請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50476
標題: | 自編碼器與動態閾值用於單變量時間序列之異常偵測 Anomaly Detection in Univariate Time Series with An Autoencoder and Dynamic Thresholding |
作者: | Ting-Wei Zhang 張廷維 |
指導教授: | 王勝德(Sheng-De Wang) |
關鍵字: | 異常偵測,時間序列,動態閾值,自編碼器,非監督, Anomaly Detection,Time Series,Dynamic Threshold,Autoencoder,Unsupervised, |
出版年 : | 2020 |
學位: | 碩士 |
摘要: | 物聯網中的傳感器設備常以時間序列的形式提供數據,例如橋樑振動,溫度,人體生理數據和空氣品質。本文提出了一種可以同時考慮時間序列的重建特徵和時間依賴性之異常檢測模型。所提出的模型基於帶有預測網絡的自動編碼器,該網絡可以即時計算每個時間戳上的異常分數。此外,考慮到每個時間序列之間的異常分數可能會根據環境因素而變化,我們設計了一個動態閾值演算法來為每個單變量時間序列提供一個個別的動態閾值。我們所提出帶有動態閾值演算法的深度學習模型在YahooWebscope數據集中的A1真實基準和Numenta異常基準(NAB)數據集上取得了良好的結果。 Sensor devices in Internet of Things often provide data in the form of time series, such as bridge vibrations, temperatures, human physiological data and air quality. The thesis proposes an anomaly detection model that can simultaneously considers the reconstruction feature and temporal dependence oftime series. The proposed model is based on an auto encoder with a prediction network, which can instantly calculate the anomaly score at each time stamp. In addition, to consider that the anomaly scores among each time series may vary according to environmental factors, we designed a dynamic threshold algorithm to provide an individual dynamic threshold for each univariate time series. The proposed deep learning model with the dynamic threshold algorithm has been shown to achieve good results on the A1 real benchmark in the Yahoo Webscope dataset and Numenta Anomaly Benchmark (NAB) dataset. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50476 |
DOI: | 10.6342/NTU202002924 |
全文授權: | 有償授權 |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1108202013085300.pdf 目前未授權公開取用 | 2.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。