Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49906
標題: 最佳降維分數之估計及其延伸至設限資料
Estimation of Optimal Sufficient Dimension Reduction Score
and Its Extension to Censored Data
作者: Shao-Hsuan Wang
王紹宣
指導教授: 江金倉
關鍵字: 排序指標,最佳降維,最佳降維分數,廣義貝式判式,存活分析,
Rank-Based Measure,Sufficient Dimesnion Reduction,Optimal Sufficient Dimension Reduction,Concordance-based BIC type criterion,Survival Analysis,
出版年 : 2016
學位: 博士
摘要: 排序指標— 用來評估反應值y 及其對應p 個解釋變數的一致性, 由於它在存活分析的應用層面非常廣泛,所以長期以來一直被關注。傳統上,多個解釋變數的線性結合被用來當作一個分數來看y 關係,在本論文中,我們發展一個新的排序指標,將線性結合延伸至多維多項式結合,並且能充分解釋y 所包含x 的最大訊息。這新的指標幫助我們更容易用圖形來分析迴歸關係。為了引進這樣的概念,一個廣義的遞增模型—描述y 與一個真實多項式分數有遞增關係,是需要的。 而真實多項式分數是由最佳的解釋變數降維子空間所建立出來的最小次數多項式。由這個模型,C 指標被定出來,並且對於這個指標,我們引進了所謂的「最佳SDR 分數」— 具有最大性,唯一性和最佳性。善用多項式可展成廣義性線的特質,我們發展排序基礎的貝式訊息判定,來估計未知的多項式次數以及降維空間的維度。當p 很大的時候,我們也提供顯著性變數選擇法將不重要的變數排除。此外,我們發展一個有效的演算法,來計算這數量不小的廣義線性所對應的係數值。更進一步,利用外積微分法來估計最佳SDR 分數以及C 指標。我們也提出另一個方法— 半母數參數化方式計算C 指標最大值,來得到估計式。存活分析當中,許多資料因為被設限而無法完全觀測到。在這種情況之下,我們發現,用部分排序法的概念,處理完整資料的估計程序可以直接套用。就C 指標來說,利用可觀測資訊來補足不可觀測的二項式計數過程,使我們得到估計式。最後,我們設計一系列的模擬和實務資料來驗證我們方法論在分析上優勢和廣泛應用。
Rank-based measures, which is used to access the concordance between the univariate response variable y and a linear composite score of its p-dimensional explanatory variable z, has been studied because of its applicability to a wide variety of survival data. In this article, a new rank-based measure is developed for extending a linear score to a multivariate polynomial one, which captures the most information of z with respect to y. This new measure explores the simplicity of the graphical view of regression; that is, we can regress y against this multivariate polynomial score based on dimension reduction framework. To introduce this concept, a general semiparametric model, which characterizes the dependence of a response on covariates through a multivariate polynomial transformation of the central subspace (CS) directions with unknown structural degree and dimension, is proposed. In light of the monotonic model structure and defined concordance index (C-index) function, such a composite score, which is referred to as the optimal sufficient dimension reduction (SDR) score, is shown to enjoy the existence, optimality, and uniqueness up to scale and location. By means of these properties and the generalized single-index (SI) representation of any multivariate polynomial function, the concordance-based generalized Bayesian information criterion (BIC) is proposed to estimate the optimal SDR score and its corresponding C-index, say Cmax. Meanwhile, effective computational algorithms are offered to carry out the presented estimation procedure. With estimated structural degree and dimension from this BIC, an alternative approach is further developed to estimate the optimal SDR score and Cmax. In addition, we establish the consistency of structural degree and dimension estimators and the asymptotic normality of optimal SDR score and Cmax estimators. As for significant covariates, a variable selection is proposed to retain important confounding variables when p is large. In general, survival data is partially observed due to right-censoring. In this case, a partial rank-based approach allows us to follow the similar estimation procedure with the completed data. Further, we adopt an imputation method to recover unobserved counting process for estimating Cmax. The performance and practicality of our proposal are also investigated by a series of simulations and illustrated examples.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49906
DOI: 10.6342/NTU201602206
全文授權: 有償授權
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
739.3 kBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved