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摘要

設計和實現能夠模擬機器行為的程式是人工智慧研究的核心任務之一。傳統

的自然語言處理（NLP）方法在生成可讀性高的人類文本方面表現優異，然而在

程式執行的準確性和一致性方面通常存在顯著差距。相較之下，神經程式合成

（NPS）方法能夠通過直接從規範或示例生成可執行的程式，從而更深入地理解和

操作機器行為。傳統自然語言處理（NLP）與神經程式合成（NPS）之間的主要

差異在於，後者能夠生成可執行的程式碼，這些程式碼可以執行並檢查其行為。

這種能力不僅有助於驗證合成的解決方案，還為從執行軌跡中學習開闢了新的途

徑。

在本論文中，我們探索神經程式合成（NPS）與程式執行之間的共生關係，

突顯程式執行如何成為合成程式的核心要素。本論文包含兩個主要項目：第一個

項目探討學習程式執行或合成是否有助於學習另一個方面。通過分析這兩個方面

之間的相互作用，我們研究神經網路如何有效地理解並生成可執行程式碼。第二

個項目專注於提升從多樣化示範影片中合成程式行為的效率和有效性，同時提出

指標驗證其在實際情境中的應用性。透過結構分析、前例分析和實驗驗證，本論

文旨在深化對「程式執行對神經程式合成影響」的理解，並探討程式表示和行為

之間的複雜性，以促進創造更安全、更強大的人工智慧系統。

關鍵字：機器學習、程式合成
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Abstract

Understanding and synthesizing programs that representmachine behavior is a funda-

mental aspect of artificial intelligence research. Traditional approaches to natural language

processing (NLP) have excelled in generating human-readable text but have largely re-

mained detached from program execution. Conversely, Neural Program Synthesis (NPS)

offers a paradigm shift by generating executable programs directly from specifications or

examples, thereby enabling a deeper understanding and manipulation of machine behav-

ior. The key difference between traditional NLP and NPS lies in the ability of the latter to

generate executable code, which can be executed to examine its behavior. This capability

not only facilitates the verification of synthesized solutions but also opens avenues for

learning from execution traces.

In this thesis, we explore the symbiotic relationship between neural program synthe-

sis (NPS) and program execution, highlighting how program execution serves as a fun-

damental aspect aiding in the synthesis of programs. This thesis comprises two main

v
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projects. The first project investigates whether learning program execution or synthesis

aids in learning the other. By analyzing the interplay between these two aspects, we aim

to uncover insights into how neural networks can effectively comprehend and generate

executable code.

The second project focuses on learning to synthesize programs from entire execution

traces. We aim to enhance the efficiency and effectiveness of neural program synthesis

from diverse demonstration videos and propose realistic metrics to examine whether the

method can be applied in more practical scenarios.

Through a combination of structural analysis, empirical studies, and experimental

validation, this thesis seeks to advance our understanding of the impact of program ex-

ecution on neural program synthesis. By delving into the intricacies between program

representation and behavior, we aim to pave the way for more robust and intelligent AI

systems.

Keywords: Neural Program Synthesis, Machine Learning
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Chapter 1 Introduction

1.1 Background

1.1.1 Recent Advance in Deep Learning

Deep learning is a pivotal technique within the field of Machine Learning, demon-

strating remarkable success across various domains such as Computer Vision (CV), Natu-

ral Language Processing (NLP) [1, 17], Speech Recognition and Synthesis, Robotics [11],

Gaming [21], Autonomous Vehicles [25], and Recommendation Systems [4]. Deep learn-

ing utilizes neural networkswithmultiple layers like Convolutional Neural Networks (CNNs) [16],

Recurrent Neural Networks (RNNs), attention mechanisms, and transformers as models

that are designed to capture complex relationships between input data and predicted out-

comes.

Deep learning models are optimized through algorithms that adjust the weights and

biases of the network, often involving millions of parameters. The optimization process

involves learning a loss function that minimizes the discrepancy between the predicted

output and the ground truth. This learning process requires extensive annotated data to

accurately map the input to the desired output.”

1
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1.1.2 Teach Neural Network to Learn Rules

On the other hand, rule-based systems are built on only a limited number of explicit

rules to address various situations. Prior works [30] have demonstrated that these models

struggle to generalize well to new scenarios, such as addingmore bits in digit addition [30],

or increasing string lengths in string transformation tasks [7]. Given the constraints of

limited resources, it is neither realistic nor sample-efficient to exhaustively ”remember”

the mapping of every data point to its desired output. Moreover, pure hand-engineered

rule-based systems often face challenges in extension and are susceptible to noise [7].

Consequently, researchers have been exploring effective neural methods to learn rules.

1.1.3 Programming By Example

Aprogram consists of a set of instructions designed to guide a computer in performing

a specific task or solving a particular problem. These instructions dictate the actions the

computer should take under various conditions, making the program a typical rule-based

system. Programming By Example (PBE) is a fundamental aspect of learning programs

in the Artificial Intelligence (AI). Engineers provide the system with several instances of

inputs and their corresponding desired outputs to guide the inference of the program’s un-

derlying behavior. The machine’s objective is to fulfill these user-provided specifications

or examples.

1.1.4 Neural Program Induction and Synthesis

Two common approaches aimed at enabling machines to infer or create programs

from data are (1) Neural Programs Induction (2) Neural ProgramSynthesis. The former fo-

2
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cuses on training neural networks to infer underlying rules or algorithms from input-output

examples, generating models that mimic a program＇s behavior and directly transform in-

put data to the desired output as specified. Meanwhile, the latter focuses on training neural

networks to infer the underlying rules or algorithms in the program, which are symbols or

languages predefined by programmers, generating models that output desired programs.

Humans can parse or compile these programs, execute them on the input data, and obtain

the output to verify whether these outputs meet the desired output in the specification or

examples. This thesis primarily investigates neural program synthesis.

1.1.5 The Execution Property of Program

A key difference between neural program synthesis and other applications of deep

neural networks, such as Natural Language Processing (NLP), is that neural program syn-

thesis generates ’explicit and executable’ programs. A common approach in deep neural

networks is to follow a supervised procedure to train a model that minimizes the differ-

ence between the predicted output and the ground truth. In addition to this, approaches

in neural program synthesis can leverage additional signals, such as compilation and ex-

ecution results of unit tests. This capability allows neural program synthesis to consider

aliasing programs 1 [3] , verify the grammar and execution of unit tests for predicted

programs before final submission [12], and even repair defective or partially correct pro-

grams [5, 10, 27, 28]. In summary, neural program synthesis can utilize program execu-

tion to ensure that the generated programs are both syntactically correct and semantically

meaningful.

1aliasing programs: Programs consist of different tokens or representations that yield the same execution
results. When using a small number of input/output examples, the chance of program aliasing increase.

3
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1.2 Research

In this section, I will introduce two research project conducted during my master＇

s studies, detailed in Chapter 3 and Chapter 4: (1) Bridging Neural Program Synthe-

sis and Execution (2) Demo2Program+: Improve Neural Program Synthesis from

Diverse Demonstration Videos and Evaluate on Demonstrations of Goal-Oriented

Task. Both projects are related to program execution. The first project investigates the

contributions of program execution to neural program synthesis, while the second project

explores the contributions of execution traces to neural program synthesis.

1.2.1 Bridging Neural Program Synthesis and Execution

Neural Program Execution (NPE) refers to the use of neural networks to interpret

and execute computer programs. Unlike traditional program execution, which relies on

a predefined set of rules and a virtual machine or processor, neural program execution

involves a neural network learning to understand and perform the operations specified by

the program. This approach aims to create models that can infer the underlying rules and

behaviors of the program, dynamically follow the instructions, and execute them. Models

often learn by training on numerous example programs and their executions, enabling the

network to generalize and handle new programs.

Both Neural Program Synthesis and Neural Program Execution share the goal of

leveraging neural networks to automate and enhance aspects of programming and com-

putation. They both require an understanding of the structure and semantics of programs,

as well as the ability to interpret dynamic information from the environment in which the

4
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instructions or programs are applied.

In the context of Programming By Example (PBE), the data formats differ between

the two approaches. For Neural Program Synthesis, the model is provided with example

input-output (I/O) pairs and is tasked with predicting the corresponding programs. Con-

versely, for Neural Program Execution, the model is given the programs and example

inputs, and it aims to predict the desired outputs.

Building upon the shared characteristics of Neural Program Synthesis (NPS) and

Neural Program Execution (NPE) mentioned above, our research aims to explore the sim-

ilarities between these two approaches and investigate whether training in neural program

synthesis can enhance execution. We employ two different types of encoder-decoder

model structures—Long Short-Term Memory (LSTM) and Transformer—to determine

if sharing model weights between NPS and NPE is beneficial. Our research focuses on

the domain of string transformation, utilizing the Domain Specific Language (DSL) from

Devlin et al. [7] and generating our dataset based on the methodology of Shin et al. [20].

1.2.2 Demo2Program+: ImproveNeural ProgramSynthesis fromDi-

verse Demonstration Videos and Evaluate on Demonstrations

of Goal-Oriented Task

Understanding and interpreting decision-making logic in demonstration videos can

indeed facilitate machines in collaborating with and mimicking human behavior. Due to

its structured and predefined nature, a program offers an efficient approach to achieve

this. Hence, prior works [6, 8, 22] have utilized neural program synthesizers to explic-

itly synthesize programs from demonstration videos. By utilizing demonstration videos

5
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or execution traces, this approach also addresses the limitation of most works in the Pro-

gram By Examples (PBE) paradigm, which only synthesize programs based on initial and

final states (I/O pairs) of the data processed by the program. Such methods often lack

detailed information about the intermediate steps and decisions made during the program＇

s execution.

However, obtaining real-world video data with precise program annotations is often

challenging. Due to this difficulty, prior works [6, 8, 22] resort to generating artificial

data of programs and demonstration videos, which are then split into training, validation,

and testing sets. The method of creating this data involves purely random sampling of

program tokens by a specific probability to form a program. Subsequently, initial states

are randomly sampled and executed to obtain their traces, forming unit tests until a valid

program and corresponding unit tests are found. Consequently, this human-created data is

task-agnostic and often exhibits meaningless behavior. As a result, a domain gap persists

between models trained on synthetic data and their application in the scenarios that users

are interested in.

To this end, we utilize demonstration videos fromProgrammatic Reinforcement Learn-

ing (PRL) [14, 23] tasks as the target video to evaluate our method. Agents in these videos

follow an optimal program policy generated by Liu et al. [14], accomplishing a strategy

to fulfill the task and maximize the rewards they receive. Hence, this data more closely

resembles a decision-making process compared to artificially created data. We use these

videos as the model＇s input and calculate the rewards obtained by executing predicted

programs as our evaluation metric.

Based on this newmetric, we incorporate several features to investigate whether these

6
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improvements enhance our method, conducting our experiments in the Karel [18] domain:

1. Utilizing Large Language Model (LLM): We employ a code generation lan-

guage model, essentially CodeT5 [26, 29], as it surpasses the common LSTM structure

seen in previous works.

2. Using Visual Words of Action/Perception as Model’s Input: Incorporating

visual words of action/perception as input to the model [15].

3. Training on Data with Better Generating Heuristic: We generate data using

Liu et al. [14]’s method that filter redundant information.

4. Employing Action/Perception Prediction and Function/Branch Prediction as

Auxiliary Objective Loss Functions: We use action/perception prediction and function/

branch prediction as our auxiliary objective loss functions.

5. Utilizing Exedec [19] to Break Down Long Horizon Execution Traces: We

leverage Exedec [19] to break down a long-horizon execution trace into smaller pieces.

7

http://dx.doi.org/10.6342/NTU202401358


doi:10.6342/NTU2024013588

http://dx.doi.org/10.6342/NTU202401358


doi:10.6342/NTU202401358

Chapter 2 Literature Review

The literature review chapter provides a comprehensive understanding of the existing

knowledge, research trends, and advancements relevant to the subject matter of this study.

In this chapter, we delve into the current state of research in the fields of neural program

synthesis, demo2program, and programmatic reinforcement learning. Each of these

areas is pivotal to the development and advancement of artificial intelligence and machine

learning technologies.

We begin with an exploration of neural program synthesis, which involves the auto-

matic generation of computer programs using neural networks. Following this, we discuss

the line of demo2program framework, which focuses on the conversion of user demonstra-

tions into executable programs. We also examine programmatic reinforcement learning,

a technique that combines programming and reinforcement learning to enable machines

to learn complex tasks through interaction with their environment.

2.1 Neural Program Synthesis

Neural Program Synthesis (NPS) has emerged as a promising approach for automat-

ically generating programs from high-level specifications. This paradigm leverages the

power of neural networks to learn the mapping between input-output examples and their

9
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corresponding programs. In this section, I will introduce two types of approaches inNeural

Program Synthesis: 1. Search-Based Program Synthesis 2. Seq2Seq Program Synthesis.

2.1.1 Search-Based Program Synthesis

Before the advent of neural networks for program synthesis, various search algo-

rithms and heuristics were proposed for the program-by-example (PBE) paradigm in pro-

gram synthesis. In search-based techniques, the output program is found using a process

or solver designed by humans, operating within a deterministic time step. However, the

cost of the search process, or the search space, increases exponentially with the token

length in a program.

To address this challenge, Balog et al. [2] integrate neural network architectures with

search-based techniques, rather than replacing them entirely. They predict the probability

of the presence or absence of individual functions in a program to facilitate the search

process. Similarly, Ellis et al. [9] also focus on learning the presence of functions. They

determine whether a specific sequence of tokens is common in the dataset and, if so, add

a new function to the library to represent this sequence. This augmentation of the library

space speeds up the search process. Both methods cleverly integrate search techniques

with neural network learning techniques, enhancing the efficiency and effectiveness of

program synthesis.

2.1.2 Seq2Seq - Recurrent Neural Networks

Seq2Seqmodels, often utilized in natural language processing tasks, have been adapted

for program synthesis. These models employ an encoder-decoder architecture to take se-

10
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quences of input-output pairs and generate the corresponding programs. One significant

advantage of this approach is that programs can be executed before final submission, al-

lowing the model to maintain a beam of several candidate programs and choose the one

that satisfies the given specification.

Devlin et al. [7] adapted an attentional Long Short-Term Memory (LSTM) structure

and demonstrated that the Neural Program Synthesis (NPS) architecture outperforms both

Neural Program Induction architectures and rule-based approaches. Additionally, their

work showed that NPS is robust to noisy examples, highlighting its effectiveness in prac-

tical scenarios. Subsequently, numerous works utilizing LSTM have emerged, as LSTM

is adept at encoding time series or sequences.

Bunel et al. [3] highlighted the problem of program aliasing, where different pro-

grams composed of varying tokens or representations yield the same execution results but

are still considered correct. Additionally, models with LSTM structures in an end-to-end

style often synthesize programs with syntactic errors, leading to failures in compilation

or execution. To address these issues, they used reinforcement learning (RL) to tackle

program aliasing and implemented a syntax checker to prevent syntactic errors.

2.1.3 Seq2Seq - Transformer

After Google’s paper ”Attention Is All You Need” [24], pre-trained transformer mod-

els for Natural Language (NL) like BERT and GPT have gained significant popularity in

the machine learning research community. These models have also been shown to transfer

well to common Programming Languages (PL) like Python and C++, benefiting a broad

set of code-related tasks.

11
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Beyond applying the same processes used in Natural Language to Programming Lan-

guages, Yue Wang [29] proposed an encoder-decoder transformer model named CodeT5,

pre-trained on several tasks that utilize the characteristics of program tokens, such as

span prediction and identifier (token type) prediction. CodeT5 unifies the language model

framework to solve various code-related tasks, including code generation, code transla-

tion, code summarization, and code refinement.

Following this, Le et al. [12] proposed CodeRL, which uses unit tests as rewards,

similar to the approach of Bunel et al. [3]. By combining the important signals from spec-

ifications with the advantages of pre-trained transformer models, they achieved excellent

results. The current state-of-the-art code generation models are predominantly trained

using similar concepts and extensive amounts of high-quality data.

2.2 Demo2Program

”Demo2program,” proposed by Sun et al. [22], stands for ”learning to synthesize

program from diverse demonstration videos”. In this line of work, the model is trained

to understand the decision-making process of the machine and interpret it as a program.

They use entire intermediate execution states as examples in the Programming By Ex-

ample (PBE) paradigm. Long Short-Term Memory (LSTM) networks are employed to

encode each execution sequence (or demonstration video) into a vector. These vectors

are then aggregated to summarize all videos into a compact vector, which is subsequently

used to decode program tokens.

Additionally, they use a multi-task objective to decode all action and perception se-

quences from the encoded demonstration vector. This ensures that the model captures
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every event occurring in each step of the encoding process while performing supervised

learning on the program tokens.

This multi-task objectivemethod leverages more information from the execution pro-

cess, emphasizing that actions and perceptions are important signals. Actions inherently

correspond to functions used during program execution, while perceptions represent con-

ditions within the program. These elements form the basis for decision-making during

program execution. Building on this concept, Dang-Nhu [6] directly predicted the percep-

tions occurring in each frame of the state and the actions occurring between two adjacent

states using a Convolutional Neural Network (CNN). These actions and perceptions were

then treated as specifications, and a rule-based solver was used to search for a program

that satisfies these specifications.

However, Dang-Nhu’s [6] method caused the model to lose its ability to tolerate

noise, similar to methods used before the advent of neural network approaches. Addition-

ally, exhaustively searching for programs using a rule-based solver is time-consuming,

especially when the program structure is complex or the length of the programs and videos

is long. Therefore, in our project (detailed in Chapter 4), we use a Large Language Model

(LLM) instead of a rule-based solver, combining the advantages of neural networks with

improved noise tolerance and efficiency.

Furthermore, previous works have evaluated their methods on synthetic data gener-

ated using the same heuristics as the training data. This artificial data is created by ran-

dom sampling, making it task-agnostic and containing many meaningless behaviors that

do not appear in actual decision-making situations. Therefore, we evaluate our methods

on videos from Programmatic Reinforcement Learning (PRL) tasks, where the machine’s

13
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behavior is more strategic compared to human-created data.

2.3 Programmatic Reinforcement Learning

In contrast to policies in Deep Reinforcement Learning (DRL) that directly generate

actions given a state, Programmatic Reinforcement Learning (PRL) synthesizes programs

structured in a Domain-Specific Language (DSL) to guide agent behavior. Program poli-

cies can be parsed and executed based on an initial state when applied to the environment.

Before application, users can interpret the policy and filter out any risky programs, al-

lowing for human inspection as an additional safety measure. Furthermore, the structured

nature of the program enhances the policy’s generalizability to unseen scenarios.

Unlike the Programming By Example (PBE) paradigm, where the model is trained to

fulfill a specification, the model in PRL is trained to optimize a reward given a task with a

clear goal. This makes the policy a strategy with a specific purpose. Executing this policy

on several initial states generates demonstrations that serve as an ideal target for evaluating

our method. If we can synthesize programs based on demonstrations from PRL, it would

demonstrate our method’s superiority in learning a decision-making process.

14
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Chapter 3 Bridging Neural Program

Synthesis and Execution

As discussed in Section 1.2.1, learning neural program synthesis and learning neural

program execution both require an understanding of the structure and semantics of pro-

grams, as well as the ability to interpret dynamic information from the environment in

which the instructions or programs are applied. Our research aims to explore the simi-

larities between these two approaches and investigate whether training in neural program

synthesis can enhance execution.

In the context of Programming By Example (PBE), the data formats differ between

the two approaches. For Neural Program Synthesis, the model is provided with exam-

ple input-output (I/O) pairs and is tasked with predicting the corresponding programs.

Conversely, for Neural Program Execution, the model is given the programs and exam-

ple inputs, and it aims to predict the desired outputs. Hence, the structure design of the

encoder and decoder should be both different between NPS and NPE.

In this chapter, I will discuss the problem formulation, model design, and the result

discussion.
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3.1 Problem Overview

3.1.1 Problem Formulation

The goal of neural program synthesis is to token-by-token generate a program pre-

diction P ′ that can correctly produce the desired outputs given a set of k input-output (I/O)

string examples {(Ik, Ok) | k = 1, 2, . . . , K}. Here Ok represents the output obtained by

executing the ground truth program P on the k-th input Ik. The synthesized program P ′

should be able to produce the same outputOk when applied to the corresponding input Ik.

The goal of neural program execution is to predict the output Ok for a given set of k

input string examples Ik and a program P . The model should accurately replicate the

output Ok as if the ground truth program P were executed on the k-th input Ik.

Both paradigms useCross-Entropy Loss to calculate the difference between the ground

truth and the prediction at a token wise level. We minimize Cross-Entropy Loss as our

objective function.

3.1.2 Domain Specific Language

I1 = January O1 = jan
I2 = February O2 = feb
I3 = March O3 = mar
P = ToCase(Lower, SubStr(1,3))

Table 3.1: FlashFill Example

Following the approach of Robustfill [7] we conducted our experiments in a string

transformation domain, structuring our program P in a Domain Specific Language (DSL)

as defined in FigureA.1. The inputs Ik and the outputsOk are strings composed ofmultiple
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characters, and the program P functions as a transformation mechanism, converting one

string into another.

An example of this process is illustrated in Table 3.1. The program ToCase(Lower,

SubStr(1,3)) truncates the input strings to obtain substrings from positions 1 to 3 and

then converts these substrings to lowercase.

3.1.3 Training Data

However, the FlashFillTest dataset used by Devlin et al. [7] in Robustfill is not pub-

licly available. Therefore, we generated our own dataset based on theDSL ofFlashFillTes.

Our data generation method follows the approach of Shin et al. [20]:

1. We first sample program tokens token-by-token to form a valid program P that

can be correctly parsed and executed.

2. Then, we sample string characters token-by-token to form a valid input string that

is syntactically correct for the program to process and generate the corresponding

output string.

Step 2 is repeated until we have 16 pairs of input-output (I/O) strings and a corresponding

program that satisfies the requirements, which are then added as one data point to the

dataset.

We created a dataset with 100,000 training examples, 5,000 validation examples, and

5,000 testing examples.

Table 3.2 presents an example of our generated data. Let’s take I1 as an example:

The program P is a nested function where the innermost components are “Regex r(
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inputs outputs
I1 = Ne{Tetvr}Agu,m[Ngz.Hctbg]Dd?Op O1 = Tetvr
I2 = Dk@q,Aqh(Xao}Cxqp:Ov@Qey,Czc# O2 = Aqh
I3 = rD)Nun)It,Sdb$Zkmz:Hv#3Vr!Sy) O3 = It
P = Concat c( GetToken n( Propcase -3 n) v(

SubStr s( Regex r( Alphanum 0 End r)
Regex r( Propcase -4 End r) s) v) c)

Table 3.2: Our String Transformation Dataset Example

Alphanum 0 End r)” and “Regex r( Propcase -4 End r)”. These expressions rep-

resent “find the ending position of the 0th string in alphanumeric character” and “find the

ending position of the -4th string in properly cased character,” respectively.

• ”{” is identified as the 0th string in alphanumeric character.

• ”Ngz” is identified as the -4th string in properly cased character.

Next, the two positions found by the above functions are used as indices for the

SubStr s( index1 index2 s) function, which truncates characters before index1 and

after index2.

The resulting substring “{Tetvr}Agu,m[Ngz” is then passed as an argument to GetToken

n( Propcase -3 n) v( arguement v) to obtain the -3th string in properly cased char-

acter Tetvr.

After forming an expression of length 1, we use Concat c( c) to concatenate more

expressions if the program’s expression length is greater than 1.

3.2 Methods and Preliminary Results

In this section, we discuss the encoder-decoder architecture in the program synthe-

sizer for Neural Program Synthesis and in the program executor for Neural Program Ex-
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chrLSTM chrLSTM

cat, mean

IOencoder
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chrembed chrembed

input

(a) The encoder of program synthesizer

program prev_hidden

progLSTM

progembed

progclassifier

output
program hn, cn

program
token

(b) The decoder of program synthesizer

Figure 3.1: The structure of the a simple version of synthesizer. Brown squares are
representing vectors, blue squares are for trainable module, green squares are for functions
of arithmetic computation.

ecution. Also, we discuss how the setting of teacher forcing and the scheduled-sampling

affect the result.

3.2.1 Examine the Effects of the Attention Layer in Program Synthe-

sizer and the Effects of the Scheduled Sampling

Simple Version of Program Synthesizer We first try a simple version of LSTM-based

program synthesizer as in ??:

Encoder (Simple Version) Each character in the input and output strings is embedded

into a vector with a hidden size of 100. These embedded character vectors, along with an

initial zero hidden vector and cell vector, are then fed sample-wise into a long short-term

memory (LSTM) network.
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We concatenate the final hidden vector of the input string with the final hidden vector

of the output string, and similarly concatenate the final cell vector of the input string with

the final cell vector of the output string within the LSTM. We then compute the mean

value across all 16 examples.

This concatenated input/output vector is fed into an I/O encoder, which consists of

multiple linear layers with a hyperbolic tangent activation function, completing the en-

coding process for the input/output strings. The resulting encoded I/O vector has a size of

300, aligning with the size of the program embedding.

Decoder (Simple Version) Each program token in the program is embedded into a vec-

tor with a hidden size of 300. These embedded program vectors, along with an initial

hidden and cell vector from the encoded I/O vector, are then fed into a long short-term

memory (LSTM) network. The output program tokens are fed into a token classifier,

which consists of multiple linear layers with a Leaky Rectified Linear Unit (LeakyReLU)

activation function. The token with the highest probability is then sampled as the program

token.

DecoderTraining Policies: Teacher Forcing and Scheduled Sampling When training

sequence-to-sequence models, such as those used in neural program synthesis, the choice

of decoder training policy can significantly impact themodel’s performance. One common

approach is Teacher Forcing, where the model is trained by providing the ground truth

token as the next input token at each step, rather than using the model’s own predictions.

Thismethod helps themodel learn the correct sequence of tokensmore quickly and ensures

stable training by always feeding the correct context. However, a major drawback of
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Teacher Forcing is that it can lead to a discrepancy between training and inference, as the

model is never exposed to its own errors during training.

To address this issue, Scheduled Sampling is introduced as an alternative training pol-

icy. Scheduled Sampling gradually transitions from Teacher Forcing to using the model＇

s own predictions during training. Initially, the ground truth tokens are used as inputs, but

over time, the model increasingly relies on its own predicted tokens. This approach helps

mitigate the exposure bias introduced by Teacher Forcing, as the model learns to handle

its own mistakes and better adapt to the conditions it will face during inference. Sched-

uled Sampling strikes a balance between stability and robustness, aiming to improve the

model’s generalization and performance on unseen data.

Here, we implement scheduled sampling by linearly decreasing the ratio of using

ground truth tokens from 1 to 0 during the training phases, spanning from the 50th epoch

to the 100th epoch. Both scheduled sampling and teacher forcing are trained for 150

epochs to facilitate a thorough comparison of our results.

Adding attention layer of program synthesizer To evaluate the effectiveness of in-

corporating attention mechanisms in neural program synthesis, we aim to compare its

performance against the simpler structure described earlier. The motivation behind in-

troducing attention is to enable the model to focus on relevant parts of the input/output

examples, potentially enhancing its ability to capture complex relationships within the

data. We hypothesize that the attention mechanism will allow the model to dynamically

weigh the importance of different I/O pair tokens when generating the output program,

thus improving its performance in synthesizing programs from input/output examples.

Table 3.3 presents the preliminary training status during the selection of the neural
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Figure 3.2: The structure of the synthesizer with attention layer. Brown squares are
representing vectors, blue squares are for trainable module, green squares are for functions
of arithmetic computation.

Method accuracy/train accuracy/eval loss/train loss/eval
teacher forcing 0.9789 0.7234 0.0581 6.956
scheduled sampling 0.9087 0.7708 0.2563 1.069
attention layer + teacher
forcing

0.9705 0.1641 0.08274 10.741

attention layer + sched-
uled sampling

0.9342 0.8101 0.1869 0.7713

Table 3.3: The preliminary training status during architecture selection

program synthesis architecture. The table includes four different training configurations:

(1) Teacher Forcing, (2) Scheduled Sampling, (3) Attention Layer with Teacher Forc-

ing, and (4) Attention Layer with Scheduled Sampling. For each configuration, the table

shows the accuracy 1 and loss metrics both during training (accuracy/train, loss/train) and

evaluation (accuracy/eval, loss/eval).

In the results, we observe that when utilizing Teacher Forcing alone, themodel achieves

high training accuracy of 97.89%. However, the evaluation accuracy drops notably to

72.34%, indicating potential overfitting. On the other hand, Scheduled Sampling shows

1Accuracy here refers to the ratio of predicted program tokens that match the ground truth.
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a significant improvement in evaluation accuracy (77.08%), suggesting that it effectively

mitigates overfitting by introducing a mechanism that forces the model to rely less on the

ground truth during training. This only comes with a slight decrease in training accuracy

(90.87%) despite the model has already fully relied on its own prediction here.

Introducing an attention layer along with Teacher Forcing dramatically decreases

the evaluation accuracy to 16.41%, indicating a substantial drop in generalization per-

formance. This observation aligns with the notion that the attention mechanism, while

beneficial for focusing on relevant parts of the input, may lead to overfitting by allowing

the model to memorize the training data more effectively. However, when the attention

layer is combined with Scheduled Sampling, the evaluation accuracy improves signifi-

cantly to 81.01%, surpassing all other configurations. This suggests that the attention

mechanism, when used in conjunction with Scheduled Sampling, enhances the model’s

ability to synthesize programs from input/output examples by enabling it to dynamically

weigh the importance of different input tokens, thereby achieving better generalization.

In conclusion, the results demonstrate that employing an attention layer alongside

Scheduled Sampling yields the best performance in terms of evaluation accuracy. This

combination effectively balances the benefits of attention in capturing complex relation-

ships within the data while mitigating overfitting through Scheduled Sampling, making it

the optimal choice for neural program synthesis tasks.
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Figure 3.3: The structure of the program executor. Brown squares are representing
vectors, blue squares are for trainable module, green squares are for functions of arithmetic
computation.

Train Valid Test
Exact match of synthesis 73.65 29.92 29.58

All-sample-right of synthesis 75.75 37.92 35.43
Exact match of execution 0.66 0.34 0.37

Partial-sample-right of execution 27.05 17.47 16.53
Table 3.4: Result of neural program synthesis and neural program execution

3.2.2 Experiment results on Neural Program Synthesis and Unsuc-

cessful results on Neural Program Execution

After decide the architecture of program synthesizer, we also design our execution

predictor with similar concept (illustrated in Figure 3.3). However, in the context of neural

program execution, the performance of the executor fell short of expectations. (Result is

presented in Table 3.4.) 2 This was compounded by the complexity of both the training

settings and the evaluation metrics. Consequently, the original intention of utilizing neural

program execution to aid in neural program synthesis became less feasible.

