請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93252
標題: | 使用心律變異特徵預測院外心跳停止病人癲癇發作深度學習模型 A deep learning model predicting epileptic seizures in out-of-hospital cardiac arrest patients using heart rate variability features |
作者: | 黃雅琳 Ya-Lin Huang |
指導教授: | 趙福杉 Fu-Shan Jaw |
共同指導教授: | 謝建興;宋之維 Jiann-Shing Shieh;Chih-Wei Sung |
關鍵字: | 癲癇預測,領域自適應,心電圖,深度學習, Seizure prediction,Domain adaptation,ECG,Deep learning, |
出版年 : | 2024 |
學位: | 碩士 |
摘要: | 院外心跳停止的病患在恢復心跳自主循環後,大多數會出現心跳後停止症候群的症狀,其中以腦損傷引起的癲癇發作最為嚴重,常導致不良的治療結果。為了提高治療效果,需要預測癲癇的發生,以便及時施打抗癲癇藥物。本研究旨在讓病患在加護病房中能夠準確預測癲癇,使用心律變異特徵(Heart Rate Variability, HRV),並開發基於雙向長短期記憶網絡(Bi-LSTM)和領域對抗式學習神經網絡(DANN)的深度學習模型來進行預測。
本研究採用個體獨立型的模型訓練方式,使模型能夠快速預測從未見過的病患,並解決HRV特徵中的個體差異問題。研究結果顯示,模型在測試資料集中的最高精確度可達60%,能夠在癲癇發作前12.5到32.5分鐘進行預測,為醫護人員提供了充足的準備時間。 Patients who experience out-of-hospital cardiac arrest (OHCA) and subsequently regain spontaneous circulation often develop post-cardiac arrest syndrome. Among the various complications, brain injury leading to seizures can result in poor treatment outcomes. To improve these outcomes, it is essential to predict seizures promptly so that antiepileptic medications can be administered in a timely manner. This study aims to accurately predict seizures for patients in intensive care units (ICU) using heart rate variability (HRV) features and developing a deep learning model based on Bi-directional Long Short-Term Memory (Bi-LSTM) and Domain-Adversarial Neural Network (DANN). This study employs an individual-independent model training approach, allowing the model to quickly predict seizures in previously unseen patients while addressing individual differences in HRV features. The results show that the model achieves a maximum accuracy of 60% on the test dataset and can predict seizures 12.5 to 32.5 minutes before onset, providing sufficient preparation time for healthcare professionals. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93252 |
DOI: | 10.6342/NTU202401878 |
全文授權: | 未授權 |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 2.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。