Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47722
標題: 以基板電壓作生醫感測晶片再生的物理機制及參數研究
Physical Mechanism and Parametric Study of Biosensor Regeneration via Substrate Electric Potential
作者: Rui-Bin Jiang
江瑞斌
指導教授: 李雨
關鍵字: 生醫晶片,晶片再生,基材電壓,專一性作用,分子間作用力,加權樣本布朗動力計算,
biosensor,regeneration,substrate electric potential,specific interaction,intermolecular forces,weight-ensemble Brownian dynamics simulation,
出版年 : 2010
學位: 博士
摘要: The literature showed that the immune type biosensors can be regenerated by applying a voltage of order of one volt across the combined macromolecules, but the underlying physics was not clarified. Such a method for regeneration via physical means is of particular interest for developing possible implantable biosensor where the conventional regeneration via chemical elution is unavailable. Thus the goal of this dissertation is to carry out a rigorous study for understanding the physics behind the regeneration, and a detailed parametric study which is helpful for designing effective re-generable biosensor using substrate electric potential.
By incorporating an electric double layer force and a van der Waals force into a weight-ensemble Brownian dynamics simulation under a prescribed molecular interaction force between specific interacting macromolecules, we found that the dissociation rate constant for biotin-streptavidin increases exponentially with , and reaches more than 400 folds when equals one volt. The results are qualitatively similar using either the result from molecular dynamic simulation or the Lennard-Jones model for the prescribed interaction force between biotin and streptavidin. Examination of detailed forces shows that it is the electric double layer force that lowers the energy barrier mainly set by the molecular interaction force associated with the specific interacting molecules, so that the random thermal force has more chance to tear those associated macromolecules apart.
With the enhanced dissociation rate constant obtained, a series of macroscopic diffusion simulation was performed with the aid of the commercial software, COSMOL. The result agrees fairly well with the previous experiment for the entire association-dissociation process. Also the calculations with the enhanced dissociation rate constants explain quantitatively the experimental finding that the regeneration using square-wave voltage is superior to that using saw-tooth voltage. This is because that the dissociation rate constant increases exponentially with the applied voltage, and the associated complex is exposed to larger applied voltage (and thus much larger dissociation rate constant) over a longer time duration for the square-wave voltage manipulation. Parametric studies were performed including effects of different applied signals, different surrounding temperature, and different linker lengths. It is found that the regeneration is enhanced as the applied voltage increases, as the temperature increases, and as the linker length decreases.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47722
全文授權: 有償授權
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
1.42 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved