請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93921
標題: | 跡不等式與量子熵相關問題之探討 A survey on the Trace Inequalities and Quantum Entropy with Related Problems |
作者: | 游人樺 Ren-Hua You |
指導教授: | 崔茂培 Mao-Pei Tsui |
關鍵字: | 跡不等式,量子,熵,Eric Carlen, Trace Inequality,Quantum,Entorpy,Eric Carlen, |
出版年 : | 2024 |
學位: | 碩士 |
摘要: | 量子理論是當今最重要的領域之一。其中,von Neumann熵為特定量子系統的不確定性提供了一種度量,其被定義為 S(rho) = -tr(f(rho)),rho為量子系統上的密度矩陣,f(x)=x log x。人們發現熵具有數個性質,例如凹凸性和某種單調性等。我們將證明相關的跡不等式後,在一般情況下找出某些也具有這些性質的函數 f: R to R 。
我們將介紹運算子單調性以及運算子的(聯合)凹凸性,同時介紹子系統(它們是ast子代數)上的條件期望值與張量積,以及它們之間的關係。然後,我們將探討具有更多變量的運算子的跡相關函數的單調性和凹凸性。我們將定義矩陣的L_p範數,並用刻畫數個矩陣範數相關函數的性質。最後,我們將證明熵的次可加性和強次可加性,推廣到非交換代數,並以此證明其上的廣義楊氏不等式。 此篇探討主要參考Eric Carlen的論文,並以鄭皓中教授提出的相關猜想的討論作為結尾。 Quantum theory has been one of the most important fields these days. Most of all, the von Neumann entropy gives a measurement to the uncertainty of a specific quantum system, which is defined as S(rho) = -tr(f(rho)) where f(x) = x log x for density matrices ``rho'' on the quantum system. It has been discovered that the entropy has several propositions, such as concavity a specific kind of monotonicity, etc. We state and proof several related trace inequalities and find out which functions f: R to R have the former properties in general. We introduce the operator monotonocity and operator (joint) concavity for several functions; also, we introduce the conditional expectation and tensor products on subsystems, which are ast-subalgebras, and the relation between them. After that, we discover the monotonicity and concavity for trace associated functions on operators with more variables. Moreover, we deifine the L_p norm for matrices and characterize several functions related with the matrix norm. Last, we give proof to the subadditivity and strong subadditivity for the entropy, generalize to non-commutative algebras, and prove the generalized Young's Inequality on them. We mainly follows the essay of Eric Carlen, and ended with the discussion on a related conjecture which has been announced by Professor Hau-Chung Cheng. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93921 |
DOI: | 10.6342/NTU202402673 |
全文授權: | 同意授權(全球公開) |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 4.6 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。