請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100217| 標題: | 反射式消旋系統的最佳化設計用於凱薩格林望遠鏡 Optimal Design of a Reflective Derotation Mirror System for Cassegrain Telescopes |
| 作者: | 許博喻 Po-Yu Hsu |
| 指導教授: | 李世光 Chih-Kung Lee |
| 關鍵字: | 多波段反射式追瞄系統,Ritchey–Chrétien 望遠鏡(RC 望遠鏡),反射式影像消旋系統, Multi-band reflective tracking system,Ritchey–Chrétien telescope,reflective image derotation system, |
| 出版年 : | 2025 |
| 學位: | 碩士 |
| 摘要: | 隨著現代光電應用蓬勃發展,具備高速追瞄、高鏡度、以及多波段能力的中小型光學系統,在低軌衛星與無人載具上應用於光學通訊、導引與成像領域中扮演越來越關鍵的角色。為因應未來高動態觀測與空間受限條件下的應用需求,本研究構想並實作一套具全反射特性的多功能追瞄光學系統。整體系統設計以凱薩格林(Cassegrain)反射式望遠鏡為基礎,並結合獨立設計之反射式消旋模組,用以解決因追瞄方向改變所導致的影像旋轉誤差,並同時兼顧體積縮減與光學性能穩定性。本研究首先針對望遠鏡系統進行理論參數設計,配合主次鏡參數比值耦合,篩選出具可製造性與遮蔽率小於 0.25 的 Ritchey–Chrétien 系統作為主系統光學架構。接續利用光路追跡,計算反射式消旋系統,提出一套考慮機構與光學限制下,以最低遮蔽率進行三面鏡角度、位置與形狀參數之設計方法。為確保設計正確性與實務可行性,本研究將整體系統導入光學模擬軟體 CodeV 與 LightTools 進行驗證,並加入遮光結構與桶身設計,有效抑制由消旋鏡造成之雜散光。最終實驗部分,建構實體三鏡模組與旋轉機構,搭配準直光源與影像辨識系統,提出一套誤差觀察與修正策略,從系統裝配誤差至光軸對準進行逐層分析與調整,驗證本研究提出之設計方法具備實用性與可行性。本研究所建立之模組化反射式消旋系統設計與校正架構,不僅可應用於追瞄與通訊場景,亦具潛力延伸至環景掃描、主動式觀測與其他高動態光學平台,為未來光電系統整合與誤差補償技術提供重要參考依據。 With the rapid development of modern optoelectronic applications, compact optical systems featuring high-speed tracking, high focal ratios, and multi-band capabilities have become increasingly critical for optical communication, guidance, and imaging in low Earth orbit (LEO) satellites and unmanned aerial vehicles (UAVs). To address the demands of high-dynamic observation under spatial constraints, this study proposes and implements a fully reflective multifunctional tracking optical system. The entire system is based on a Cassegrain reflective telescope architecture, integrated with a custom-designed reflective derotation module to compensate for image rotation aberration induced by tracking motion, while achieving compactness and maintaining optical performance stability. The study first performs theoretical parameter design for the telescope, utilizing the coupling relationship between primary and secondary mirror parameters to identify manufacturable Ritchey–Chrétien systems with an obscuration ratio below 0.25 as the main optical architecture. Subsequently, ray tracing is applied to develop a reflective derotation system design method that optimizes mirror angles, positions, and shapes under both optical and mechanical constraints to achieve minimal beam obscuration. To verify the system’s accuracy and practicality, the design is modeled and validated using optical simulation software (CodeV and LightTools), incorporating baffle structures and housing components to effectively suppress stray light caused by the derotation mirrors. In the experimental stage, a physical three-mirror module and rotation mechanism are constructed, combined with a collimated light source and image recognition system. A systematic error identification and correction strategy is developed, addressing errors from assembly to optical axis alignment. The results confirm that the proposed design methodology is both practical and feasible. The modular reflective derotation system developed in this research is not only applicable to tracking and communication scenarios but also has potential for panoramic scanning, active imaging, and other high-dynamic optical platforms, offering valuable insights for future optomechanical integration and error compensation technologies. Keywords:Multi-band reflective tracking system, Ritchey–Chrétien telescope, reflective image derotation system. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100217 |
| DOI: | 10.6342/NTU202503972 |
| 全文授權: | 未授權 |
| 電子全文公開日期: | N/A |
| 顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 7.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
