Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100217
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光zh_TW
dc.contributor.advisorChih-Kung Leeen
dc.contributor.author許博喻zh_TW
dc.contributor.authorPo-Yu Hsuen
dc.date.accessioned2025-09-24T16:53:17Z-
dc.date.available2025-09-25-
dc.date.copyright2025-09-24-
dc.date.issued2025-
dc.date.submitted2025-08-13-
dc.identifier.citationBergin, C. (2025, January 4). SpaceX roundup: 2024 sees record-breaking launch cadence, Starlink expansion, and Starship progress. NASASpaceFlight.com. https://www.nasaspaceflight.com/2025/01/spacex-roundup-2024/
Taiwan Space Industry Development Association. (n.d.). 國際衛星通訊產業概況. 衛星通訊產業推動計畫. https://www.satcom.org.tw/zh-tw/internationalOverview
Terzi, A., & Nicoli, F. (2024). Space possibilities for our grandchildren: Current and future economic uses of space.
Meigs, J. B. (2025). US Space Policy.
Mohan, N., Ferguson, A. E., Cech, H., Bose, R., Renatin, P. R., Marina, M. K., & Ott, J. (2024, May). A multifaceted look at starlink performance. In Proceedings of the ACM Web Conference 2024 (pp. 2723-2734).
Fong, C. J., Chu, C. H., Lin, C. L., & da Silva Curiel, A. (2019). Toward the most accurate thermometer in space: FORMOSAT-7/COSMIC-2 constellation. IEEE Aerospace and Electronic Systems Magazine, 34(8), 12-20.
Lucia, B., Denby, B., Manchester, Z., Desai, H., Ruppel, E., & Colin, A. (2021). Computational nanosatellite constellations: Opportunities and challenges. GetMobile: Mobile Computing and Communications, 25(1), 16-23.
Prol, F. S., Ferre, R. M., Saleem, Z., Välisuo, P., Pinell, C., Lohan, E. S., ... & Kuusniemi, H. (2022). Position, navigation, and timing (PNT) through low earth orbit (LEO) satellites: A survey on current status, challenges, and opportunities. IEEE access, 10, 83971-84002.
Kaushal, H., Jain, V. K., & Kar, S. (2017). Free space optical communication (Vol. 60). New Delhi: Springer india.
Alimi, I. A., & Monteiro, P. P. (2024). Revolutionizing Free-Space Optics: A Survey of Enabling Technologies, Challenges, Trends, and Prospects of Beyond 5G Free-Space Optical (FSO) Communication Systems. Sensors (Basel, Switzerland), 24(24), 8036.
Chang, C. H., Lin, Y. H., Chen, Y. F., Lin, C. H., Lin, S. C., Chu, K. Y., ... & Lin, C. T. (2024). 衛星光通訊簡介. 科儀新知, (238), 54-71.
Ministry of Economic Affairs, Department of Industrial Technology. (n.d.). 衛星雷射光通訊成為下一世代通訊技術新寵兒. Ministry of Economic Affairs, Taiwan. https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=581
Kaymak, Y., Rojas-Cessa, R., Feng, J., Ansari, N., Zhou, M., & Zhang, T. (2018). A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications. IEEE communications surveys & tutorials, 20(2), 1104-1123.
Huang, J.-W. (2018). Design and fabrication of optro-mechatronics system (2nd ed.). Wu-Nan Publishing.
Yan, P. P., Jiang, K., Liu, K., Duan, J., & Shan, Q. (2017, February). Optimal design of an earth observation optical system with dual spectral and high resolution. In Second International Conference on Photonics and Optical Engineering (Vol. 10256, pp. 369-376). SPIE.
Lallo, M. D. (2012). Experience with the Hubble Space Telescope: 20 years of an archetype. Optical Engineering, 51(1), 011011-011011.
Nelson, J. E., Mast, T. S., & Faber, S. M. (1985). The design of the Keck Observatory and Telescope. Keck observatory report, 90(5), 1-44.
Ngeow, C. C., Chen, W. P., Kinoshita, D., Chou, Y., & Ip, W. H. (2011, July). The varying universe: Participation of NCU in TAOS and Pan-STARRS1 projects. In Proceeding of the 2011 IEEE International Conference on Space Science and Communication (IconSpace) (pp. 174-177). IEEE.
Tao, T., Jiaguang, M., Hongbin, C., Chengyu, F., Hu, Y., Ge, R., ... & Qiang, W. (2020). A review on precision control methodologies for optical-electric tracking control system. Opto-Electronic Engineering, 47(10), 200315-1.
Laas-Bourez, M., Coward, D., Klotz, A., & Boer, M. (2011). A robotic telescope network for space debris identification and tracking. Advances in Space Research, 47(3), 402-410.
Lafon, R. E., Caroglanian, A., Safavi, H., Desch, N., Wu, V. C., Buenfil, M., ... & Guzek, J. A. (2021, March). A flexible low-cost optical communications ground terminal at NASA Goddard Space Flight Center. In Free-Space Laser Communications XXXIII (Vol. 11678, pp. 11-20). SPIE.
Schildknecht, T., Vananti, A., Cordelli, E., & Flohrer, T. (2019, December). Optical surveys to characterize recent fragmentation events in GEO and HEO. In First International Orbital Debris Conference, Sugar Land, Texas, USA.
Prell, J., Duliu, A., Andrew, R., Hristovski, I., Amita, S., Moll, F., & Fuchs, C. (2023, October). Optical ground station oberpfaffenhofen next generation: first satellite link tests with 80 cm telescope and ao system. In 2023 IEEE International Conference on Space Optical Systems and Applications (ICSOS) (pp. 42-48). IEEE.
陳平和, 羅錦堃, & 黃君偉. (2002). 共光路潛望鏡之視⾓切換及聚焦系統(中華民國專利第TW514747B號). 中山科學研究院.
Alliney, S. (1993). Digital analysis of rotated images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(5), 499-504.
曾祥萍, & 杨涛. (2005). 实时图像的电子消旋系统. Opto-Electronic Engineering, 32(10), 27-30
Ellerbroek, B., Adkins, S., Andersen, D., Atwood, J., Browne, S., Boyer, C., ... & Wevers, I. (2010, July). First light adaptive optics systems and components for the Thirty Meter Telescope. In Adaptive Optics Systems II (Vol. 7736, pp. 44-57). SPIE.
Diouri, O., Gaga, A., Ouanan, H., Senhaji, S., Faquir, S., & Jamil, M. O. (2022). Comparison study of hardware architectures performance between FPGA and DSP processors for implementing digital signal processing algorithms: Application of FIR digital filter. Results in Engineering, 16, 100639.
Sneed, R., Neill, D. R., Kidney, S., Araujo, C., Gressler, W., Lotz, P. J., ... & Wiecha, O. (2016, July). Final design of the LSST hexapods and rotator. In Ground-based and Airborne Telescopes VI (Vol. 9906, pp. 190-201). SPIE.
Wang, D., Li, X. Y., & Wu, Q. Z. (2012). Design of eliminating image rotation on opto-electronic imaging tracking and measuring device [J]. Opto-Electronic Engineering, 39(1), 108-112.
Telescope Mount. (2023, July 12). Using a camera rotator to take perfect astrophotos with no polar alignment needed. https://telescopemount.org/using-a-camera-rotator-to-take-perfect-astrophotos-with-no-polar-alignment-needed/
Lin, P. D., & Lin, P. D. (2017). Prism Analysis. Advanced Geometrical Optics, 245-265.
Karan, S., Ruchi, Mohta, P., & Jha, A. K. (2022). Quantifying polarization changes induced by rotating Dove prisms and K-mirrors. Applied Optics, 61(28), 8302-8307.
Hou, J., Liang, M., Wang, D., & Deng, Y. (2018). Design and analysis of a five-mirror derotator with minimal instrumental polarization in astronomical telescopes. Optics Express, 26(15), 19356-19370.
Schuster, K. F., Boucher, C., Brunswig, W., Carter, M., Chenu, J. Y., Foullieux, B., ... & Wiesemeyer, H. (2004). A 230 GHz heterodyne receiver array for the IRAM 30 m telescope. Astronomy & Astrophysics, 423(3), 1171-1177
Smith, H., Buckle, J., Hills, R., Bell, G., Richer, J., Curtis, E., ... & Klapwijk, T. M. (2008, July). HARP: a submillimetre heterodyne array receiver operating on the James Clerk Maxwell Telescope. In Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV (Vol. 7020, pp. 273-287). SPIE
Brunelli, A., Bergomi, M., Dima, M., Farinato, J., Magrin, D., Maraffatto, L., ... & Meschke, D. (2012, September). Tips and tricks for aligning an image derotator. In Ground-based and Airborne Instrumentation for Astronomy IV (Vol. 8446, pp. 1538-1547). SPIE.
Altmann, B., Pape, C., & Reithmeier, E. (2017, August). Temperature measurements on fast-rotating objects using a thermographic camera with an optomechanical image derotator. In Infrared Sensors, Devices, and Applications VII (Vol. 10404, pp. 150-156). SPIE.
Terebizh, V. Y. (2019). Survey telescope optics. SPIE
Bentley, J., & Olson, C. (2012). Field guide to lens design. SPIE
Terebizh, V. Y. (2001). Optimal baffle design in a Cassegrain telescope. Experimental Astronomy, 11, 171-191.
Suiter, H. R. (1994). Star testing astronomical telescopes. A manual for optical evaluation and adjustment. Richmond.
Wei, Y. (2016). Study of field rotation and K mirror derotation technology in astronomical optical telescopes (Master’s thesis, University of Chinese Academy of Sciences). National Astronomical Observatories, Chinese Academy of Sciences.
Press, W. H. (2007). Numerical recipes 3rd edition: The art of scientific computing. Cambridge university press.
Rohloff, B. (2013). Calibration of an optomechanical image derotator with a 6-axes parallel kinematics using image processing algorithms. Scientific Reports, 45-50.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100217-
dc.description.abstract隨著現代光電應用蓬勃發展,具備高速追瞄、高鏡度、以及多波段能力的中小型光學系統,在低軌衛星與無人載具上應用於光學通訊、導引與成像領域中扮演越來越關鍵的角色。為因應未來高動態觀測與空間受限條件下的應用需求,本研究構想並實作一套具全反射特性的多功能追瞄光學系統。整體系統設計以凱薩格林(Cassegrain)反射式望遠鏡為基礎,並結合獨立設計之反射式消旋模組,用以解決因追瞄方向改變所導致的影像旋轉誤差,並同時兼顧體積縮減與光學性能穩定性。本研究首先針對望遠鏡系統進行理論參數設計,配合主次鏡參數比值耦合,篩選出具可製造性與遮蔽率小於 0.25 的 Ritchey–Chrétien 系統作為主系統光學架構。接續利用光路追跡,計算反射式消旋系統,提出一套考慮機構與光學限制下,以最低遮蔽率進行三面鏡角度、位置與形狀參數之設計方法。為確保設計正確性與實務可行性,本研究將整體系統導入光學模擬軟體 CodeV 與 LightTools 進行驗證,並加入遮光結構與桶身設計,有效抑制由消旋鏡造成之雜散光。最終實驗部分,建構實體三鏡模組與旋轉機構,搭配準直光源與影像辨識系統,提出一套誤差觀察與修正策略,從系統裝配誤差至光軸對準進行逐層分析與調整,驗證本研究提出之設計方法具備實用性與可行性。本研究所建立之模組化反射式消旋系統設計與校正架構,不僅可應用於追瞄與通訊場景,亦具潛力延伸至環景掃描、主動式觀測與其他高動態光學平台,為未來光電系統整合與誤差補償技術提供重要參考依據。zh_TW
dc.description.abstractWith the rapid development of modern optoelectronic applications, compact optical systems featuring high-speed tracking, high focal ratios, and multi-band capabilities have become increasingly critical for optical communication, guidance, and imaging in low Earth orbit (LEO) satellites and unmanned aerial vehicles (UAVs). To address the demands of high-dynamic observation under spatial constraints, this study proposes and implements a fully reflective multifunctional tracking optical system. The entire system is based on a Cassegrain reflective telescope architecture, integrated with a custom-designed reflective derotation module to compensate for image rotation aberration induced by tracking motion, while achieving compactness and maintaining optical performance stability.
The study first performs theoretical parameter design for the telescope, utilizing the coupling relationship between primary and secondary mirror parameters to identify manufacturable Ritchey–Chrétien systems with an obscuration ratio below 0.25 as the main optical architecture. Subsequently, ray tracing is applied to develop a reflective derotation system design method that optimizes mirror angles, positions, and shapes under both optical and mechanical constraints to achieve minimal beam obscuration. To verify the system’s accuracy and practicality, the design is modeled and validated using optical simulation software (CodeV and LightTools), incorporating baffle structures and housing components to effectively suppress stray light caused by the derotation mirrors. In the experimental stage, a physical three-mirror module and rotation mechanism are constructed, combined with a collimated light source and image recognition system. A systematic error identification and correction strategy is developed, addressing errors from assembly to optical axis alignment. The results confirm that the proposed design methodology is both practical and feasible.
The modular reflective derotation system developed in this research is not only applicable to tracking and communication scenarios but also has potential for panoramic scanning, active imaging, and other high-dynamic optical platforms, offering valuable insights for future optomechanical integration and error compensation technologies.
Keywords:Multi-band reflective tracking system, Ritchey–Chrétien telescope, reflective image derotation system.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:53:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-24T16:53:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目次 iv
圖次 vii
表次 xii
第1章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.2.1 反射式望遠鏡 3
1.2.2 全反射式追瞄系統 4
1.2.3 消旋方式 7
1.2.4 光學消旋鏡組種類 8
1.2.5 反射式消旋鏡組應用 10
1.3 研究目標 12
1.4 論文架構 13
第2章 望遠鏡系統設計 14
2.1 凱薩格林式望遠鏡(Cassegrain Telescope) 14
2.1.1 望遠鏡規格 14
2.1.2 雙鏡反射望遠鏡的幾何配置 15
2.1.3 Ritchey-Chrétien Telescope 19
2.2 消除雜散光檔板 21
2.2.1 光線追跡計算 21
2.2.2 遮光罩最佳化設計 24
第3章 反射式消旋系統原理與設計 28
3.1 消旋系統原理 28
3.2 最佳化消旋鏡組策略 31
3.2.1 高度最佳化 32
3.2.2 鏡面厚度修正 36
3.2.3 系統位置最佳化 42
3.2.4 系統角度最佳化 44
3.3 反射式消旋系統的遮蔽率計算 46
3.4 鏡面設計 48
3.5 整合望遠鏡與消旋系統的遮光罩設計 50
第4章 消旋系統準直誤差分析 52
4.1 反射式消旋鏡系統鏡面間誤差 52
4.1.1 鏡面位移誤差分析 53
4.1.2 鏡面角度誤差分析 54
4.2 系統間誤差 55
4.2.1 誤差計算 56
4.2.2 望遠鏡光軸與旋轉軸軸心誤差 57
4.2.3 旋轉軸軸心與消旋系統軸心誤差 58
4.2.4 綜合系統位移誤差 59
第5章 模擬結果 62
5.1 望遠鏡焦距 62
5.2 望遠鏡與消旋系統設計 63
5.3 雜散光消除模擬 73
5.4 準直模擬 78
5.4.1 反射式消旋系統裝配誤差 78
5.4.2 系統間裝配誤差 81
第6章 實驗架構設計及數據蒐集 84
6.1 實驗設計 84
6.2 準直方法與分析 87
第7章 結論與未來展望 93
7.1 結論 93
7.2 未來展望 94
References 95
-
dc.language.isozh_TW-
dc.subjectRitchey–Chrétien 望遠鏡(RC 望遠鏡)zh_TW
dc.subject多波段反射式追瞄系統zh_TW
dc.subject反射式影像消旋系統zh_TW
dc.subjectreflective image derotation systemen
dc.subjectMulti-band reflective tracking systemen
dc.subjectRitchey–Chrétien telescopeen
dc.title反射式消旋系統的最佳化設計用於凱薩格林望遠鏡zh_TW
dc.titleOptimal Design of a Reflective Derotation Mirror System for Cassegrain Telescopesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃君偉;李舒昇;李翔傑;林致廷zh_TW
dc.contributor.oralexamcommitteeJiun-Woei Huang;Shu-Sheng Lee;Hsiang-Chieh Lee;Chih-Ting Linen
dc.subject.keyword多波段反射式追瞄系統,Ritchey–Chrétien 望遠鏡(RC 望遠鏡),反射式影像消旋系統,zh_TW
dc.subject.keywordMulti-band reflective tracking system,Ritchey–Chrétien telescope,reflective image derotation system,en
dc.relation.page98-
dc.identifier.doi10.6342/NTU202503972-
dc.rights.note未授權-
dc.date.accepted2025-08-15-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
7.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved