Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56203
標題: 利用三維超音波影像與電腦輔助系統診斷乳癌腫瘤良惡性與惡性等級
Computer-aided Diagnosis System for Breast Cancer Diagnosis and Tumor Grade Classification in 3D Ultrasound Image
作者: Cheng-Liang Chien
簡政良
指導教授: 郭彥甫(Yan-Fu Kuo)
關鍵字: 乳癌,三維超音波影像,電腦輔助診斷系統,稀疏線性判別分析,支持向量機,
Breast Cancer,Three-dimensional Ultrasound Image,Computer-aided Diagnosis System,Sparse Linear Discriminant Analysis,Support Vector Machine,
出版年 : 2014
學位: 碩士
摘要: 本研究在於開發出透過三維超音波影像對乳房腫瘤進行良惡性分類,以及對乳癌腫瘤進行分級的計算機輔助診斷系統。對女性而言,乳癌是世界上造成最多死亡的癌症。為了改善病人的存活率,早期的乳癌診斷是必須的。過去研究中,在檢查乳癌裡,超音波成像已認為是一種能輔助乳房X光攝影的成像工具。所以,電腦輔助診斷系統是能被開發來協助醫生,透過超音波影像來進行乳房腫瘤的診斷。建立電腦輔助診斷系統的過程中,量化特徵是耗時的。所以,使用較少特徵的電腦輔助診斷系統是較好的。本研究中,首先從病人身上收集乳房腫瘤的三維超音波影像。然後,使用型態、紋理以及橢球近似特徵來描述乳房腫瘤的特性。之後,使用稀疏線性判別分析來區別出一組最小限度的特徵。研究結果顯示,使用最小限度的特徵以及全部特徵的這兩個系統,在統計學上的精確度是沒有差別的。本研究也探討乳癌腫瘤等級的區別。乳癌等級是一個對患者預後的標準指標。若能夠在早期的時候評估出乳癌等級,可使得醫生在患者的診斷上更有選擇性,且能適當地確定治療方式。本研究開發出協助醫生對乳癌腫瘤分級的電腦輔助診斷系統。研究過程中,從病人身上收集三維超音波的乳癌腫瘤影像。使用型態、紋理、橢球近似與後方回音的特徵來量化腫瘤的特性。使用結合基因演算法的支持向量機,開發出計算機輔助診斷系統來分類乳癌腫瘤等級。此電腦輔助診斷系統的精確度可達85.14%。此結果顯示,開發出來的電腦輔助診斷系統能有效分類低等級與高等級的乳癌腫瘤。
This work aims to develop computer-aided diagnosis (CAD) systems for (1) breast cancer screening and (2) tumor grade classification in ultrasound (US) images. Breast cancer is a leading cause of death for women worldwide. Early diagnosis of breast cancer is essential for improving the patient survival rate. US imaging has been reported as a noninvasive and effective tool for breast cancer screening as a supplement to mammography. CAD systems are often developed for screening breast cancer in US images. When developing CAD systems, the process of quantifying features is time consuming. It is preferable to use only crucial features in the CAD systems. In this work, three-dimensional (3D) US images of breast tumor were obtained at hospital. Tumor features, including morphological, textural, and ellipsoid-fitting features, were quantified to describe the characteristics of the tumors. Sparse linear discriminant analysis was then applies for identifying a minimal set of features to be used in tumor classification. The results indicated the accuracies of the systems developed using the minimal set and full set were statistically equivalent. This work also studied tumor grade discrimination in US images. Breast cancer grade is a standard indicator of prognosis in patients. Noninvasive and early assessment of tumor grade allows doctors to be more selective in their diagnosis and to appropriately determine the treatment to the patients. This work developed a CAD system for discriminating the breast cancer grades. In the process, the 3D US images of breast tumor were obtained. Morphological, textural, ellipsoid-fitting, and posterior acoustic features were quantified to describe the characteristics of the tumors. A support vector machine with genetic algorithm was then proposed to develop the CAD system that classifies breast tumor grades. The CAD system attained a classification accuracy of 85.14%. It is demonstrated that the developed CAD system can effectively classify between low and high grades of breast tumors.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56203
全文授權: 有償授權
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
1.12 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved