Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96631
標題: Filters and Learning-based Methods for Tumor Detection from Ultrasonic Images
Filters and Learning-based Methods for Tumor Detection from Ultrasonic Images
作者: Daisuke Osako
Daisuke Oskao
指導教授: 丁建均
Jian-Jiun Ding
關鍵字: none,
Tumor segmentation,Machine learning,
出版年 : 2025
學位: 碩士
摘要: None
Tumor segmentation in medical imaging plays a critical role in the accurate diagnosis and treatment planning of cancer. This study proposes a hybrid framework that combines complementary convolutional neural network (CNN) models and advanced post-processing techniques to achieve robust and accurate tumor segmentation. The initial model (Model 1) employs CLAHE preprocessing, CNN-based predictions, and active contour refinement to provide a baseline segmentation. However, its performance is limited by difficulties in capturing complex tumor boundaries. To address these challenges, a second model (Model 2) incorporates noise-augmented preprocessing and iterative detection, enhancing the segmentation of subtle and irregular tumor regions.
The outputs of both models are merged using logical operations and refined further with edge correction and size filtering. Additionally, an enhanced merging model integrates a Spatial Intensity Metric (SIM) expansion, which leverages spatial and intensity relationships to refine and expand tumor regions, particularly addressing under-segmented areas. This enhancement results in significant improvements, as demonstrated by higher F1 and IoU scores compared to earlier models.
The study also highlights the limitations of the grid-based 16×16 classification approach, especially for large tumors, and suggests future directions such as adaptive grid sizes, more detailed labeling schemes, and the incorporation of local texture analysis for malignancy assessment. The proposed framework demonstrates the potential of integrating machine learning and traditional image processing techniques for accurate tumor segmentation, paving the way for more reliable and clinically valuable diagnostic tools.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96631
DOI: 10.6342/NTU202500232
全文授權: 同意授權(全球公開)
電子全文公開日期: 2025-02-21
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf2.73 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved