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Slice Selection and Diagnosis
of Dynamic Breast Elastography

STUDENT: YU-WEI HSU
ADVISOR: DR. RUEY-FENG CHANG

INSTITUTE OF COMPUTER SCIENCE AND INFORMATION ENGINEERING
NATIONAL TAIWAN UNIVERSITY

Abstract

The breast cancer is always the main causes of death for women and different
firmness of benign and malignant tumors has been treated as an important
characteristic by physicians during breast palpation. In recent years, the
sonoelastography has been applied to evaluate the tumor strain of patient in clinical
diagnosis. The physicians need to slightly press the tumor to obtain the dynamic
elastographic image sequences. The tumor strain will be acquired on elastography
based on the displacement of the tumor. Because the healthy and diseased tissues have
different strain information, the elasticity information provided by the elastographic
image in sonoelastography video has been proved to be useful in differentiating benign
and malignant tumors. The physicians will select a representative slice from the
dynamic elastographic image sequences to diagnose the tumor. In this study, the main
purpose is to develop an automatic slice-selection method to select the representative
slice from the sonoelastography video and then to diagnose the tumor by means of the
elastographic features generated from the selected slice. Firstly, the representative slice

is automatically selected by the proposed slice-selection method in order to reduce the
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selection variability of physicians. Then, the contour of tumor segmented by the
physicians is substituted with an automatic segmentation of level set method so as to
improve the consistency of the segmentation between the different operators. Finally,
the contour of tumor is used to compute the elastographic features for diagnosing the
breast tumor. This study has collected 80 biopsy-proved breast tumors comprised of 45
benign and 35 malignant lesions to estimate the performance of the slice-selection
method. The representative slice chosen by the proposed scheme will be compared
with the physician-selected slice. The experiment shows that the diagnosis
performances of accuracy, sensitivity, and specificity evaluated by the leave-one-out
method based on the elastographic features for the representative slice selected by the
proposed slice-selection method are 71.25%, 91.43% and 55.56%, whereas 65.00%,
77.14% and 55.56% for the physician-selected slice. That is, the sensitivity and
accuracy of proposed slice-selection method is better than physician-selected slice and
the specificity of these two different schemes is similar. According to the statistical
analysis of experimental result, the performance of the proposed slice-selection method
is similar with that of the physician’s selection. Therefore, the proposed slice-selection
method could assist the physician in selecting the appropriate representative slice and

decreasing the time of selection.

Keywords : sonoelastography, breast tumor, tumor segmentation, representative slice.
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Chapter 1

Introduction

Different firmness of benign and malignant tumors has been treated as an
important characteristic by physicians during breast palpation [1]. The stiffer and less
mobile tumors are more likely considered as malignant ones. A dynamic ultrasound
imaging technique named elastography measures the degree of deformation under
pressure to estimate tissue stiffness [2, 3]. It was proved that the elasticity information
provided by the strain image in elatography is helpful in differentiating benign and
malignant tumors [1, 4-6] since healthy and diseased tissues have different strain
information.

Area ratio [1, 2, 4, 7] and elasticity score [7-9] are two popular criteria adopted by
physicians on interpreting ultrasound elastography. Area ratio refers to the ratio which
the tumor area on the strain image divided by the tumor area on the conventional
B-mode image. And elasticity score was classified into grade 1 to grade 5 according to
the distribution of tissue strain within the tumor. These two generally used criteria were
compared in [7] and concluded that the area ratio performed better than the elasticity
score in classifying benign and malignant tumors. In addition, some researches focused
on comparing the diagnostic performance of the conventional ultrasound and
elastography. Most of these studies [7, 10-13] have made a conclusion that conventional
ultrasound has higher sensitivity and the elastography has higher specificity in tumor
diagnosing.

Since there are multiple slices in each dynamic elastographic video, physicians
need to select the most appropriate slice for diagnosing tumors captured in the scanned

video. Some studies had reported that diagnosing based on elastography is dependent



on inter-observer variability and influenced by the image quality [6, 14]. Chang et al.
[15] proposed a scheme to assess the qualities of elasticity images and classified into
three categories. They had showed there are significant difference between the
sensitivities of higher-quality and lower-quality images (87.0% vs 56.8%) in
diagnosing tumors. Moreover, our previously proposed study [16] provided a fair
breast tumor diagnostic system but also suffered from the same problem in slice
selection. Therefore, to reduce the influences of different image qualities and to
provide a stable diagnostic performance, we had developed a representative slice
selection technique to objectively choose the image with the best quality from each
scanned elastographic video. The representative slice of each video was selected based
on the distribution of tissue strain within whole strain image. Moreover, the level set
technique was applied on B-mode image to automatically segment tumor and avoid the
variability of manually determining tumor contours between different radiologists.
Finally, some quantitative features were extracted from the elasticity information

within the segmented tumor region for the following tumor diagnosis.



Chapter 2

Materials

2.1 Elastographic image

The elastographic US in this study was scanned by an experienced radiologist of
breast ultrasound using Siemens ACUSON S2000 Ultrasound System (Siemens
Medical Solution, Malvern, PA, USA) with a 5-14 MHz linear transducer. Each of our
scanned elastography was saved in DICOM format, which includes at least 50 images.
Fig. 1 illustrated the standard elastographic image captured using ACUSON S2000.
Each image contains both B-mode (left side) and elastographic (right side) US of the
target tumor. The elastographic image depicted tumor strain is displayed in a
256-grayscale image, where gray-level 0 represents the hardest tissue and 255 the
softest tissue. For each elastography sequence, we had developed an image selection

technique to choose the most appropriate image for tumor diagnosis.

2.2 Lesions

This study had collected informed consents from patients and was approved by
the local ethics committee. The experimental elastography of 80 breast tumors (45
benign and 35 malignant) in 80 women (age range from 19 to 79 years, mean
49.7+11.34 years) were collected from December 2009 to December 2010. There were
29 cases of invasive ductal carcinoma, and 6 cases of ductal carcinoma in situ (DCIS)
in malignant tumors. In addition, there were 36 cases of fibrocystic changes (including
ductal hyperplasia, sclerosing adenosis and fibroadenomatous change), 2 cases of
atypical ductal hyperplasia, 5 cases of papillomas, 2 cases of fibroadenomas, in benign

tumors. The tumor size measured at the B-mode US was 4-9.7 mm in 27 lesions,



10-14.3 mm in 31 lesions, 15-19.4 mm in 15 lesions and 20-57 mm in 7 lesions.
Moreover, the sizes of lesions were 4-31 mm (mean, 11.88+5.66 mm) for fibrocystic
changes, 9-11 mm (mean, 9.62+0.88 mm) for papillomas, 12-18 mm (mean, 15+4.24
mm) for fibroadenomas, 6-13.6 mm (mean, 9.8+5.37 mm) for atypical ductal
hyperplasia, 5-57 mm (mean, 14.69+9.49 mm) for invasive ductal carcinoma and 8-19

mm (mean, 13.17+4.36 mm) for DCIS.

14L5/ *Breast

Detail

2D — 100%
THI/H11.00 MHz
0dB/DR 70

BR RT 12.5/3 OR g4 16fps  3.5em

Fig.1  The elastographic image.



Chapter 3

The Proposed Method

In the dynamic elastographic image, there are several 2-D slices and a
representative slice should be selected for further diagnosis. Due to the different
compression applied for each slice, the stiffness ratio in each slice is different. In this
study, the stiffness ratio of each slice will be computed and sorted in the ascending
order and the slice ranking at appropriate percentile will be selected. Then, the tumor
segmentation method is applied for the selected representative slice to delineate the
tumor contour based on the B-mode part of elastographic slice. Finally, by utilizing the
elasticity information in the tumor region which is found in the B-mode part, the tumor
stiffness ratio and other elastographic features could be evaluated. The flow chart of

the proposed system is shown in Fig. 2.

A 4

Representative slice
selection

y

Segmentation

A

Tumor analysis

Diagnostic result

Fig. 2 Flow chart of the proposed system.




3.1 Representative Elastographic Slice

Before diagnosing the tumor, a representative slice will be selected automatically
by the proposed system from the dynamic elastographic image. At first, the stiffness
ratio is computed based on the elasticity information of each slice. Next, these stiffness
ratios are sorted in the ascending order and then the representative slice is chosen
based on their ranking of stiffness ratios. In order to decide the better representative
slice, the slices ranking at different percentile will be used for comparison in the

experiment.

3.1.1 Slice Selection Method

Because of different pressure applied on the tumor during scanning process, the
elasticity information of each slice may be different. In this study, we developed a slice
selection method to eliminate the influence of nonuniform stress in the scanned video.
The stiffness ratio is applied to evaluate the degree of pressure and one slice with
appropriate elasticity will be selected as the representative slice.

At first, a threshold value THsice stiff IS Used to decide whether a pixel is stiff or not.
A better threshold value between 10 and 30 will be decided by experiments. After
classifying the pixels into stiff or soft, the stiffness ratio of the whole elastographic
image could be computed by the number of stiff pixels divided by the total number of
pixels. Next, the stiffness ratio of each slice will be sorted in the ascending order. At
last, the slices at the 25™, 50", and 75™ percentile will be selected, as shown in Fig. 3.
To avoid selecting the incorrect over-compressed or under-compressed slices, the slice
at the 0™ (lowest strain) and 100" (highest strain) percentile will be abandoned.
Furthermore, the representative slice is chosen from the above mentioned three slices
with the most appropriate slice with enough and stable pressure. Actually, the threshold

6



value THaiice siitt Will affect the selection of the above possible three slices. If a low
threshold value is used then the slice at low percentile will be selected. The different

combination of threshold values and percentiles will be tested at experiments.

<9
L= JTN
- L4

£

(d) (e) ()
Fig. 3 Examples of elastographic image with (a) the 25" percentile and (b) the 50"

percentile and (c) the 75" percentile after sorting in the ascending order.

(d)-(f) The produced binary image of (a)-(c) after thresholded with value 15.

3.2 Segmentation

After selecting the representative slice, in order to evaluate the tumor features for
diagnosis, the contour of tumor should be delineated first. In this paper, the tumor
contour will be segmented by means of the level set method [17, 18] after a series of
preprocessing.

At first, the sigmoid filter [19] is applied to enhance the contrast of the original
B-mode part so as to increase the distinction between tumor and background. Then, in

order to get the information of edge, the gradient magnitude filter [20] will be utilized
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to obtain the gradient image. Moreover, the sigmoid filter will be employed again to
enhance the contrast of gradient image for the better result. Finally, the contour of
tumor in the B-mode part will be segmented by the level set method. In addition, in
order to eliminate the holes in the tumor and smooth the contour, the morphology
closing operation [21-24] will be applied to the image produced by the level set

method. The flowchart of the segmentation is illustrated in Fig. 4.

The contrast-enhanced gradient image

Representative [ Sigmoid image filter ]
slice

[ Gradient magnitude filter ]

Segmentation

[ Level set method ]
A\ 4
Hole filling
Segmentation
result [ Morphology closing ]

Fig. 4 Flow chart of the segmentation method

3.2.1 The Contrast-enhanced Gradient Image

Actually, the result of segmentation will be not good if the level set method is
directly utilized on the B-mode part of the original elastographic image. Therefore, the
sigmoid filter is needed to enhance the contrast of image and the gradient magnitude
filter is also required for obtaining the information of edge. Furthermore, the resulted

image produced by the sigmoid filter and gradient magnitude filter will be treated as



the input of the level set method. These two methods will be introduced in the

following section.

3.2.1.1 Sigmoid image filter

Even though the level set method is applied to the image generated by the
gradient magnitude filter, the result will still be not good because of the speckle noise
appeared in the B-mode image. Therefore, the sigmoid filter will be utilized to enhance
the contrast of image for preserving just the significant edge information in the resulted

image of the gradient magnitude filter. The sigmoid function is defined as

I’:(Max—Min)'ﬁJr Min 1)
[1+ ele ]
where | is the input intensity of the original image, | is the output intensity, Max and
Min are the maximum and minimum intensity values of output image, « is the width of
the intensity window, and £ whose value is equal to Min in this paper is the center of
the intensity window. The initial seeds chosen by the user for segmenting the tumor
will be used to evaluate a automatically. That is, the circle around each seed with
radius of 10 pixels is applied to compute the mean of seed neighborhood and « is
represented as the maximum of the mean of seed neighborhood. Moreover, the pixels
whose intensity is higher than « in the background are set to Max and the distinction of
intensities between the tumor and background will be more manifest by means of
utilizing a and . Further, the level set method can march faster on the homogeneous
regions with the help of the image whose contrast has been enhanced. The result of
sigmoid filter on the B-mode part of the original elastographic image Fig. 5(a) is

exhibited in Fig. 5(b).



Fig. 5

s ST

©) i (h)

Step-by-step illustration of automatic tumor segmentation. (a) Original

B-mode image (b) Utilizing the sigmoid filter with =7, =0, min=0, and
max=255 (c) Gradient magnitude filter (d) Utilizing the sigmoid filter with
0=0.01, £=0.5, min=0, and max=255 (e) Applying the level set method
before the morphology closing operation (f) Morphology closing operation
(9) The determined tumor contour (h) Overlapping tumor contour onto the

original B-mode image.
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3.2.1.2 Gradient magnitude filter

In this section, the gradient magnitude filter is utilized to find the information of
edge and segregate one uniform region from the other different regions so as to detect
the contour of tumor and promote level set segmentation to get a better result. For the

image I(x, y), its gradient VI(x, y) is represented as [24]
al
9y X
VI(X, y){gy}— al 2)
oy
The magnitude of gradient VI(x, y) is defined as

mag (V1) =,/g} + 0> 3)

Moreover, in order to evaluate the gy and gy, two gradient magnitude masks will be
applied to convolve image, as shown in Fig. 6. In addition, it is noted that sigmoid
filter will be utilized again to enhance the contrast of the result image produced by the
gradient magnitude filter for the better result of the segmentation. The gradient
magnitude image for Fig. 5(b), which is enhanced again by sigmoid filtering, is
represented as Fig. 5(c), and the contrast-enhanced gradient magnitude for Fig. 5(c) is

shown in Fig. 5(d).

-1
101 0
1

(a) (b)

Fig. 6 The gradient masks (a) gx and (b) gy.
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3.2.2 Level Set Method

The level set method is a common numerical technique which is easy to model
complicated shape. It will maintain robust and accurate even during tracking interfaces
with complex motions. The purpose of level set method is to track the evolving contour;
therefore it is adopted for segmenting tumor in this paper. Moreover, the features of
image such as edge and gradient are utilized to help the level set method to evaluate
the result of segmentation.

First, the user choose multiple seeds regarding as the initial contour »t) embedded
as the zero level set of a higher dimensional level-set function w(x, t), where the zero
level set is defined as T'(x, t) = {w(x, t) = 0} and x is a point in R". Then, the partial
differential equation is applied to the level-set function for evolving the initial contour.

For the initial contour 1(t=0), the level-set function is defined as
w(x,t=0)==d 4)
where d is the distance from x to 1(t=0), and the sign is represented as a point which is
outside of or inside of the initial contour corresponding to a positive or negative value,
as illustrated in Fig. 7.
Furthermore, because of providing the velocity in the outward normal direction by

F and the partial differential equation for y has been evaluated, the level-set function is

represented as [18, 25]
y+FVy|=0 ®)

with a given value of y/(x, t=0). The result image generated by level set method for Fig.
5(d) is exhibited in Fig. 5(¢), and the contour of the final result overlapping with the

original B-mode part of the elastographic image is depicted in Fig. 5(h).

12



Fig. 7 The zero set in a level set. The sign of w(x, y, t) is decided by whether the
position of the point is inside the zero level set (negative) or outside the zero

level set (positive).

3.2.3 Morphology Closing Operation for Hole Filling

After tumor segmentation, one more technique is needed for solving some defects.
Because of some small holes will exist inside of the tumor in the image produced by
the level set method, the mathematical morphology closing operation with 5x5 ball
structuring element is applied to deal with the problem and smooth the contour of

tumor. The result of the morphology closing operation is illustrated in Fig. 5(f).
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3.3 Elastographic Feature Analysis

After segmenting the contour of tumor by the level set method from the B-mode
image, the contour will be applied to the elastographic image in order to extract tumor
features, as shown in Fig. 8. By means of analyzing elasticity information inside the
segmented tumor and its neighborhood region, the computed elastographic features can
be utilized to diagnose the tumor. Moreover, the features can be divided into five classes:
stiffness ratio, average intensity of center box, tumor boundary elasticity, outside-tumor
elasticity, inside-tumor elasticity. In this section, the elasticity information is

represented as grayscale intensity.

(d)

Fig.8  The processed images (a) original B-mode US image (b) original

elastographic image (c) the contour of tumor delineated on the B-mode US

image (d) the contour of tumor overlapped with the elastographic image.
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3.3.1 Stiffness Ratio

In the elastographic image, the stiffness of tumor can be represented as the ratio of
the dark pixels inside tumor. The stiffness ratio has been proven to be a significant
diagnostic feature in [8], therefore the stiffness ratio will be utilized in this paper. Two
schemes including thresholding and fuzzy c-means (FCM) [26] were used to classify

pixels within the segmented tumor to compute stiffness ratio represented as

stiff _num
= (6)

stiffness _ ratio =
total _num

where the stiff_num means the number of the stiff pixels in the tumor and the total _num
stands for the total number of pixels in the tumor. In the thresholding scheme, pixels
within tumor were classified into two groups using the predefined threshold THasgtess.
Since we tried to figure out the best threshold value, different THgfmess Values (5, 10, 15,
20, 25, 30, 40, and 50) were used in our experiments and the corresponding stiffness
ratios were defined as stiffs, Stiffio, Stiffis, Stiffoo, Stiffos, Stiffso, Stiffso, Stiffsg. In the fuzzy
c-means scheme, pixels within a tumor were classified into two or three categories and
two stiffness ratios fcm2_ratio and fcm3_ratio were defined as the ratio of pixels in the
stiffest group to all tumor pixels. In addition, the stiffest group of the two and three
classes classified by the fuzzy c-means method will also be applied to evaluate the
stiffness mean which can represented as the averaging gray intensity of pixels in the

stiffest group. The stiffness mean is defined as

stiffness_mean = ! > 1(p) (7

stiff  pestiff

where I(p) is the gray intensity of the pixel p, and Ng;s is the number of the stiff pixels

in the tumor.
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3.3.2 Average intensity of center box
The 20x20 and 30x30 boxes at the center of the tumor will be defined firstly, as
shown in Fig. 9 Then the average of pixel intensities in these two boxes will be

computed to analyze the tumor. These two box features are defined as

> I(p) and (8)

boxz20 pebox2o

> 1(p) 9)

boxao Ppeboxso

avg _boxzo =

avg _boxso =

where I(p) denotes the gray intensity of pixel p, and Npox2o and Npoxso are the number of

pixels in the 20x20 and 30x30 boxes, respectively.

D v

Fig. 9 The 20x20 and 30x30 boxes at the center of the tumor.

3.3.3 Tumor boundary elasticity

The morphological dilation and erosion operation with a 10x10 ball structuring
element will be utilized to define the outer and inner bands around the contour of tumor,
as shown in Fig. 10. The average gray intensities of pixels in these two bands will be
calculated as two features for diagnosing the tumor. The definitions of these two

features are

inner_mean:N1 > 1(p) and (10)

inner peinner
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outer _mean = Nl > 1(p) (11)

outer peouter

where the I(p) denotes the gray intensity of pixel p, and Nimner and Nouter the number of
pixels in the inner or outer bands around the contour of tumor. Furthermore, the elastic
difference between the inner and outer bands is also applied as a diagnostic feature. The

elastic difference of two bands is defined as

diff _bands = outer _mean —inner _mean (12)

In addition, the average gray intensity of the entire tumor which can stand for the
average elasticity of the tumor is used as a feature as well. The mean feature is

represented as

tumor _mean = ! > 1(p) (13)

tumor Ptumor

where I(p) is the gray intensity of the pixel p and Numor denotes the number of pixels

inside of the tumor.

Outer band

Inner band

Tumor

Fig. 10  The inner and outer bands with morphology dilation and erosion operation

with 10x10 ball structuring element.

3.3.4 Outside-tumor elasticity
As previously mentioned in section 3.3.3, the morphological dilation operation
with 10x10 ball structuring element was firstly applied to indicate the outer regions
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around the contour of tumor. Then the outer-tumor region was partitioned into eight
different regions, named Left (L), Right (R), Up (U), Down (D), UpperLeft (UL),
UpperRight (UR), LowerLeft (LL), LowerRight (LR), according to the gravity center of
the tumor. The eight partitioned regions were regarded as the features to analyze the
elasticity information, as shown in Fig. 11. The elasticity information of these regions

will be evaluated as

avg _outer _region, = 3 Z I(p),ie{L,R,U,D,ULUR,LL, LR} (14)

i pei

where 1(p) represents the gray intensity of pixel p, and N; means the number of pixels in
the eight different regions defined above. Furthermore, the minimum value and the

average value of the four regions, Up, Down, Right, and Left, were also be computed as

min_outer = min( avg _outer _region,), i e{L,R,U, D} (15)

avg _outer = %Zavg _outer _region, i {L,R,U, D} (16)

’~\ 2
>

(b) (c)
Fig. 11  The eight different outer regions which are at the (a) Left, Right, (b) Up,

Down, (c) UpperLeft, UpperRight, LowerLeft, and LowerRight.

3.3.5 Inside-tumor elasticity
In order to evaluate the diagnostic performance of features extracted in different
positions of the tumor, the elasticity within five distinct squares inside the tumor will be
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utilized as the features. At first, the gravity center and the bounding box of the tumor
were computed. Next, four lines were plotted at center positions between the gravity
center and the bounding box, forming four rectangles, recy., recug, rec.., rec.g, around
the tumor gravity center, recc. Furthermore, four line segments were plotted at the
center positions between previously mentioned four lines and the tumor gravity center,
forming one rectangle centered at the tumor gravity center, as shown in Fig. 12. The
average gray intensity of these five rectangles was calculated as the features for

diagnosing the tumor. The rectangle features were defined as

avg _inner _region, = iz I(p), i e{rec, ,rec,,rec,,recq,rec.} (17)

i pei
where 1(p) is the gray intensity of the pixel p, and N; denotes the number of pixels in
aforementioned different rectangles. In addition, the average and the minimum intensity

of the five rectangles were also regarded as features to evaluate the elasticity

information. These two features are defined as

min_inner = min(avg _inner _region,), i e{rec, ,rec,rec, ,rec,rec.} (18)

. 1 . . .
avg _inner = : > avg _inner _region;, i e{rec,,, rec,,,rec_,rec q,rec.} (19)
i

(@) (b)

Fig. 12 The five different rectangles (a) four of them around the tumor gravity

center (b) one at the tumor gravity center.
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Chapter 4

Experiment results

In the following experiments, the features of the elastographic image will be
extracted from both our selected representative slice and physician selected slice to
compare their diagnostic performance. At first, the representative elastographic slice is
selected from the dynamic elatographic image automatically by means of the proposed
slice-selection method. Then, the tumor contour delineated from the B-mode image by
the proposed segmentation method is applied to the elastographic image. The elasticity
information acquired from the tumor region in elastographic image was regarded as the
tumor features and used to evaluate the performance of diagnosis. Furthermore, the
performances of representative slices selected using different threshold values
(THsiice_stitt mentioned before) and different sorting percentiles applied on both whole
image and tumor region were compared in order to obtain the most appropriate slice, as
listed in Table 1. At last, the most appropriate slice chosen by our method was
compared with the physician-selected slice based on their diagnostic performance of
tumor in the experiment.

The binary logistic regression model [27, 28] is applied to analyze the
elastographic features so as to classify the tumor into benign and malignant. The
predicted values generated by the binary logistic regression model range from 0 to 1.
For determining the most appropriate threshold value applied on the predicted values,
we had tried different thresholds for classifying tumors and the corresponding
performance measures were listed in Table 2. The probability threshold was finally set
as 0.175 since it resulted in the best accuracy and superior sensitivity. After deciding

the diagnostic threshold, each tumor was classified as malignant if its predicted value
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was larger than or equal to the threshold, otherwise benign. In addition, the
leave-one-out cross-validation method [29] is utilized to fairly evaluate the diagnostic
performance of our proposed scheme. The method will choose one case as the test set
and the rest of cases are deemed as training set. Then, the results of all the cases which
each case has been employed as the test set in a repeated process will be merged.

The proposed system is implemented by the programming language C++ under
the Microsoft Visual C++ 2005 (Microsoft, Redmond, WA, USA), operating with
Microsoft Windows XP operating system (Microsoft, Redmond, WA, USA), and

running on the Intel Pentium (2.67G Quad-core machine with 2.99 GB RAM).

4.1 Statistical Analysis

Since there were lots of elastographic features proposed in our study, we had to
figure out which features are helpful in classifying tumors. In the beginning, the
Kolmogorov-Smirnov test [30] was applied on each proposed elastographic feature to
test if it is normally distributed. Once the feature is normally distributed, we calculate
its mean and standard deviation corresponding to benign and malignant tumors and
furthermore utilized the Student’s t-test [30] to determine if this feature is sufficient to
distinguish benign and malignant tumors. On the other hand, the Mann-Whitney U test
[30] is applied on those non-normally distributed features to estimate if they could be
used to clearly classify tumors into benign and malignant. The statistical significance
level of both the Student’s t-test and the Mann-Whitney U test were set to 0.05.

After determining useful features in identifying tumor pathology, the binary
logistic regression model were applied on those features generating predicted values
between 0 and 1. The generated predicted values were used to classify tumors. The
indicators for assessing the performance are accuracy, sensitivity, specificity, positive
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predictive value (PPV) and negative predictive value (NPV). Moreover, the receiver
operating characteristic (ROC) curve was plotted using the ROCKIT software (C. Metz;
University of Chicago, Chicago, IL, USA) and the areas under the ROC curve (Az) are
also regarded as the performance indicator. Furthermore, the chi-square test [30] is
utilized to evaluate the performance comparison between two different schemes. The
p-value less than 0.05 for each comparison means a statistically significant difference.
The statistical analysis except the ROC curve analysis and the binary logistic regression
is conducted by the software (SPSS, version 16 for Windows; SPSS, Chicago, IL,

USA).

4.2 Elastographic features analysis

Because not all the features are beneficial for diagnosing the tumor, the mean
value, standard deviation (SD), median value, and the p-value generated from the
Student’s t-test or Mann-Whitney U test will be applied to evaluate the statistically
significant difference of the features in order to choose the more useful features. Then,
the different values including the mean value, standard deviation (SD), median value
and the p-value of the Student’s t-test and Mann-Whitney U test based on the features
corresponding to the malignant and benign cases on the slice-selection method with
THsiice stif = 15 and at the 25" percentile and the physician-selected slice were listed in

Table 3 and Table 4, respectively.
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Table 1 The Az values of ROC analysis applied on tumor region and whole slice

with different threshold values THgjice siff and different percentiles.

Tumor region Whole slice
10 | 15 | 20 | 25 | 30 | 10 | 15 | 20 | 25 | 30
25 0.5937 | 0.6610 | 0.7200 | 0.7479 | 0.7854 | 0.7219 | 0.8019 | 0.6883 | 0.7200 | 0.7797
50" 0.6984 | 0.7194 | 0.6533 | 0.7384 | 0.7416 | 0.6533 | 0.6902 | 0.6667 | 0.7746 | 0.6711
75" 0.6724 | 0.7854 | 0.6838 | 0.6368 | 0.6368 | 0.7575 | 0.6432 | 0.5829 | 0.6997 | 0.7962

Table 2 The diagnostic performance of our slice-selection method with THgjice stitt =

15 and at the 25" percentile using different threshold value for classifying

the tumors.
True False True False | Accuracy | Sensitivity | Specificity
Threshold] . . : :

positives | positives | negatives | negatives | (%) (%) (%)
0.075 33 26 19 2 65 94.29 42.22
0.125 32 22 23 3 68.75 91.43 51.11
0.175 32 20 25 3 71.25 91.43 55.56
0.225 29 19 26 6 68.75 82.86 57.78
0.275 29 17 28 6 71.25 82.86 62.22
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Table 3  Feature statistics of benign and malignant tumors in slices selected using our

proposed method with THjice sitt = 15 and at the 25" percentile.

Benign Malignant
Features - - p-value
Mean £ SD [Median| Mean + SD | Median
stiffs 0.11 0.28 0.0026
stiffyo 0.15 0.39 0.0067
stiffys 0.32+0.26 0.47 + 0.26 0.0130
Stiffness ratio stiffo 0.38 + 0.27 0.53+0.26 0.0130
(thresholding) stiffys 0.44 £ 0.28 0.59 + 0.26 0.0210
stiffsg 0.51+0.29 0.64 + 0.26 0.0340
stiffo 0.63 0.77 0.0606
stiffso 0.75 0.86 0.0720
Stiffness ratio fcm2_ratio 0.66 £ 0.14 0.70+0.12 0.1090
(FCM) fcm3_ratio 0.47 £ 0.15 0.54+0.14 0.0280
Stiffness mean fcm2_stiffmean 21.89 13.82 | 0.0087
- fcm3_stiffmean 15.58 8.14 0.0058
avg_boxyo 30.23 14.31 | 0.0056
Center_box = /g boxa 33.28 14.07 | 0.0061
inner_mean 60.92 51.99 | 0.0943
Tumor =
boundary ou_ter_mean 69.36 65.35 0.1196
elasticity diff_bands 9.71 9.28 0.5253
tumor_mean |170.10 + 41.34 147.43 + 37.10 0.0130
avg_outer L 49.28 42,98 | 0.2504
avg_outer R 52.34 36.72 | 0.1856
avg_outer_U 50.04 22.10 | 0.0029
avg_outer D | 59.00 + 33.75 59.79 + 34.39 0.9190
Outside-tumor | avg_outer UL 40.33 27.68 | 0.0182
elasticity avg_outer UR 44.16 24.39 | 0.0071
avg_outer LL | 59.00 + 38.98 58.99 + 32.02 0.9990
avg_outer LR 45.78 49.80 | 0.9035
min_outer 34.82 22.10 | 0.0817
avg_outer 49.50 43.98 | 0.1128
avg_inner_UL 33.80 16.27 | 0.0087
avg_inner_UR 24.41 9.14 0.0095
Inside-tumor avg__inner_LL 39.55 16.60 | 0.0690
elasticity avg_l_nner_LR 34.65 20.89 | 0.0661
avg_inner_C 35.17 12.18 | 0.0037
min_inner 17.30 6.36 0.0085
avg_inner 36.27 19.67 | 0.0100
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Table 4 Feature statistics of benign and malignant tumors in physician-selected

slices.
Benign Malignant
Features - - p-value
Mean £ SD | Median| Mean + SD | Median
Sitffs 0.18 0.38 0.0011
sitffio 0.28 £ 0.23 0.47 + 0.28 0.0010
sitffis 0.37 0.60 0.0032
Stiffness ratio sitffao 0.43 0.65 0.0030
(thresholding) sitffos 0.49 0.72 0.0045
sitffao 0.55 0.75 0.0063
Sitffao 0.68 0.81 0.0118
stiffsg 0.79 0.88 0.0226
Stiffness_ratio | fcm2_ratio 0.66 = 0.12 0.74 £ 0.12 0.0090
(FCM) fcm3_ratio 0.50 0.56 0.0014
Stiffness mean fcm2_stiffmean 18.36 10.39 0.0042
- fcm3_stiffmean 9.92 6.78 0.0038
avg_boxyg 24.15 11.25 0.0027
Center_box 1= /a boxap 27.19 1345 | 0.0024
inner_mean 61.67 51.82 0.0325
bgb‘rﬂ‘;:y outer_mean |75.00 + 23.18 61.72  23.96 0.0140
- diff_bands 10.87 7.45 0.0473
elasticity

tumor_mean 50.51 36.12 0.0022
avg_outer_L |54.76 £ 27.54 38.93 £ 27.97 0.0130
avg_outer R |56.33 = 31.46 43.42 + 28.24 0.0610
avg_outer U 49.70 22.48 0.0027
avg_outer D 60.09 44.39 0.2585
Outside-tumor | avg_outer UL 46.37 21.79 0.0014
elasticity | avg_outer_UR 46.27 22.49 | 0.0151
avg_outer LL | 58.25 + 35.57 47.35 + 29.45 0.1470
avg_outer LR 46.81 44.48 0.3297
min_outer 32.71 14.78 0.0048
avg_outer | 55.44 +25.79 41.03 + 26.35 0.0160
avg_inner_UL 27.91 11.67 0.0038
avg_inner_UR 19.44 8.22 0.0143
Inside-tumor avg_?nner_LL 35.60 15.80 0.0197
elasticity avg_lpner_LR 31.76 21.97 0.0168
avg_inner_C 28.50 12.02 0.0015
min_inner 11.96 4.66 0.0050
avg_inner 28.63 12.37 0.0046
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4.3 Tumor classification

In this experiment, in order to select the most useful elastographic features for
classifying the breast tumors, the features with the p-value less than 0.05 are selected at
first. The features of slice-selection method and physician-selected slice are selected in
the beginning, respectively. Then, the backward feature elimination [28] is applied to
eliminate the less important features with only slightly reducing the diagnostic
performance to obtain the most appropriate features to diagnose the tumor, as listed in
Table 5. Furthermore, the diagnostic performances of the binary logistic regression
model for the selected most appropriate features by means of utilizing the
leave-one-out cross-validation method on the slice-selection method and
physician-selected slice are listed in Table 6, respectively.

In order to compare the outcomes of the selected most appropriate features on the
two different schemes, the p-values of five performance indexes by the chi-square test
and the Az values of the ROC curves by the z-test [30] are listed in Table 6. Moreover,
the sensitivity and accuracy of our proposed slice-selection method are better than that
of physician-selected slice and the specificity is similar on these two different
representative slices. In addition, The ROC curves for diagnosing tumor using selected
appropriate features based on our system-selected slice and physician-selected slice are
shown in Fig. 13. Finally, some experiment examples of true positive (TP), true
negative (TN), false negative (FN), and false positive (FP) cases are illustrated in Fig.

14-Fig. 17.
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Table 5 The remaining features after applying the backward feature elimination on

features with p-value < 0.05.

Slice-selected method Features

stiffs, stiffys, stiffy, stiffsp, fcm3_ratio, fcm2_stiffmean,
System selection (11)  [fcm3_stiffmean, avg_boxso, tumor_mean, avg_inner_C,
avg_inner

stiffs, stiffys, stiffs, fcm2_ratio, fcm3_stiffmean,
avg_box,g, avg_boxsg, outer_mean, diff_mean,
Physician selection (19) [tumor_mean, avg_outer_L, min_outer, avg_outer UL,
avg_outer UR, avg_inner_UR, avg_inner_LL,
avg_inner_LR, avg_inner_C, avg_inner

Table 6 The performance indexes and p-values of performance indexes using
chi-square test and Az value of ROC curve using z-test for the

system-selected slice and physician-selected slice.

Performance

p-value

System-selection | Physician-selection
Az 0.8014 0.7595 0.5955
Accuracy 71.25% 65.00% 0.3963
Sensitivity 91.43% 77.14% 0.1006
Specificity 55.56% 55.56% 1.0000
Positive predictive value 61.54% 57.45% 0.6787
Negative predictive value 89.29% 75.76% 0.1708

Note:
Accuracy = (TP+TN) / (TP+TN+FP+FN)
Sensitivity = TP/ (TP+FN)
Specificity = TN / (TN+FP)
Positive Predictive Value = TP / (TP+FP)
Negative Predictive Value = TN / (TN+FN)
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Fig. 13 The ROC curves for the system-selected slice and physician-selected slice.
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Fig. 14

(f)

A true positive example of invasive ductal carcinoma (a) The original image
and (b)(c) the B-mode image and elastographic image with the segmentation
result on the slice 23 selected by the proposed slice selection method. (d)
The original image and (e)(f) the B-mode image and elastographic image

with the segmentation result on the physician-selected image.
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Fig. 15 A true negative example of epithelial hyperplasia (a) The original image and
(b)(c) the B-mode image and elastographic image with the segmentation
result on the slice 8 selected by the proposed slice selection method. (d) The
original image and (e)(f) the B-mode image and elastographic image with

the segmentation result on the physician-selected image.
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Fig. 16

(d)

A false positive example of fibrocystic change (a) The original image and
(b)(c) the B-mode image and elastographic image with the segmentation
result on the slice 108 selected by the proposed slice selection method. (d)
The original image and (e)(f) the B-mode image and elastographic image

with the segmentation result on the physician-selected image.
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(d)

Fig. 17 A false negative example of invasive ductal carcinoma (a) The original
image and (b)(c) the B-mode image and elastographic image with the
segmentation result on the slice 38 selected by the proposed slice selection
method. (d) The original image and (e)(f) the B-mode image and
elastographic image with the segmentation result on the physician-selected

image.

4.4 Discussion

According to Table 1, the representative slice selected by applying the
slice-selection method on the whole slice is more appropriate as the THgjice_sifr IS Set to
15 and at the 25" percentile of sorted stiffness ratio, meaning the distribution of stiff
tissues will not occupy too many areas in the whole image. It is reasonable that the slice
might be over-compressed when there are too many stiff areas. From observing the Az
values listed in Table 1, the better performance the slice at the more posterior percentile

performs as the THyice siitr iNCreasing from 20 to 30 was applied on the whole slice. As
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for selecting slice according to elasticity information within tumor regions, the slice at
anterior percentile always performs best when THsjice st = 20. For selecting slice on
the tumor region, the performance is also acceptable at the 75" percentile with
THsice st = 15 and at the 25" percentile with THgice st = 30. However, the main
drawback of this method is that its performance depends on the segmentation result. In
[31], Chang et al. proposed two schemes to select slices based on SNR and CNR
information, but the tumor contour must be found at first. However, our proposed
method selected slices according to strain information of tissues in the whole slice with
no needs to set up initial seeds for segmenting tumors. Therefore our scheme benefits
from saving time for slice selection and avoiding using incorrect elasticity information
within wrongly segmented tumor.

As mentioned before, the elastographic features are devided into five classes:
stiffness ratio, average intensity of center box, tumor boundary elasticity, outside-tumor
elasticity, and inside-tumor elasticity for comparing their performances. Table 7 listed
the remaining features of each class calculated in system-selected slice after applying
backward feature elimination. Similarly, the finally used features of each class
calculated in physician-selected slice were listed in Table 8. For analyzing which class
are the most useful in diagnosing, we adopted ROC analysis on features belonging to
those five classes. Fig. 18 and Fig. 19 were the ROC curves of features belonging to the
five classes on the system-selected and the physician-selected slice, respectively. We
could conclude that features in class “stiffness_ratio” are most helpful in diagnosing
since the Az value was highest in both figures.

From Table 6, the sensitivity of our proposed method was superior to that of the
ground truth done by physicians, and other performance measures were similar to or
better than those of the physician-selected slice. Although their performance is not
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statistically significant in the current experiment, the physician will still benefit from
the proposed slice selection method to reduce the time of selecting an appropriate
representative slice.

In addition, we could compare our proposed method with the diagnosis result of
Regner et al. [1] using the elastographic images captured by the same machine. In their
study, the features, such as width and area ratios, are manually evaluated by five
observers and the results of five observers were combined to acquire the final diagnosis
performance. The sensitivity and specificity of our proposed method are 94.49% and
42.22% with the classification threshold 0.075 in Table 2, whereas those of the study of
Regner et al. are 96% and 24%. The sensitivities of these two different schemes were
similar but the specificity of our proposed method was better than that of their study.

Moreover, our proposed method automatically selected slices in terms of the
elasticity information of tissues without letting the operator to spend the time for
choosing the representative slice. Therefore, our approach could benefit from saving

time for selecting an appropriate representative slice.

34



Table 7

each class of the features with p-value < 0.05 for the system-selected slice in

The remaining features after applying the backward feature elimination on

Table 3.
Feature classes Features
Stiffness ratio stiffs, stiffyp, fcm3_stiffmean
Average intensity of center box | avg_boxyg
Tumor boundary elasticity tumor_mean

Outside-tumor elasticity

avg_outer_UL, avg_outer_UR

Inside-tumor elasticity

avg_inner_C, avg_inner

Table 8 The remaining features after applying the backward feature elimination on

each class of the features with p-value < 0.05 for physician-selected slice in

Table 4.

Feature classes

Features

Stiffness ratio

stiffyo, Stiffyg, Stiffs stiffsp fcm3_ratio

Average intensity of center box

avg_boxz

Tumor boundary elasticity

tumor_mean

Outside-tumor elasticity

avg_outer_L, avg_outer_UL

Inside-tumor elasticity

avg_inner

35




ROC Curves
1
0.9 -
0.8 -
0.7 -
c
2
S 0.6 -
S
(I
[«5)
2 0.5 -
=
[72)
o
a
§ 0.4 -
= &
0.3 - _::r" Az=0.7052 Stiffness ratio
fx“ ------- Az=0.6201 Average intensity of center box
02 - S e Az=0.6102 tumor boundary elasticity
' f’ ------- Az=0.6223 Outside-tumor elasticity
E: P PP Az=0.6308 Inside-tumor elasticity
01 4 4
&
O . T T T T
0 0.2 0.4 0.6 0.8 1
False Positive Fraction

Fig. 18 The ROC curves for five different classes of the features on system-selected

slice.

36



ROC Curves
1

0.9 -

0.8 -

0.7 -
c
§=]
S5 0.6 -
S
L
[«5]
= 0.5 -
=
[72]
o
a
§ 0.4 -
I_

03 - Az=0.67209 Stiffness ratio

Az=0.6403 Average intensity of center box
02 4 - Az=0.6702 Tumor boundary elasticity
' i Az=0.6433 Outside-tumor elasticity
sES eeeee Az=0.6185 Inside-tumor elasticity
0.1 1: .::;
O T T T T
0 0.2 0.4 0.6 0.8 1
False Positive Fraction
Fig.19 The ROC curves for five different classes of the features on

physician-selected slice.
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Chapter 5

Conclusion and Future Works

The main purpose of this study is utilizing the elastographic features on the
representative slice which is selected by the proposed slice-selection method from the
dynamic elastographic video to diagnose the tumor. First, the slice-selection method
was developed to select the representative slice instead of relying on the subjective
perspective of the physician so as to diminishing the variability of observers. Next, in
order to improve the consistency of the segmentation between the different operators,
the contour of tumor delineated by the physicians is substituted with the automatic
segmentation of the level set method. At last, the contour of tumor is applied to
evaluate the elastographic features for the diagnosis of the breast tumor.

In the experiment, the diagnosis performances of accuracy, sensitivity, and
specificity estimated by the leave-one-out method based on the elastographic features
on the representative slice selected by the proposed slice-selection method are 71.25%,
91.43% and 55.56%, whereas 65.00%, 77.14% and 55.56% on the physician-selected
slice. According to the experimental result, the performance of the proposed
slice-selection method is similar with that done by the physician. Furthermore, the
sensitivity and accuracy of proposed slice-selection method is better than
physician-selected slice, and the specificity of these two different schemes is similar.
Hence, the proposed slice-selection method could assist the physician in selecting the
appropriate representative slice and decreasing the time of selection.

In the proposed method of segmentation, the automatic segmentation based on the
level set method which delineates different contours of tumors by virtue of the

inconsistent manipulation of inter-operator and difference of seeds will result in
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different diagnostic performances changing with the different contours of tumors.
Therefore, in order to obtain the better result of segmentation and reduce the variability
of delineating the contour, the more robust and sophisticated automatic segmentation
method is expected to be developed in the future. In addition, since the distribution of
tissue strains (i.e. stiffness ratio mentioned before) could be used for the selection of the
representative slice, stiffness ratios calculated using different THgice sit may be
combined to select a more appropriate slice in the future. Moreover, the distribution of
the soft tissue also could be combined as an additional reference. Furthermore, in order
to reduce the effect of the some defective slices in the elasographic image and improve
the accuracy of the diagnosis, the useful features, such as the shape, margin, and texture

of the tumor on the B-mode image, could be also taken into account.
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