請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100212完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳明煦 | zh_TW |
| dc.contributor.advisor | Ming-Hsu Chen | en |
| dc.contributor.author | 焦淯汶 | zh_TW |
| dc.contributor.author | Yu-Wen Chiao | en |
| dc.date.accessioned | 2025-09-24T16:52:16Z | - |
| dc.date.available | 2025-09-25 | - |
| dc.date.copyright | 2025-09-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | Andersson, R., & Åman, P. (2000). Cereal arabinoxylan: occurrence, structure and properties. Advanced Dietary Fibre Technology, 299-314.
Baky, M. H., Salah, M., Ezzelarab, N., Shao, P., Elshahed, M. S., & Farag, M. A. (2024). Insoluble dietary fibers: Structure, metabolism, interactions with human microbiome, and role in gut homeostasis. Critical Reviews in Food Science and Nutrition, 64(7), 1954-1968. Banerjee, S., Schlaeppi, K., & Van Der Heijden, M. G. (2018). Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology, 16(9), 567-576. Behler-Janbeck, F., Baranowsky, A., Yorgan, T. A., Jaeckstein, M. Y., Worthmann, A., Fuh, M. M., Gunasekaran, K., Tiegs, G., Amling, M., Schinke, T., & Heeren, J. (2024). The short-chain fatty acid receptors Gpr41/43 regulate bone mass by promoting adipogenic differentiation of mesenchymal stem cells. Frontiers in Endocrinology, 15, 1392418. Bermúdez-Humarán, L. G., Chassaing, B., & Langella, P. (2024). Exploring the interaction and impact of probiotic and commensal bacteria on vitamins, minerals and short chain fatty acids metabolism. Microbial Cell Factories, 23(1), 172. Blumenkrantz, N., & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Analytical Biochemistry, 54(2), 484-489. Briggs, J. A., Grondin, J. M., & Brumer, H. (2021). Communal living: glycan utilization by the human gut microbiota. Environmental Microbiology, 23(1), 15-35. Broekaert, W. F., Courtin, C. M., Verbeke, K., Van de Wiele, T., Verstraete, W., & Delcour, J. A. (2011). Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Critical Reviews in Food Science and Nutrition, 51(2), 178-194. Brummell, D. A., & Schröder, R. (2009). Xylan metabolism in primary cell walls. New Zealand Journal of Forestry Science, 39, 125-143. Carpita, N. C. (1996). Structure and biogenesis of the cell walls of grasses. Annual Review of Plant Biology, 47(1), 445-476. Chen, H.-L., Hu, P.-Y., Chen, C.-S., Lin, W.-H., Hsu, D. K., Liu, F.-T., & Meng, T.-C. (2025). Gut colonization of Bacteroides plebeius suppresses colitis-associated colon cancer development. Microbiology Spectrum, 13(2), e02599-02524. Chen, Z., Li, S., Fu, Y., Li, C., Chen, D., & Chen, H. (2019). Arabinoxylan structural characteristics, interaction with gut microbiota and potential health functions. Journal of Functional Foods, 54, 536-551. Cheng, J., Hu, J., Geng, F., & Nie, S. (2022). Bacteroides utilization for dietary polysaccharides and their beneficial effects on gut health. Food Science and Human Wellness, 11(5), 1101-1110. Chung, W. S. F., Walker, A. W., Vermeiren, J., Sheridan, P. O., Bosscher, D., Garcia-Campayo, V., Parkhill, J., Flint, H. J., & Duncan, S. H. (2019). Impact of carbohydrate substrate complexity on the diversity of the human colonic microbiota. FEMS Microbiology Ecology, 95(1), fiy201. Correia, M. A. S., Mazumder, K., Brás, J. L. A., York, W. S., Fontes, C. M. G. A., & Gilbert, H. J. (2011). Structure and function of an arabinoxylan-specific xylanase. Journal of Biological Chemistry, 286(25), 22510-22520. Costa, C. F., Correia-de-Sá, T., Araujo, R., Barbosa, F., Burnet, P. W., Ferreira-Gomes, J., & Sampaio-Maia, B. (2024). The oral-gut microbiota relationship in healthy humans: identifying shared bacteria between environments and age groups. Frontiers in Microbiology, 15, 1475159. Courtin, C., & Delcour, J. A. (2002). Arabinoxylans and endoxylanases in wheat flour bread-making. Journal of Cereal Science, 35(3), 225-243. Culp, E. J., & Goodman, A. L. (2023). Cross-feeding in the gut microbiome: ecology and mechanisms. Cell Host & Microbe, 31(4), 485-499. Cummings, J. H., Pomare, E., Branch, W., Naylor, C., & MacFarlane, G. (1987). Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut, 28(10), 1221-1227. Dalile, B., Van Oudenhove, L., Vervliet, B., & Verbeke, K. (2019). The role of short-chain fatty acids in microbiota–gut–brain communication. Nature Reviews Gastroenterology & Hepatology, 16(8), 461-478. Dervilly-Pinel, G., Tran, V., & Saulnier, L. (2004). Investigation of the distribution of arabinose residues on the xylan backbone of water-soluble arabinoxylans from wheat flour. Carbohydrate Polymers, 55(2), 171-177. Döring, C., & Basen, M. (2024). Propionate production by Bacteroidia gut bacteria and its dependence on substrate concentrations differs among species. Biotechnology for Biofuels and Bioproducts, 17(1), 95. European Commission. (2008). Commission Directive 2008/100/EC of 28 October 2008 amending Council Directive 90/496/EEC on nutrition labelling for foodstuffs as regards recommended daily allowances, energy conversion factors and definitions. Evans, D., Sheehan, M., & Stewart, D. (1999). The impact of malt derived proteins on beer foam quality. Part II: The influence of malt foam‐positive proteins and non‐starch polysaccharides on beer foam quality. Journal of the Institute of Brewing, 105(3), 171-178. Fadel, A., Mahmoud, A. M., Ashworth, J. J., Li, W., Ng, Y. L., & Plunkett, A. (2018). Health-related effects and improving extractability of cereal arabinoxylans. International Journal of Biological Macromolecules, 109, 819-831. Fan, Y., & Pedersen, O. (2021). Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology, 19(1), 55-71. Feng, G., Mikkelsen, D., Hoedt, E. C., Williams, B. A., Flanagan, B. M., Morrison, M., & Gidley, M. J. (2020). In vitro fermentation outcomes of arabinoxylan and galactoxyloglucan depend on fecal inoculum more than substrate chemistry. Food & Function, 11(9), 7892-7904. Frederix, S. A., Van Hoeymissen, K. E., Courtin, C. M., & Delcour, J. A. (2004). Water-extractable and water-unextractable arabinoxylans affect gluten agglomeration behavior during wheat flour gluten− starch separation. Journal of Agricultural and Food Chemistry, 52(26), 7950-7956. Fritts, R. K., McCully, A. L., & McKinlay, J. B. (2021). Extracellular metabolism sets the table for microbial cross-feeding. Microbiology and Molecular Biology Reviews, 85(1), 10.1128/mmbr. 00135-00120. Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Tobe, T., Clarke, J. M., Topping, D. L., Suzuki, T., Taylor, T. D., Itoh, K., Kikuchi, J., Morita, H., Hattori, M., & Ohno, H. (2011). Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature, 469(7331), 543-547. González Hernández, M. A., Canfora, E. E., Jocken, J. W., & Blaak, E. E. (2019). The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients, 11(8), 1943. Guo, J., Tan, L., & Kong, L. (2022). Multiple levels of health benefits from resistant starch. Journal of Agriculture and Food Research, 10, 100380. He, H.-J., Qiao, J., Liu, Y., Guo, Q., Ou, X., & Wang, X. (2021). Isolation, structural, functional, and bioactive properties of cereal arabinoxylan─ A critical review. Journal of Agricultural and Food Chemistry, 69(51), 15437-15457. Hehemann, J.-H., Kelly, A. G., Pudlo, N. A., Martens, E. C., & Boraston, A. B. (2012). Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proceedings of the National Academy of Sciences, 109(48), 19786-19791. Henrissat, B., & Davies, G. J. (2000). Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiology, 124(4), 1515-1519. Hertli, S., & Zimmermann, P. (2022). Molecular interactions between the intestinal microbiota and the host. Molecular Microbiology, 117(6), 1297-1307. Hosomi, K., Saito, M., Park, J., Murakami, H., Shibata, N., Ando, M., Nagatake, T., Konishi, K., Ohno, H., Tanisawa, K., Mohsen, A., Chen, Y.-A., Kawashima, H., Natsume-Kitatani, Y., Oka, Y., Shimizu, H., Furuta, M., Tojima, Y., Sawane, K., … Kunisawa, J. (2022). Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota. Nature Communications, 13(1), 4477. Huang, Z., Yang, X., Liu, M., Yin, L., & Jia, X. (2025). Effect of glycoside hydrolase-mediated wheat arabinoxylan hydrolysate on gut microbiota and metabolite profiles. Carbohydrate Polymers, 351, 123064. Iiyama, K., Lam, T. B. T., & Stone, B. A. (1990). Phenolic acid bridges between polysaccharides and lignin in wheat internodes. Phytochemistry, 29(3), 733-737. Ikeyama, N., Murakami, T., Toyoda, A., Mori, H., Iino, T., Ohkuma, M., & Sakamoto, M. (2020). Microbial interaction between the succinate‐utilizing bacterium Phascolarctobacterium faecium and the gut commensal Bacteroides thetaiotaomicron. MicrobiologyOpen, 9(10), e1111. Jiang, K., Pang, X., Li, W., Xu, X., Yang, Y., Shang, C., & Gao, X. (2025). Interbacterial warfare in the human gut: insights from Bacteroidales’ perspective. Gut Microbes, 17(1), 2473522. Kjølbæk, L., Benítez-Páez, A., Gómez del Pulgar, E. M., Brahe, L. K., Liebisch, G., Matysik, S., Rampelli, S., Vermeiren, J., Brigidi, P., Larsen, L. H., Astrup, A., & Sanz, Y. (2020). Arabinoxylan oligosaccharides and polyunsaturated fatty acid effects on gut microbiota and metabolic markers in overweight individuals with signs of metabolic syndrome: A randomized cross-over trial. Clinical Nutrition, 39(1), 67-79. Koropatkin, N. M., Cameron, E. A., & Martens, E. C. (2012). How glycan metabolism shapes the human gut microbiota. Nature Reviews Microbiology, 10(5), 323-335. Lagaert, S., Pollet, A., Courtin, C. M., & Volckaert, G. (2014). β-Xylosidases and α-l-arabinofuranosidases: Accessory enzymes for arabinoxylan degradation. Biotechnology Advances, 32(2), 316-332. Langenaeken, N. A., De Schutter, D. P., & Courtin, C. M. (2020). Arabinoxylan from non-malted cereals can act as mouthfeel contributor in beer. Carbohydrate Polymers, 239, 116257. Leschonski, K. P., Mortensen, M. S., Hansen, L. B., Krogh, K. B., Kabel, M. A., & Laursen, M. F. (2024). Structure-dependent stimulation of gut bacteria by arabinoxylo-oligosaccharides (AXOS): A review. Gut Microbes, 16(1), 2430419. Li, J., Kang, J., Wang, L., Li, Z., Wang, R., Chen, Z. X., & Hou, G. G. (2012). Effect of water migration between arabinoxylans and gluten on baking quality of whole wheat bread detected by magnetic resonance imaging (MRI). Journal of Agricultural and Food Chemistry, 60(26), 6507-6514. Li, W., Lu, J., Ju, Y., Lv, Y., & Li, J. (2025). Structural analysis of arabinoxylan and its effect on beer foam: A comparison of three arabinoxylans with different viscosity. Food Hydrocolloids, 163, 111117. Lin, S., Agger, J. W., Wilkens, C., & Meyer, A. S. (2021). Feruloylated arabinoxylan and oligosaccharides: chemistry, nutritional functions, and options for enzymatic modification. Annual Review of Food Science and Technology, 12(1), 331-354. Liu, L., Li, L., Min, J., Wang, J., Wu, H., Zeng, Y., Chen, S., & Chu, Z. (2012). Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells. Cellular Immunology, 277(1-2), 66-73. Liu, X., Mao, B., Gu, J., Wu, J., Cui, S., Wang, G., Zhao, J., Zhang, H., & Chen, W. (2021). Blautia—a new functional genus with potential probiotic properties? Gut Microbes, 13(1), 1875796. Lu, J., Zhang, L., Zhang, H., Chen, Y., Zhao, J., Chen, W., Lu, W., & Li, M. (2023). Population-level variation in gut bifidobacterial composition and association with geography, age, ethnicity, and staple food. npj Biofilms and Microbiomes, 9, 98. Ma, Z. F., & Lee, Y. Y. (2025). The role of the gut microbiota in health, diet, and disease with a focus on obesity. Foods, 14(3), 492. Mandaliya, D. K., Patel, S., & Seshadri, S. (2021). The combinatorial effect of acetate and propionate on high-fat diet induced diabetic inflammation or metaflammation and T cell polarization. Inflammation, 44(1), 68-79. Marconi, O., Alfeo, V., Tomasi, I., Maranghi, S., De Francesco, G., Sileoni, V., & Perretti, G. (2022). Effects of malting process on molecular weight distribution and content of total and water-extractable arabinoxylan in barley. Journal of Cereal Science, 107, 103532. Marcotuli, I., Hsieh, Y. S.-Y., Lahnstein, J., Yap, K., Burton, R. A., Blanco, A., Fincher, G. B., & Gadaleta, A. (2016). Structural variation and content of arabinoxylans in endosperm and bran of durum wheat (Triticum turgidum L.). Journal of Agricultural and Food Chemistry, 64(14), 2883-2892. Martin-Gallausiaux, C., Marinelli, L., Blottière, H. M., Larraufie, P., & Lapaque, N. (2021). SCFA: Mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, 80(1), 37-49. Mendis, M., Leclerc, E., & Simsek, S. (2016). Arabinoxylans, gut microbiota and immunity. Carbohydrate Polymers, 139, 159-166. Merenkova, S., Zinina, O., Stuart, M., Okuskhanova, E., & Androsova, N. (2020). Effects of dietary fiber on human health: A review. Человек. Спорт. Медицина, 20(1), 106-113. Meuser, F., & Suckow, P. (1986). Non-starch polysaccharides. Chemistry and Physics of Baking, 42-61. Munoz-Munoz, J., Ndeh, D., Fernandez-Julia, P., Walton, G., Henrissat, B., & Gilbert, H. J. (2021). Sulfation of arabinogalactan proteins confers privileged nutrient status to Bacteroides plebeius. MBio, 12(4), 10.1128/mbio. 01368-01321. Nguyen, J., Lara-Gutiérrez, J., & Stocker, R. (2021). Environmental fluctuations and their effects on microbial communities, populations and individuals. FEMS Microbiology Reviews, 45(4), fuaa068. Nguyen, N. K., Deehan, E. C., Zhang, Z., Jin, M., Baskota, N., Perez-Muñoz, M. E., . . . Wang, T. (2020). Gut microbiota modulation with long-chain corn bran arabinoxylan in adults with overweight and obesity is linked to an individualized temporal increase in fecal propionate. Microbiome, 8, 1-21. Nie, Q., Hu, J., Chen, H., Geng, F., & Nie, S. (2022). Arabinoxylan ameliorates type 2 diabetes by regulating the gut microbiota and metabolites. Food Chemistry, 371, 131106. Nogal, A., Valdes, A. M., & Menni, C. (2021). The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes, 13(1), 1897212. Parker, M. L., Ng, A., & Waldron, K. W. (2005). The phenolic acid and polysaccharide composition of cell walls of bran layers of mature wheat (Triticum aestivum L. cv. Avalon) grains. Journal of the Science of Food and Agriculture, 85(15), 2539-2547. Pastell, H., Westermann, P., Meyer, A. S., Tuomainen, P. i., & Tenkanen, M. (2009). In vitro fermentation of arabinoxylan-derived carbohydrates by Bifidobacteria and mixed fecal microbiota. Journal of Agricultural and Food Chemistry, 57(18), 8598-8606. Pauly, M., & Keegstra, K. (2008). Cell‐wall carbohydrates and their modification as a resource for biofuels. The Plant Journal, 54(4), 559-568. Pavlovich-Abril, A., Rouzaud-Sández, O., Carvajal-Millán, E., Navarro, R. E., Robles-Sánchez, R. M., & Barrón-Hoyos, J. M. (2016). Molecular characterization of water extractable arabinoxylans isolated from wheat fine bran and their effect on dough viscosity. LWT, 74, 484-492. Perler, B. K., Friedman, E. S., & Wu, G. D. (2023). The role of the gut microbiota in the relationship between diet and human health. Annual Review of Physiology, 85(1), 449-468. Pettolino, F. A., Walsh, C., Fincher, G. B., & Bacic, A. (2012). Determining the polysaccharide composition of plant cell walls. Nature Protocols, 7(9), 1590-1607. Pham, P. J., Hernandez, R., French, W. T., Estill, B. G., & Mondala, A. H. (2011). A spectrophotometric method for quantitative determination of xylose in fermentation medium. Biomass and Bioenergy, 35(7), 2814-2821. Pisalwar, P., Fernandes, A., Tribhuvan, D., Gite, S., & Ahmed, S. (2023). Arabinofuranosidases. In A. Goyal & K. Sharma (Eds.), Glycoside hydrolases (pp. 187-211). Academic Press. Postler, T. S., & Ghosh, S. (2017). Understanding the holobiont: How microbial metabolites affect human health and shape the immune system. Cell Metabolism, 26(1), 110-130. Price, C. E., Valls, R. A., Ramsey, A. R., Loeven, N. A., Jones, J. T., Barrack, K. E., Schwartzman, J. D., Royce, D. B., Cramer, R. A., Madan, J. C., Ross, B. D., Bliska, J., & O’Toole, G. A. (2024). Intestinal Bacteroides modulates inflammation, systemic cytokines, and microbial ecology via propionate in a mouse model of cystic fibrosis. MBio, 15(2), e03144-03123. Pritchard, J. R., Lawrence, G. J., Larroque, O., Li, Z., Laidlaw, H. K., Morell, M. K., & Rahman, S. (2011). A survey of β‐glucan and arabinoxylan content in wheat. Journal of the Science of Food and Agriculture, 91(7), 1298-1303. Rafiei, V., Vélëz, H., & Tzelepis, G. (2021). The role of glycoside hydrolases in phytopathogenic fungi and oomycetes virulence. International Journal of Molecular Sciences, 22(17), 9359. Ragsdale, S. W., & Pierce, E. (2008). Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1784(12), 1873-1898. Rahman, S., O’connor, A. L., Becker, S. L., Patel, R. K., Martindale, R. G., & Tsikitis, V. L. (2023). Gut microbial metabolites and its impact on human health. Annals of Gastroenterology, 36(4), 360. Reichardt, N., Duncan, S. H., Young, P., Belenguer, A., McWilliam Leitch, C., Scott, K. P., Flint, H. J., & Louis, P. (2014). Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. The ISME Journal, 8(6), 1323-1335. Ringel, Y., Maharshak, N., Ringel-Kulka, T., Wolber, E. A., Sartor, R. B., & Carroll, I. M. (2015). High throughput sequencing reveals distinct microbial populations within the mucosal and luminal niches in healthy individuals. Gut Microbes, 6(3), 173-181. Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G. A. D., Gasbarrini, A., & Mele, M. C. (2019). What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 7(1), 14. Rivière, A., Gagnon, M., Weckx, S., Roy, D., & De Vuyst, L. (2015). Mutual cross-feeding interactions between Bifidobacterium longum subsp. longum NCC2705 and Eubacterium rectale ATCC 33656 explain the bifidogenic and butyrogenic effects of arabinoxylan oligosaccharides. Applied and Environmental Microbiology, 81(22), 7767-7781. Rogowski, A., Briggs, J. A., Mortimer, J. C., Tryfona, T., Terrapon, N., Lowe, E. C., Baslé, A., Morland, C., Day, A. M., Zheng, H., Rogers, T. E., Thompson, P., Hawkins, A. R., Yadav, M. P., Henrissat, B., Martens, E. C., Dupree, P., Gilbert, H. J., & Bolam, D. N. (2015). Glycan complexity dictates microbial resource allocation in the large intestine. Nature Communications, 6, 7481. Rosicka-Kaczmarek, J., Komisarczyk, A., Nebesny, E., & Makowski, B. (2016). The influence of arabinoxylans on the quality of grain industry products. European Food Research and Technology, 242, 295-303. Ross, F. C., Patangia, D., Grimaud, G., Lavelle, A., Dempsey, E. M., Ross, R. P., & Stanton, C. (2024). The interplay between diet and the gut microbiome: implications for health and disease. Nature Reviews Microbiology, 22(11), 671-686. Rui, W., Li, X., Wang, L., Tang, X., & Yang, J. (2024). Potential applications of Blautia wexlerae in the regulation of host metabolism. Probiotics and Antimicrobial Proteins, 16(5), 1866-1874. Rumpagaporn, P., Reuhs, B. L., Kaur, A., Patterson, J. A., Keshavarzian, A., & Hamaker, B. R. (2015). Structural features of soluble cereal arabinoxylan fibers associated with a slow rate of in vitro fermentation by human fecal microbiota. Carbohydrate Polymers, 130, 191-197. Salvadori, M., & Rosso, G. (2024). Update on the gut microbiome in health and diseases. World Journal of Methodology, 14(1), 89196. Salyers, A., Vercellotti, J., West, S., & Wilkins, T. (1977). Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Applied and Environmental Microbiology, 33(2), 319-322. Schug, Z. T., Vande Voorde, J., & Gottlieb, E. (2016). The metabolic fate of acetate in cancer. Nature Reviews Cancer, 16(11), 708-717. Si, X., Li, T., Zhang, Y., Zhang, W., Qian, H., Li, Y., Zhang, H., Qi, X., & Wang, L. (2021). Interactions between gluten and water-unextractable arabinoxylan during the thermal treatment. Food Chemistry, 345, 128785. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass: Laboratory Analytical Procedure, 1617(1), 1-16. Song, Z., Li, M., Du, J., & Zhang, K. (2022). Effects of non-starch polysaccharides from pure wheat malt beer on beer quality, in vitro antioxidant, prebiotics, hypoglycemic and hypolipidemic properties. Food Bioscience, 47, 101780. Tanca, A., Palomba, A., Fiorito, G., Abbondio, M., Pagnozzi, D., & Uzzau, S. (2024). Metaproteomic portrait of the healthy human gut microbiota. npj Biofilms and Microbiomes, 10(1), 54. Tannock, G. W. (2021). Modulating the gut microbiota of humans by dietary intervention with plant glycans. Applied and Environmental Microbiology, 87(6), e02757-02720. Tirosh, A., Calay, E. S., Tuncman, G., Claiborn, K. C., Inouye, K. E., Eguchi, K., Alcala, M., Rathaus, M., Hollander, K. S., Ron, I., Livne, R., Heianza, Y., Qi, L., Shai, I., Garg, R., & Hotamisligil, G. S. (2019). The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Science Translational Medicine, 11(489), eaav0120. Tiwari, U. P., Fleming, S. A., Rasheed, M. S. A., Jha, R., & Dilger, R. N. (2020). The role of oligosaccharides and polysaccharides of xylan and mannan in gut health of monogastric animals. Journal of Nutritional Science, 9, e21. Tse, T., & Schendel, R. R. (2023). Cereal grain arabinoxylans: Processing effects and structural changes during food and beverage fermentations. Fermentation, 9(10), 914. Van den Broek, L. A., Lloyd, R. M., Beldman, G., Verdoes, J. C., McCleary, B. V., & Voragen, A. G. (2005). Cloning and characterization of arabinoxylan arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis DSM20083. Applied Microbiology and Biotechnology, 67, 641-647. Wang, X., Cai, Z., Wang, Q., Wu, C., Sun, Y., Wang, Z., Xu, X., Xue, W., Cao, Z., Zhang, M., Zhu, Y., Lin, H., Zhang, Y., Yuan, M., Zhao, Y., Gao, A., Yu, Y., Bi, Y., … Liu, R. (2024). Bacteroides methylmalonyl-CoA mutase produces propionate that promotes intestinal goblet cell differentiation and homeostasis. Cell Host & Microbe, 32(1), 63-78.e7. Wardman, J. F., Bains, R. K., Rahfeld, P., & Withers, S. G. (2022). Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nature Reviews Microbiology, 20(9), 542-556. Wexler, A. G., & Goodman, A. L. (2017). An insider's perspective: Bacteroides as a window into the microbiome. Nature Microbiology, 2(5), 1-11. Wu, Q., Gao, Z.-J., Yu, X., & Wang, P. (2022). Dietary regulation in health and disease. Signal Transduction and Targeted Therapy, 7(1), 252. Xiao, M., Zhang, C., Duan, H., Narbad, A., Zhao, J., Chen, W., Zhai, Q., Yu, L., & Tian, F. (2024). Cross-feeding of bifidobacteria promotes intestinal homeostasis: A lifelong perspective on the host health. npj Biofilms and Microbiomes, 10(1), 47. Xu, H., Reuhs, B. L., Cantu-Jungles, T. M., Tuncil, Y. E., Kaur, A., Terekhov, A., Martens, E. C., Hamaker, B. R. (2022). Corn arabinoxylan has a repeating structure of subunits of high branch complexity with slow gut microbiota fermentation. Carbohydrate Polymers, 289, 119435. Yang, Q., Chang, S., Zhang, X., Luo, F., Li, W., & Ren, J. (2024). The fate of dietary polysaccharides in the digestive tract. Trends in Food Science & Technology, 104606. Yao, H., Flanagan, B. M., Williams, B. A., Ismail, M., Ersya, A. D., Gidley, M. J., & Mikkelsen, D. (2023). Enzymatic arabinose depletion of wheat arabinoxylan regulates in vitro fermentation profiles and potential microbial degraders. Food Hydrocolloids, 142, 108743. Yao, T., Chen, M.-H., & Lindemann, S. R. (2020). Structurally complex carbohydrates maintain diversity in gut-derived microbial consortia under high dilution pressure. FEMS Microbiology Ecology, 96(9), fiaa158. Yao, T., Deemer, D. G., Chen, M.-H., Reuhs, B. L., Hamaker, B. R., & Lindemann, S. R. (2023). Differences in fine arabinoxylan structures govern microbial selection and competition among human gut microbiota. Carbohydrate Polymers, 316, 121039. Zhang, B., Zhong, Y., Dong, D., Zheng, Z., & Hu, J. (2022). Gut microbial utilization of xylan and its implication in gut homeostasis and metabolic response. Carbohydrate Polymers, 286, 119271. Zhang, L., van Boven, A., Mulder, J., Grandia, J., Chen, X. D., Boom, R. M., & Schutyser, M. A. (2019). Arabinoxylans-enriched fractions: From dry fractionation of wheat bran to the investigation on bread baking performance. Journal of Cereal Science, 87, 1-8. Zhang, R., Lin, D., Zhang, L., Zhan, R., Wang, S., & Wang, K. (2022). Molecular and biochemical analyses of a novel trifunctional endoxylanase/endoglucanase/feruloyl esterase from the human colonic bacterium Bacteroides intestinalis DSM 17393. Journal of Agricultural and Food Chemistry, 70(13), 4044-4056. Zhao, S., Dien, B. S., Lindemann, S. R., & Chen, M.-H. (2021). Controlling autohydrolysis conditions to produce xylan-derived fibers that modulate gut microbiota responses and metabolic outputs. Carbohydrate Polymers, 271, 118418. Zhao, S., Lau, R., & Chen, M.-H. (2024). Influence of chain length on the colonic fermentation of xylooligosaccharides. Carbohydrate Polymers, 331, 121869. Zhao, S., Lau, R., Zhong, Y., & Chen, M.-H. (2024). Lactate cross-feeding between Bifidobacterium species and Megasphaera indica contributes to butyrate formation in the human colonic environment. Applied and Environmental Microbiology, 90(1), e01019-01023. Zhao, T., Yue, H., Peng, J., Nie, Y., Wu, L., Li, T., Niu,W., Li, C., Zhang, Z., Li, M., Ding K. (2023). Degradation of xylan by human gut Bacteroides xylanisolvens XB1A. Carbohydrate Polymers, 315, 121005. Zhou, X., Tian, W., Gu, S., Rabinovitch, M., Nicolls, M. R., & Snyder, M. P. (2025). Microbiome–immune interaction in pulmonary arterial hypertension: What have we missed? Research, 8, 0669. Zhu, X.-F., Tao, H., Wang, H.-L., & Xu, X.-M. (2023). Impact of water soluble arabinoxylan on starch-gluten interactions in dough. LWT, 173, 114289. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100212 | - |
| dc.description.abstract | 發展精準營養之基礎在於明瞭食品原料在人體中之消化過程與生理反應。越來越多研究指出,飲食型態與代謝性疾病及發炎反應間存在高度關聯性。阿拉伯木聚醣(arabinoxylan)是一種來自穀物的膳食纖維,可作為人類結腸微生物生長之碳源。其結構由木聚醣主鏈構成,並在木醣基單元的 C(O)-2 或 C(O)-3 位置上接有阿拉伯醣取代基。阿拉伯木聚醣的結構特徵會因原料來源而異,進而影響其物理化學性質與腸道發酵性。然而,目前系統性探討阿拉伯木聚醣結構與腸道菌相反應的研究仍相當有限。因此本研究旨在釐清小麥阿拉伯木聚醣的呋喃醣苷構型與分子大小對其在結腸中降解之影響。我們以 α-L-阿拉伯呋喃醣苷酶(α-L-arabinofuranosidase)對三種小麥阿拉伯木聚醣(LV、MV及HV)進行結構修飾,選擇性切除單取代的阿拉伯醣取代基,產生去支化形式之處理組(LVDB、MVDB及HVDB)。透過酸水解與分子篩高效液相層析法分析樣品的單醣組成與分子大小分布,另進一步進行甲基化分析以鑑定醣苷鍵結型態。隨後將原始與去支化的木聚醣樣品接種於含有人類糞便菌相的體外發酵系統中,並在厭氧條件下培養 24 小時。研究結果顯示,經酵素處理的樣品其阿拉伯醣與木醣的比例明顯下降,且隨著樣品分子大小減少,C(O)-3 單取代呋喃醣苷也被有效去除。多樣性分析結果顯示,去支化樣品的 Shannon 指數高於原始樣品,反映其微生物群落的多樣性相對較高。阿拉伯木聚醣結構的改變影響了菌相的組成,尤其在 Bacteroidota 與 Actinomycetota 兩菌門之間出現相對消長的趨勢。值得注意的是,Bacteroides plebeius 在去支化處理組中的相對豐富度普遍高於原始樣品;相對地,Bifidobacterium 則在原始樣品組中有較高的豐富度。例如,B. plebeius 的相對豐度從 LV 組的 8.3% 上升至 LVDB 組的 18.3%,而 Bifidobacterium 則從 25.3% 降至 9.9%。以線性判別分析效應值(Linear Discriminant Analysis Effect Size, LEfSe)進行的差異豐富度分析進一步指出,菌群豐度的變化與木聚醣的呋喃醣苷構型有密切關聯。而主座標分析(PCoA)圖也證實了原始與去支化樣品在菌相結構上呈現明顯分群。微生物組成的變化亦調控了短鏈脂肪酸(SCFA)的生成。在所有去支化處理組中皆觀察到丙酸上升、乙酸與丁酸下降的趨勢。 Spearman相關性分析顯示,丙酸的生成與 Bacteroides 和 Phascolarctobacterium 的豐富度相關;而乙酸、丁酸、乳酸與甲酸的生成則與 Bifidobacterium、Blautia 與 Megasphaera 有關。本研究驗證了我們的假設:調整阿拉伯木聚醣的呋喃醣苷構型可改變其發酵產物組成,並進而調控腸道微生物群落。此成果為膳食纖維結構導向的設計提供了新的思路,有助於發展針對腸道菌相精準調控的營養策略。 | zh_TW |
| dc.description.abstract | Understanding the connections among food materials, digestive processes, and physiological responses is the foundation of precision diets. An increasing number of studies have indicated that dietary patterns are highly associated with health outcomes such as metabolic disorders and inflammatory responses. Arabinoxylan is a cereal-derived dietary fiber that serves as a substrate for human colonic microorganisms, comprising a xylan backbone substituted with arabinose residues at the C(O)-2 or C(O)-3 positions of xylosyl units. The structural features of arabinoxylan vary depending on the raw material source, governing its physicochemical and fermentative properties. Presently, systematic research linking arabinoxylan structures with gut microbiota responses remains limited. In this thesis work, we aimed to elucidate the impact of the furanoside patterns and molecular size of wheat arabinoxylan (WAX) on colonic degradation. Three types of wheat arabinoxylan—LV, MV, and HV—were enzymatically modified using α-L-arabinofuranosidase to selectively cleave monosubstituted arabinose residues, yielding the debranched forms LVDB, MVDB, and HVDB. The acid hydrolysis and size exclusion chromatography were applied to reveal the monosaccharide composition and molecular size distribution of these substrates; methylation analysis was further conducted to identify the glycosidic linkage types. Both native and debranched xylan substrates were subjected to an in vitro fermentation system inoculated with human fecal microbiota under anaerobic conditions for 24 hours. Our results demonstrated that enzymatically treated samples exhibited reduced arabinose/xylose ratios; as the substrate molecular size decreased, monosubstituted C(O)-3 furanosides were effectively removed. Diversity analyses indicated that the Shannon index of debranched substrates was higher for the debranched substrates compared to the native ones, indicating increased microbial diversity in the debranched WAX. The structural alterations of arabinoxylan led to distinct shifts in microbial abundances, presented as a trade-off between the phyla Bacteroidota and Actinomycetota. Notably, Bacteroides plebeius consistently exhibited higher relative abundance in the debranched WAX treatments compared to their native counterparts, while Bifidobacterium was more enriched in the native substrates. For instance, the relative abundance of B. plebeius increased from 8.3% (LV) to 18.3% (LVDB), whereas Bifidobacterium decreased from 25.3% to 9.9%. Differential abundance analysis via Linear Discriminant Analysis Effect Size (LEfSe) revealed that microbial taxa were selectively enriched based on the distinct furanoside patterns of xylan substrates. Principal coordinates analysis (PCoA) plots confirmed that native and debranched substrates formed clearly separated clusters. The altered microbiota composition modulated the short-chain fatty acid profiles, with elevated propionate and reduced acetate and butyrate levels observed in all debranched substrate treatments. Spearman’s correlation analysis indicated that propionate production was associated with genera Bacteroides and Phascolarctobacterium, whereas acetate, butyrate, lactate, and formate production were associated with genera Bifidobacterium, Blautia, and Megasphaera. These findings validate our hypothesis that reordering furanoside patterns diverts the fermentation outcomes of wheat arabinoxylan, offering insights into modulating intestinal microbial communities through the structural design of dietary fibers. This work contributes to the development of precision fiber strategies for gut microbiota-targeted nutrition. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:52:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-24T16:52:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES ix LIST OF TABLES xii LIST OF APPENDICES xiii ABBREVIATIONS xv Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 Arabinoxylan in cereal grains 4 2.1.1 Structure and source 4 2.1.2 Physiological functions 5 2.2 Arabinoxylan in the food industry 6 2.2.1 Baking 6 2.2.2 Beverage 8 2.2.3 Dietary fiber 8 2.3 Human gut microbiota 9 2.3.1 Microbial composition 9 2.3.2 Glycoside hydrolase 10 2.3.3 Metabolites and human health 13 2.3.4 In vitro fermentation of arabinoxylan 15 Chapter 3 Materials and Methods 17 3.1 Raw materials, chemicals, enzymes, and analytical standards 17 3.2 Preparation of the WAX substrates with different substitution patterns 17 3.3 Characterization of the WAX substrates 18 3.4 In vitro fermentation of WAX substrates with human gut microbiota 20 3.5 Assessment of metabolite production and residual carbohydrate. 22 3.6 DNA extraction and 16S rRNA gene amplicon sequencing 23 3.7 Bioinformatics analysis 24 3.8 Statistical analysis 24 Chapter 4 Results 26 4.1 Glycosyl composition, molecular size distribution, and glycosidic linkage analysis of WAX substrates 26 4.2 Production of microbial metabolites and residual carbohydrates during fermentation 32 4.3 WAX substrates shaped the microbial communities 37 4.4 WAX-induced shifts in microbial composition 41 4.5 Associations among microbial taxa and metabolite profiles 47 Chapter 5 Discussion 49 Chapter 6 Conclusion and Future Prospect 57 REFERENCE 58 APPENDIX 70 | - |
| dc.language.iso | en | - |
| dc.subject | 阿拉伯木聚醣 | zh_TW |
| dc.subject | 結構修飾 | zh_TW |
| dc.subject | 阿拉伯呋喃醣苷酶 | zh_TW |
| dc.subject | 膳食纖維 | zh_TW |
| dc.subject | 人體腸道菌相 | zh_TW |
| dc.subject | human gut microbiota | en |
| dc.subject | arabinoxylan | en |
| dc.subject | structural modification | en |
| dc.subject | arabinofuranosidase | en |
| dc.subject | dietary fiber | en |
| dc.title | 探討木聚醣之呋喃醣苷修飾對人體腸道菌相之影響 | zh_TW |
| dc.title | Altering the furanoside patterns of wheat arabinoxylan drives distinct responses in human gut microbiota and metabolic formation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 羅翊禎;呂廷璋;蔡明翰;陳永如 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Chen Lo;Ting-Jang Lu;Ming-Han Tsai;Yung-Ju Chen | en |
| dc.subject.keyword | 阿拉伯木聚醣,結構修飾,阿拉伯呋喃醣苷酶,膳食纖維,人體腸道菌相, | zh_TW |
| dc.subject.keyword | arabinoxylan,structural modification,arabinofuranosidase,dietary fiber,human gut microbiota, | en |
| dc.relation.page | 81 | - |
| dc.identifier.doi | 10.6342/NTU202503872 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-08 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2030-08-04 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 4.34 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
