Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94691
標題: 利用無人機擷取之多光譜影像近似燕麥芻料性狀
Approximating the forage traits of oats based on multispectral images captured using an unmanned aerial vehicle
作者: 陳思彤
Ssu-Tung Chen
指導教授: 黃永芬
Yung-Fen Huang
關鍵字: 燕麥,芻料,營養價值,多光譜影像,植生指數,
oat,forage,nutritive values,multispectral images,vegetation indices,Avena sativa L.,
出版年 : 2024
學位: 碩士
摘要: 燕麥(Avena sativa L.)是重要的穀類作物,為單年生禾本科植物,除了穀粒供人類食用外,也常用作動物芻料。育成優良的芻料燕麥品種除關注產量外,還需評估其營養價值 (Nutritive values, NV),然一般產量性狀與營養價值之量測方法耗時費力,不利於育種的進行。透過無人機(Unmanned aerial vehicle, UAV)搭載多光譜相機,獲取可反映植物生長狀態之特定波長的反射光譜影像,近似產量性狀和營養價值為可能的解方。因此,本研究的目的為利用無人機擷取之多光譜影像近似燕麥芻料性狀。本研究於國立臺灣大學附設農業試驗場進行為期兩年的田間試驗,播種時間分別為2020年10月28日和2021年11月3日。第一年試驗種植4個具有不同特性的燕麥品系,第二年除第一年的4個品系,另增加8個,共有12個燕麥品系。第一年在其中一個品系開始抽穗時進行收穫,於收穫當日利用無人機搭載多光譜相機拍攝影像,共有7個日期的多光譜影像;第二年則於植株達抽穗期時進行多光譜影像拍攝及收穫。本研究利用五個波段之反射光譜值及由反射光譜衍生之植生指數 (Vegetation index, VI) 作為自變數,以性狀數據做為應變數,並以最佳子集迴歸 (Best subsets regression) 及交叉驗證 (Cross-validation) 建立最佳模型。結果顯示,波段模型和植生指數模型的表現相似,波段模型對於營養價值的預測性較好,其中,對Ash的預測效果最差,預測值與實際觀測值之皮爾森相關係數 (Pearson’s correlation coefficient) 僅0.20,其他營養價值的相關係數則介於0.39到0.54;植生指數模型對於產量性狀的預測性較好,FWY和DWY的相關係數分別為0.70和0.65。本研究建立了一套非破壞性且高通量的芻料性狀分析方法,利用無人機拍攝多光譜影像即可快速估算芻料燕麥的產量及營養價值。未來的研究可擴大試驗範圍,包括更多的收穫期、品系及地點,以增加數據的多樣性,從而使模型能更廣泛地應用於芻料燕麥的育種。
Oats (Avena sativa L.) serve as both human food and animal feed. Breeding high-quality forage oat varieties not only needs to consider the yield but also requires evaluating their nutritive values (NV). Traditional methods for measuring yield traits and NV are time-consuming and labor-intensive. The present study aims to approximate oat forage traits using multispectral images captured by unmanned aerial vehicle (UAV). Field experiments were conducted over two years at the Experimental Farm of National Taiwan University. Oats were sowed on October 28, 2020 and November 3, 2021. In the first year, 4 oat lines with different characteristics were sowed, while 8 more lines were included in the second-year experiment. Reflectance of five wavelengths, as well as eight vegetation indices (VI) calculated based on the reflectance data, were used for trait prediction model fitting using best subsets regression and cross-validation. Results showed similar prediction ability between the direct use of reflectance and VI. The reflectance models were better at predicting NVs, with the poorest prediction for Ash, having a Pearson’s correlation coefficient of only 0.20 between the predicted and actual values. For other NVs, the correlation coefficients ranged from 0.39 to 0.54. The VI models were better at predicting yield traits, with correlation coefficients for fresh weight yield (FWY) and dry weight yield (DWY) being 0.70 and 0.65, respectively. This study established a non-destructive, high-throughput method for analyzing oat forage traits using UAV-captured multispectral images, with potential applications in forage oat breeding. The experiment can be extended in the future to include additional harvest periods, oat lines, and locations. This expansion would enhance data diversity and extend the model's predictive ability.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94691
DOI: 10.6342/NTU202402610
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2026-09-01
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
4.47 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved