請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83227
標題: | 五螺箍筋柱反覆載重撓曲與偏心軸壓行為 Flexural Behavior of Reinforced Concrete Columns with Five-Spiral Reinforcement Under Cyclic and Eccentric Axial Loading |
其他標題: | Flexural Behavior of Reinforced Concrete Columns with Five-Spiral Reinforcement Under Cyclic and Eccentric Axial Loading |
作者: | 留明誠 John Victor Juvida Lau |
指導教授: | 歐昱辰 Yu-Chen Ou |
關鍵字: | 五螺箍,撓曲行為,偏心軸向負載,往復載重,地震,柱, five-spiral reinforcement,flexural behavior,eccentric-axial loading,cyclic loading,seismic,column, |
出版年 : | 2022 |
學位: | 碩士 |
摘要: | Multi-spiral transverse reinforced columns have been shown to outperform conventional rectilinear tie reinforced columns in seismic performance. This thesis intends to examine the flexural behavior of multi-spiral reinforced columns, particularly, the five-spiral transverse reinforcement for square columns. In the first phase, a method to determine the flexural capacity of five-spiral reinforced columns, which considers the confinement effect of the five-spirals, was introduced. Five small-scale columns were tested under increasing eccentric axial loading to validate the predicted axial-moment interaction of the five-spiral reinforced columns. In the second phase, large-scale flexure-critical five-spiral columns and equivalent conventional rectilinear tied columns were tested under low (0.1fca'Ag) and high (0.3fca'Ag) constant axial loads and subjected to double-curvature lateral cyclic loading. Test results showed that the five-spiral reinforced columns obtained higher flexural strength, superior ductility, larger drift capacity, and better equivalent damping ratios than counterpart conventional rectilinear tie reinforced columns, despite having 16% to 29% less transverse reinforcement. In addition, it was shown that code-based calculations of nominal moment strength can conservatively estimate the actual moment strength of five-spiral reinforced columns. On the other hand, among the existing code-based methods used in calculating the expected maximum moment of five-spiral columns, the Caltrans SDC 2019 method provided the most accurate prediction of the maximum flexural strength, followed by the AASHTO 2017 method, then the ACI 318-19 method. It was noted, however, that all three methods were not able to fully capture the superior confinement effect provided by the five-spiral reinforcement. Multi-spiral transverse reinforced columns have been shown to outperform conventional rectilinear tie reinforced columns in seismic performance. This thesis intends to examine the flexural behavior of multi-spiral reinforced columns, particularly, the five-spiral transverse reinforcement for square columns. In the first phase, a method to determine the flexural capacity of five-spiral reinforced columns, which considers the confinement effect of the five-spirals, was introduced. Five small-scale columns were tested under increasing eccentric axial loading to validate the predicted axial-moment interaction of the five-spiral reinforced columns. In the second phase, large-scale flexure-critical five-spiral columns and equivalent conventional rectilinear tied columns were tested under low (0.1fca'Ag) and high (0.3fca'Ag) constant axial loads and subjected to double-curvature lateral cyclic loading. Test results showed that the five-spiral reinforced columns obtained higher flexural strength, superior ductility, larger drift capacity, and better equivalent damping ratios than counterpart conventional rectilinear tie reinforced columns, despite having 16% to 29% less transverse reinforcement. In addition, it was shown that code-based calculations of nominal moment strength can conservatively estimate the actual moment strength of five-spiral reinforced columns. On the other hand, among the existing code-based methods used in calculating the expected maximum moment of five-spiral columns, the Caltrans SDC 2019 method provided the most accurate prediction of the maximum flexural strength, followed by the AASHTO 2017 method, then the ACI 318-19 method. It was noted, however, that all three methods were not able to fully capture the superior confinement effect provided by the five-spiral reinforcement. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83227 |
DOI: | 10.6342/NTU202203975 |
全文授權: | 同意授權(限校園內公開) |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2409202217135000.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 371.72 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。