Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78341
標題: 量子神經網路求解微分方程
Quantum Neural Networks for Solving Differential Equations
作者: Jia-Yang Gao
高嘉陽
指導教授: 管希聖(Hsi-Sheng Goan)
關鍵字: 變分量子電路,機器學習,深度學習,有噪聲的中尺度量子設備,
variational quantum circuits,machine learning,deep learning,noise intermediate scale quantum device(NISQ),
出版年 : 2020
學位: 碩士
摘要: 近年來,基於變分量子電路(VQC)的機器學習算法已在函數逼近,分類和深度強化學習中獲得成功。 在這項工作中,我們將VQC的功能擴展到了求解常微分方程(ODE)和偏微分方程(PDE)的領域。 在這項工作中,我們使用一種量子資訊編碼方法將古典資料準備成量子態,以供量子電路學習微分方程解。 所提出的框架可以在許多近期有噪聲的中尺度量子(NISQ)設備中實現,因此對於量子計算機在科學計算中的應用具有價值。
Recently, machine learning algorithms based on variational quantum circuits (VQC) have been successful in function approximation, classification and deep reinforcement learning. In this work, we extend the capability of VQC to the domain of solving ordinary differential equations (ODE) and partial differential equations (PDE). In this work, we use a quantum information encoding method to prepare classical values into quantum states for a quantum circuit to learn the differential equation solutions. The proposed framework can be implemented in many near-term noisy intermediate scale quantum (NISQ) devices and therefore is invaluable for the application of quantum computers in scientific computing.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78341
DOI: 10.6342/NTU202002201
全文授權: 有償授權
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
U0001-0108202018582600.pdf
  目前未授權公開取用
2.92 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved