Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40820
標題: 運用粒子群聚演最佳化法之橋塔工程
Using Particle Swarm Optimization for Pylon Construction
作者: Nadsanti Lertpiriyakamol
那桑提
指導教授: 張陸滿(Luh-Maan Chang)
關鍵字: 爬模法,粒子群聚演算法,最佳化,模擬,橋塔工程,
Climbing formwork,Particle Swarm Optimization,Simulation,Pylon,
出版年 : 2011
學位: 碩士
摘要: Construction method using climbing form (sometimes referred to as jump-form, self-climbing or self-lifting) is economical and effective for tall structures such as core walls, lift shaft, stair shafts, silo or bridge piers (or pylons) due to its superior speed and productivity. For cable-stayed bridge construction, the bridge pylon is typically constructed ahead of bridge deck by using climbing form system which comprises the formwork and the working platforms for cleaning, steel fixing, concreting, followed-up or repair works, and self-lifting mechanical system.
Due to the study of simulation technique is very limited to the study of earthworks and a few of precast operations. This study aims to apply the simulation to solve the problem in pylon construction project using climbing formwork technique.
Different combinations of construction methods and varieties in resource utilizations affect the cost and duration in pylon construction project. This objective of this study is to apply particle swarm optimization in combination with simulation technique to establish the framework for solving multiobjective cost/duration optimization in the pylon construction using climbing form technique. The framework consists of optimization module and simulation module. The main activities for pylon construction process are reviewed. The particle swarm optimization module accounts for optimizing seven optimization variables e.g. reinforcement fabrication method, steel frame fabrication method, stressing method, etc. The hybridized particle swarm optimization using variable neighborhood search algorithm is also included for comparison with original particle swarm optimization. The framework can quickly provide a set of near-optimum solutions of the resource utilization combinations.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40820
全文授權: 有償授權
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
2.31 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved