Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/649
標題: 應用於顫振辨識之特徵選擇與分類方法之研究
A study of feature selection and classification methods for chatter identification models
作者: Yu-Hsuan Chen
陳宇軒
指導教授: 劉建豪
關鍵字: 顫振,小波包轉換,希爾伯特-黃轉換,最近鄰居法,支持向量機,
chatter,wavelet packet transform,Hilbert-Huang transform,k-nearest neighbor,support vector machine,
出版年 : 2019
學位: 碩士
摘要: 維持高產率對於銑削加工的效率而言十分重要。顫振是加工時發生的一種自激式振動,在實務中限制了產率。過去的研究提出了許多顫振偵測的方法,利用各種訊號處理的方法如快速傅立葉轉換(FFT),小波包轉換(WPT),及希爾伯特-黃轉換(HHT)。許多資料分類演算法也被應用於顫振偵測。雖然顫振偵測的領域已有許多文獻,我們仍不清楚何種方法可以達到較佳的正確率與偵測速率。
在本研究中,我們將測試多種訊號處理方法以及資料分類的演算法,使用的資料集中包含各種主軸轉速及切深。我們結合多種訊號處理方法及分類演算法,開發了一個顫振辨識平台以建立分類模型並評估其性能。資料分類方法包含了固定的閾值,最近鄰居法(k-NN),單純貝氏分類器,支持向量機(SVM),局部密度因子(LOF),以及類神經網路。以分類精準度而言,結果顯示最近鄰居法搭配小波包轉換及希爾伯特-黃轉換是最佳的方法,誤判率僅2.2%。
Maintaining high production yield is important for efficiency in the milling process. Chatter is a type of self-excited vibration that can occur during machining, and limits the production yield in practice. In the past, many chatter detection methods were proposed using different signal processing methods such as Fast Fourier transform (FFT), wavelet packet transform (WPT), and Hilbert-Huang transform (HHT). Several classification methods were also applied in chatter detection. Despite the large amount of researches regarding chatter detection, it is unclear which of these proposed methods are better in terms of accuracy and detection speed.
In this research, we test the signal processing methods and classification algorithms against the entire dataset, with a wide range of spindle speeds and depth of cuts. A chatter identification platform is developed to train models and evaluate their performance, using combinations of signal processing methods and classification algorithms. The classification methods include numerical threshold, k-nearest neighbors (K-NN), Naïve Bayes, support vector machine (SVM), local outlier factor (LOF), and artificial neural network. K-NN proves to be the optimal method when using WPT and HHT for signal processing, with an error rate of 2.2%.
URI: http://tdr.lib.ntu.edu.tw/handle/123456789/649
DOI: 10.6342/NTU201903636
全文授權: 同意授權(全球公開)
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf3.68 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved