Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46305
標題: 奇異擾動擴散的漸進常態
Asymptotic Normality for Singularly Perturbed Diffusion Processes
作者: Wei-Da Chen
陳韋達
指導教授: 姜祖恕
共同指導教授: 張志中
關鍵字: 奇異擾動擴散,
Singularly perturbed diffusion processes,
出版年 : 2010
學位: 碩士
摘要: 給定一個隨機擴散過程。這個擴散過程具有兩個時間尺度。一個是改變極快速的尺度,而另一個是比較慢的尺度。在本論文裡,我們有興趣的是擴散過程的停留時間之函數當ε →0。在我們的直覺中,當ε →0我們認為這個擴散過程會被比較快的部份所控制。為了使我們的直覺更加明確,我們使用這個擴散過程的機率密度函數的逼近式去估計當ε →0時的行為。用以這個擴散過程的機率密度函數的逼近式,我們將證明這個擴散過程的停留時間之函數的大數法則以及漸進常
態。
Let Xε (·) be a diffusion process satisfying. This diffusion process has two time scales. One is a rapidly changing scale, and the other is a slowly varying scale. In this paper, we are interested in a function of the occupation time of when ε → 0. In our intuition, we think this diffusion will be driven by its fast part when ε → 0. To make our intuition more precisely, we use the asymptoticity for the density of this diffusion to estimate its behavior when ε →0. By virtue of asymptoticity for the density of this diffusion, we will show the law of large
numbers and the asymptotic normality of a function of the occupation time of this process.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46305
全文授權: 有償授權
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
3.52 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved