Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85943
標題: 人工特徵與深度學習特徵在基礎矩陣估算上之效能表現
Performance of Fundamental Matrix Estimation Using Handcrafted and Deep Learning Features
作者: JunYong Jeon
田濬榕
指導教授: 洪一平(Yi-Ping Hung)
關鍵字: 雙視圖跟蹤,特徵提取,基於深度學習的特徵,人工特徵,基本矩陣,低曝光,歸一化對稱幾何距離誤差曲線,
two view tracking,feature extraction,deep learning feature,handcrafted feature,fundamental matrix,low exposure,normalized symmetric geometry distance error curve,
出版年 : 2022
學位: 碩士
摘要: 特徵提取在攝影機定位領域有廣泛的應用,特徵提取的精確度對於追蹤攝影機至關重要。為此,本研究透過兩視點跟蹤流估計基矩陣的比較,驗證了特徵之性能。在這個過程中,我們提出了一個方法來比較特徵運用在整個領域上的性能,並使用一個新的概念,規範對稱幾何距離曲線。除了常用的數據集,包括視點或亮度的變化,我們還使用專門用於低曝光條件下的數據集來評估相機傳感器的靈敏度。低曝光和噪聲的方法是用來定義強健特徵的另一種視角,對於未來諸如自動駕駛汽車或增強現實等應用中的特徵提取方法的發展有重大影響。
Feature-based localization method is widely used in the camera-based localization field, and accurate feature extraction is crucial for obtaining the precise camera tracking result. To this end, in this study, the performance of the feature was verified through a comparison of the estimated fundamental matrices following a two-view tracking flow. In this paper, we present a new evaluation metric, the NSGD error curve, to compare the overall performances of various feature methods. In addition to use the comparative evaluation dataset for viewpoint or luminance changes, we also applied an low exposure and noise specific dataset to evaluate the performances of the feature extraction methods in low luminance situation. This new approach to low exposure and noise, another criteria that defines robust features, will have significant meanings for researching feature methods in applications such as Autonomous Vehicles or Argumented Reality.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85943
DOI: 10.6342/NTU202202903
全文授權: 同意授權(全球公開)
電子全文公開日期: 2022-09-23
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-2908202200415300.pdf14.36 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved