Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57878
標題: 黏土插層/脫層機制之策略性研究與黏土/磷難燃性奈米複合材料之應用
Intercalation Strategies of Synthesizing Clay/Polymer Hybrids and Clay/Phosphazene Nanocomposites for Fire-Retarding and the Synergistic Effect
作者: Jau-Yu Chiou
邱昭諭
指導教授: 林江珍(Jiang-Jen Lin)
關鍵字: 黏土插層/脫層機制,階段式插層,奈米容器,奈米複合材,熱穩定性,
intercalation mechanism,stepwise intercalation,phosphazene-amines,flame retardant,nanocomposites,
出版年 : 2014
學位: 博士
摘要: 本論文探討黏土插層/脫層機制形成“黏土/高分子混成材料”之策略性研究與黏土含磷之難燃性衍生奈米複合材料與應用,研究內容主要分敘如下。
黏土插層/脫層機制形成黏土/高分子混成材料之策略性研究,係藉由聚醚胺(polyoxyalkylene-amines) 插層劑之親/疏水性質與末端基差異性,探討對層狀黏土有機化改質機制之影響。研究中發現在相同分子量之線性疏水鏈段聚醚胺 (polyoxypropylene-amines, POP-amines),一端末端基為甲基之 POP-M-amines,與雙端皆為胺基之 POP-D-amines 相比具有最大層間距擴張。由動態實驗發現,POP-M-amines進行黏土插層具有特殊之第二步插層現象,有別於一般插層劑經離子交換進入黏土層間(第一步插層)所觀察到有機量關鍵性插層 (critical intercalation);第二步插層,黏土之層間距與插層劑量成正比。此階段式插層現象,除了可達到天然黏土脫層型態外,進一步地,可利用此特殊插層機制,將有機化黏土做為奈米容器,把材料儲存於黏土層間之奈米空間,如原油吸附與回收、藥物釋放及相變化 (PCM) 材料 (如paraffin wax) 之包覆等。
高分子/黏土 (Polymer layered silicate, PLS) 奈米複合材具有優秀的機械性質、熱穩定性質與生物相容性質。關鍵技術在於親水性之黏土與疏水性高分子間之相容性。本研究,黏土含磷之難燃性衍生奈米複合材料與應用,係以合成 Phosphazene-poly(oxypropylene)-amines (HCP-D400) 為始,並依三種改質方式製得 HCP-D400/NSP、HCP-D400/MMT及HCP-D400/Na+-MMT 有機化黏土,並具有 lower critical aggregate temperature (LCAT) 之特殊性質。經由SEM-EDX、XRD 及 TEM 分析,發現 HCP-D400 與脫層之奈米矽片(NSP) 以物理摻混方式製備之 HCP-D400/NSP 於環氧樹酯中分散效果最佳。更進一步分析複合材料之熱穩定性,當添加 10wt% HCP-D400/NSP 於環氧樹酯,T¬¬10wt% 由 350 oC 增加至 447 oC,T¬¬10wt% 由 500 oC 增加至757 oC ,有效提升環氧樹酯熱裂解溫度 127 oC (T10wt%)與 257 oC (T¬¬80wt%)。限氧指數 (limit oxygen index, LOI) 則提升 7% 至 27%。研究中發現HCP-D400不僅可使奈米矽片均勻分散於環氧樹酯中,進一步的與奈米矽片產生協同作用 (synergistic effect),提升高分子材料之熱穩定性質。
Layered silicate clays are natural crystallites and are well recognized for their organic intercalation for nanocomposite applications. In this study, a new mechanism is revealed by selection of hydrophobic polyetheramines with a poly(oxypropylene) (POP) backbone and a methyl terminus as the intercalation agent. Specifically, the monoamine with a molecular weight of 2000 g/mol widened the basal spacing of the layered sodium montmorillonite up to 74 A and further expansion to 84 A, 96 A, and 100 A by a second intercalation different from the ionic exchange reaction. Kinetic studies indicated that the first stage of intercalation occurred after a critical concentration of a monoamine, while the second stage had no critical concentration behavior. This two-step method shows the potentials for synthesizing suitable organoclay nanostructures for encapsulating phase change materials (PCM) and oil recovery from the spilt ocean. The exploration of the in-depth understanding of clay confinement chemistry leads the strategic design of new materials and oil recovery process.
We further synthesized the phosphazene-amine adduct of hexachlorocyclophosphazene (HCP) and poly(oxypropylene)-diamines of 400 g/mol molecular weight (D400) by amine/chloride substitution and triethylamine removal of HCl. Subsequently, the adduct HCP-D400 was physically mixed with exfoliated silicate platelets (SP) to prepare the HCP-D400/silicate hybrids (HCP-D400/SP). The HCP-D400/MMT (HCP-D400 intercalated Na+-MMT) and HCP-D400/Na+-MMT (HCP-D400 physically mixed with Na+-MMT) were also prepared for comparison with HCP-D400/SP. A more homogeneous silicate distribution HCP-D400/SP than the HCP-D400/MMT counterparts in epoxy nanocomposites was revealed by SEM-EDX, XRD, and TEM analyses. The epoxy nanocomposite with 10 wt% of HCP-D400/SP, HCP-D400/MMT, and HCP-D400 had a degradation temperature at 80 % weight loss (T80 wt%) of 757 oC, 712 oC, and 519 oC, respectively, in comparison with the 500 oC of the pristine epoxy system. Anti-flame test confirmed that the HCP-D400/SP epoxy nanocomposite had a higher limit oxygen index (LOI) of 27.0 % than the HCP-D400/MMT counterpart (24.0 %). The degree of exfoliating the layered clay into random silicate platelets is the predominant factor for the thermal stability enhancement. It is also demonstrated that the co-presence of phosphazene-amines and silicate platelets has a synergistic effect in improving the thermal behavior of the nanocomposites.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57878
全文授權: 有償授權
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
5.97 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved