
doi:10.6342/NTU202501941

國立臺灣大學電機資訊學院資訊工程學研究所

碩士論文

Department of Computer Science & Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master’s Thesis

多項式乘法的新技巧：

驗證應用單項式於中國剩餘定理之多項式乘法

A New Trick for Polynomial Multiplication:
A verified CRT polymul utilizing a monomial factor

邱俊茗

Chun-Ming Chiu

指導教授: 蕭旭君博士

Advisor: Hsu-Chun Hsiao, Ph.D.

中華民國 114年 7月

July, 2025

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

致謝

非常感謝王柏堯教授在這兩年以上的期間，願意以共同指導教授的身份，盡

心盡力的帶領我進行研究。另外也非常感謝楊柏因教授用心的教學，讓我能夠順

利入門密碼學實作與優化技巧的研究。最後想要感謝蕭旭君教授與呂學一教授提

供的協助，讓我可以在碩士期間能夠專心於課程學習與研究進行。

i

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941ii

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

摘要

針對多項式乘法的問題，我們在論文中展示了新穎的轉換策略，並示範如何

將其應用在 NTRU Prime密碼系統上。明確而言，在此密碼系統的所有參數集中，

我們特別關注了 sntrup761跟 ntrulpr761這兩者。它們使用的多項式商環都

是 Z4591[x]/〈x761 − x− 1〉。為了評估我們的新想法是否具實用性，我們使用了 C+

+語言與 ARM Neon intrinsics，將新提出的演算法實做出來。過程中我們發現到，

代數轉換過程中事實上存在著不少優化契機。我們進一步利用了這些機會，最終

設計出了效率十分出色的乘法器，其在 Cortex-A72的平台上的計算速度勝過了所

有現有紀錄。

通常而言，為了避免整數溢流錯誤，基於整數模運算的演算法會經常需要更

換計算過程的中間值，轉而用另一個同餘但絕對值較小的整數取代。為了追求效

率，我們在實做中盡可能跳過了這個步驟。不可否認的，這增加了整數溢流錯誤

的危險性。針對這類型的錯誤，由於引發機率實在過低，基於測試資料的傳統偵

測方法往往是沒有幫助的。為了確認我們實做出的是否正確無誤，我們運用了名

為 CryptoLine的形式驗證工具。驗證過程中，我們使用了 CryptoLine最新版本的

所有功能，其中幫助最大的兩個功能是基於 Integer Set Library的值域驗證，以及

程式等價性的驗證。透過後者，我們可以將同一個程式碼用不同的設定，編譯成

另一個「優化較不徹底但容易驗證」的執行檔。最終透過證明新版本的正確性以

及兩者的等價性，我們可以間接得到原版本執行檔的正確性保證。

iii

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

關鍵字：多項式乘法、數論轉換、混合底數、中國剩餘定理、整數模運算

iv

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

Abstract

In this paper we present a novel transformation strategy for polynomial multipli-

cations and apply it to NTRU Prime, specifically the parameter sets sntrup761 and

ntrulpr761 working in the ring Z4591[x]/〈x761 − x − 1〉. To evaluate the practicality

of our idea, we implemented the algorithm in C++ with ARM Neon intrinsics. By fur-

ther exploiting the various optimization opportunities in the transformation process, we

achieve state-of-the-art performance on Cortex-A72.

Because of the aggressively lazy modular reduction strategy, overflows are of serious

concern. Such errors in an optimized implementation are notoriously difficult to detect us-

ing traditional test vectors. To this end, the compiled binary file is formally verified using

the tool CryptoLine. We use all the features in the current version of CryptoLine. This in-

cludes the Integer Set Library for range checking, plus the Logical Equivalence Checking

to verify the correctness of the binary produced with the most optimized compiler setting

by showing it as being equivalent to a binary from a less optimized compilation.

v

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

Keywords: Polynomial multiplication, NTT, Mixed-radix, CRT, Modular Arithmetic

vi

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

Contents

Page

致謝 i

摘要 iii

Abstract v

Contents vii

List of Figures xi

List of Tables xiii

Chapter 1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2 Preliminaries 5

2.1 NTRU Prime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Modular Reductions and Multiplications . . . . . . . . . . . . . . . . 6

2.2.1 Barrett Reduction and Multiplication . . . . . . . . . . . . . . . . . 6

2.3 CRT and FFTs/NTTs . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Good–Thomas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Rader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Doing iNTT as NTT . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vii

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

2.5 Weighted Convolutions and Toeplitz Matrix-Vector Products . . . . . 14

Chapter 3 Implementation 17

3.1 Choice of Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Algorithmic and Computational Overview . . . . . . . . . . . . . . . 19

3.2.1 Transformation Process of Main Part . . . . . . . . . . . . . . . . . 19

3.2.2 Transformation Process of Low Part . . . . . . . . . . . . . . . . . 20

3.2.3 Base-case Weighted Convolutions . . . . . . . . . . . . . . . . . . 21

3.2.4 CRT with Minimal Data Movements . . . . . . . . . . . . . . . . . 21

3.2.5 Final Reductions and Freezing Coefficients . . . . . . . . . . . . . 23

3.3 Optimization Opportunities . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Zero-skipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.2 Early-dropping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.3 Base-case Convolutions . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Basic Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 NTT designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.2 Variants of Barrett Reduction/Multiplication . . . . . . . . . . . . . 33

Chapter 4 Verification 37

4.1 Correctness and Range Analysis of Modular Arithmetics . . . . . . . 37

4.2 Algebraic Transformations . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Specifying Equality between Polynomials . . . . . . . . . . . . . . 41

4.2.2 Specifying Congruence between Polynomials . . . . . . . . . . . . 43

4.3 Main Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Forward NTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

viii

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

4.3.2 Weighted Convolution . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.3 Inverse NTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Low Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 CRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Final Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7 Compiler Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter 5 Results 55

5.1 Performance of Polynomial Multiplication . . . . . . . . . . . . . . 55

5.2 Cost of Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Chapter 6 Conclusion 59

References 61

ix

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941x

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

List of Figures

Figure 2.1 Butterflies in radix-2 NTT . . . . . . . . . . . . . . . . . . . . . . 8

Figure 2.2 Our radix-3 butterfly . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 2.3 Our radix-5 butterfly . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 3.1 90-NTT, reduced to a (10× 9)-NTT with Good-Thomas . . . . . 24

Figure 3.2 10-NTT, reduced to a (5× 2)-NTT with Good-Thomas . . . . . . 29

Figure 3.3 Our radix-5 butterfly, pruned in the case that f1, f4 are zeros . . . 29

Figure 3.4 10-NTT, reduced to a (5× 2)-NTT with Good-Thomas. . . . . . . 30

Figure 3.5 Our radix-5 butterfly, pruned in the case that F2, F3 can be discarded 30

Figure 3.6 9-NTT designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.7 Our radix-3 butterfly with the multiply-by-2 steps rescheduled . . 32

Figure 3.8 Alternative radix-3 butterfly when 2f0 is available . . . . . . . . . 32

Figure 3.9 Our 9-NTT implementation, shown as a butterfly graph . . . . . . 32

xi

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941xii

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

List of Tables

Table 5.1 Cycle count for multiplication in Zq[x]/〈x761 − x− 1〉 . . . . . . . 55

Table 5.2 Cycle counts per subroutine, on Cortex-A72 . . . . . . . . . . . . . 56

Table 5.3 Verification time for the correctness of -O1 models, in seconds . . 56

Table 5.4 Verification time for the equivalence between-O3 and -O1models,

in seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xiii

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941xiv

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

Chapter 1 Introduction

For the past few years, a lot of effort was put into NTT-based polynomial multipli-

cation (polymul) algorithms, as a part of the quest for ever faster implementations for

lattice-based cryptoschemes. Thanks to the cumulative effort, the best practice for im-

plementing a standard radix-2 NTT has been figured out for the most part, leaving little

room for further improvement. In contrast, the mixed-radix variant has received less at-

tention. This is to be expected, considering that the parameter sets for many well known

cryptoschemes (Kyber, Dilithium, etc.) are deliberately picked to ensure that the quotient

rings are “radix-2 friendly”. Nonetheless, for those cryptoschemes not designed as such,

mixed radix is regarded as a competetive alternative to Schönhage/Nussbaumer or Toom-

Cook/Karatsuba, depending on the size of the ring. In fact, multiple practical examples

have shown that mixed radix is often the best approach to tackle those rings. A recent cul-

minating work in this line is [17], in which Hwang described a mixed-radix polymul for

sntrup761 and reported a staggering 2x speed-up on AVX2 compared to the previous

state-of-the-art based on Schönhage/Nussbaumer.

Despite the promising potential, it is often difficult to fully harness the power of

mixed-radix NTT. Firstly, the choice of the radix combination is heavily restricted, both by

the structure of the coefficient ring and the degree of input polynomial. These restrictions

often rule out otherwise attractive combinations, forcing us to make do with choices that

1

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

are less efficiently computable. Secondly, compared to the radix-2 case, it is generally

harder to optimize the timing and strategy for modular reduction in a mixed-radix NTT.

Because of the different radices, each layer is fundementally dissimilar to one another.

To make matter worse, for the fixed radix on some specific layer, there are even multiple

designs with trade-off between the output range and computational effort. Because of the

difficulty in range analysis, oftentimes one would just preferably settle on conservative

designs that for sure wouldn’t overflow.

We address these two issues in this paper. For the former, we propose the use of

Chinese remainder theorem (CRT)withmonomial factor to alleviate the degree restriction.

This opens up new possibilities in the choice of radix combinations and further enables

the use of specific radices that are more optimizable with Rader’s trick. We illustrate

the effectiveness of this idea by implementing a optimized polymul for sntrup761 in

ARMNeon and showing that it outperforms the current state-of-the-art [17]. For the latter,

we demonstrate how CryptoLine can be used to automate the check for the absense of

overflows. This encourages the implementer to try out more aggressively lazy reduction

strategies without constantly worrying about the risk of overflows. While doing so, we

also verified the algebraic techniques used in our implementation, showing simultaneously

the correctness of our “CRT with monomial factor” idea and other proposed tricks, and

the potential of CryptoLine to aid the design process of exotic polymul techniques.

1.1 Contributions

Our main contributions are summarized as follows.

• We introduce the use of monomial factor xnlow in CRT as a complement to NTT-

2

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

based multiplications.

• We discuss how Rader’s trick leads to highly optimized radix-3 and radix-5 NTT

designs.

• We present a way to exploit the time shifting property of DFT and perform zero-

skipping in Good-Thomas NTT with almost no overhead in code size.

• We propose some specialized variants of Barrett multiplication.

• We combine the ideas above and implement a multiplier for sntrup761 in ARM

Neon, outperforming the state-of-the-art in [17] by a considerable margin.

• We formally verify the correctness of our implementation and at the same time

showcaseCryptoLine’s capability of handling complicatedmodular reduction strate-

gies and exotic algebraic techniques.

1.2 Related Work

NTRU Prime Since NTRU Prime’s quotient rings (which are actually Galois fields by

design) are naturally not NTT-friendly, many tricks had been used to do fast multiplication.

For methods retaining the integer modulus, initially Toom-Cook was used. The change-

of-modulus-into-NTT method which was mentioned as early as (among other places) [7]

was first introduced to NTRU Prime in the submission [11] (along with the very rare

Rader-17, in the ring Z4591[x]/〈x1530 − 1〉) and lattice-based crypto at large in [1]. While

the code package with [8] already contained such code, [9] seems to be the first paper

to use Z4591[x]/〈(x1024 + 1)(x512 − 1)〉 in an truncated Schönhage. [19] continued to

use Rader-17 with Z4591[x]/〈x1632 − 1〉 (coming down to length-16 convolutions), and

3

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

[17] improved this to T(runcated)Rader-17 and the smaller ring Z4591[x]/〈Φ17(x
96)〉. For

NTT multiplications switching the integral modulus, [1] had an incomplete NTT with

Z6984193[x]/〈x1536− 1〉. Despite all these papers, the use of a monomial modulus for CRT

multiplication including a multidimensional Good’s trick seems to be quite new.

Other There aremany papers over the last few years about polynomial multiplications in

Kyber, Dilithium, Saber, and NTRU, the NIST lattice finalists. The most recent advances

seems to be [11] introduced the use of Cooley-Tukey butterflies going both for Forward

and Inverse NTTs; [23], [6] and [16] introduced signed Montgomery, Barrett and Plantard

multiplications respectively. For non-NTT polymul, [10] describes the state of the art

(Toom-based TMVP methods). There are a few papers dealing with verified lattice-based

crypto code, such as [2, 3, 20], all of them using mostly 2-way NTTs. There are also many

articles in the vein of [5], but those are protocol-level verification. Verification of an “non-

standard” CRT-NTT multiplication is new as far as we are able to determine, and so is the

use of rightshifts replacing divisions including their associated range verifications.

4

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

Chapter 2 Preliminaries

In the following, it is understood that q = 4591, and coefficients are all from Zq =

Z/qZ, unless explictly stated otherwise. Sufficient to uniquely designate each equiva-

lence class modulo some degree-d polynomial Q(x), the polynomials P (x) with degree

at most d − 1 are often considered together. By storing the degree-i coefficient as P[i]

within an array P of length d (with trailing zeros sometimes required), the set can be iden-

tified with the vector space Zd
q (or the free module Rd if the coefficients are from some

other ringR). To ease the discussion in the following, we will abuse language slightly and

use “polynomials of length d” to describe polynomial with degree at most d− 1.

2.1 NTRU Prime

The NTRU Prime family comprises an NTRU variant PKE (public-key encryption)

and a Ring-Learning-with-Rounding variant PKE, using ternary errors and a finite field

for a polynomial ring, which are made into two KEMs (Key Establishment Methods) via

a Fujisaki-Okamoto Transform [13]. There are a variety of possible parametrizations, but

the main recommended variants uses the finite field Z4591[x]/ 〈x761 − x− 1)〉 ∼= F4591761

as the polynomial ring. We refer the reader to [8] for details. It suffices to mention that the

main operation during encapsulation and decapsulation is multiplying a random-looking

5

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

polynomial with a ternary polynomial.

2.2 Modular Reductions and Multiplications

In the context of lattice-based crypto, modular reductions means to select a smaller-

in-magnitude congruential representative. Often the reductions are “non-canonical”, in

the sense that the canonical representative modulo q—whether the standard/unsigned one

(inside [0, q − 1]) or the centered/signed one (inside [−q+1
2

, q−1
2
], assuming q odd)—is not

necessarily obtained. The objective is simply to reach a integer small enough in magni-

tude that arithmetic can continue to happen without overflowing. A modular multiplica-

tion (mulmod) is to find a small enough congruential representative of a product, which

again need not be canonical. Currently there are three standard ways to perform modular

multiplications: Barrett [6], Montgomery [23] and Plantard [16]. In our implementation,

we predominately use Barrett multiplication (and some novel variant of it, discussed later

in Section 3.4.2).

2.2.1 Barrett Reduction and Multiplication

We say that the function J·K : R → Z is an integer approximation if |x − JxK| ≤ 1,

and define the associated modulo operator as a modJ·K m = a − Ja/mKm. For example,

the floor function b·c clearly qualifies as an integer approximation, and a mod⌊·⌋ m ∈

[0,m−1] gives back the standard modulo operator a mod m. Note that the assumption of

integer approximation gives |a/m− Ja/mK| ≤ 1, which implies |amodJ·Km| = m|a/m−

Ja/mK| ≤ m.

When J·K0, J·K1 are integer approximations, a representative of ab mod q is available

6

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

via ab− eq ≡ ab (mod q), where e =
s

aJ bR
q K

0

R

{
1

≈ ab
q
. Becker et al. [6] showed1 that

|ab− eq| ≤ 1

R

[
|a|
∣∣modJ·K0q∣∣+ ∣∣modJ·K1R∣∣q] , (2.1)

where
∣∣modJ·KN ∣∣ denotes maxa∣∣amodJ·K N ∣∣ for the integer approximation J·K. They also

noted that for fixed b, one can and should precompute b̄ = JbR/qK0. For implementation in
Neon-like instruction sets, the 16-bit sqrdmulh computes b2ab̄/216e = bab̄/215e, so the

most natural choice is R = 215 and J·K0 = J·K1 = b·e, with precomputed b̄ = b215b/qe.2

Under this choice, Equation 2.1 guarantees |ab− eq| ≤ q for any 16-bit signed integer a.

(To see this, note that |a| ≤ 215,
∣∣mod⌊·⌉q∣∣ = (q − 1)/2 < q/2 and

∣∣mod⌊·⌉R∣∣ = 1/2.)

This allows us to compute ab− eq using only 16-bit arithmetics, specifically one mul for

the lower-half product [ab]l = ab mod 216, one sqrdmulh for e, and lastly one fused-

multiply-subtract mls for [[ab]l−eq]l = [ab−eq]l = ab−eq. Note that we are effectively

computing in Z216 , so overflows are destined but completely irrelevant.

2.3 CRT and FFTs/NTTs

The CRT (Chinese Remainder Theorem) is a standard theorem of ring theory that

relates quotient rings for coprime ideals I1, I2 ⊂ R and their product3 I = I1I2. Specif-

ically, it states that R/I is isomorphic to the product of rings (R/I1) × (R/I2). (Recall

that I1, I2 being coprime ideals means that f +g = 1 for some f ∈ I1 and g ∈ I2, and that

the product I1I2 is the ideal generated by ring elements of the form fg, or more verbosely

1They showed only the case where J·K1 = b·e, and stated their bound [6, Cor. 2] without the notion of∣∣modJ·KN ∣∣. This notion and the generalized bound are first introduced in [18].
2In [6] they chose R = 216, J·K0 = 2b·/2e (“round to even”) and J·K1 = b·e, with precomputed

b̂ = J216b/qK0/2. Despite the different appearance, both choices lead to exactly the same computation.
3We are assuming the ring’s commutativity. For non-commutative rings, one has to instead define I as

the intersection I1 ∩ I2.

7

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

I1I2 = {
∑n

i=1 figi | fi ∈ I1, gi ∈ I2 for all i}.)

The standard Cooley-Tukey FFT (Fast Fourier Transform) or NTT (Number Theo-

retic Transform) can be regarded as a special class of instances of CRT. Specifically, it

follows from CRT that the mapping

Zq[x]/〈x2n − ω2〉 → Zq[x]/〈xn − ω〉 × Zq[x]/〈xn + ω〉

f 7→ (f mod (xn − ω), f mod (xn + ω))

is an isomorphism. Indeed, by rewriting in terms of the coefficients

(a0, . . . , an−1, an, . . . , a2n−1) 7→
(
(a0 + ωan, a1 + ωn+1, . . . , an−1 + ωa2n−1),

(a0 − ωan, a1 − ωn+1, . . . , an−1 − ωa2n−1)
)
,

we see that this mapping is easily invertible. As shown in Figure 2.1, the Cooley-Tukey

butterfly computes (a0 + ωan, a0 − ωan) from (a0, an), while the Gentleman-Sande but-

terfly computes the inverse (up to a factor of 2).

ai
an+i

ai + ωan+i

ai − ωan+i

(a) Cooley–Tukey (CT) butterfly

ai + ωan+i

ai − ωan+i

2ai
2an+i

(b) Gentleman–Sande (GS) butterfly

Figure 2.1: Butterflies in radix-2 NTT; the red and green edge represent multiplication by
ω and ω−1 respectively

If we repeat the above process enough times, we get the NTTs used for ML-KEM/

DSA. In short CT and GS butterflies suffices for ML-KEM and ML-DSA, but for NTRU

Prime, maximal speed requires some other decompositions, which we shall describe be-

low.

8

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

2.3.1 Good–Thomas

Good and Thomas [14, 24] proposed turning an NTT for a modulus of xp0p1 − 1

with coprime p0, p1 into a two-dimensional NTT by substituting x = yz with yp0 =

zp1 = 1. More precisely, the univariate polynomial
∑p0p1

i=0 aix
i becomes a bivariate∑p0−1

j=0

∑p1−1
k=0 aR(j,k)y

jzk, whereR(j, k) =
(
jp1
(
p−1
1 mod p0

)
+ kp0

(
p−1
0 mod p1

))
mod

p0p1 is the “Ruritanian permutation”. With the “Good’s Trick”, we can do the p0-NTT (in

the y-axis) and a the p1-NTT (in the z-axis) independently. In particular, both these FFTs

are in a ring modulo yp0 − 1 and zp1 − 1, which makes things a lot simpler and more

repetitive (i.e., with fewer constants to load).

2.3.2 Rader

Rader’s FFT [22] offers a way to compute p-FFT for odd primes p by reducing the

problem into a size-(p − 1) convolution. We can then transform the problem back to

FFTs, where their size (p − 1) will at least have 2 as a factor. The basic p-ary transform

procedures, usually also called butterflies, can be derived from the Rader procedure. For

small p, it is worthwhile to optimize the resulting butterfly by hand using some equalities

andwe do so using various cyclotomic equalities such as
∑p−1

i=1 ω
i
p = −1. In our algorithm,

we use radix-3 and -5 butterflies as basic building blocks. We write Fi =
∑p−1

j=0 fjω
ij
p ,

F̂i = Fi − f0.

Radix-3 To avoid clutter, we abbreviate ω3 to ω during our discussion of the radix-3

case. Here, Rader’s trick gives the equation (F̂1, F̂2) = (f1, f2) ∗ (ω, ω2). Using FFT to

9

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

compute the convolution, we get

a0 = F̂1 + F̂2 = (f1 + f2)(ω + ω2) = −(f1 + f2) (2.2a)

a1 = F̂1 − F̂2 = (f1 − f2)(ω − ω2) (2.2b)

2F̂1 = a0 + a1 (2.2c)

2F̂2 = a0 − a1 . (2.2d)

There is no need to remove the factor of 2 here. We can absorb this factor into all of the

outputs F0, F1, F2. With this in mind, we have

2F0 = 2(f0 + f1 + f2) (2.2e)

2F1 = 2f0 + 2F̂1 (2.2f)

2F2 = 2f0 + 2F̂2 . (2.2g)

Note that we have the intermediate value f1 + f2 during (2.2a), which can be reused

during (2.2e). Also, rather than adding 2f0 into 2F̂1 and 2F̂2 at (2.2f) and (2.2g), we

can save an addition by letting a0 ← a0 + 2f0 before computing (2.2c) and (2.2d). The

resulting algorithm can be drawn as a butterfly shown in Figure 2.2.

f0

f1

f2

2F0

2F1

2F2

Figure 2.2: Our radix-3 butterfly; the green and red edges represent multiplication by 2
and ω3 − ω2

3 respectively

Radix-5 During our discussion of the radix-5 case, we abbreviate ω5 to ω. This time,

Rader’s trick gives the equation (F̂1, F̂3, F̂4, F̂2) = (f1, f2, f4, f3) ∗ (ω, ω3, ω4, ω2). Ap-

10

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

plying 2-NTT once gives

(a0, a1) = (F̂1 + F̂4, F̂3 + F̂2) = (f1 + f4, f2 + f3) ∗ (ω + ω4, ω3 + ω2)

(a2, a3) = (F̂1 − F̂4, F̂3 − F̂2) = (f1 − f4, f2 − f3) ∗ (ω − ω4, ω3 − ω2) ,

where the operator ∗ denotes negacyclic convolution or, equivalently, multiplication mod-

ulo x2 + 1 when (u, v) is identified with polynomial u+ vx. Note that while we are able

to decompose the cyclic convolution again:

b0 = a0 + a1 = (f1 + f4 + f2 + f3)(ω + ω4 + ω3 + ω2) = −(f1 + f4 + f2 + f3)

b1 = a0 − a1 = (f1 + f4 − f2 − f3)(ω + ω4 − ω3 − ω2)

2a0 = b0 + b1

2a1 = b0 − b1 ,

the absence of square root of -1 inside Zq = Z4591 forbids us to do the same to the nega-

cyclic convolution. Nonetheless, by falling back to Karatsuba (and rescaling everything

here by 2 to meet the factor in the cyclic part), we obtain

2c0 = (f1 − f4) · 2(ω − ω4)

2c∞ = (f2 − f2) · 2(ω3 − ω2)

2c1 = (f1 − f4 + f2 − f3) · 2(ω − ω4 + ω3 − ω2)

2a2 = 2c0 − 2c∞

2a3 = 2c1 − 2c0 − 2c∞ .

11

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

Combined together, these grant us

4F0 = 4(f0 + f1 + f2 + f3 + f4)

4F1 = 4f0 + 4F̂1 = 4f0 + 2a0 + 2a2

4F4 = 4f0 + 4F̂4 = 4f0 + 2a0 − 2a2

4F3 = 4f0 + 4F̂3 = 4f0 + 2a1 + 2a3

4F2 = 4f0 + 4F̂2 = 4f0 + 2a1 − 2a3 .

Corresponding to the radix-3 case, by eliminating the common subexpression f1 + f2 +

f3 + f4, and replacing the four additions with 4f0 with one in b0 ← b0 + 4f0, we end

up with a radix-5 butterfly shown in Figure 2.3, using 4 modular multiplications in total.

Though be aware that it is impossible to do every multiply-by-4 edge by simply left-shift

by 2: One can easily see that overflows are destined to occur in some of the nodes, even if

f0, . . . , f4 are all in the tightest range [−2295, 2295]. One solution to this is treat this as a

Barrett multiplication by 4, except with the actual multiply by 4 replaced with a shift left

2.

f0

f1

f2

f4

f3

4F0

4F1

4F3

4F4

4F2

Figure 2.3: Our radix-5 butterfly; the cyan, red, green, blue and yellow edges represent
multiplication by 4, ω5+ω4

5−ω3
5−ω2

5 , 2(ω5−ω4
5), 2(ω5−ω4

5 +ω3
5−ω2

5) and 2(ω3
5−ω2

5)
respectively

12

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

2.4 Doing iNTT as NTT

Recall that the n-NTT is defined as Fj =
∑n−1

i=0 ωij
n fi, where ωn is a principal n-th

root of unity. Its inverse n-iNTT can be computed as fi = 1
n

∑n−1
j=0 ω

−ij
n Fj . Barring the

factor of 1/n, the two formulae are strikingly symmetrical. Making use of this symmetry,

there are several common ways to adapt algorithm for NTT into one for iNTT (up to a

constant factor).

Consider the naïve algorithm for NTT. By replacing ωk
n with ω−k

n in each multiply-

by-constant step, one obtains an algorithm for iNTT. Frequently, the coefficients ωk
n (along

with the precomputed constants that Barrett multiplication requires) are organized into a

look-up table. In this case, the substitution amounts to swapping the look-up table. We

remark that similar “look-up table swapping” tricks also exist for typical FFT algorithms

(including Cooley-Tukey, Good-Thomas and Rader), since their correctness only depend

on cyclotomic equalities (i.e.
∑d−1

i=0 ω
in/d
n = 0 for d | n) which are invariant under the

mapping ωk
n 7→ ω−k

n .

Alternatively, we can “reflect the circular sequence Fj with respect to F0” before

feeding it to the NTT algorithm as the input sequence. This works because

n−1∑
i=0

ωij
n F(n−i) mod n = F0 +

n−1∑
i=1

ωij
n Fn−i

= F0 +
n−1∑
i=1

ω(n−i)j
n Fi

=
n−1∑
i=0

ω−ij
n Fi = nfj ,

a fact commonly known as the “duality property of DFT”. This trick works for any NTT

13

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

algorithm, even when the coefficients are hard-coded into the implementation. While the

rearrangement of Fj can be costly when n is large, for small enough n the permutation

is essentially free. For example, all of our 10- and 9-iNTT implementations are designed

with this method (see Section 3.4.1 for more details). At this size, the whole sequence

easily fits inside vector registers without spilling to the stack. As such, we expected the

compiler to perform the permutation by simply modifying the destination register of the

load instructions appropriately. (We actually went out of our way to inspect the emitted

code and to confirm that this is indeed the case.)

2.5 Weighted Convolutions and Toeplitz Matrix-Vector

Products

At the end of our reductions we typically come down to a product h = fg mod (x16−

w) for degree-15 (or lower) polynomials f, g. Whenw = 1 this is the standard convolution

and w = −1 it is a negacyclic convolution. When w 6= ±1, we can write this as



h0

h1

h2

...

h15


=



g0 wg15 wg14 · · · wg1

g1 g0 wg15 · · · wg2

g2 g1 g0 · · · wg3

... ... ... . . . ...

g15 g14 g13 · · · g0





f0

f1

f2

...

f15


.

In other words, it is a Toeplitz Matrix to Vector Product (TMVP). When w has a square

root we can use a Cooley-Tukey NTT to reduce it to two smaller TMVPs. Otherwise, as

14

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

in Karatsuba, we need three 8× 8 TMVPs using the methods in (e.g.) [10]:

 C0

C1

 =

 A0 A−1

A1 A0


 B0

B1

→


C0 = (A−1 − A0)B1 + A0(B0 +B1)

C1 = A0(B0 +B1) + (A1 − A0)B0.

Note that submatrices of a Toeplitz matrix are also Toeplitz.

15

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU20250194116

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

Chapter 3 Implementation

In the following, we denote the two input polynomial as A(x) =
∑760

i=0 aix
i and

B(x) =
∑760

i=0 bix
i. Our algorithm is for big-by-big multiplications, that is, we can only

assume that ai, bi ∈ [−2295, 2295] for each i. Similarly, the output polynomial, before and

after reducing modulo x761 − x − 1, are respectively denoted as C full(x) =
∑1520

i=0 cfulli xi

and C(x) =
∑760

i=0 cix
i.

3.1 Choice of Ring

The Old: The NTRU Prime polynomial modulus x761−x−1 forbids the use of straight-

forward NTT-based multiplications. Nonetheless, NTT-based multiplications are still ap-

plicable if we first lift the computation to Zq[x], then map to Zq[x]/〈Q(x)〉with deg(Q) ≥

1521 for some new polynomial modulus Q(x) that is more NTT-friendly [1, 7, 11]. FFT-

based multiplications limit the choice ofQ(x), especially when we keep the integral mod-

ulus at q = 4591. For instance, to do an incomplete NTT on Zq[x, t]/〈xk − t, tn −

1〉 ∼= Zq[x]/〈xnk − 1〉 requires existence of a n-th primitive root of unity in Zq, hence

n|(4591 − 1) = 2 · 33 · 5 · 17. Suppose we picked k = 16 so as to store each base-case

polynomial conveniently in two Neon registers. Since deg(Q) = nk ≥ 1521, we have

n ≥ 96. To make n as small as possible, it can only reasonably be 102 = 2 · 3 · 17. This

17

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

leads to computation in the ring Zq[x]/〈x1632 − 1〉, as in [19]. Later it was improved

to use the smaller ring Zq[x]/〈Φ17(x
96)〉 with truncated Rader’s FFT ([17]). Alterna-

tively, one could use as in [9] a truncated Schönhage/Nussbaumer NTT to multiply in

Zq[x]/〈(x1024 + 1)(x512 − 1)〉. Effectively, their algorithm multiplies modulo x1024 + 1

and modulo x512 − 1 (both subtasks via Schönhage/Nussbaumer) followed by recovering

the product in Zq[x]/〈(x1024 + 1)(x512 − 1)〉 via CRT.

The New: We propose a similar approach, except that we use a polynomial modulus of

the formQ(x) = (xnmain−1)xnlow for some nmain > nlow. In our case, we use nmain = 1440

and nlow = 81. We refer to the computation modulo Qmain(x) = xnmain − 1 and Qlow(x) =

xnlow as the main and the low part respectively, and denote the product in the two parts as

Cmain(x) =
∑1439

i=0 cmaini xi and C low(x) =
∑80

i=0 c
low
i xi.

Using a power of x as a factor has some advantages. CRT is guaranteed to be appli-

cable since gcd(xnmain − 1, xnlow) = 1. In fact, the inverse map will be somewhat simpler

than usual. Because

xnmain ≡ 1 (mod xnmain − 1) 1− xnmain ≡ 0 (mod xnmain − 1)

xnmain ≡ 0 (mod xnlow) 1− xnmain ≡ 1 (mod xnlow) ,

we have C full ≡ xnmainCmain + (1− xnmain)C low (mod Q(x)), and

cfulli =



clowi 0 ≤ i < 81

cmaini 81 ≤ i < 1440

cmaini−1440 − clowi−1440 1440 ≤ i < 1521 ,

(3.1)

18

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

in terms of the coefficients. Moreover, we can control deg(Q) as needed by adjusting nlow.

Finally, multiplication in the low part has some special optimization opportunities, since

terms with degree at least nlow can be safely discarded. In this case, one can can arrive

at specialized forms of Karatsuba, Toom-Cook, or inverse NTT in an NTT-based to skip

some computations.

3.2 Algorithmic and Computational Overview

In this overview, we outline the end-to-end structure of the whole algorithm. This

begins with multiplication in Zq[x]/〈(x1440 − 1)x81〉, which is in turn decomposed into

main and low part. To combine the two products into one polynomial of length 1521,

we present a way to apply Equation 3.1 while avoiding excessive data movements. After

reducingmodulo x761−x−1, the final step is to “freeze” the coefficients into the canonical

representation range [−2295, 2295]. Each of the stages are implemented with one or more

subroutines, most of which have a corresponding C++ function.

3.2.1 Transformation Process of Main Part

For the main part, we use an incomplete NTT with n = 90, k = 16. In other words,

we start from the isomorphic ring Zq[x, t]/〈x16 − t, t90 − 1〉 ∼= Zq[x]/〈x1440 − 1〉, then

use a 90-NTT to map to
∏89

i=0 Zq[x]/〈x16 − ωi
90〉. The 90-NTT is in turn decomposed

into 10-NTTs and 9-NTTs using Good-Thomas NTT. More concretely, for the 90 inputs

f0, f1, . . . , f89 to the 90-NTT, by rearranging them into a 2D array of shape 10×9 as Figure

3.1 (a), the task is reduced to a 2D NTT. The initial (“Good’s”) and final (“Ruritanian”)

permutations are always merged with the computations of another layer.

19

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

The 2D NTT can be computed with a layer of column-wise 10-NTTs and a layer of

row-wise 9-NTTs. Moreover, by separability of multidimensional DFTs, the two layers

can be done in either order. A similar situation exists in reverse, where the 90-iNTT can

be implemented as a combination of column-wise 10-iNTTs and row-wise 9-iNTTs, also

in either order. Here, we chose to do column-wise 10-NTT and row-wise 9-iNTTs first in

the forward and inverse transform respectively. Why so will be explained in Section 3.3.1.

Note to those reading code: in subroutine names, “backward” (abbr. bwd) means

iNTT (inverse NTT), and “forward” describe the forward transform of the NTT (abbr.

fwd); Layer 1 and 2 respectively represent a column-wise 10-(i)NTT and a row-wise

9-(i)NTT. So the main part transformations (i.e. excluding the base-case convolutions)

consist of 4 subroutines, each named main_lay{1,2}__{f,b}wd as appropriate.

3.2.2 Transformation Process of Low Part

Note that ai, bi have no effect on the output if i ≥ 81. Moreover, a80, b80 only af-

fect the output with the terms a80b0x80 and a0b80x
80, which we compute separately and

otherwise ignore the degree-80 term of the inputs for now. This leaves us with the two

degree-79 input polynomials
∑79

i=0 aix
i and

∑79
i=0 bix

i. Since the degree of their prod-

uct is now at most 158, we compute it in Zq[x]/〈x160 − 1〉. With a 10-NTT, this is

mapped to
∏9

i=0 Zq[x]/〈x16 − ωi
10〉. After base-case convolutions and 10-iNTT, we ob-

tain a polynomial of length 160. Discarding the terms with degrees at least 81 gives us

(
∑79

i=0 aix
i)(
∑79

i=0 bix
i) mod x81. Finally adding back the ignored contribution of (a80, b80),

we get our desired low part product

C low = AB mod x81 =

(
79∑
i=0

aix
i

)(
79∑
i=0

bix
i

)
mod x81 + (a80b0 + a0b80)x

80 . (3.2)

20

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

The 10-(i)NTT are implemented as subroutines low_lay1__{f,b}wd.

3.2.3 Base-case Weighted Convolutions

At the end of the forward NTT, the main and the low part are decomposed into 90

and 10 base-cases respectively. These are all in the form of size-16 weighted convolutions

[12], that is, multiplication between two length 16 polynomials, modulo some polynomial

of the form x16 − ωi
90 for some i. (Note that ωi

10 can be rewritten as ω9i
90.) The coefficient

ωi
90 will be referred as the weight of the weighted convolutions. Despite their similarity

at first glance, it is better to implement the base-cases of each part as separate subrou-

tines. Indeed, the NTTs located before the base-cases are different in the two parts, and so

are the iNTTs located after. Implementing the base-cases separately allows us to plan the

modular reductions differently, adaptive to the different input guarantees/output require-

ments on the coefficient ranges. Additionally, there are different extra operations that we

need to perform in this stage. These are some skipped pre/postprocessing steps from the

surrounding (i)NTTs, strategically rescheduled and absorbed into computations here. The

details and benefits of this rearrangement will be presented in Section 3.3. In summary, the

base-case weighted convolutions are implemented as 2 independent subroutines, named

basemul__{main,low}.

3.2.4 CRT with Minimal Data Movements

As we discussed in Section 3.1, our choice of the two coprime polynomial moduli

x1440−1 and x81 admits a remarkably simple inverse CRTmap. In fact, by rewriting Equa-

tion 3.1 into imperative statements as in Algorithm 1, we see that to combined the prod-

21

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

ucts from the two parts, it suffices to (a) store C_main into C_full[81 : 1521] (in

a segmented fashion), (b) store C_low into C_full[0 : 81] and finally (c) subtract

C_low from C_full[1440 : 1521]. Note that apart from (c), the steps amounts to

exactly 1521 element-wise storages.

Algorithm 1 Inverse CRT map
Require: Polynomials Cmain, C low stored as C_main[1440], C_low[81]
Ensure: Polynomial C full stored as C_full[1521]
1: C_full[81 : 1440] = C_main[81 : 1440]
2: C_full[1440 : 1521] = C_main[0 : 81]
3: C_full[0 : 81] = C_low[0 : 81]
4: C_full[1440 : 1521] -= C_low[0 : 81]

Given the simplicity of this process, it is conceivable to merge the steps into the last

layers of the inverse transform, i.e. {main,low}_lay1__bwd. More specifically, af-

ter the computation of 10-iNTT, right when we are about to insert the coefficients into

C_main and C_low, we instead directly store the coefficients into C_full. For the

remaining step (c), we merge it into low_lay1__bwd as well. In the end, compared

to implementing the CRT formula as a separate subroutine, we effectively saved 2 · 1521

element-wise load and store instructions, or at least 2 ·d1521/32e = 96 vectorized instruc-

tions ld1 and st1 (which can simultaneously operate on 4 vector registers at most), just

to give an idea.

We should point out that this is still a slight simplification from what we really im-

plemented in our code: Because of the nature of Neon instructions, where 8 coefficients

must be manipulated as a whole, and some further complications like application of Equa-

tion 3.2, there are many special-cases/overlaps/leftovers that need to treated carefully,

frequently with dedicated scalar instructions. Nevertheless, this technique still saves con-

siderable amount of data movements, and its correctness is verified in CryptoLine just the

same.

22

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

3.2.5 Final Reductions and Freezing Coefficients

After the iNTT we need to do three things to compute the final result: multiply by

a constant, reduce by modulo x761 − x − 1, reduce modulo q = 4591 to the canonical

representative (an operation termed “freezing” as opposed to “squeezing”, or lazy reduc-

tion, in [8]). Clearly one should reduce
∑1520

i=0 cfulli xi by x761 − x − 1 first which gets us

(cfull1520 + cfull760)x
760 + (cfull1520 + cfull1519 + cfull759)x

759 + (cfull1519 + cfull1518 + cfull758)x
758 + · · ·+ (cfull762 +

cfull761+cfull1 )x+(cfull761+cfull0 ), then do a Barrett multiply by the constant (in our code, 1/170)

followed by a final conditional addition to reduce to between ±2295.

3.3 Optimization Opportunities

With the general algorithm structure inmind, nowwe give a deeper dive into the some

of the implementation details. In particular, we will focus on the various optimization

opportunities noticeable in the computation steps, and describe our ways to exploit these

observations to save time.

3.3.1 Zero-skipping

During the forward transform of the main part, the 90 inputs f0, f1, . . . , f89 to the

90-NTT come from the zero-padded polynomial of length 1440. Specifically, every 16

consecutive coefficients are clumped together, which form the 90 polynomials of length

16 each. Since the polynomial before the zero-padding was only of length 761, we see

that only the first d761/16e = 48 of them f0, f1, . . . , f47 are nonzero. By exploiting the

zero elements which constitute almost half of the inputs, it is possible to greatly simplify

23

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

the forward transform. Now, recall that the 90-NTT was implemented as two layers, and

that column-wise 10-NTT and row-wise 9-NTT layer in theory could be done in either

order. However, observe that only the preceding layer can make use of the zero elements.

Indeed, after its “intermixing” of the coefficients in each column/row, the 2D array will

(in general) no longer contain any zeros for the following layer to exploit. Even though

the total number of zero elements is the same, depending on the order of the layers, there

tends to be a big difference on the saving of computations. After careful comparisons, we

concluded that the column-wise 10-NTT makes better use of the zero-inputs, thus should

be placed as the frontmost layer. Aswewill show in Section 3.4.1, zero-inputs in 10-NTTs,

especially when they are in specific patterns, will let us skip somemodular multiplications.

f0 f10 f20 f30 f40 f50 f60 f70 f80

f81 f1 f11 f21 f31 f41 f51 f61 f71

f72 f82 f2 f12 f22 f32 f42 f52 f62

f63 f73 f83 f3 f13 f23 f33 f43 f53

f54 f64 f74 f84 f4 f14 f24 f34 f44

f45 f55 f65 f75 f85 f5 f15 f25 f35

f36 f46 f56 f66 f76 f86 f6 f16 f26

f27 f37 f47 f57 f67 f77 f87 f7 f17

f18 f28 f38 f48 f58 f68 f78 f88 f8

f9 f19 f29 f39 f49 f59 f69 f79 f89

(a) All 90 inputs rearranged

f0 f10 f20 f30 f40

f1 f11 f21 f31 f41

f2 f12 f22 f32 f42

f3 f13 f23 f33 f43

f4 f14 f24 f34 f44

f45 f5 f15 f25 f35

f36 f46 f6 f16 f26

f27 f37 f47 f7 f17

f18 f28 f38 f8

f9 f19 f29 f39

(b) First 48 inputs rearranged

Figure 3.1: 90-NTT, reduced to a (10× 9)-NTT with Good-Thomas; the empty locations
in (b) shows the distribution of zero-elements

In main_lay1__fwd there are of 9 instances of 10-NTT, each operating on a col-

umn of the 10× 9 array. As explained in the last paragraph, we know beforehand that 42

elements in the array are actually zeros. From Figure 3.1 (b), we see that each 10-NTT

instance will contain 4 or 5 zero-inputs depending on the column-index. Specifically, the

first 3 columns have 4 zero-inputs each, and the remaining 6 columns have 5 each. How-

ever, since each column’s zero-inputs are located differently, one would have to implement

24

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

each 10-NTT instance separately in order to fully utilize all of the zero-inputs. In certain

embedded environments, the increased code size is prohibitive. This is a drawback of

Good’s NTT. For example, in [1, Section 4.1], the authors used 4 designs of 3-level radix-

2 NTT. As the sequence of the required design for each instance are highly irregular, a

code generating script was used within their Good’s NTT implementation.

To circumvent this, we proposed to cyclically shift the coefficients within each col-

umn, then compute the 10-NTT just as usual. Provided we apply a postprocessing step

according to the “Time Shifting” property of DFT, we will nevertheless end up with the

correct output. More precisely, the property states that if two sequences of length n

f [0], f [1], . . . , f [n− 1]↔ F [0], F [1], . . . , F [n− 1]

form an input/output pair of DFT, then left-shifting f bym results in the pair

f [m], f [m+ 1], . . . , f [n− 1], f [0], . . . , f [m− 1]

↔ F [0], ω−m
n F [1], ω−2m

n F [2], . . . , ωm
n F [n− 1] .

InNTT parlance, the process of element-wisemultiplication ofF with 1, ω−m
n , ω−2m

n , . . . , ωm
n

is “twisting” the sequence, and the coefficients will be referred as the twisting factors.

Hence an intuitive interpretation is that “shifted inputs lead to twisted outputs”.

With this technique, we only need two specialized 10-NTT designs. Each of them

will handle all the columns with 4 or 5 consecutive zeros, respectively. Moreover, we take

this chance to strategically shift the consecutive zeros to appropriate locations, such that

the 10-NTT is simplified most effectively. Note that the best choice here depends heavily

on the original 10-NTT. For our design, detailed later in Section 3.4.1, it is most beneficial

25

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

to put the 4 zeros at f [3], f [4], f [5], f [6], and the 5 zeros at f [3], f [4], f [5], f [6], f [7].

We place the postprocessing step at the end of main_lay1__fwd. Because of the

nonidentical shiftings applied to them, the columns require separate sets of twisting factors

each. It is true that this postprocessing step incurs extra modular multiplications. Though

we should keep in mind that originally a step of modular reductions would be required

around here anyway. As we are replacing it with modular multiplications, the overhead

will be comparatively insignificant. Indeed, the merits of simplified NTT and reduced

code size more than make up for the postprocessing cost.

In low_lay1__fwd, the length 80 input are also padded to length 160, so a similar

zero-skipping trick is available. There is only one instance of 10-NTT needed, so we do

not have to worry about multiple zero-input patterns for 10-NTT. Nonetheless, we still

shift the zeros from f [5], . . . , f [9] to f [3], . . . , f [7], which helps to save more modular

multiplications, and enables us to reuse the same 10-NTT design in main_lay1__fwd.

The postprocessing step needed here, i.e. element-wise multiplication of F [0], . . . , F [9]

with the twisting factors 1, ω2
10, ω

4
10, . . . , ω

18
10 = ω8

10, is postponed and merged with the

base-case convolutions, more specifically the step where we narrow down the result of

convolutions from 32-bit to 16-bit.

Compared tomain_lay1__fwd, as no postprocessing is donewithinlow_lay1__fwd,

direct outputs of the 10-NTT will have a very wide range of possible values. This makes

it impossible to do another round of addition/subtraction without risking overflows in the

worst case. It is thus natural to schedule a modular reduction here. However, we argue

that in our case, putting this step in the input stage of the base-case subroutine would

be the better approach. First, since the weighted convolutions are computed in 32-bit

26

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

arithmetic, it is possible that the subroutine can handle our large output value without

problems. Moreover, even if reduction is really necessary, handling this during its input

stage allows the base-case subroutine to choose the best way to perform the reduction,

depending on the polynomial modulus for that specific base-case. For example, when 2-

NTT-based algorithm is used for the weighted convolution, which is applicable to only

half of the base-cases (See Section 3.3.3), some of the coefficients will, before anything

else, be 16-bit modular-multiplied with a constant. This entirely eliminates the need to

perform reductions on these specific coefficients.

3.3.2 Early-dropping

In low_lay1__bwd, the inverse 10-NTT outputs 10 polynomials f [0], . . . , f [9],

each of length 16. Merging all of them will give us a polynomial of length 160. However,

since we are computing modulo x81, only the first 6 polynomials f [0], . . . , f [5] are needed

to recover the lowest 81 coefficients. In this case, we can again simplify the inverse NTT,

this time by preemptively dropping the intermediate values which are depended only by

the to-be-discarded outputs. Tomake themost out of this, we use the time shifting property

once again, though this time we will instead need to preprocess the inputs, i.e. multiply

them element-wise with twisting factors. By doing this, we effectively shift the loca-

tions of the discarded outputs. As a concrete example, we ultimately want an inverse

10-NTT that discards f [6], . . . , f [9]. We achieve this by using an inverse 10-NTT that

discards f [3], . . . , f [6], plus a preprocessing step on the inputs where they are multiplied

element-wise with 1, ω7
10, ω

14
10, . . . , ω

63
10 = ω3

10. Correspondingly, the preprocessing is also

“preponed” and merged with the base-case convolutions.

27

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

3.3.3 Base-case Convolutions

For the 90 + 10 = 100 base-case multiplications, these are all in the form of size-16

weighted convolutions [12]. In other words, each of them is a multiplication between two

length 16 polynomials, in some ring of the form Zq/〈x16 − ωi
90〉 for some i. (Note that

ωi
10 can be rewritten as ω9i

90.) As described in Section 2.5, we use 2-NTT or Karatsuba

to further reduce the problem into size-8 TMVPs [10]. More specifically, whenever the

weight ωi
90 has a square root, i.e. i = 2k is even, we are able to apply 2-NTT and reduce

the task to multiplication inZq/〈x8±ωk
90〉, implemented as 2 TMVPs. For the other cases,

we have to fallback to Karatsuba, which is less preferable because 3 TMVPs are required.

3.4 Basic Procedures

With the aforementioned steps to progressively decompose the problem into smaller

subtasks, the remaining pieces of the puzzle are the various basic procedures. As the heart

of the whole algorithm, these building blocks are critical to the overall performance of the

polynomial multiplier.

3.4.1 NTT designs

10-NTT Present in various subroutines, the 10-NTT designs are all based on reduction

to (5 × 2)-NTT via Good-Thomas. Depending the the specific use case, we adaptively

choose the first axis to transform on, in similar essence to Section 3.3.1. With the following

examples, we aim to illustrate the utility of this flexibility.

Consider the 10-NTTs inmain_lay1__fwd. By ourmanipulation in Section 3.3.1,

28

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

we assume that the inputs f [3] to f [6], sometimes even f [7], are all zeros. According to

Good-Thomas, these zeros are rearranged as in Figure 3.2 (b) and (c). In the presence of

these zeros, it is better to do 5-NTTs first. The reason is that, while zero-inputs in 2-NTT

save additions or subtractions, in 5-NTT they occasionally can further eliminate some

of the modular multiplications. For example, as shown in Figure 3.3, several additions/

subtractions and one multiplication are saved if both f1, f4 are zeros. Similar saving is

also achieved when both f2, f3 are zeros. In the end, from the locations of the zeros in

each columns, we see that at least a multiplication in the first column for both cases, and

a multiplication in the second column for the 5 zeros case are saved. This is the ultimate

reason for our placement of the 4 and 5 zeros. As remarked in the last 2 paragraphs of

Section 3.3.1, we reuse the 5-zeros design again in low_lay1__fwd to profit once more

from the eliminated modular multiplications.

f0 f5

f6 f1

f2 f7

f8 f3

f4 f9

(a) Original input layout

f0

f1

f2 f7

f8

f9

(b) 4 zeros case

f0

f1

f2

f8

f9

(c) 5 zeros case

Figure 3.2: 10-NTT, reduced to a (5× 2)-NTT with Good-Thomas

f0

f2

f3

4F0

4F1

4F3

4F4

4F2

Figure 3.3: Our radix-5 butterfly, pruned in the case that f1, f4 are zeros

For the 10-iNTTs in low_lay1__bwd, on the other hand, we need an inverse 10-

NTT that discards f [3], . . . , f [6]. We achieved this by modifying a forward 10-NTT that

discards F [3], . . . , F [6] (See Section 2.4). Recall that in the further reduction to (5 ×

29

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

2)-NTT, the output locations is also rearranged as shown in Figure 3.4 (a). (Mind the

difference in indexing, cf. Figure 3.2 (a).) More importantly, note that this time around, it is

the later transformed axis that can benefit from the discardable outputs. This motivates the

design where we perform the 5 instances of 2-NTT first, and follow up with 2 differently

pruned instances of 5-NTT. From Figure 3.4 (b) we see that the first and second column

needs radix-5 butterfly designs that discards F2, F3 and F0, F4 respectively. Illustrated

in Figure 3.5, the former butterfly skips a modular multiplication originally in the radix-

5 butterfly. This additional saving is the reason behind the manipulation described in

Section 3.3.2.

It is important to note that, because of the constant factor of 4 in our 5-NTT, the output

of our 10-NTT is also scaled up by 4. For the 10-iNTT on the other hand, the “iNTT as

NTT” trick further introduced a factor of 10, resulting in the final constant factor of 40.

F0 F5

F2 F7

F4 F9

F6 F1

F8 F3

(a) Original output layout

F0

F2 F7

F9

F1

F8

(b) 4 discards case

Figure 3.4: 10-NTT, reduced to a (5× 2)-NTT with Good-Thomas.

f0

f1

f2

f4

f3

4F0

4F1

4F4

Figure 3.5: Our radix-5 butterfly, pruned in the case that F2, F3 can be discarded

9-NTT The most typical way to implement a 9-NTT is to use radix-3 Cooley-Tukey

with two levels. To reuse the same 3-NTT on the second level, one needs to twist the

30

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

outputs between the levels. The resulting algorithm is shown in Figure 3.6 (a). In our

implementation, we use a slightly adjusted variant: By twisting two of the radix-3 “sub-

butterflies” as shown in Figure 3.6 (b), only 2 distinct constants are required to perform

the inter-level twisting, instead of the original 3. This did not really offer a performance

boost, but the freed up register slots are nonetheless beneficial.

f0

f3

f6

f1

f4

f7

f2

f5

f8

F0

F3

F6

F1

F4

F7

F2

F5

F8

(a) Standard radix-3 Cooley-Tukey

f0

f3

f6

f1

f4

f7

f8

f2

f5

F0

F3

F6

F1

F4

F7

F8

F2

F5

(b) Our variant

Figure 3.6: 9-NTT designs; the rectangles represent radix-3 “sub-butterflies”, and the red,
green, blue and yellow edges represent multiplication by ω9, ω2

9 , ω4
9 and ω8

9 respectively

Note that after the two levels of 3-NTT, since our radix-3 butterfly introduce a con-

stant factor of 2, the 9-NTT output is expected to be scaled up by 4. In our implementation

though, the factor is 2 instead. This is caused by another slight optimization used in our

implementation described below.

Consider the radix-3 butterfly in Figure 2.2. By rescheduling the multiply-by-2 steps,

we can “move the green edges around”. From the butterfly on the right of Figure 3.7, we

can see that if 2f0 is readily available, it can absorb a green edge and allow us to implement

the butterfly using only one multiply-by-2 step, illustrated in Figure 3.8. Alternatively, as

long as f1, f2 can be halved conveniently, this alternative butterfly is also applicable. In

this case, we are able to eliminate the constant factor of 2 and reduce the output range.

Within our 9-NTT, the alternative radix-3 butterfly was used in the second level. Out

31

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

f0

f1

f2

2F0

2F1

2F2

f0

f1

f2

2F0

2F1

2F2

Figure 3.7: Our radix-3 butterfly with the multiply-by-2 steps rescheduled

2f0

f1

f2

2F0

2F1

2F2

Figure 3.8: Alternative radix-3 butterfly when 2f0 is available

of the 9 intermediate values, which is scaled up by 2 during the first level, it suffices to

scale 6 of them back down. More specifically, by examining the data flow in Figure 3.6 (b),

we see that the 6 intermediate values to scale down are precisely the outputs of the lower

2 sub-butterflies of the first level. This is easily achieved by skipping the multiply-by-2

step for 2F0 in the 2 sub-butterflies, and replacing the twisting factors by their halves.

All in all, after expanding every sub-butterflies and appling the above tricks, our 9-

NTT implementation is illustrated in Figure 3.9. As noted before, the constant factor is

2, instead of 4 as one might expect. Correspondingly, the 9-iNTT is also has a constant

factor of 2 · 9 = 18.

f0

f3

f6

f1

f4

f7

f8

f2

f5

2F0

2F3

2F6

2F1

2F4

2F7

2F8

2F2

2F5

Figure 3.9: Our 9-NTT implementation, shown as a butterfly graph; the red, green, blue
and yellow edges represent multiplication by ω3 − ω2

3 , 2, ω9/2 and ω8
9/2 respectively

32

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

3.4.2 Variants of Barrett Reduction/Multiplication

One way to summarize the central idea behind Barrett multiplication is as follows.

We begin by approximating ab/q using fixed-point arithmetic. Then the rounded value of

the fixed-point approximation will be a reasonable approximation for bab/qe. For exam-

ple, the standard Barrett multiplication uses b̄ = b2rb/qe, which is just the conventional

fixed-point representation of b/q with r fraction bits. Continuing this, computing ab̄ is just

the usual way to compute ab/q while retaining r bits of fractional precision, and rounded

right-shifting ab̄ by r bits exactly corresponds to rounding the fixed-point value to the

nearest integer.

In this perspective, it is natural to come up with ways to generalize Barrett’s trick: By

developing different estimators for the (likely) non-integral value ab/q and/or its nearest

integer bab/qe, different variants of Barrett reduction/multiplication arise, each fitting

some specific use-cases. In the following, we depict this idea by presenting some examples

employed in our implementation.

Crude Barrett Reduction Cruder approximation will lead to possibly faster reduction

but larger output range. When q = 4591 (or other number slightly larger than 212 = 4096),

the following is possible. Consider the value a/4096. We argue that this is a serviceable

approximation for a/q (and for ba/qe by extension). Quantitatively, this approximation

will always overestimate the magnitude by 4591/4096− 1 ≈ 12.1%. In view of this, we

opted to use trunc(a/4096) as our estimator, since the truncation or rounding-towards-zero

function trunc(·) helps combat the magnitude overestimation. This gives us Algorithm 2.

With a little effort, the bound [−4591, 4591] on the output is derivable, given that the

33

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

input fits in a 16-bit integer, i.e. has the bound [−32768, 32767]. Though, by building a

model in CryptoLine (or simply enumerating every inputs), we obtain a tighter bound

[−4096, 4096]. While considerably larger than the bound [−2881, 2881] that standard

Barrett reduction guarantees (when using 15-bit right-shifts, conveniently computed with

sqrdmulh), it is perfectly usable in many cases.

Note that this alternative way of reduction uses three instructions to estimate ba/qe,

while standard Barrett uses only one sqrdmulh instruction. Consequently, this is only

faster when the multiplier pipeline is under heavy pressure. Therefore, in different specific

use-cases, one should always benchmark and compare the reduction methods carefully,

before deciding on the variant to use.

Algorithm 2 Crude Barrett reduction, with specific modulus 4591
Require:

v0.8h = x⃗0 where −215 ≤ x⃗0i ≤ 215 − 1,
precomputed constant stored as v1.h[0] = 4591

Ensure: v0.8h ≡ x⃗0 (mod 4591) such that −4096 ≤ v0.h[i] ≤ 4096
1: sshr v2.8h, v0.8h, #12
2: cmlt v3.8h, v0.8h, #0
3: sub v2.8h, v2.8h, v3.8h
4: mls v0.8h, v2.8h, v1.h[0]

Narrowing Barrett Multiplication At the end of the base-case weighted convolutions,

we will have 32-bit intermediate values that need to be reduced to 16-bit ranges, occa-

sionally with a multiply-by-constant step merged together. Since Neon offers a 32-by-32

bit sqrdmulh instruction, we can employ Barrett reduction and multiplication for these

tasks. With the uzp1 instruction to extract the low 16-bits of each 32-bit elements, a

“narrowing” variant is possible, shown in Algorithm 3 and 4. The key idea is that only the

estimation e = bab̄/231e ≈ bab/qe needs 32-bit arithmetic. After obtaining e, all the re-

maining computations can be done in 16-bit. This follows from the bound for the original

34

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

Barrett multiplication |ab− eq| ≤ q, which guarantees the output to fit in a 16-bit integer.

Consequently, the computed value will be the same as if 32-bit arithmetic were used. The

term “narrowing” is in reference to the naming convention for those Neon instructions

where the outputs’ bit-widths are half of the inputs’ [4, Section 3.2.2][25].

Algorithm 3 Narrowing Barrett reduction, with general modulus q
Require:

v0.4s ++ v1.4s = x⃗0 where −231 ≤ x⃗0i ≤ 231 − 1,
precomputed constants stored as v2.s[0] = b231/qe,v2.h[2] = q

Ensure: v3.8h ≡ x⃗0 (mod q) such that −q ≤ v3.h[i] ≤ q
1: uzp1 v3.8h, v0.8h, v1.8h
2: sqrdmulh v0.4s, v0.4s, v2.s[0]
3: sqrdmulh v1.4s, v1.4s, v2.s[0]
4: uzp1 v4.8h, v0.8h, v1.8h
5: mls v3.8h, v4.8h, v2.h[2]

Algorithm 4 Narrowing Barrett multiplication, with general modulus q
Require:

v0.4s ++ v1.4s = x⃗0 where −231 ≤ x⃗0i ≤ 231 − 1,
precomputed constants stored as v2.s[0] = b231b/qe,v2.h[2] =
q,v2.h[3] = b

Ensure: v3.8h ≡ bx⃗0 (mod q) such that −q ≤ v3.h[i] ≤ q
1: uzp1 v3.8h, v0.8h, v1.8h
2: sqrdmulh v0.4s, v0.4s, v2.s[0]
3: sqrdmulh v1.4s, v1.4s, v2.s[0]
4: uzp1 v4.8h, v0.8h, v1.8h
5: mul v3.8h, v3.8h, v2.h[3]
6: mls v3.8h, v4.8h, v2.h[2]

35

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU20250194136

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

Chapter 4 Verification

C++ intrinsic functions are used to employ Neon instructions in our implementation

(Section 3). Compiler optimization moreover is enabled to reschedule our implementa-

tion. With algorithmic optimizations described in the previous section, the correctness of

our implementation is not obvious and demands proofs. In order to ensure the correct-

ness of our implementation, we use the CryptoLine tool to formally verify the functional

correctness of our implementation.

Concretely, we verify that our compiler-optimized implementation correctly com-

putes the product AB in Zq[x]/〈x761 − x − 1〉 with q = 4591 for all input polynomials

A =
∑760

i=0 aix
i and B =

∑760
i=0 bix

i with ai, bi ∈ [−2295, 2295] for 0 ≤ i < 761. Our

end-to-end verification ensures all ideas in Section 3 are implemented correctly but also

correct themselves.

4.1 Correctness and Range Analysis of Modular Arith-

metics

Roughly speaking, the modular arithmetics used in the algorithm can be classified

into two categories. The characteristic difference between them motivate two slightly

different approches, in order to verify them more effectively.

37

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

For modular multiplication (and reduction, which is effectively just modular multi-

plication by 1), these are computed via Barrett multiplication and its variants, which are

in turn implemented with multiple instructions. Some of these instructions are expected

to overflow, and we need to verify that congruent product (modulo q) is always generated,

whether overflow occurred or not. Moreover, bounding the outputs of these arithmetics

is non-trivial. Remarkably, both of these properties can be specified in the linear integer

arithmetic (LIA) fragment of the CryptoLine language. Equipped with this, we annotate

and prescribe both congruential properties and magnitude bounds of each modular multi-

plications. The CryptoLine tool then proceeds to verify them by invoking the linear integer

arithmetic solver isl.

In contrast, addition, subtraction and left-shift (to compute multiplication by 2 or 4)

are computed directly with 16-bit add, sub and shl instructions. Here, overflow invari-

ably leads to computation error, thus its absence must be checked with CryptoLine’s safety

engine. After that, the congruential property and range analysis become rather trivial. As

such, while the isl engine can verify them without problems, we often use the algebraic

and range fragment of CryptoLine respectively, in order to speed up the verification pro-

cess. Within the CryptoLine tool, the former is reduced to ideal membership problems and

solved by the computer algebra system Singular, while the latter is formulated as Satisfi-

ability Modulo Theories problems (SMT) over the theory of Quantifier-Free Bit-Vectors

(QFBV), and solved by the SMT solver Boolector.

38

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

4.2 Algebraic Transformations

After ensuring the correctness of modular arithmetics, we are ready to verify the alge-

braic properties of our algorithm. Recall that given input polynomialsA =
∑760

i=0 aix
i, B =∑760

i=0 bix
i, the output polynomial C =

∑760
i=0 cix

i = AB mod (x761− x− 1) is computed

in multiple stages:

Main part Compute Cmain =
∑1439

i=0 cmaini xi = AB mod (x1440 − 1).

Low part Compute C low =
∑80

i=0 c
low
i xi = AB mod x81.

CRT Compute C full =
∑1520

i=0 cfulli xi = AB mod ((x1440 − 1)x81) = AB by combining

Cmain and C low. Note that the last equality holds because deg(AB) ≤ 1520.

Final Reductions Compute C =
∑760

i=0 cix
i = C full mod (x761 − x − 1) = AB mod

(x761 − x− 1).

Ultimately, we are only interested in showing the end-to-end correctness of the algorithm

(i.e. C = AB mod (x761 − x − 1)). In a perfect world, CryptoLine should ideally be

able to infer this automatically, without detailed knowledge of the algorithm design. In

practice, however, we need to speed up the verification process by guiding CryptoLine

with cuts and midconditions. In view of this, we decided to additionally verify that the

3 intermediate polynomials Cmain, C low, C full are computed correctly, alongside the final

output polynomial C.

Note that in the actual implementation, there is no dedicated array for storing the

coefficients of Cmain or C low, as mentioned in Section 3.2.4. Nonetheless, before step (c)

(as defined in that section), we can reinterpret the C_full array as the pair (C_low,

39

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

C_main). More specifically, C_full[0 : 81] stores C_low, and C_full[81 :

1521] stores the concatenated segments C_main[81 : 1440] ++ C_main[0 :

81]. In this sense, we will still treat Cmain, C low as if they were never “optimized out”.

Indeed, this viewpoint helps us demonstrate our verification strategies in a simpler and

more generalizable way.

Remarkably, even though the verification of Cmain is only a part of our final goal,

we are still effectively verifying a full-blown NTT-based polynomial multiplication al-

gorithm, comparable to the previous work where CryptoLine was used to verify various

implementations for Kyber, Saber and NTRU [20]. In fact, for each of the implementa-

tions, they only showed the correctness of the NTT and iNTT subroutines. In particular,

they neither verified the base-case weighted convolutions, nor showed that when strung

together, the three subroutines (NTT, weighted convolutions and iNTT) indeed compute

polynomial multiplication (in the specific quotient ring) as desired. In contrast, while we

still had to treat the subroutines within the main part separately for practical reasons, we

also combined the correctness the subroutines to show the correctness the whole main part

algorithm.

Because of the incompleteness of the algebraic fragment of CryptoLine, special care

has to be taken whenwriting the postconditions of each cuts, otherwise the Singular engine

will fail to deduce the combined correctness. Since this is the first time (to the best of

our knowledge) CryptoLine is used to tackle algebraic properties of such complexity, for

the sake of future reference, we would like to record the commonly encountered pitfalls

and how to circumvent them in general. After that, we will go on and discuss how our

implementation—not only the main part but the other 3 stages as well—are verified in

more concrete details.

40

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

4.2.1 Specifying Equality between Polynomials

For illustration purposes, consider the specific case where we want to specify

C full = AB , (4.1)

the desired property of C full. There are two ways to denote this in CryptoLine.

Coefficient-wise form When the constituent coefficients of A,B (ai, bi for 0 ≤ i ≤

760) and C (ci for 0 ≤ i ≤ 1520) are all available, we can expand RHS and compare

coefficients. This results in 1521 coefficient-wise propositions

cfull0 ≡ a0b0 (mod q)

cfull1 ≡ a0b1 + a1b0 (mod q)

...

cfull1519 ≡ a759b760 + a760b759 (mod q)

cfull1520 ≡ a760b760 (mod q) .

These exactly characterise all solutions to Equation 4.1. This coefficient-wise form for

writing postconditions can be useful in some cases. For example, one can usemultiple cuts

to verify the coefficients chunk-by-chunk. Moreover, the validity check for the eqmods

can be handled with engines other than Singular. Nonetheless, the sheer length of it make

it sometimes difficult to work with.

Polynomial form In CryptoLine, multiple variables can be combined into a polynomial

in Z[x1, x2, . . . ], where the indeterminates x1, x2, . . . are purely formal and do not corre-

41

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

spond to any computed values. With this feature, only one proposition is needed instead

of 1521:
1520∑
i=0

cfulli xi ≡

(
760∑
i=0

aix
i

)(
760∑
i=0

bix
i

)
(mod q) . (4.2)

Alternatively, we can create new ghost variables forA,B,C fullwhile using the correspond-

ing formal polynomial as their definitions. This way, we can write even more concisely

as

C full ≡ AB (mod q) . (4.3)

Note that in either case, we have to designate the coefficient modulus q explicitly, because

CryptoLine always uses Z as the base ring when invoking Singular.

Incompleteness of Singular To a human, the coefficient-wise form and the polyno-

mial form are clearly equivalent. We thus naturally expect that Singular can deduce one

from the other. However, although the “coefficient-wise⇒ polynomial” direction is fine,

Singular fails to show the converse. While not technically accurate,1 an intuitive expla-

nation of this failure is as follows. Because CryptoLine has no way to tell Singular that

the coefficients ai, bi, cfulli cannot themselves be polynomials in x, the engine is able to

find false-positive counterexamples. For instance, when ai, bi, c
full
i are all zeros except

a0 = 1, b0 = x, cfull1 = 1, Equation 4.2 clearly holds but

1 = cfull1 6≡ a0b1 + a1b0 = 0 (mod q) .

This is a common pitfall when using the Singular engine to reason about polynomial mul-

tiplication, especially when even more formal indeterminates are involved, e.g. during

1Singular does not search counterexamples explicitly, and the “formal indeterminate” x is not treated
any differently.

42

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

verification of the Good-Thomas NTT.

4.2.2 Specifying Congruence between Polynomials

When quotient rings are involved, even more subtleties arise. Consider the property

C = AB mod (x761 − x− 1) . (4.4)

Note that the algebraic fragment does not provide the binary modulo operator (bmod);

we have to replace/simulate it somehow. Depending on the form chosen, this is done

differently.

Coefficient-wise form As long as ai, bi, ci for 0 ≤ i ≤ 760 are available, the RHS can

be expanded again, albeit more tidiously this time. This gives us 761 coefficient-wise

propositions:

c0 ≡
∑

0≤i,j≤760
i+j∈{0,761}

aibj (mod q)

c1 ≡
∑

0≤i,j≤760
i+j∈{1,761,762}

aibj (mod q)

...

c759 ≡
∑

0≤i,j≤760
i+j∈{759,1519,1520}

aibj (mod q)

c760 ≡
∑

0≤i,j≤760
i+j∈{760,1520}

aibj (mod q) .

These still exactly characterise all solutions to Equation 4.4. If A,B has higher degree

terms, they can be incorporated as well by adding more terms on the RHS.

43

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

Polynomial form In CryptoLine, formal polynomials can be included into eqmod’s list

of modulus beside q. We can therefore write

C ≡ AB (mod [q, x761 − x− 1]) . (4.5)

Keep inmind that this proposition is technically weaker than Equation 4.4, sincewe did not

require deg(C) ≤ 760 here. Writing
∑760

i=0 cix
i in place ofC does not help either: Singular

still suspects that ci might themselves be polynomials in x, e.g. a760 = 1, b1 = 1, c760 = x

with A = x760, B = x,C = x761.

4.3 Main Part

4.3.1 Forward NTT

The main challenge in verifying the main part is the 10-by-9 Good-Thomas NTT

used to implement 90-NTT. The natural way to think about it is the isomorphism chain

Zq[x]/〈x1440 − 1〉 ∼= Zq[x, y, z]/〈x16 − yz, y10 − 1, z9 − 1〉

∼=
9∏

i=0

Zq[x, y, z]/〈x16 − yz, y − ωi
10, z

9 − 1〉

∼=
9∏

i=0

8∏
j=0

Zq[x, y, z]/〈x16 − yz, y − ωi
10, z − ωj

9〉

∼=
9∏

i=0

8∏
j=0

Zq[x]/〈x16 − ωi
10ω

j
9〉 .

(4.6)

Since the NTT computation is the same for both input A and B, we consider only the

former case in the following.

The first isomorphism corresponds to rearranging the 1440 = 90×16 coefficients of

44

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

the zero-padded version ofA into a 10-by-9 2D array according to Figure 3.1 (a). Each cell

then represents a length-16 polynomial fk in x, while the 2D array as a whole represents

a polynomial in x, y, z, namely

Γ(x, y, z) = (f0 + f10z + f20z
2 + · · ·+ f80z

8)

+ (f81 + f1z + f11z
2 + · · ·+ f71z

8)y

...

+ (f18 + f28z + f38z
2 + · · ·+ f8z

8)y8

+ (f9 + f19z + f29z
2 + · · ·+ f89z

8)y9

=
9∑

i=0

8∑
j=0

fR(i,j)y
izj .

Here the Ruritanian permutation simplifies to R(i, j) = (81i + 10j) mod 90. Since both

the zero-padding and rearrangement are not performed explicitly in the implementation,

it is rather meaningless to “verify this isomorphism”. One could annotate the expected

property that

Γ ≡ A (mod [q, x16 − yz, y10 − 1, z9 − 1])

explicitly, in the hope that Singular verify the later isomorphisms with greater ease, but

we opted not to do this.2

The next isomorphism corresponds to the 10-NTT layer (main_lay1__fwd). To

speed up the verification, we dedicated a cut for this subroutine alone. Consequently,

unlike before, we must record the effect of this isomorphism in the cut’s postcondition. In

2Not only is it unnecessary, defining Γwithin CryptoLine is also somewhat cumbersome: For each term
xkyizj , one needs to work out the index i′ to the optimized-out length-1440 array, while ensuring that the
original length-761 array ai′ is never actually indexed whenever i′ ≥ 761.

45

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

our implementation, the 10 outputs γ0j, . . . , γ9j from the j-th 10-NTT instance are inserted

into column-j of the 2D array. Note that just like the inputs fR(0,j), . . . , fR(9,j), each γij is

itself a length-16 polynomial in x. Thanks to their orderly layout in memory, our job of

defining

Γ
(1)
0 (x, z) = γ00 + γ01z + · · ·+ γ08z

8

Γ
(1)
1 (x, z) = γ10 + γ11z + · · ·+ γ18z

8

...

Γ
(1)
9 (x, z) = γ90 + γ91z + · · ·+ γ98z

8

is made a lot easier. In the postcondition, we thus wrote

Γ
(1)
i ≡ 4A (mod [q, x16 − yz, y − ωi

10, z
9 − 1]) . (4.7)

The factor 4 comes from that of our 10-NTT design (see Section 3.4.1). Other (i)NTT

subroutines all have such factors, which will compound multiplicatively and “enlarge”

the factor in the following postconditions.

The 9-NTT layer (main_lay2__fwd) computing the third isomorphism is verified

similarly. Again, each of the computed polynomials (9 per row, 90 in total) is a length-16

polynomial in x. For the polynomial at row-i column-j, here denoted as Γ(2)
ij , we prescribe

the expected

Γ
(2)
ij ≡ 8A (mod [q, x16 − yz, y − ωi

10, z − ωj
9]) . (4.8)

In the typical explanation for Good-Thomas NTT, one would use the last isomor-

phism and change the ring to Zq[x]/〈x16 − ωi
10ω

j
9〉. This makes it clear that the base-case

46

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

is indeed weighted convolution, and that ωi
10ω

j
9 is the correct weight to use. In view of

this, one might want to write

Γ
(2)
ij ≡ 8A (mod [q, x16 − ωi

10ω
j
9])

as the concluding postcondition of the main part NTT. Unfortunately, Singular cannot

prove this when only given Equation 4.8. This means that when verifying the following

weighted convolution subroutine, the seemingly unnecessary indeterminates y, z must be

included in the precondition, and also the postcondition for the same reason.

4.3.2 Weighted Convolution

Weare now ready to verify the base-caseweighted convolutions (basemul__main).

Recall that after performing NTT for both input A and B, we have two 10-by-9 arrays of

length-16 polynomials Γ(2)
ij

∣∣∣
A
, Γ

(2)
ij

∣∣∣
B
. As noted before, while all polynomials are only in

x, we can only use

Γ
(2)
ij

∣∣∣
A
≡ 8A (mod [q, x16 − yz, y − ωi

10, z − ωj
9]) (4.9)

Γ
(2)
ij

∣∣∣
B
≡ 8B (mod [q, x16 − yz, y − ωi

10, z − ωj
9]) (4.10)

as preconditions here. This is not really an issue: Other than having to write [q, x16 −

yz, y − ωi
10, z − ωj

9] (instead of [q, x16 − ωi
10ω

j
9]) as the eqmod’s list of moduli in the

postcondition, the verification process is basically unaffected.

For all (i, j) ∈ [0, 9]× [0, 8], there is a dedicated weighted convolution that computes

47

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

Γ
(2)
ij

∣∣∣
Cmain

from the two inputs Γ(2)
ij

∣∣∣
A
, Γ

(2)
ij

∣∣∣
B
. We thus verified that

Γ
(2)
ij

∣∣∣
Cmain
≡ 64AB (mod [q, x16 − yz, y − ωi

10, z − ωj
9]) . (4.11)

4.3.3 Inverse NTT

The inverse NTT essentially goes through the isomorphism chain (Equation 4.6) in

reverse. Note that there is nothing to verify for the last isomorphism. The fact that y, z

were never eliminated in the postconditionsmeans that we never left the ringZq[x, y, z]/〈x16−

yz, y − ωi
10, z − ωj

9〉.

The 9-iNTT layer (main_lay2__bwd) inverts the second-to-last isomorphism. To

confirm this, we verified

Γ
(1)
i

∣∣∣
Cmain
≡ 1152AB (mod [q, x16 − yz, y − ωi

10, z
9 − 1]) . (4.12)

(Note that 1152 = 64 · 18.)

Just like its forward counterpart, the 10-iNTT layer (main_lay1__bwd) handles

the first two isomorphisms simultaneously. In view of this, we wrote the postcondition in

a similar way. Concretely, we skipped the unnecessary

Γ|Cmain ≡ 170AB (mod [q, x16 − yz, y10 − 1, z9 − 1])

(where 170 = 1152 · 40 mod 4591), and wrote

Cmain ≡ 170AB (mod [q, x16 − yz, y10 − 1, z9 − 1]) . (4.13)

48

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

The curious reader might notice that the ring is stillZq[x, y, z]/〈x16−yz, y10−1, z9−

1〉 and not the desired Zq[x]/〈x1440 − 1〉. To solve this, our first step is to replace 〈x16 −

yz, y10−1, z9−1〉with the identical but differently generated ideal 〈x1440−1, y−x1296, z−

x160〉, giving us

Cmain ≡ 170AB (mod [q, x1440 − 1, y − x1296, z − x160]) . (4.14)

Considering that Cmain is univariate in x, this readily implies

Cmain ≡ 170AB (mod [q, x1440 − 1]) . (4.15)

Sadly, Singular cannot show this implication. Consequently, we had to manually but

nonetheless soundly add Equation 4.15 as an assumption. (In the concrete CryptoLine

annotation, this is written as an assert/assume pair.) This concludes the verification for

the main part algorithm.

4.4 Low Part

Considering the similarity between the main and low part, it seems that a similar

verification strategy would work just as well. However, recall that NTT was used not to

compute C low but only a part of it, namely the term

(
79∑
i=0

aix
i

)(
79∑
i=0

bix
i

)
mod x81 = (A mod x80)(B mod x80) mod x81

in Equation 3.2. Effectively, the computation for C low was also split into two subtasks,

just likeC full was. While this approch is still viable, it would require a lot more annotation

effort and likely some assert/assume pairs.

49

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

Fortunately, the small state space of the low part (compared to the main part) allows

us to verify it in an end-to-end manner. In other words, we verified the low part algorithm

entirely in one cut, instead of one cut per subroutine (low_lay1__fwd, basemul_low

and low_lay1__bwd). We thus wrote

C low ≡ 170AB (mod [q, x81]) (4.16)

in the postcondition of the only cut of the low part.

4.5 CRT

From Cmain and C low, we computed the polynomial C full according to Equation 3.1.

We verified that indeed

C full ≡ 170AB (mod [q, x81]) (4.17)

C full ≡ 170AB (mod [q, x1440 − 1]) , (4.18)

and that they do imply

C full ≡ 170AB (mod [q, x1521 − x81]) . (4.19)

However, Singular cannot further show that

C full ≡ 170AB (mod q) , (4.20)

so we had to add this manually. Together with Equation 4.15, these are the only 2 assert/

assume pairs related to polynomial congruence that we included in our annotation. (There

50

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

are other assert/assume pairs, which were added to speed up verification of range bounds

or coefficient congruence.)

4.6 Final Reductions

The 761 coefficient of C were computed from the 1521 of C full by reducing modulo

x761 − x− 1. The factor of 170 was removed in this step as well. We verified that

C ≡ AB (mod [q, x761 − x− 1]) . (4.21)

We also verified that the freezing (see Section 3.2.5) was performed correctly, i.e.

ci ∈ [−2295, 2295] (4.22)

for any 0 ≤ i < 761. (Note that similar range properties are present in all previous

cuts. We decided not to include them in the above discussion, just to better focus on the

algebraic properties.)

In summary, all newly proposed algebraic transformations indeed work as expected.

Moreover, we showed that, barring from the two sound assumptions that were added man-

ually, the Singular engine of CryptoLine is capable of verifying all of the algebraic trans-

formations, either the conventional ones discussed in Section 2 or the novel ones in Sec-

tion 3.

51

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

4.7 Compiler Optimization

Each postcondition described above is for its corresponding subroutine as a whole.

Most of the time, it’s necessary to further partition the subroutine into even more cuts.

Take main_lay1__fwd as an example. We separated out the 9 instances of 10-NTT

acting on each column. One way to do this is to use the coefficient-wise form discussed

in Section 4.2. Since we are proving the coefficient-wise form first, prior to combining

them in the concluding postcondition for the subroutine, the incompleteness of Singular

does not take effect here.

In practice, unfortunately, this was still too coarse-grained to be verified efficiently.

We realized the need to partition the 10-NTT further, where the first step would be to sep-

arate out one of the 5-NTT (see Section 3.4.1). However, instructions are often reordered

when more aggresive compiler optimizations are enabled. In fact, for the binary compiled

with the -O3 setting, the reordering was so aggresive that part of the computation for the

second 5-NTT got interleaved with the first 5-NTT. Consequently, we had to prescribe the

effect of the included part of the second 5-NTT in the first cut, otherwise we would not

be able to verify the second 5-NTT in the next cut, as computation done in the first cut is

invisible from the second cut.

In view of this, we decided to apply the technique in [21]. We extracted the same

subroutine from the recompiled binary with only the -O1 flag, verified the less optimized

version, then finally verified the equivalence between the two versions. Note that the

equivalence checking was not for the whole algorithm, but per subroutine. More specifi-

cally, for each of the eight subroutines named in this paper, we had to perform equivalence

checking once.

52

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

Aside from the ability to cleanly partition each 10-NTT into finer parts, an added

bonus is that since the instructions now stay in roughly the same order as in the C++ code,

it is much easier to figure out the mapping between the intermediate variables (e.g. the

nodes in the butterfly graphs) and the vector registers. This in turn results in much less

human-time spent on annotating midconditions.

To summarize, for each of the eight subroutines, we built a CryptoLine model from

the recompiled binary. This model was much easier to annotate and verify. Regardless, by

finally showing the functional equivalence between the O1 and the O3 version, i.e. they

produce identical output coefficients given any input, the O3 version is verified just the

same. Using the strategies detailed in the previous sections, we were able to combine the

correctness of the subroutines and ultimately show the correctness of thewhole polynomial

multiplier, specifically the compiled binary instead of the C++ code.

53

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU20250194154

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

Chapter 5 Results

We evaluate our implementation and report our verification of the optimized polyno-

mial multiplication for NTRU Prime in this section.

5.1 Performance of Polynomial Multiplication

The performance of our NTRU Prime polynomial multiplication is evaluated on

Raspberry Pi 3, Pi 4, and Pi 5 with ARM Cortex-A53, Cortex-A72, and Cortex-A76

respectively. We use gcc 12.2.0 to compile our C++ implementation with the opti-

mization flag -O3. Table 5.1 compares our new algorithm with the state of the art in [17]

by CPU cycles.

Table 5.1: Cycle count for multiplication in Zq[x]/〈x761 − x− 1〉

Benchmark Environment [17] Ours Speedup
Cortex-A53 50689 39018 1.30x
Cortex-A72 31987 26772 1.19x
Cortex-A76 26295 21165 1.24x

Our evaluation shows that our optimized polynomial multiplication is faster than

[17] by at least 19%. On Raspberry Pi 3, the speedup of 30% is attained. Our NTT-based

multiplications over a polynomial ring with an atypical factor xm can be significantly

faster than the best prior algorithm for sntrup761.

55

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

Table 5.2: Cycle counts per subroutine, on Cortex-A72

Subroutine #Calls Cycles Subroutine #Calls Cycles
mainmul 1 23051 lowmul 1 1741
main_lay1__fwd 2 2610 low_lay1__fwd 2 164
main_lay2__fwd 2 2345
basemul__main 1 8142 basemul__low 1 1173
main_lay2__bwd 1 2358 low_lay1__bwd 1 214
main_lay1__bwd 1 2619

mod_poly 1 989 freeze 1 967

To identify the bottleneck of the polynomial multiplication, Table 5.2 gives the cycle

counts for each subroutine on Raspberry Pi 4. The column #Calls indicates how many

times the subroutine is invoked; the column Cycles shows the cycle counts per invocation.

As expected, the main part takes about 86% of the total cycles (26772). About 30% of the

time is used on the base-case convolutions in the main part.

5.2 Cost of Verification

Table 5.3: Verification time for the correctness of -O1 models, in seconds

Function Safety RA RS AA AS
basemul__low 48.27 0.03 14.20 56.36 49.78
basemul__main 584.40 4.30 491.09 1290.12 1923.39
low_lay1__bwd 632.69 1028.02 283.11 3.12 1.92
low_lay1__fwd 91.67 177.31 4.50 2.47 2.60
main_lay1__bwd 271.28 100.63 122.85 3460.13 267.00
main_lay1__fwd 1086.61 2.73 1236.63 684.17 191.31
main_lay2__bwd 1902.30 0.49 156.55 777.60 177.99
main_lay2__fwd 1800.14 0.62 187.47 4491.65 223.34

Table 5.3 details the verification time for the polynomial multiplication in seconds.

The column Safety shows the time for overflow checking. The columns RA (range asser-

tion) and RS (range specification) give the time for range analysis. And AA (algebraic as-

sertion) and AS (algebraic specification) show the time for algebraic property verification.

56

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

Verification of the main part occupies a large portion of time. Notably, the algebraic prop-

erties in 10-NTT (main_lay2__fwd_inplace) and 9-iNTT (main_lay1__bwd_insert)

take more than 50 minutes to verify. One could improve the verification time by adding

more proof hints manually [20]. We leave it as a future work.

Our equivalence checking calls the abc toolkit through CryptoLine. Note that be-

tween the optimization flags -O1 and -O3, the gcc compiler does a lot of complex trans-

formations and rescheduling for code generation, which explains the week-long wall time

there. However, equivalence checking is mostly automatic and requires little human guid-

ance. Manually adding more hints can reduce the verification time and is left as a future

work.

Table 5.4: Verification time for the equivalence between -O3 and -O1models, in seconds

Function Equivalence Function Equivalence
basemul__low 586994.63 main_lay1__bwd 911.66
basemul__main 3642.91 main_lay1__fwd 829.96
low_lay1__bwd 24.81 main_lay2__bwd 835.79
low_lay1__fwd 26.52 main_lay2__fwd 827.69

57

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU20250194158

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

Chapter 6 Conclusion

We have described how one obtain a high-performance, high-assurance polynomial

multiplication useful for NTRU Prime. We hope that the detailed description also serves

as a documentation for our code and an instruction instrument as well as an engineering

manual for people interested in unorthodox NTT techniques.

For future work, we can still consider various possible optimizations; one possibility

is adapting the radix-3 butterfly used in [15, 19]. We can also adapt the optimizations to

other NTRU variant cryptosystems.

59

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU20250194160

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

References

[1] E. Alkim, D. Y.-L. Cheng, C.-M. M. Chung, H. Evkan, L. W.-L. Huang, V. Hwang,

C.-L. T. Li, R. Niederhagen, C.-J. Shih, J. Wälde, and B.-Y. Yang. Polynomial mul-

tiplication in NTRU prime. IACR TCHES, 2021(1):217–238, 2021.

[2] J. B. Almeida, M. Barbosa, G. Barthe, B. Grégoire, V. Laporte, J.-C. Léchenet,

T. Oliveira, H. Pacheco, M. Quaresma, P. Schwabe, A. Séré, and P.-Y. Strub. For-

mally verifying Kyber episode IV: Implementation correctness. IACR TCHES,

2023(3):164–193, 2023.

[3] J. B. Almeida, S. A. Olmos, M. Barbosa, G. Barthe, F. Dupressoir, B. Grégoire,

V. Laporte, J.-C. Léchenet, C. Low, T. Oliveira, H. Pacheco, M. Quaresma,

P. Schwabe, and P.-Y. Strub. Formally verifying kyber - episode V:Machine-checked

IND-CCA security and correctness of ML-KEM in EasyCrypt. In L. Reyzin and

D. Stebila, editors, CRYPTO 2024, Part II, volume 14921 of LNCS, pages 384–421.

Springer, Cham, Aug. 2024.

[4] ARM. NEON Programmer’s Guide, 2013. https://developer.arm.com/

documentation/den0018/a.

[5] M. Barbosa, G. Barthe, X. Fan, B. Grégoire, S.-H. Hung, J. Katz, P.-Y. Strub, X. Wu,

61

http://dx.doi.org/10.6342/NTU202501941
https://developer.arm.com/documentation/den0018/a
https://developer.arm.com/documentation/den0018/a


doi:10.6342/NTU202501941

and L. Zhou. EasyPQC: Verifying post-quantum cryptography. In G. Vigna and

E. Shi, editors, ACM CCS 2021, pages 2564–2586. ACM Press, Nov. 2021.

[6] H. Becker, V. Hwang, M. J. Kannwischer, B.-Y. Yang, and S.-Y. Yang. Neon NTT:

Faster Dilithium, Kyber, and Saber on Cortex-A72 and Apple M1. IACR TCHES,

2022(1):221–244, 2022.

[7] D. J. Bernstein. Multidigit multiplication for mathematicians. 2001. https://

cr.yp.to/papers.html#m3.

[8] D. J. Bernstein, B. B. Brumley, M.-S. Chen, C. Chuengsatiansup,

T. Lange, A. Marotzke, B.-Y. Peng, N. Tuveri, C. van Vreden-

daal, and B.-Y. Yang. NTRU Prime. Technical report, National

Institute of Standards and Technology, 2020. available at https:

//csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/

round-3-submissions.

[9] D. J. Bernstein, B. B. Brumley, M.-S. Chen, and N. Tuveri. OpenSSLNTRU:

Faster post-quantum TLS key exchange. In K. R. B. Butler and K. Thomas, edi-

tors, USENIX Security 2022, pages 845–862. USENIX Association, Aug. 2022.

[10] H.-T. Chen, Y.-H. Chung, V. Hwang, and B.-Y. Yang. Algorithmic views of vec-

torized polynomial multipliers - NTRU. In A. Chattopadhyay, S. Bhasin, S. Picek,

and C. Rebeiro, editors, INDOCRYPT 2023, Part II, volume 14460 of LNCS, pages

177–196. Springer, Cham, Dec. 2023.

[11] C.-M. M. Chung, V. Hwang, M. J. Kannwischer, G. Seiler, C.-J. Shih, and B.-Y.

62

http://dx.doi.org/10.6342/NTU202501941
https://cr.yp.to/papers.html#m3
https://cr.yp.to/papers.html#m3
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions


doi:10.6342/NTU202501941

Yang. NTT multiplication for NTT-unfriendly rings. IACR TCHES, 2021(2):159–

188, 2021.

[12] R. Crandall and B. Fagin. Discrete weighted transforms and large-integer arithmetic.

Math. Comput., 62(205):305–324, Jan. 1994.

[13] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric en-

cryption schemes. In M. J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS,

pages 537–554. Springer, Berlin, Heidelberg, Aug. 1999.

[14] I. J. Good. The interaction algorithm and practical fourier analysis. J. of the Royal

Statistical Society, Series B, 20(2):361–372, 1958.

[15] C. A. Hassan and O. Yayla. Radix-3 NTT-based polynomial multiplication for

lattice-based cryptography. Cryptology ePrint Archive, Report 2022/726, 2022.

[16] J. Huang, J. Zhang, H. Zhao, Z. Liu, R. C. C. Cheung, Ç. K. Koç, and D. Chen.

Improved plantard arithmetic for lattice-based cryptography. IACR TCHES,

2022(4):614–636, 2022.

[17] V. Hwang. Pushing the limit of vectorized polynomial multiplications for NTRU

prime. In Y. L. Tianqing Zhu, editor, ACISP 24, Part II, volume 14896 of LNCS,

pages 84–102. Springer, Singapore, July 2024.

[18] V. Hwang, Y. Kim, and S. C. Seo. Barrett multiplication for dilithium on embedded

devices. Cryptology ePrint Archive, Report 2023/1955, 2023.

[19] V. Hwang, C.-T. Liu, and B.-Y. Yang. Algorithmic views of vectorized polynomial

multipliers - NTRU prime. In C. Pöpper and L. Batina, editors, ACNS 24Interna-

63

http://dx.doi.org/10.6342/NTU202501941


doi:10.6342/NTU202501941

tional Conference on Applied Cryptography and Network Security, Part II, volume

14584 of LNCS, pages 24–46. Springer, Cham, Mar. 2024.

[20] V. Hwang, J. Liu, G. Seiler, X. Shi, M.-H. Tsai, B.-Y. Wang, and B.-Y. Yang. Veri-

fied NTT multiplications for NISTPQC KEM lattice finalists: Kyber, SABER, and

NTRU. IACR TCHES, 2022(4):718–750, 2022.

[21] L.-C. Lai, J. Liu, X. Shi, M.-H. Tsai, B.-Y. Wang, and B.-Y. Yang. Automatic ver-

ification of cryptographic block function implementations with logical equivalence

checking. In J. Garcia-Alfaro, R. Kozik, M. Choraś, and S. Katsikas, editors, ES-

ORICS 2024, Part IV, volume 14985 of LNCS, pages 377–395. Springer, Cham,

Sept. 2024.

[22] C. M. Rader. Discrete fourier transforms when the number of data samples is prime.

Proceedings of the IEEE, 56(6):1107–1108, 1968.

[23] G. Seiler. Faster AVX2 optimized NTT multiplication for ring-LWE lattice cryptog-

raphy. Cryptology ePrint Archive, Report 2018/039, 2018.

[24] L. H. Thomas. Applications of Digital Computers, chapter Using a computer to solve

problems in physics. Ginn, Boston, 1963.

[25] Y. Zhang. ARM NEON programming quick ref-

erence, 2015. https://community.arm.com/

arm-community-blogs/b/operating-systems-blog/posts/

arm-neon-programming-quick-reference.

64

http://dx.doi.org/10.6342/NTU202501941
https://community.arm.com/arm-community-blogs/b/operating-systems-blog/posts/arm-neon-programming-quick-reference
https://community.arm.com/arm-community-blogs/b/operating-systems-blog/posts/arm-neon-programming-quick-reference
https://community.arm.com/arm-community-blogs/b/operating-systems-blog/posts/arm-neon-programming-quick-reference

	致謝
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Related Work

	Preliminaries
	NTRU Prime
	Modular Reductions and Multiplications
	Barrett Reduction and Multiplication

	CRT and FFTs/NTTs
	Good–Thomas
	Rader

	Doing iNTT as NTT
	Weighted Convolutions and Toeplitz Matrix-Vector Products

	Implementation
	Choice of Ring
	Algorithmic and Computational Overview
	Transformation Process of Main Part
	Transformation Process of Low Part
	Base-case Weighted Convolutions
	CRT with Minimal Data Movements
	Final Reductions and Freezing Coefficients

	Optimization Opportunities
	Zero-skipping
	Early-dropping
	Base-case Convolutions

	Basic Procedures
	NTT designs
	Variants of Barrett Reduction/Multiplication


	Verification
	Correctness and Range Analysis of Modular Arithmetics
	Algebraic Transformations
	Specifying Equality between Polynomials
	Specifying Congruence between Polynomials

	Main Part
	Forward NTT
	Weighted Convolution
	Inverse NTT

	Low Part
	CRT
	Final Reductions
	Compiler Optimization

	Results
	Performance of Polynomial Multiplication
	Cost of Verification

	Conclusion
	References

