Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16178
標題: 以基於表面電漿子共振與靜電感應的限制擴散聚集現象來形成銀奈米網絡結構
Surface Plasmon Resonance and Electrostatic Induction Based Diffusion-limited Aggregation for Forming Silver Nano-network Structures
作者: Yi-Chiao Hsu
徐翊喬
指導教授: 楊志忠(Chih-Chung Yang)
關鍵字: 表面電漿子共振,限制擴散聚集現象,銀奈米網絡結構,
Surface Plasmon Resonance,Diffusion-limited Aggregation,Silver Nano-network Structures,
出版年 : 2020
學位: 碩士
摘要: 在本篇論文中,我們發展可進一步改善基於熱電子限制擴散聚集現象而形成銀奈米網絡的透明度及導電性之技術。與以前的銀奈米網絡研究相比,我們改變的製程條件如下:(1)使用可見光發光二極體代替紫外光發光二極體來照射氮化鎵基板上的銀奈米顆粒;(2)激發銀奈米顆粒的局域表面電漿子共振以產生熱電子;(3)將濕度提高到接近100%;(4)將銀沉積厚度增加到3-5奈米來形成銀奈米顆粒。與以前的結果相比,新的銀奈米網絡有較低的片電阻,可降低到約140歐姆。而可見光範圍內的漫透射率可高於80%。此外,我們也有一些發現。首先,靜電感應效應在限制擴散聚集現象過程中扮演重要角色。第二,在銀奈米網絡中發現氧成分,因此銀奈米網絡的成分包括銀和氧化銀。氧化銀的形成乃由於周圍的高濕度,這可能使得進一步降低片電阻變得困難。第三,電子穿隧現象可能是熱電子從銀奈米顆粒遷移到氮化鎵基板的重要機制。最後,銀奈米網絡的結構及其透明度和導電性可以通過照明條件來控制。
In this study, we further develop the techniques for improving the transparent conducting behavior of an Ag nano-network (NNW), which is formed based on the concept of hot electron regulated diffusion-limited aggregation (DLA). Compared with the previous NNW fabrication studies, our improved fabrication conditions include the following changes: (1) using visible light-emitting diodes (LEDs), instead of ultraviolet LEDs, for illuminating Ag nanoparticles (NPs) on GaN templates; (2) exciting the localized surface plasmon resonances of Ag NPs for generating hot electrons; (3) increasing the ambient humidity up to a level close to 100 %; and (4) increasing the Ag deposition thickness to 3-5 nm for forming Ag NPs. Compared to the previous results, new NNWs show reduced sheet resistance down to the level of ~140 /square while the diffused transmittance in the visible range is maintained to be higher than or close to 80 %. We also make a few discoveries. First, the electrostatic induction effect plays an important role in the DLA process. Second, the material compositions of an NNW include both Ag and AgO with a varied O content. The AgO forms because of the ambient high humidity. It may make the further reduction of sheet resistance difficult. Third, electron tunneling can be an important mechanism for hot electron migration from an Ag NP into a GaN template. Finally, the structure of an NNW and its transparent conducting behavior can be controlled by the illumination condition. A post-treatment of thermal annealing at a temperature lower than 406 oC does not change the morphology, transparency, and conductivity behavior of an NNW structure. However, when the annealing temperature exceeded 412 oC, the AgO portion in the NNW is evaporated and the conductivity is degraded. The NNW is formed by connecting existing Ag NPs with AgO for becoming a conductive network.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16178
DOI: 10.6342/NTU202002106
全文授權: 未授權
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-3007202015270400.pdf
  目前未授權公開取用
8 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved