Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100178
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳明煦zh_TW
dc.contributor.advisorMing-Hsu Chenen
dc.contributor.author呂素妹zh_TW
dc.contributor.authorSu-Mei Luen
dc.date.accessioned2025-09-24T16:45:24Z-
dc.date.available2025-09-25-
dc.date.copyright2025-09-24-
dc.date.issued2025-
dc.date.submitted2025-08-09-
dc.identifier.citationAbdugheni, R.; Wang, W.-Z.; Wang, Y.-J.; Du, M.-X.; Liu, F.-L.; Zhou, N.; Jiang, C.-Y.; Wang, C.-Y.; Wu, L.; Ma, J.; et al. Metabolite Profiling of Human-Originated Lachnospiraceae at the Strain Level. iMeta 2022, 1 (4), e58.
Bhattacharya, A.; Wiemann, M.; Stålbrand, H. Β-Mannanase Boman26b from Bacteroides Ovatus Produces Mannan-Oligosaccharides with Prebiotic Potential from Galactomannan and Softwood Β-Mannans. LWT 2021, 151, 112215.
Blumenkrantz, N.; Asboe-Hansen, G. New Method for Quantitative Determination of Uronic Acids. Analytical Biochemistry 1973, 54 (2), 484-489.
Cai, J.; Xu, J.; Tan, Y.; Xiang, Y.; Li, Z.; Zheng, J.; Li, Y. Gut Microbiota Alteration and Its Association with Immune Function in Post-Covid-19 Patients. Folia Microbiologica 2024, 69 (4), 857-864.
Cantarel, B. L.; Coutinho, P. M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-Active Enzymes Database (Cazy): An Expert Resource for Glycogenomics. Nucleic Acids Research 2009, 37 (suppl_1), D233-D238.
Cao, X.-G.; Li, X.-X.; Bao, Y.-Z.; Xing, N.-Z.; Chen, Y. Responses of Human Lens Epithelial Cells to Quercetin and DMSO. Investigative Ophthalmology & Visual Science 2007, 48 (8), 3714-3718.
Carvalho, D. M. d.; Berglund, J.; Marchand, C.; Lindström, M. E.; Vilaplana, F.; Sevastyanova, O. Improving the Thermal Stability of Different Types of Xylan by Acetylation. Carbohydrate Polymers 2019, 220, 132-140.
Çetin, N. S.; Özmen, N.; Birinci, E. Acetylation of Wood with Various Catalysts. Journal of Wood Chemistry and Technology 2011, 31 (2), 142-153.
Chen, F.; Huang, G. Extraction, Derivatization and Antioxidant Activity of Bitter Gourd Polysaccharide. International Journal of Biological Macromolecules 2019, 141, 14-20.
Chen, J.; Vitetta, L. The Role of Butyrate in Attenuating Pathobiont-Induced Hyperinflammation. Immune Network 2020, 20 (2), e15.
Chi, C.; Lian, S.; Zou, Y.; Chen, B.; He, Y.; Zheng, M.; Zhao, Y.; Wang, H. Preparation, Multi-Scale Structures, and Functionalities of Acetylated Starch: An Updated Review. International Journal of Biological Macromolecules 2023, 249, 126142.
Chi, H.; Xu, K.; Wu, X.; Chen, Q.; Xue, D.; Song, C.; Zhang, W.; Wang, P. Effect of Acetylation on the Properties of Corn Starch. Food Chemistry 2008, 106 (3), 923-928.
Choi, I.; Hong, W.; Lee, J.-S.; Han, J. Influence of Acetylation and Chemical Interaction on Edible Film Properties and Different Processing Methods for Food Application. Food Chemistry 2023, 426, 136555.
Conlon, M. A.; Bird, A. R. The Impact of Diet and Lifestyle on Gut Microbiota and Human Health. Nutrients, 2015; Vol. 7, pp 17-44.
Damian, F.; Van Den Mooter, G.; Samyn, C.; Kinget, R. In vitro Biodegradation Study of Acetyl and Methyl Inulins by Bifidobacteria and Inulinase. European Journal of Pharmaceutics and Biopharmaceutics 1999, 47 (3), 275-282.
de Oliveira, N. R.; Fornaciari, B.; Mali, S.; Carvalho, G. M. Acetylated Starch-Based Nanoparticles: Synthesis, Characterization, and Studies of Interaction with Antioxidants. Starch - Stärke 2018, 70 (3-4), 1700170.
de Paula Castanheira, J.; Llanos, J. H. R.; Martins, J. R.; Costa, M. L.; Brienzo, M. Acetylated Xylan from Sugarcane Bagasse: Advancing Bioplastic Formation with Enhanced Water Resistance. Polymer Bulletin 2024.
Duncan, S. H.; Louis, P.; Thomson, J. M.; Flint, H. J. The Role of pH in Determining the Species Composition of the Human Colonic Microbiota. Environmental Microbiology 2009, 11 (8), 2112-2122.
Duncan Sylvia, H.; Louis, P.; Flint Harry, J. Lactate-Utilizing Bacteria, Isolated from Human Feces, That Produce Butyrate as a Major Fermentation Product. Applied and Environmental Microbiology 2004, 70 (10), 5810-5817.
Firrman, J.; Liu, L.; Mahalak, K.; Tanes, C.; Bittinger, K.; Tu, V.; Bobokalonov, J.; Mattei, L.; Zhang, H.; Van den Abbeele, P. The Impact of Environmental pH on the Gut Microbiota Community Structure and Short Chain Fatty Acid Production. FEMS Microbiology Ecology 2022, 98 (5), fiac038.
Fukuda, S.; Toh, H.; Hase, K.; Oshima, K.; Nakanishi, Y.; Yoshimura, K.; Tobe, T.; Clarke, J. M.; Topping, D. L.; Suzuki, T.; et al. Bifidobacteria Can Protect from Enteropathogenic Infection through Production of Acetate. Nature 2011, 469 (7331), 543-547.
Gałkowska, D.; Kapuśniak, K.; Juszczak, L. Chemically Modified Starches as Food Additives. Molecules, 2023; Vol. 28.
Garg, S.; Jana, A. K. Characterization and Evaluation of Acylated Starch with Different Acyl Groups and Degrees of Substitution. Carbohydrate Polymers 2011, 83 (4), 1623-1630.
Ge, Q.; Li, H.-q.; Zheng, Z.-y.; Yang, K.; Li, P.; Xiao, Z.-q.; Xiao, G.-m.; Mao, J.-w. In vitro Fecal Fermentation Characteristics of Bamboo Insoluble Dietary Fiber and Its Impacts on Human Gut Microbiota. Food Research International 2022, 156, 111173.
Gille, S.; Pauly, M. O-Acetylation of Plant Cell Wall Polysaccharides. Frontiers in Plant Science 2012, 3.
Golachowski, A.; Zięba, T.; Kapelko-Żeberska, M.; Drożdż, W.; Gryszkin, A.; Grzechac, M. Current Research Addressing Starch Acetylation. Food Chemistry 2015, 176, 350-356.
Golomb, B. L.; Marco, M. L. Lactococcus Lactis Metabolism and Gene Expression During Growth on Plant Tissues. Journal of Bacteriology 2015, 197 (2), 371-381.
Gong, D.; Gong, X.; Wang, L.; Yu, X.; Dong, Q. Involvement of Reduced Microbial Diversity in Inflammatory Bowel Disease. Gastroenterology Research and Practice 2016, 2016, 6951091.
Grantham, N. J.; Wurman-Rodrich, J.; Terrett, O. M.; Lyczakowski, J. J.; Stott, K.; Iuga, D.; Simmons, T. J.; Durand-Tardif, M.; Brown, S. P.; Dupree, R.; et al. An Even Pattern of Xylan Substitution Is Critical for Interaction with Cellulose in Plant Cell Walls. Nature Plants 2017, 3 (11), 859-865.
Grohmann, K.; Mitchell, D. J.; Himmel, M. E.; Dale, B. E.; Schroeder, H. A. The Role of Ester Groups in Resistance of Plant Cell Wall Polysaccharides to Enzymatic Hydrolysis. Applied Biochemistry and Biotechnology 1989, 20 (1), 45-61.
Gupta, M.; Rawal, T. B.; Dupree, P.; Smith, J. C.; Petridis, L. Spontaneous Rearrangement of Acetylated Xylan on Hydrophilic Cellulose Surfaces. Cellulose 2021, 28 (6), 3327-3345.
Hamer, H. M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F. J.; Brummer, R. J. Review Article: The Role of Butyrate on Colonic Function. Alimentary Pharmacology & Therapeutics 2008, 27 (2), 104-119.
Hoffmann, N.; King, S.; Samuels, A. L.; McFarlane, H. E. Subcellular Coordination of Plant Cell Wall Synthesis. Developmental Cell 2021, 56 (7), 933-948.
Hollister, E. B.; Gao, C.; Versalovic, J. Compositional and Functional Features of the Gastrointestinal Microbiome and Their Effects on Human Health. Gastroenterology 2014, 146 (6), 1449-1458.
Hosomi, K.; Saito, M.; Park, J.; Murakami, H.; Shibata, N.; Ando, M.; Nagatake, T.; Konishi, K.; Ohno, H.; Tanisawa, K.; et al. Oral Administration of Blautia Wexlerae Ameliorates Obesity and Type 2 Diabetes Via Metabolic Remodeling of the Gut Microbiota. Nature Communications 2022, 13 (1), 4477.
Hu, J.; Shaoling, L.; Baodong, Z.; and Cheung, P. C. K. Short-Chain Fatty Acids in Control of Energy Metabolism. Critical Reviews in Food Science and Nutrition 2018, 58 (8), 1243-1249.
Hu, R.; Wu, S.; Li, B.; Tan, J.; Yan, J.; Wang, Y.; Tang, Z.; Liu, M.; Fu, C.; Zhang, H.; et al. Dietary Ferulic Acid and Vanillic Acid on Inflammation, Gut Barrier Function and Growth Performance in Lipopolysaccharide-Challenged Piglets. Animal Nutrition 2022, 8, 144-152.
Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J. H.; Chinwalla, A. T.; Creasy, H. H.; Earl, A. M.; FitzGerald, M. G.; Fulton, R. S.; et al. Structure, Function and Diversity of the Healthy Human Microbiome. Nature 2012, 486 (7402), 207-214.
Ilhan, Z. E.; Marcus, A. K.; Kang, D. W.; Rittmann, B. E.; Krajmalnik-Brown, R. Ph-Mediated Microbial and Metabolic Interactions in Fecal Enrichment Cultures. mSphere 2017, 2 (3).
Jaafar, Z.; Mazeau, K.; Boissière, A.; Le Gall, S.; Villares, A.; Vigouroux, J.; Beury, N.; Moreau, C.; Lahaye, M.; Cathala, B. Meaning of Xylan Acetylation on Xylan-Cellulose Interactions: A Quartz Crystal Microbalance with Dissipation (Qcm-D) and Molecular Dynamic Study. Carbohydrate Polymers 2019, 226, 115315.
Kabel, M. A.; Kortenoeven, L.; Schols, H. A.; Voragen, A. G. J. In vitro Fermentability of Differently Substituted Xylo-Oligosaccharides. Journal of Agricultural and Food Chemistry 2002, 50 (21), 6205-6210.
Kampmann, C.; Dicksved, J.; Engstrand, L.; Rautelin, H. Composition of Human Faecal Microbiota in Resistance to Campylobacter Infection. Clinical Microbiology and Infection 2016, 22 (1), 61.e61-61.e68.
Kmezik, C.; Bonzom, C.; Olsson, L.; Mazurkewich, S.; Larsbrink, J. Multimodular Fused Acetyl–Feruloyl Esterases from Soil and Gut Bacteroidetes Improve Xylanase Depolymerization of Recalcitrant Biomass. Biotechnology for Biofuels 2020, 13 (1), 60.
Kong, F.; Engler, C. R.; Soltes, E. J. Effects of Cell-Wall Acetate, Xylan Backbone, and Lignin on Enzymatic Hydrolysis of Aspen Wood. Applied Biochemistry and Biotechnology 1992, 34 (1), 23-35.
La Rosa, S. L.; Kachrimanidou, V.; Buffetto, F.; Pope, P. B.; Pudlo, N. A.; Martens, E. C.; Rastall, R. A.; Gibson, G. R.; Westereng, B. Wood-Derived Dietary Fibers Promote Beneficial Human Gut Microbiota. mSphere 2019, 4 (1).
La Rosa, Sabina L.; Lindstad, Lars J.; Westereng, B. Carbohydrate Esterases Involved in Deacetylation of Food Components by the Human Gut Microbiota. Essays in Biochemistry 2023, 67 (3), 443-454.
Lamothe, L. M.; Cantu-Jungles, T. M.; Chen, T.; Green, S.; Naqib, A.; Srichuwong, S.; Hamaker, B. R. Boosting the Value of Insoluble Dietary Fiber to Increase Gut Fermentability through Food Processing. Food & Function 2021, 12 (21), 10658-10666.
Larsen, N.; Vogensen, F. K.; van den Berg, F. W.; Nielsen, D. S.; Andreasen, A. S.; Pedersen, B. K.; Al-Soud, W. A.; Sørensen, S. J.; Hansen, L. H.; Jakobsen, M. Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS One 2010, 5 (2), e9085.
Leroux, J.; Langendorff, V.; Schick, G.; Vaishnav, V.; Mazoyer, J. Emulsion Stabilizing Properties of Pectin. Food Hydrocolloids 2003, 17 (4), 455-462.
Li, H.; Wang, G.; Yan, X.; Hu, X.; Li, J. Effects of Acetyl Groups on the Prebiotic Properties of Glucomannan Extracted from Artemisia Sphaerocephala Krasch Seeds. Carbohydrate Polymers 2024, 330, 121805.
Liu, Q.; Li, F.; Ji, N.; Dai, L.; Xiong, L.; Sun, Q. Acetylated Debranched Starch Micelles as a Promising Nanocarrier for Curcumin. Food Hydrocolloids 2021, 111, 106253.
Liu, X.; Mao, B.; Gu, J.; Wu, J.; Cui, S.; Wang, G.; Zhao, J.; Zhang, H.; Chen, W. Blautia—a New Functional Genus with Potential Probiotic Properties? Gut Microbes 2021, 13 (1), 1875796.
Louis, P.; Flint, H. J. Formation of Propionate and Butyrate by the Human Colonic Microbiota. Environmental Microbiology 2017, 19 (1), 29-41.
Lyczakowski, J. J.; Bourdon, M.; Terrett, O. M.; Helariutta, Y.; Wightman, R.; Dupree, P. Structural Imaging of Native Cryo-Preserved Secondary Cell Walls Reveals the Presence of Macrofibrils and Their Formation Requires Normal Cellulose, Lignin and Xylan Biosynthesis. Frontiers in Plant Science 2019, 10, 1398.
Manabe, Y.; Verhertbruggen, Y.; Gille, S.; Harholt, J.; Chong, S. L.; Pawar, P. M.; Mellerowicz, E. J.; Tenkanen, M.; Cheng, K.; Pauly, M.; et al. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis. Plant Physiology 2013, 163 (3), 1107-1117.
Martens, E. C.; Lowe, E. C.; Chiang, H.; Pudlo, N. A.; Wu, M.; McNulty, N. P.; Abbott, D. W.; Henrissat, B.; Gilbert, H. J.; Bolam, D. N.; et al. Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts. PLoS Biology 2011, 9 (12), e1001221.
Martins, J. R.; Llanos, J. H. R.; Botaro, V.; Gonçalves, A. R.; Brienzo, M. Hemicellulose Biomass Degree of Acetylation (Natural Versus Chemical Acetylation) as a Strategy for Based Packaging Materials. BioEnergy Research 2024, 17 (2), 877-896.
McCallum, G.; Tropini, C. The Gut Microbiota and Its Biogeography. Nature Reviews Microbiology 2024, 22 (2), 105-118.
Mego, M.; Accarino, A.; Malagelada, J. R.; Guarner, F.; Azpiroz, F. Accumulative Effect of Food Residues on Intestinal Gas Production. Neurogastroenterology & Motility 2015, 27 (11), 1621-1628.
Michalak, L.; Gaby, J. C.; Lagos, L.; La Rosa, S. L.; Hvidsten, T. R.; Tétard-Jones, C.; Willats, W. G. T.; Terrapon, N.; Lombard, V.; Henrissat, B.; et al. Microbiota-Directed Fibre Activates Both Targeted and Secondary Metabolic Shifts in the Distal Gut. Nature Communications 2020, 11 (1), 5773.
Mitchell, D. J.; Grohmann, K.; Himmel, M. E.; Dale, B. E.; Schroeder, H. A. Effect of the Degree of Acetylation on the Enzymatic Digestion of Acetylated Xylans. Journal of Wood Chemistry and Technology 1990, 10 (1), 111-121.
Miyazaki, M.; Van Hung, P.; Maeda, T.; Morita, N. Recent Advances in Application of Modified Starches for Breadmaking. Trends in Food Science & Technology 2006, 17 (11), 591-599.
Morán, J.; Cyras, V.; Giudicessi, S.; Erra-Balsells, R.; Vázquez, A. Influence of the Glycerol Content and Temperature on the Rheology of Native and Acetylated Starches During and after Gelatinization. Journal of Applied Polymer Science 2011, 120.
Morrison, D. J.; and Preston, T. Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes 2016, 7 (3), 189-200.
Mutuyemungu, E.; Singh, M.; Liu, S.; Rose, D. J. Intestinal Gas Production by the Gut Microbiota: A Review. Journal of Functional Foods 2023, 100, 105367.
Park, J.; Kim, M.; Kang, S. G.; Jannasch, A. H.; Cooper, B.; Patterson, J.; Kim, C. H. Short-Chain Fatty Acids Induce Both Effector and Regulatory T Cells by Suppression of Histone Deacetylases and Regulation of the mTOR–S6k Pathway. Mucosal Immunology 2015, 8 (1), 80-93.
Pauly, M.; Ramírez, V. New Insights into Wall Polysaccharide O-Acetylation. Frontiers in Plant Science 2018, 9.
Qaseem, M. F.; Wu, A. M. Balanced Xylan Acetylation Is the Key Regulator of Plant Growth and Development, and Cell Wall Structure and for Industrial Utilization. International Journal of Molecular Sciences 2020, 21 (21).
Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K. S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature 2010, 464 (7285), 59-65.
Ramasamy, U. S.; Venema, K.; Schols, H. A.; Gruppen, H. Effect of Soluble and Insoluble Fibers within the in vitro Fermentation of Chicory Root Pulp by Human Gut Bacteria. Journal of Agricultural and Food Chemistry 2014, 62 (28), 6794-6802.
Reichardt, N.; Duncan, S. H.; Young, P.; Belenguer, A.; McWilliam Leitch, C.; Scott, K. P.; Flint, H. J.; Louis, P. Phylogenetic Distribution of Three Pathways for Propionate Production within the Human Gut Microbiota. The ISME Journal 2014, 8 (6), 1323-1335.
Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G. A.; Gasbarrini, A.; Mele, M. C. What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 2019; Vol. 7.
Rinninella, E.; Tohumcu, E.; Raoul, P.; Fiorani, M.; Cintoni, M.; Mele, M. C.; Cammarota, G.; Gasbarrini, A.; Ianiro, G. The Role of Diet in Shaping Human Gut Microbiota. Best Practice & Research Clinical Gastroenterology 2023, 62-63, 101828.
Rogowski, A.; Briggs, J. A.; Mortimer, J. C.; Tryfona, T.; Terrapon, N.; Lowe, E. C.; Baslé, A.; Morland, C.; Day, A. M.; Zheng, H.; et al. Glycan Complexity Dictates Microbial Resource Allocation in the Large Intestine. Nature Communications 2015, 6 (1), 7481.
Roman, M.; Nechita, P.; Vasile, M.-A.; Cantaragiu Ceoromila, A.-M. Barrier and Antimicrobial Properties of Coatings Based on Xylan Derivatives and Chitosan for Food Packaging Papers. Coatings, 2023; Vol. 13.
Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut Microbiota Functions: Metabolism of Nutrients and Other Food Components. European Journal of Nutrition 2018, 57 (1), 1-24.
Ríos-Covián, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; de los Reyes-Gavilán, C. G.; Salazar, N. Intestinal Short Chain Fatty Acids and Their Link with Diet and Human Health. Frontiers in Microbiology 2016, Volume 7 - 2016.
Sartori, G.; Ballini, R.; Bigi, F.; Bosica, G.; Maggi, R.; Righi, P. Protection (and Deprotection) of Functional Groups in Organic Synthesis by Heterogeneous Catalysis. Chemical Reviews 2004, 104 (1), 199-250.
Schultink, A.; Naylor, D.; Dama, M.; Pauly, M. The Role of the Plant-Specific Altered Xyloglucan9 Protein in Arabidopsis Cell Wall Polysaccharide O-Acetylation. Plant Physiology 2015, 167 (4), 1271-1283.
Schwanninger, M.; Stefke, B.; Hinterstoisser, B. Qualitative Assessment of Acetylated Wood with Infrared Spectroscopic Methods. Journal of Near Infrared Spectroscopy 2011, 19 (5), 349-357.
Selig, M. J.; Adney, W. S.; Himmel, M. E.; Decker, S. R. The Impact of Cell Wall Acetylation on Corn Stover Hydrolysis by Cellulolytic and Xylanolytic Enzymes. Cellulose 2009, 16 (4), 711-722.
Shin, J. H.; Tillotson, G.; MacKenzie, T. N.; Warren, C. A.; Wexler, H. M.; Goldstein, E. J. C. Bacteroides and Related Species: The Keystone Taxa of the Human Gut Microbiota. Anaerobe 2024, 85, 102819.
Sims, G. K.; O'Loughlin, E. J.; Crawford, R. L. Degradation of Pyridines in the Environment. Critical Reviews in Environmental Control 1989, 19 (4), 309-340.
Sista Kameshwar, A. K.; and Qin, W. Understanding the Structural and Functional Properties of Carbohydrate Esterases with a Special Focus on Hemicellulose Deacetylating Acetyl Xylan Esterases. Mycology 2018, 9 (4), 273-295.
Sommer, F.; Anderson, J. M.; Bharti, R.; Raes, J.; Rosenstiel, P. The Resilience of the Intestinal Microbiota Influences Health and Disease. Nature Reviews Microbiology 2017, 15 (10), 630-638.
Sun, A.; Yu, B.; Zhang, Q.; Peng, Y.; Yang, J.; Sun, Y.; Qin, P.; Jia, T.; Smeekens, S.; Teng, S. Myc2-Activated Trichome Birefringence-Like37 Acetylates Cell Walls and Enhances Herbivore Resistance. Plant Physiology 2020, 184 (2), 1083-1096.
Takada, T.; Kurakawa, T.; Tsuji, H.; Nomoto, K. Fusicatenibacter Saccharivorans Gen. Nov., Sp. Nov., Isolated from Human Faeces. International Journal of Systematic and Evolutionary Microbiology 2013, 63 (Pt_10), 3691-3696.
Tang, H.; Li, Q.; Zha, Z.; Jiao, Y.; Yang, B.; Cheng, Z.; Wang, T.; Yin, H. Xylan Acetate Ester Ameliorates Ulcerative Colitis through Intestinal Barrier Repair and Inflammation Inhibition Via Regulation of Macrophage M1 Polarization. International Journal of Biological Macromolecules 2024, 280, 135551.
Tao, Z.; and Wang, Y. The Health Benefits of Dietary Short-Chain Fatty Acids in Metabolic Diseases. Critical Reviews in Food Science and Nutrition 2025, 65 (9), 1579-1592.
Terrapon, N.; Lombard, V.; Drula, É.; Lapébie, P.; Al-Masaudi, S.; Gilbert, H. J.; Henrissat, B. Puldb: The Expanded Database of Polysaccharide Utilization Loci. Nucleic Acids Research 2018, 46 (D1), D677-d683.
Till, M.; Goldstone, D. C.; Attwood, G. T.; Moon, C. D.; Kelly, W. J.; Arcus, V. L. Structure and Function of an Acetyl Xylan Esterase (Est2a) from the Rumen Bacterium Butyrivibrio Proteoclasticus. Proteins 2013, 81 (5), 911-917.
Toubon, G.; Butel, M.-J.; Rozé, J.-C.; Delannoy, J.; Ancel, P.-Y.; Aires, J.; Charles, M.-A. Association between Gut Microbiota at 3.5 Years of Age and Body Mass Index at 5 Years: Results from Two French Nationwide Birth Cohorts. International Journal of Obesity 2024, 48 (4), 503-511.
Turnbaugh, P. J.; Hamady, M.; Yatsunenko, T.; Cantarel, B. L.; Duncan, A.; Ley, R. E.; Sogin, M. L.; Jones, W. J.; Roe, B. A.; Affourtit, J. P.; et al. A Core Gut Microbiome in Obese and Lean Twins. Nature 2009, 457 (7228), 480-484.
VAN GYLSWYK, N. O.; VAN DER TOORN, J. J. T. K. Eubacterium Uniforme Sp. Nov. And Eubacterium Xylanophilum Sp. Nov., Fiber-Digesting Bacteria from the Rumina of Sheep Fed Corn Stover. International Journal of Systematic and Evolutionary Microbiology 1985, 35 (3), 323-326.
Vega-Sagardía, M.; Delgado, J.; Ruiz-Moyano, S.; Garrido, D. Proteomic Analyses of Bacteroides ovatus and Bifidobacterium longum in Xylan Bidirectional Culture Shows Sugar Cross-Feeding Interactions. Food Research International 2023, 170, 113025.
Verheijen, M.; Lienhard, M.; Schrooders, Y.; Clayton, O.; Nudischer, R.; Boerno, S.; Timmermann, B.; Selevsek, N.; Schlapbach, R.; Gmuender, H.; et al. DMSO Induces Drastic Changes in Human Cellular Processes and Epigenetic Landscape in vitro. Scientific Reports 2019, 9 (1), 4641.
Wang, S.; Gao, W.; Wang, Y.; Song, T.; Qi, H.; Xiang, Z. Emulsifying Properties of Naturally Acetylated Xylans and Their Application in Lutein Delivery Emulsion. Carbohydrate Polymers 2022, 296, 119927.
Wang Shui, P.; Rubio Luis, A.; Duncan Sylvia, H.; Donachie Gillian, E.; Holtrop, G.; Lo, G.; Farquharson Freda, M.; Wagner, J.; Parkhill, J.; Louis, P.; et al. Pivotal Roles for Ph, Lactate, and Lactate-Utilizing Bacteria in the Stability of a Human Colonic Microbial Ecosystem. mSystems 2020, 5 (5), 10.1128/msystems.00645-00620.
Wang, X.; Zhang, J.; Xia, X.; Fang, Y.; Yang, L.; Zhou, Y.; Hu, S.; Jiang, L.; Xiong, K.; Wang, J. Sodium Alginate Alleviated Isoniazid-Induced Liver Injury by Modulating Fecal Metabolites and Gut Microbiota. International Journal of Biological Macromolecules 2025, 305, 141149.
Wang, X.; Zhijun, W.; Mingyue, S.; Chen, Y.; Qiang, Y.; Xianxiang, C.; Jianhua, X.; and Xie, M. Acetylated Polysaccharides: Synthesis, Physicochemical Properties, Bioactivities, and Food Applications. Critical Reviews in Food Science and Nutrition 2024, 64 (15), 4849-4864.
Wefers, D.; Cavalcante, J. J. V.; Schendel, R. R.; Deveryshetty, J.; Wang, K.; Wawrzak, Z.; Mackie, R. I.; Koropatkin, N. M.; Cann, I. Biochemical and Structural Analyses of Two Cryptic Esterases in Bacteroides Intestinalis and Their Synergistic Activities with Cognate Xylanases. Journal of Molecular Biology 2017, 429 (16), 2509-2527.
Wei, S.; Zhang, J.; Liang, X.; Kong, B.; Cao, C.; Liu, H.; Zhang, H.; Liu, Q. Incorporation of Cross-Linked/Acetylated Tapioca Starches on the Gelling Properties, Rheological Behaviour, and Microstructure of Low-Salt Myofibrillar Protein Gels: Perspective on Phase Transition. Food Chemistry 2024, 457, 140214.
Whistler, R. L. Xylan. In Advances in Carbohydrate Chemistry, Hudson, C. S., Cantor, S. M. Eds.; Vol. 5; Academic Press, 1950; pp 269-290.
Wu, C.; Yang, F.; Zhong, H.; Hong, J.; Lin, H.; Zong, M.; Ren, H.; Zhao, S.; Chen, Y.; Shi, Z.; et al. Obesity-Enriched Gut Microbe Degrades Myo-Inositol and Promotes Lipid Absorption. Cell Host & Microbe 2024, 32 (8), 1301-1314.e1309.
Yuan, Y.; Liu, H.; Su, J.; Qin, X.; Qi, H. Acetylated Cellulose Nanofibers Fabricated through Chemo-Mechanical Process for Stabilizing Pickering Emulsion. Cellulose 2021, 28 (15), 9677-9687.
Yuan, Y.; Teng, Q.; Zhong, R.; Haghighat, M.; Richardson, E. A.; Ye, Z. H. Mutations of Arabidopsis TBL32 and TBL33 Affect Xylan Acetylation and Secondary Wall Deposition. PLoS One 2016, 11 (1), e0146460.
Yuan, Y.; Teng, Q.; Zhong, R.; Ye, Z.-H. The Arabidopsis Duf231 Domain-Containing Protein Esk1 Mediates 2-O- and 3-O-Acetylation of Xylosyl Residues in Xylan. Plant and Cell Physiology 2013, 54 (7), 1186-1199.
Zha, Z.; Wang, X.; Wang, G.; Yin, H.; Wang, H. Synthesis and Structural Characterization of Xylan Acetate Ester and Its Antinephritic Effects in Rats with Experimental Chronic Kidney Disease. International Journal of Biological Macromolecules 2023, 240, 124413.
Zhong, R.; Cui, D.; Richardson, E. A.; Phillips, D. R.; Azadi, P.; Lu, G.; Ye, Z.-H. Cytosolic Acetyl-Coa Generated by Atp-Citrate Lyase Is Essential for Acetylation of Cell Wall Polysaccharides. Plant and Cell Physiology 2020, 61 (1), 64-75.
Zhong, R.; Zhou, D.; Chen, L.; Rose, J. P.; Wang, B.-C.; Ye, Z.-H. Plant Cell Wall Polysaccharide O-Acetyltransferases. Plants, 2024; Vol. 13.
Zhou, J.; Zhang, Q.; Zhao, Y.; Zou, Y.; Chen, M.; Zhou, S.; Wang, Z. The Relationship of Megamonas Species with Nonalcoholic Fatty Liver Disease in Children and Adolescents Revealed by Metagenomics of Gut Microbiota. Scientific Reports 2022, 12 (1), 22001.
Zhu, X. F.; Sun, Y.; Zhang, B. C.; Mansoori, N.; Wan, J. X.; Liu, Y.; Wang, Z. W.; Shi, Y. Z.; Zhou, Y. H.; Zheng, S. J. Trichome Birefringence-Like27 Affects Aluminum Sensitivity by Modulating the O-Acetylation of Xyloglucan and Aluminum-Binding Capacity in Arabidopsis. Plant Physiology 2014, 166 (1), 181-189.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100178-
dc.description.abstract木聚醣為植物細胞壁之主要結構性多醣,主要由直鏈狀木醣單元組成,並常帶有側鏈或其他取代基團。乙醯化為植物木聚醣中常見之修飾形式,在調控植物生理功能方面扮演關鍵角色,亦為食品工業中常用以改良多醣理化特性之策略。雖然乙醯基取代廣泛存在於食物來源之多醣中,然而,目前僅有少數研究探討膳食纖維中乙醯基修飾與其對腸道微生物相之交互作用。乙醯基取代通常發生於木醣殘基之C-2與C-3位置,影響其與其他細胞壁成分之交互作用與可及性。乙醯化程度係以O-乙醯基與木醣基單元之莫耳比定義,決定了木聚醣之疏水性。乙醯化除調控木聚醣之理化性質外,亦會抑制木聚醣酶類之催化活性,進而影響其可降解性。鑒於植物木聚醣為膳食纖維之重要來源,廣泛分布於穀類與蔬菜中,故釐清其於結腸環境中之降解具有高度重要性。本研究旨在探討不同乙醯化程度木聚醣於結腸發酵過程中之可降解性,並評估其對腸道微生物相組成與代謝產物生成之影響。
山毛櫸木聚醣(beechwood xylan, BWX)經化學修飾後,其乙醯化程度分別達到0.0、0.5、1.1、1.6與1.9,依序標記為BWXDA0.0、BWXDA0.5、BWXDA1.1、BWXDA1.6與BWXDA1.9。針對上述五種樣品進行醣基組成與FTIR分析,以獲得其結構資訊,並接種人類糞便微生物群進行體外發酵試驗。醣組成與官FTIR分析結果顯示,樣品之醣組成與鍵結方式符合預期。研究結果顯示,乙醯化程度為影響木聚醣在人體結腸中可降解性之主要因素。隨著乙醯基取代程度的提升,氣體產量與培養基酸度皆下降。此外,乙醯化修飾重塑了腸道微生物組成,涵蓋門、科、屬與種層級。低乙醯化程度之受質(如BWXDA0.0與BWXDA0.5)顯著提升了Bacteroidota的相對豐富度,並降低Bacillota與Actinomycetota之豐富度,導致微生物多樣性下降;反之,較高乙醯化程度則促進Bacillota與Bacteroidota之間的平衡。在科層級中,乙醯化程度較低時,Bacteroidaceae與Lachnospiraceae呈現增加趨勢,Ruminococcaceae則相對減少。屬層級分析顯示,乙醯基修飾抑制了Bacteroides與Bifidobacterium的增殖,在Blautia、Fusicatenibacter與Agathobacter群體中亦呈現相同趨勢。在鑑定出的前十大物種中,Bacteroides xylanisolvens呈現獨特變化,於BWXDA0.5與BWXDA1.1組中相對豐富度上升。乙醯化亦顯著抑制短鏈脂肪酸(SCFA)之產生,顯示其不僅影響微生物組成,亦減弱代謝輸出。相關性分析指出,Bacteroides、Faecalibacterium、Escherichia-Shigella、Parabacteroides與Fusicatenibacter之相對豐富度與乙酸、丙酸及丁酸產量呈顯著相關,顯示上述菌屬可能在BWX與其乙醯化產物之代謝過程中扮演關鍵角色。綜合而言,乙醯化程度會改變木聚醣之微生物可利用性,進而重塑腸道微生物生態與代謝表現,為木聚醣於膳食干預與功能性食品設計上的應用提供依據。
zh_TW
dc.description.abstractXylan, as a main constituent of plant cell walls, consists of chained xylose residues and multiple types of branching structures. Acetylation is a common modification in plant xylan and provides essential physiological functions. It is also a polysaccharide modification method used in the food industry. Although acetylated food components are commonly found in daily diets, few studies have correlated acetylation levels of acetyl dietary fiber and its impact on the gut microbial communities. Acetyl substitutions commonly occur at the C-2 and C-3 positions of the xylose residues. The degree of acetylation, defined by the mole ratio of O-acetyl units to xylosyl units, determines the hydrophobicity of xylan molecules. Acetylation not only influences the physical and chemical properties of xylan but also limits the activity of xylan-degrading enzymes. Considering that plant xylan is a source of dietary fiber, present in grains and vegetables, it is important to understand how it is degraded in the human colon. In this study, we aimed to investigate how varying degrees of acetylation influence xylan degradation in the colonic environment, shift the abundance of gut microbial populations, and alter metabolic outcomes.
Beechwood xylan (BWX) was chemically modified to achieve degrees of acetylation of 0.0, 0.5, 1.1, 1.6, and 1.9, which were designated as BWXDA0.0, BWXDA0.5, BWXDA1.1, BWXDA1.6, and BWXDA1.9, respectively. These five samples were subjected to glycosyl composition and functional group analysis to obtain structural information, followed by in vitro fermentation inoculated with human fecal inoculum. Results from glycosyl and functional group analyses. Our results demonstrated that acetylation is a key factor in controlling xylan degradation in the human fecal cultures. As the degree of acetylation increased, both gas production and medium acidity during fermentation decreased. Changes in xylan acetylation altered gut microbial composition at the phylum, family, genus, and species levels. Substrates with lower degrees of acetylation significantly increased the relative abundance of Bacteroidota while reducing the abundance of Bacillota and Actinomycetota, leading to a decrease in microbial diversity. In contrast, higher acetylation levels resulted in a more balanced Bacillota/Bacteroidota ratio. At the family level, the lower degree of acetylation promoted the relative abundance of Bacteroidaceae and Lachnospiraceae, while Ruminococcaceae decreased. At the genus level, acetylation suppressed the relative abundance of Bacteroides and Bifidobacterium, as well as Blautia, Fusicatenibacter, and Agathobacter. Among the top 10 identified species, Bacteroides xylanisolvens displayed a unique trend, being specifically enriched in the BWXDA0.5 and BWXDA1.1 treatment groups. Acetylation of BWX significantly reduced the production of short-chain fatty acids during fermentation, indicating that acetyl modification not only affects microbial composition but also inhibits metabolic output. The relative abundances of Bacteroides, Faecalibacterium, Escherichia-Shigella, Parabacteroides, and Fusicatenibacter were strongly correlated with acetate, propionate, and butyrate production, suggesting that these taxa play key roles in the degradation of both native and acetylated BWX. These findings indicate that acetyl modification alters microbial utilization of xylan and consequently affects gut microbial composition, which may provide insights into the application of plant xylans in dietary fiber and functional food design.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:45:24Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-24T16:45:24Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF FIGURES xi
LIST OF TABLES xiii
LIST OF APPENDICES xiv
ABBREVIATIONS xvi
Chapter 1 INTRODUCTION 1
Chapter 2 LITERATURE REVIEW 3
2.1 Acetylated xylan in plants 3
2.1.1 Physiological functions 3
2.1.2 Biosynthetic pathways 4
2.2 O-Acetylation in the food industry 6
2.2.1 Method for conducting the O-acetylation reaction 6
2.2.2 Products of acetylated polysaccharides 8
2.2.3 Potential applications of acetylated xylan 8
2.3 Human gut microbiota 10
2.3.1 Composition 10
2.3.2 Consumption and metabolism 11
2.3.3 The impact of SCFAs on human health 11
2.3.4 Enzymatic degradation of plant xylan 14
2.3.5 Fermentation of O-acetylated polysaccharides 16
Chapter 3 RESEARCH METHODS 17
3.1 Raw materials, chemicals, and analytical standards 17
3.2 Preparation of acetylated xylan 17
3.2.1 Deacetylation of xylan 17
3.2.2 Acetylation of xylan 17
3.3 Characterization of xylan 18
3.3.1 Quantitative determination of sugar and acetate 18
3.3.2 Quantitative determination of uronic acid 19
3.3.3 Analysis of the molecular size distribution 19
3.3.4 Fourier-transform infrared (FTIR) spectroscopy 20
3.4 Gut microbiota fermentation 20
3.5 Short-chain fatty acid (SCFA) analysis 22
3.6 DNA extraction 22
3.7 16S rRNA gene amplicon sequencing 23
3.8 Statistical analysis 24
Chapter 4 RESULTS 26
4.1 Glycosyl composition of the BWX-derived substrates 26
4.2 Size exclusion chromatograms (SEC) 30
4.3 Fourier-transform infrared (FTIR) spectra 32
4.4 Medium pH during fermentation 34
4.5 Gas production during fermentation 34
4.6 Carbohydrate consumption during fermentation 36
4.7 Microbial community structures shift during fermentation 39
4.8 Composition of the microbiota during fermentation 41
4.9 Dominant bacterial taxa during fermentation 47
4.10 Short-chain fatty acid (SCFA) production 49
4.11 Correlations between SCFA production and dominant microbial taxa 51
Chapter 5 DISCUSSION 52
Chapter 6 CONCLUSION 59
REFERENCE 60
APPENDIX 69
-
dc.language.isoen-
dc.subject木聚醣zh_TW
dc.subject乙醯化zh_TW
dc.subject短鏈脂肪酸zh_TW
dc.subject腸道微生物zh_TW
dc.subject膳食性纖維zh_TW
dc.subjectdietary fiberen
dc.subjecthuman gut microbiotaen
dc.subjectshort-chain fatty aciden
dc.subjectxylanen
dc.subjectacetyl substitutionen
dc.title乙醯化程度對植物木聚醣於腸道降解之影響zh_TW
dc.titleImpact of degree of acetylation on the colonic degradation of plant xylanen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee羅翊禎;呂廷璋;蔡明翰;陳永如zh_TW
dc.contributor.oralexamcommitteeYi-Chen Lo;Ting-Jang Lu;Ming-Han Tsai;Yung-Ju Chenen
dc.subject.keyword乙醯化,木聚醣,膳食性纖維,腸道微生物,短鏈脂肪酸,zh_TW
dc.subject.keywordacetyl substitution,xylan,dietary fiber,human gut microbiota,short-chain fatty acid,en
dc.relation.page82-
dc.identifier.doi10.6342/NTU202502931-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
dc.date.embargo-lift2030-08-04-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.99 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved