
   
       
  

      (2) 

The magnitude of gradient  I(x, y) is defined as 

2 2( ) x ymag I g g         (3) 

Moreover, in order to evaluate the gx and gy, two gradient magnitude masks will be 

applied to convolve image, as shown in Fig. 6. In addition, it is noted that sigmoid 

filter will be utilized again to enhance the contrast of the result image produced by the 

gradient magnitude filter for the better result of the segmentation. The gradient 

magnitude image for Fig. 5(b), which is enhanced again by sigmoid filtering, is 

represented as Fig. 5(c), and the contrast-enhanced gradient magnitude for Fig. 5(c) is 

shown in Fig. 5(d). 

 

 

 

 

(a)   (b) 

Fig. 6 The gradient masks (a) gx and (b) gy. 

 

 

-1 0 1 

-1 

0 

1 



 

12 

 

3.2.2 Level Set Method 

 The level set method is a common numerical technique which is easy to model 

complicated shape. It will maintain robust and accurate even during tracking interfaces 

with complex motions. The purpose of level set method is to track the evolving contour; 

therefore it is adopted for segmenting tumor in this paper. Moreover, the features of 

image such as edge and gradient are utilized to help the level set method to evaluate 

the result of segmentation. 

First, the user choose multiple seeds regarding as the initial contour (t) embedded 

as the zero level set of a higher dimensional level-set function ψ(x, t), where the zero 

level set is defined as Γ(x, t) = {ψ(x, t) = 0} and x is a point in 
N
. Then, the partial 

differential equation is applied to the level-set function for evolving the initial contour. 

For the initial contour (t=0), the level-set function is defined as 

dtx  )0,(       (4) 

where d is the distance from x to (t=0), and the sign is represented as a point which is 

outside of or inside of the initial contour corresponding to a positive or negative value, 

as illustrated in Fig. 7.  

Furthermore, because of providing the velocity in the outward normal direction by 

F and the partial differential equation for ψ has been evaluated, the level-set function is 

represented as [18, 25] 

0  F       (5) 

with a given value of ψ(x, t=0). The result image generated by level set method for Fig. 

5(d) is exhibited in Fig. 5(e), and the contour of the final result overlapping with the 

original B-mode part of the elastographic image is depicted in Fig. 5(h).  
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Fig. 7 The zero set in a level set. The sign of ψ(x, y, t) is decided by whether the 

position of the point is inside the zero level set (negative) or outside the zero 

level set (positive). 

 

3.2.3 Morphology Closing Operation for Hole Filling 

 After tumor segmentation, one more technique is needed for solving some defects. 

Because of some small holes will exist inside of the tumor in the image produced by 

the level set method, the mathematical morphology closing operation with 55 ball 

structuring element is applied to deal with the problem and smooth the contour of 

tumor. The result of the morphology closing operation is illustrated in Fig. 5(f). 

  

ψ 

Zero level set ψ = 0 

ψ > 0 

ψ < 0 
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3.3 Elastographic Feature Analysis 

 After segmenting the contour of tumor by the level set method from the B-mode 

image, the contour will be applied to the elastographic image in order to extract tumor 

features, as shown in Fig. 8. By means of analyzing elasticity information inside the 

segmented tumor and its neighborhood region, the computed elastographic features can 

be utilized to diagnose the tumor. Moreover, the features can be divided into five classes: 

stiffness ratio, average intensity of center box, tumor boundary elasticity, outside-tumor 

elasticity, inside-tumor elasticity. In this section, the elasticity information is 

represented as grayscale intensity. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8 The processed images (a) original B-mode US image (b) original 

elastographic image (c) the contour of tumor delineated on the B-mode US 

image (d) the contour of tumor overlapped with the elastographic image. 
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3.3.1 Stiffness Ratio 

In the elastographic image, the stiffness of tumor can be represented as the ratio of 

the dark pixels inside tumor. The stiffness ratio has been proven to be a significant 

diagnostic feature in [8], therefore the stiffness ratio will be utilized in this paper. Two 

schemes including thresholding and fuzzy c-means (FCM) [26] were used to classify 

pixels within the segmented tumor to compute stiffness ratio represented as  

_
_

_

stiff num
stiffness ratio

total num
     (6) 

where the stiff_num means the number of the stiff pixels in the tumor and the total_num 

stands for the total number of pixels in the tumor. In the thresholding scheme, pixels 

within tumor were classified into two groups using the predefined threshold THstiffness. 

Since we tried to figure out the best threshold value, different THstiffness values (5, 10, 15, 

20, 25, 30, 40, and 50) were used in our experiments and the corresponding stiffness 

ratios were defined as stiff5, stiff10, stiff15, stiff20, stiff25, stiff30, stiff40, stiff50. In the fuzzy 

c-means scheme, pixels within a tumor were classified into two or three categories and 

two stiffness ratios fcm2_ratio and fcm3_ratio were defined as the ratio of pixels in the 

stiffest group to all tumor pixels. In addition, the stiffest group of the two and three 

classes classified by the fuzzy c-means method will also be applied to evaluate the 

stiffness mean which can represented as the averaging gray intensity of pixels in the 

stiffest group. The stiffness mean is defined as  

1
_ ( )

p stiffstiff

stiffness mean I p
N 

     (7) 

where I(p) is the gray intensity of the pixel p, and Nstiff is the number of the stiff pixels 

in the tumor. 
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3.3.2 Average intensity of center box 

The 2020 and 3030 boxes at the center of the tumor will be defined firstly, as 

shown in Fig. 9 Then the average of pixel intensities in these two boxes will be 

computed to analyze the tumor. These two box features are defined as  

2020

20
1

_ ( )
p boxbox

avg box I p
N 

   and     (8) 

3030

30
1

_ ( )
p boxbox

avg box I p
N 

       (9) 

where I(p) denotes the gray intensity of pixel p, and Nbox20 and Nbox30 are the number of 

pixels in the 2020 and 3030 boxes, respectively. 

 

 

 

Fig. 9 The 2020 and 3030 boxes at the center of the tumor. 

 

3.3.3 Tumor boundary elasticity 

 The morphological dilation and erosion operation with a 1010 ball structuring 

element will be utilized to define the outer and inner bands around the contour of tumor, 

as shown in Fig. 10. The average gray intensities of pixels in these two bands will be 

calculated as two features for diagnosing the tumor. The definitions of these two 

features are 

1
_ ( )

p innerinner

inner mean I p
N 

   and     (10) 

3030 2020 
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1
_ ( )

p outerouter

outer mean I p
N 

       (11) 

where the I(p) denotes the gray intensity of pixel p, and Ninner and Nouter the number of 

pixels in the inner or outer bands around the contour of tumor. Furthermore, the elastic 

difference between the inner and outer bands is also applied as a diagnostic feature. The 

elastic difference of two bands is defined as  

_ _ _diff bands outer mean inner mean         (12) 

In addition, the average gray intensity of the entire tumor which can stand for the 

average elasticity of the tumor is used as a feature as well. The mean feature is 

represented as 

1
_ ( )

p tumortumor

tumor mean I p
N 

     (13) 

where I(p) is the gray intensity of the pixel p and Ntumor denotes the number of pixels 

inside of the tumor. 

 

 

 

Fig. 10 The inner and outer bands with morphology dilation and erosion operation 

with 1010 ball structuring element. 

 

3.3.4 Outside-tumor elasticity 

As previously mentioned in section 3.3.3, the morphological dilation operation 

with 1010 ball structuring element was firstly applied to indicate the outer regions 

Inner band 

Outer band 

Tumor 

contour 
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around the contour of tumor. Then the outer-tumor region was partitioned into eight 

different regions, named Left (L), Right (R), Up (U), Down (D), UpperLeft (UL), 

UpperRight (UR), LowerLeft (LL), LowerRight (LR), according to the gravity center of 

the tumor. The eight partitioned regions were regarded as the features to analyze the 

elasticity information, as shown in Fig. 11. The elasticity information of these regions 

will be evaluated as 

, , , , , , ,
1

_ _ ( ), { }i

p ii

L R U D UL UR LL LRavg outer region I p i
N 

      (14) 

where I(p) represents the gray intensity of pixel p, and Ni means the number of pixels in 

the eight different regions defined above. Furthermore, the minimum value and the 

average value of the four regions, Up, Down, Right, and Left, were also be computed as  

, , ,min( _ _ ), { }i L R U Dmin_outer avg outer region i      (15) 

, , ,
1

_ _ _ , { }
4

i

i

L R U Davg outer avg outer region i    (16) 

 

    

(a)                    (b)                   (c) 

Fig. 11 The eight different outer regions which are at the (a) Left, Right, (b) Up, 

Down, (c) UpperLeft, UpperRight, LowerLeft, and LowerRight. 

 

3.3.5 Inside-tumor elasticity 

In order to evaluate the diagnostic performance of features extracted in different 

positions of the tumor, the elasticity within five distinct squares inside the tumor will be 
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utilized as the features. At first, the gravity center and the bounding box of the tumor 

were computed. Next, four lines were plotted at center positions between the gravity 

center and the bounding box, forming four rectangles, recUL, recUR, recLL, recLR, around 

the tumor gravity center, recC. Furthermore, four line segments were plotted at the 

center positions between previously mentioned four lines and the tumor gravity center, 

forming one rectangle centered at the tumor gravity center, as shown in Fig. 12. The 

average gray intensity of these five rectangles was calculated as the features for 

diagnosing the tumor. The rectangle features were defined as 

1
_ _ ( ), { , , , , }i UL UR LL LR c

p ii

avg inner region I p i rec rec rec rec rec
N 

    (17) 

where I(p) is the gray intensity of the pixel p, and Ni denotes the number of pixels in 

aforementioned different rectangles. In addition, the average and the minimum intensity 

of the five rectangles were also regarded as features to evaluate the elasticity 

information. These two features are defined as 

min( _ _ ), { , , , , }i UL UR LL LR cmin_inner avg inner region i rec rec rec rec rec 
 
(18) 

1
_ _ _ , { , , , , }

5
i UL UR LL LR c

i

avg inner avg inner region i rec rec rec rec rec   (19) 

  

(a)                      (b) 

Fig. 12 The five different rectangles (a) four of them around the tumor gravity 

center (b) one at the tumor gravity center. 
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Chapter 4 

Experiment results 

In the following experiments, the features of the elastographic image will be 

extracted from both our selected representative slice and physician selected slice to 

compare their diagnostic performance. At first, the representative elastographic slice is 

selected from the dynamic elatographic image automatically by means of the proposed 

slice-selection method. Then, the tumor contour delineated from the B-mode image by 

the proposed segmentation method is applied to the elastographic image. The elasticity 

information acquired from the tumor region in elastographic image was regarded as the 

tumor features and used to evaluate the performance of diagnosis. Furthermore, the 

performances of representative slices selected using different threshold values 

(THslice_stiff mentioned before) and different sorting percentiles applied on both whole 

image and tumor region were compared in order to obtain the most appropriate slice, as 

listed in Table 1. At last, the most appropriate slice chosen by our method was 

compared with the physician-selected slice based on their diagnostic performance of 

tumor in the experiment. 

The binary logistic regression model [27, 28] is applied to analyze the 

elastographic features so as to classify the tumor into benign and malignant. The 

predicted values generated by the binary logistic regression model range from 0 to 1. 

For determining the most appropriate threshold value applied on the predicted values, 

we had tried different thresholds for classifying tumors and the corresponding 

performance measures were listed in Table 2. The probability threshold was finally set 

as 0.175 since it resulted in the best accuracy and superior sensitivity. After deciding 

the diagnostic threshold, each tumor was classified as malignant if its predicted value 
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was larger than or equal to the threshold, otherwise benign. In addition, the 

leave-one-out cross-validation method [29] is utilized to fairly evaluate the diagnostic 

performance of our proposed scheme. The method will choose one case as the test set 

and the rest of cases are deemed as training set. Then, the results of all the cases which 

each case has been employed as the test set in a repeated process will be merged. 

The proposed system is implemented by the programming language C++ under 

the Microsoft Visual C++ 2005 (Microsoft, Redmond, WA, USA), operating with 

Microsoft Windows XP operating system (Microsoft, Redmond, WA, USA), and 

running on the Intel Pentium (2.67G Quad-core machine with 2.99 GB RAM).  

 

4.1 Statistical Analysis 

Since there were lots of elastographic features proposed in our study, we had to 

figure out which features are helpful in classifying tumors. In the beginning, the 

Kolmogorov-Smirnov test [30] was applied on each proposed elastographic feature to 

test if it is normally distributed. Once the feature is normally distributed, we calculate 

its mean and standard deviation corresponding to benign and malignant tumors and 

furthermore utilized the Student’s t-test [30] to determine if this feature is sufficient to 

distinguish benign and malignant tumors. On the other hand, the Mann-Whitney U test 

[30] is applied on those non-normally distributed features to estimate if they could be 

used to clearly classify tumors into benign and malignant. The statistical significance 

level of both the Student’s t-test and the Mann-Whitney U test were set to 0.05. 

After determining useful features in identifying tumor pathology, the binary 

logistic regression model were applied on those features generating predicted values 

between 0 and 1. The generated predicted values were used to classify tumors. The 

indicators for assessing the performance are accuracy, sensitivity, specificity, positive 
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predictive value (PPV) and negative predictive value (NPV). Moreover, the receiver 

operating characteristic (ROC) curve was plotted using the ROCKIT software (C. Metz; 

University of Chicago, Chicago, IL, USA) and the areas under the ROC curve (Az) are 

also regarded as the performance indicator. Furthermore, the chi-square test [30] is 

utilized to evaluate the performance comparison between two different schemes. The 

p-value less than 0.05 for each comparison means a statistically significant difference. 

The statistical analysis except the ROC curve analysis and the binary logistic regression 

is conducted by the software (SPSS, version 16 for Windows; SPSS, Chicago, IL, 

USA). 

 

4.2 Elastographic features analysis 

Because not all the features are beneficial for diagnosing the tumor, the mean 

value, standard deviation (SD), median value, and the p-value generated from the 

Student’s t-test or Mann-Whitney U test will be applied to evaluate the statistically 

significant difference of the features in order to choose the more useful features. Then, 

the different values including the mean value, standard deviation (SD), median value 

and the p-value of the Student’s t-test and Mann-Whitney U test based on the features 

corresponding to the malignant and benign cases on the slice-selection method with 

THslice_stiff = 15 and at the 25
th 

percentile and the physician-selected slice were listed in 

Table 3 and Table 4, respectively. 
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Table 1 The Az values of ROC analysis applied on tumor region and whole slice 

with different threshold values THslice_stiff and different percentiles. 

 Tumor region Whole slice 

 10 15 20 25 30 10 15 20 25 30 

25
th

 0.5937 0.6610 0.7200 0.7479 0.7854 0.7219 0.8019 0.6883 0.7200 0.7797 

50
th

 0.6984 0.7194 0.6533 0.7384 0.7416 0.6533 0.6902 0.6667 0.7746 0.6711 

75
th

 0.6724 0.7854 0.6838 0.6368 0.6368 0.7575 0.6432 0.5829 0.6997 0.7962 

 

 

Table 2 The diagnostic performance of our slice-selection method with THslice_stiff = 

15 and at the 25
th 

percentile using different threshold value for classifying 

the tumors. 

Threshold  
True 

positives  

False 

positives  

True 

negatives  

False 

negatives  

Accuracy 

(%)  

Sensitivity 

(%)  

Specificity 

(%)  

0.075  33 26 19 2 65  94.29  42.22  

0.125  32 22 23 3 68.75  91.43  51.11  

0.175  32 20 25 3 71.25 91.43  55.56  

0.225  29 19 26 6 68.75  82.86  57.78  

0.275  29 17 28 6 71.25  82.86  62.22  

 

  

THslice_stiff 

Percentile 
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Table 3 Feature statistics of benign and malignant tumors in slices selected using our 

proposed method with THslice_stiff = 15 and at the 25
th 

percentile. 

Features 
Benign Malignant 

p-value 
Mean ± SD Median Mean ± SD Median 

Stiffness ratio 

(thresholding) 

stiff5  0.11  0.28 0.0026 

stiff10  0.15  0.39 0.0067 

stiff15 0.32 ± 0.26  0.47 ± 0.26  0.0130 

stiff20 0.38 ± 0.27  0.53 ± 0.26  0.0130 

stiff25 0.44 ± 0.28  0.59 ± 0.26  0.0210 

stiff30 0.51 ± 0.29  0.64 ± 0.26  0.0340 

stiff40  0.63  0.77 0.0606 

stiff50  0.75  0.86 0.0720 

Stiffness_ratio  

(FCM) 

fcm2_ratio  0.66 ± 0.14  0.70 ± 0.12  0.1090  

fcm3_ratio  0.47 ± 0.15  0.54 ± 0.14  0.0280  

Stiffness_mean 
fcm2_stiffmean  21.89  13.82 0.0087 

fcm3_stiffmean   15.58  8.14 0.0058 

Center_box 
avg_box20  30.23  14.31 0.0056 

avg_box30   33.28  14.07 0.0061 

Tumor 

boundary 

elasticity 

inner_mean   60.92  51.99 0.0943 

outer_mean   69.36  65.35 0.1196 

diff_bands   9.71  9.28 0.5253 

tumor_mean  170.10 ± 41.34  147.43 ± 37.10  0.0130 

Outside-tumor 

elasticity 

avg_outer_L   49.28  42.98 0.2504  

avg_outer_R   52.34  36.72 0.1856  

avg_outer_U   50.04  22.10 0.0029  

avg_outer_D  59.00 ± 33.75  59.79 ± 34.39  0.9190  

avg_outer_UL   40.33   27.68  0.0182  

avg_outer_UR   44.16  24.39 0.0071  

avg_outer_LL  59.00 ± 38.98  58.99 ± 32.02  0.9990  

avg_outer_LR   45.78  49.80 0.9035  

min_outer   34.82  22.10 0.0817  

avg_outer   49.50  43.98 0.1128  

Inside-tumor 

elasticity 

avg_inner_UL   33.80  16.27 0.0087  

avg_inner_UR   24.41  9.14 0.0095  

avg_inner_LL   39.55  16.60 0.0690  

avg_inner_LR   34.65  20.89 0.0661  

avg_inner_C  35.17  12.18 0.0037  

min_inner   17.30  6.36 0.0085  

avg_inner   36.27  19.67 0.0100  
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Table 4 Feature statistics of benign and malignant tumors in physician-selected 

slices. 

Features 
Benign Malignant 

p-value 
Mean ± SD Median Mean ± SD Median 

Stiffness ratio 

(thresholding) 

sitff5  0.18   0.38  0.0011  

sitff10 0.28 ± 0.23   0.47 ± 0.28   0.0010  

sitff15  0.37  0.60 0.0032  

sitff20  0.43  0.65 0.0030  

sitff25  0.49  0.72 0.0045  

sitff30  0.55  0.75 0.0063  

sitff40  0.68  0.81 0.0118  

stiff50  0.79  0.88 0.0226  

Stiffness_ratio  

(FCM) 

fcm2_ratio  0.66 ± 0.12   0.74 ± 0.12   0.0090  

fcm3_ratio   0.50  0.56 0.0014  

Stiffness_mean 
fcm2_stiffmean  18.36  10.39 0.0042  

fcm3_stiffmean   9.92  6.78 0.0038  

Center_box 
avg_box20  24.15  11.25 0.0027  

avg_box30   27.19  13.45 0.0024  

Tumor 

boundary 

elasticity 

inner_mean   61.67  51.82 0.0325  

outer_mean  75.00 ± 23.18   61.72 ± 23.96   0.0140  

diff_bands   10.87  7.45 0.0473  

tumor_mean   50.51  36.12 0.0022  

Outside-tumor 

elasticity 

avg_outer_L  54.76 ± 27.54   38.93 ± 27.97   0.0130  

avg_outer_R  56.33 ± 31.46   43.42 ± 28.24  0.0610  

avg_outer_U   49.70  22.48 0.0027  

avg_outer_D   60.09  44.39 0.2585  

avg_outer_UL   46.37   21.79  0.0014  

avg_outer_UR   46.27  22.49 0.0151  

avg_outer_LL  58.25 ± 35.57   47.35 ± 29.45   0.1470  

avg_outer_LR  46.81  44.48 0.3297  

min_outer   32.71  14.78 0.0048  

avg_outer  55.44 ± 25.79   41.03 ± 26.35   0.0160  

Inside-tumor 

elasticity 

avg_inner_UL   27.91  11.67 0.0038  

avg_inner_UR  19.44  8.22 0.0143  

avg_inner_LL  35.60  15.80 0.0197  

avg_inner_LR  31.76  21.97 0.0168  

avg_inner_C  28.50  12.02 0.0015  

min_inner   11.96  4.66 0.0050  

avg_inner   28.63  12.37 0.0046  
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4.3 Tumor classification 

In this experiment, in order to select the most useful elastographic features for 

classifying the breast tumors, the features with the p-value less than 0.05 are selected at 

first. The features of slice-selection method and physician-selected slice are selected in 

the beginning, respectively. Then, the backward feature elimination [28] is applied to 

eliminate the less important features with only slightly reducing the diagnostic 

performance to obtain the most appropriate features to diagnose the tumor, as listed in 

Table 5. Furthermore, the diagnostic performances of the binary logistic regression 

model for the selected most appropriate features by means of utilizing the 

leave-one-out cross-validation method on the slice-selection method and 

physician-selected slice are listed in Table 6, respectively.  

In order to compare the outcomes of the selected most appropriate features on the 

two different schemes, the p-values of five performance indexes by the chi-square test 

and the Az values of the ROC curves by the z-test [30] are listed in Table 6. Moreover, 

the sensitivity and accuracy of our proposed slice-selection method are better than that 

of physician-selected slice and the specificity is similar on these two different 

representative slices. In addition, The ROC curves for diagnosing tumor using selected 

appropriate features based on our system-selected slice and physician-selected slice are 

shown in Fig. 13. Finally, some experiment examples of true positive (TP), true 

negative (TN), false negative (FN), and false positive (FP) cases are illustrated in Fig. 

14-Fig. 17. 
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Table 5 The remaining features after applying the backward feature elimination on 

features with p-value < 0.05. 

Slice-selected method Features 

System selection (11) 

stiff5, stiff15, stiff20, stiff30, fcm3_ratio, fcm2_stiffmean,  

fcm3_stiffmean, avg_box30, tumor_mean, avg_inner_C,  

avg_inner 

Physician selection (19) 

stiff5, stiff15, stiff40, fcm2_ratio, fcm3_stiffmean,  

avg_box20, avg_box30, outer_mean, diff_mean,  

tumor_mean, avg_outer_L, min_outer, avg_outer_UL,  

avg_outer_UR, avg_inner_UR, avg_inner_LL,  

avg_inner_LR, avg_inner_C, avg_inner  

 

Table 6 The performance indexes and p-values of performance indexes using 

chi-square test and Az value of ROC curve using z-test for the 

system-selected slice and physician-selected slice. 

 

Performance 

p-value  
System-selection Physician-selection 

Az  0.8014 0.7595 0.5955 

Accuracy 71.25% 65.00% 0.3963 

Sensitivity 91.43% 77.14% 0.1006 

Specificity 55.56% 55.56% 1.0000 

Positive predictive value 61.54% 57.45% 0.6787 

Negative predictive value 89.29% 75.76% 0.1708 

Note: 

Accuracy = (TP+TN) / (TP+TN+FP+FN) 

Sensitivity = TP / (TP+FN) 

Specificity = TN / (TN+FP) 

Positive Predictive Value = TP / (TP+FP) 

Negative Predictive Value = TN / (TN+FN) 
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Fig. 13 The ROC curves for the system-selected slice and physician-selected slice. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Fig. 14 A true positive example of invasive ductal carcinoma (a) The original image 

and (b)(c) the B-mode image and elastographic image with the segmentation 

result on the slice 23 selected by the proposed slice selection method. (d) 

The original image and (e)(f) the B-mode image and elastographic image 

with the segmentation result on the physician-selected image. 
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(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Fig. 15 A true negative example of epithelial hyperplasia (a) The original image and 

(b)(c) the B-mode image and elastographic image with the segmentation 

result on the slice 8 selected by the proposed slice selection method. (d) The 

original image and (e)(f) the B-mode image and elastographic image with 

the segmentation result on the physician-selected image.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Fig. 16 A false positive example of fibrocystic change (a) The original image and 

(b)(c) the B-mode image and elastographic image with the segmentation 

result on the slice 108 selected by the proposed slice selection method. (d) 

The original image and (e)(f) the B-mode image and elastographic image 

with the segmentation result on the physician-selected image.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Fig. 17 A false negative example of invasive ductal carcinoma (a) The original 

image and (b)(c) the B-mode image and elastographic image with the 

segmentation result on the slice 38 selected by the proposed slice selection 

method. (d) The original image and (e)(f) the B-mode image and 

elastographic image with the segmentation result on the physician-selected 

image. 

 

4.4 Discussion 

According to Table 1, the representative slice selected by applying the 

slice-selection method on the whole slice is more appropriate as the THslice_stiff is set to 

15 and at the 25
th

 percentile of sorted stiffness ratio, meaning the distribution of stiff 

tissues will not occupy too many areas in the whole image. It is reasonable that the slice 

might be over-compressed when there are too many stiff areas. From observing the Az 

values listed in Table 1, the better performance the slice at the more posterior percentile 

performs as the THslice_stiff increasing from 20 to 30 was applied on the whole slice. As 
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for selecting slice according to elasticity information within tumor regions, the slice at 

anterior percentile always performs best when THslice_stiff ≧ 20. For selecting slice on 

the tumor region, the performance is also acceptable at the 75
th

 percentile with 

THslice_stiff = 15 and at the 25
th

 percentile with THslice_stiff = 30. However, the main 

drawback of this method is that its performance depends on the segmentation result. In 

[31], Chang et al. proposed two schemes to select slices based on SNR and CNR 

information, but the tumor contour must be found at first. However, our proposed 

method selected slices according to strain information of tissues in the whole slice with 

no needs to set up initial seeds for segmenting tumors. Therefore our scheme benefits 

from saving time for slice selection and avoiding using incorrect elasticity information 

within wrongly segmented tumor. 

As mentioned before, the elastographic features are devided into five classes: 

stiffness ratio, average intensity of center box, tumor boundary elasticity, outside-tumor 

elasticity, and inside-tumor elasticity for comparing their performances. Table 7 listed 

the remaining features of each class calculated in system-selected slice after applying 

backward feature elimination. Similarly, the finally used features of each class 

calculated in physician-selected slice were listed in Table 8. For analyzing which class 

are the most useful in diagnosing, we adopted ROC analysis on features belonging to 

those five classes. Fig. 18 and Fig. 19 were the ROC curves of features belonging to the 

five classes on the system-selected and the physician-selected slice, respectively. We 

could conclude that features in class “stiffness_ratio” are most helpful in diagnosing 

since the Az value was highest in both figures.  

From Table 6, the sensitivity of our proposed method was superior to that of the 

ground truth done by physicians, and other performance measures were similar to or 

better than those of the physician-selected slice. Although their performance is not 
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statistically significant in the current experiment, the physician will still benefit from 

the proposed slice selection method to reduce the time of selecting an appropriate 

representative slice. 

In addition, we could compare our proposed method with the diagnosis result of 

Regner et al. [1] using the elastographic images captured by the same machine. In their 

study, the features, such as width and area ratios, are manually evaluated by five 

observers and the results of five observers were combined to acquire the final diagnosis 

performance. The sensitivity and specificity of our proposed method are 94.49% and 

42.22% with the classification threshold 0.075 in Table 2, whereas those of the study of 

Regner et al. are 96% and 24%. The sensitivities of these two different schemes were 

similar but the specificity of our proposed method was better than that of their study. 

Moreover, our proposed method automatically selected slices in terms of the 

elasticity information of tissues without letting the operator to spend the time for 

choosing the representative slice. Therefore, our approach could benefit from saving 

time for selecting an appropriate representative slice.  
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Table 7 The remaining features after applying the backward feature elimination on 

each class of the features with p-value < 0.05 for the system-selected slice in 

Table 3. 

Feature classes Features 

Stiffness ratio stiff5, stiff10, fcm3_stiffmean 

Average intensity of center box avg_box20 

Tumor boundary elasticity tumor_mean 

Outside-tumor elasticity avg_outer_UL, avg_outer_UR 

Inside-tumor elasticity avg_inner_C, avg_inner 

 

 

Table 8 The remaining features after applying the backward feature elimination on 

each class of the features with p-value < 0.05 for physician-selected slice in 

Table 4. 

Feature classes Features 

Stiffness ratio stiff10, stiff20, stiff25, stiff30, fcm3_ratio 

Average intensity of center box avg_box20 

Tumor boundary elasticity tumor_mean 

Outside-tumor elasticity avg_outer_L, avg_outer_UL 

Inside-tumor elasticity avg_inner 
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Fig. 18 The ROC curves for five different classes of the features on system-selected 

slice. 
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Fig. 19 The ROC curves for five different classes of the features on 

physician-selected slice. 
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Chapter 5 

Conclusion and Future Works 

The main purpose of this study is utilizing the elastographic features on the 

representative slice which is selected by the proposed slice-selection method from the 

dynamic elastographic video to diagnose the tumor. First, the slice-selection method 

was developed to select the representative slice instead of relying on the subjective 

perspective of the physician so as to diminishing the variability of observers. Next, in 

order to improve the consistency of the segmentation between the different operators, 

the contour of tumor delineated by the physicians is substituted with the automatic 

segmentation of the level set method. At last, the contour of tumor is applied to 

evaluate the elastographic features for the diagnosis of the breast tumor. 

In the experiment, the diagnosis performances of accuracy, sensitivity, and 

specificity estimated by the leave-one-out method based on the elastographic features 

on the representative slice selected by the proposed slice-selection method are 71.25%, 

91.43% and 55.56%, whereas 65.00%, 77.14% and 55.56% on the physician-selected 

slice. According to the experimental result, the performance of the proposed 

slice-selection method is similar with that done by the physician. Furthermore, the 

sensitivity and accuracy of proposed slice-selection method is better than 

physician-selected slice, and the specificity of these two different schemes is similar. 

Hence, the proposed slice-selection method could assist the physician in selecting the 

appropriate representative slice and decreasing the time of selection. 

In the proposed method of segmentation, the automatic segmentation based on the 

level set method which delineates different contours of tumors by virtue of the 

inconsistent manipulation of inter-operator and difference of seeds will result in 
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different diagnostic performances changing with the different contours of tumors. 

Therefore, in order to obtain the better result of segmentation and reduce the variability 

of delineating the contour, the more robust and sophisticated automatic segmentation 

method is expected to be developed in the future. In addition, since the distribution of 

tissue strains (i.e. stiffness ratio mentioned before) could be used for the selection of the 

representative slice, stiffness ratios calculated using different THslice_stiff may be 

combined to select a more appropriate slice in the future. Moreover, the distribution of 

the soft tissue also could be combined as an additional reference. Furthermore, in order 

to reduce the effect of the some defective slices in the elasographic image and improve 

the accuracy of the diagnosis, the useful features, such as the shape, margin, and texture 

of the tumor on the B-mode image, could be also taken into account. 
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