2Exact match: The ratio of predicted program is same as the ground truth. All-sample-right: The ratio of
predicted program meets all I/O pairs specification, it consider aliasing program as correct. Partial-sample-
right of execution: The ratio that predicted output string is correct samplewisely.
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3.3 Discussion with Contributions from Team Member

Furthermore, our team member, Wei-Hsu Lee, delved into another facet of the re-

search as documented in his master thesis [13]. Instead of focusing on investigating the

structure of LSTM, he conducted experiments with CodeT5 [29]. Lee directly fed input

data into the code-generating language model, CodeT5, and fine-tuned it. His experimen-

tal setup yielded the following observations:

1. Training with neural program execution did not significantly aid neural program

synthesis.

2. The effectiveness varied when training with different I/O and program settings:

single program with multiple I/O, multiple programs with single I/O, and multiple

inputs with multiple outputs.

3. The model was confused by different programs with partially identical input-output

pairs.

4. Utilizing natural language data fromWikipedia as evaluation data performed poorly

compared to the original testing set.

From these experiments, three key insights emerged:

1. Large LanguageModels (LLMs) demonstrate significantly greater power than hand-

crafted LSTM models.

2. Randomly generated datasets fail to generalize well to other data distributions.

3. Trivial settings have a substantial impact.
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Considering these findings, we have opted to conclude this project at its current stage.

Our subsequent project Demo2Program+: Improve Neural Program Synthesis from Di-

verse Demonstration Videos and Evaluate on Demonstrations of Goal-Oriented Taskalso

benefits from these insights.
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Chapter 4 Demo2Program+

Demo2Program+: Improve Neural Program Synthesis from Diverse Demonstration

Videos and Evaluate on Demonstrations of Goal-Oriented Task.

As discussed in the introduction section (Section 1.2.2) and the literature review sec-

tion (Section 2.2), we have two primary directions:

1. Enhancing the performance of Demo2Program based on insights gleaned from pre-

vious works [6, 8, 22].

2. Employing demonstrations fromProgrammatic Reinforcement Learning (PRL) tasks

to assess our method, aiming for higher rewards.

In this chapter, I will discuss the problem overview, method design, and the result.

4.1 Problem Overview

4.1.1 Karel Environment and Domain Specific Language

We conduct our experiment on Karel domain. Karel is a programming language used

in educational contexts, particularly in the field of computer science and programming

education. In the Karel programming language, the language interacts with a simulated
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machine or environment where the robot (Karel) operates. This simulated environment

typically consists of a grid world where Karel can move around, pick up, and put down

markers. The Domain Specific Language (DSL) defined in Figure A.2 provides com-

mands that control Karel’s actions within this environment.

Programmatic Reinforcement Learning Tasks for evaluating includes 8 tasks: , TOPOFF,

DOORKEY, FOURCORNERS, HARVESTER,MAZE, SEEDER, STAIRCLIMBER, andONESTROKE [14,

23]. Figure A.3 presents an example of the task DOORKEY. We use demonstrations from

an sample well-trained program policy from Liu et al. [14] as our specification.

4.1.2 Problem Formulation

Generally, the problem formulation remains the same as in Section 3.1.1, except that

in Chapter 4, we use execution traces Dk instead of I/O pairs Ik, Ok. Dk is actually

composed of the states St
k from several frames. Here, St

k represents the state at the t-th

timestep of the k-th example.

We use original dataset generated by demo2program [22] with 25,000 training ex-

amples, 5,000 validation examples, and 5,000 testing examples. Also, we discuss the

heuristic of generation in Section 4.2.3.

4.2 Methods

We utilize 5 technique to improve the performance of demo2program:

1. Utilizing Large Language Model (LLM) as our encoder-decoder.

2. Using Visual Words of Action/Perception as Model＇s Input.
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3. Training on Data with Better Generating Heuristic.

4. Employing Action/Perception Prediction and Function/Branch Prediction as Aux-

iliary Objective Loss Functions.

5. Utilizing Exedec [19] to Break Down Long Horizon Execution Traces.

4.2.1 Utilizing Large Language Model as Our Encoder-Decoder

As previously concluded, transformer-based models are more powerful than LSTM-

based models. Therefore, we utilize CodeT5 [29] as our model. We fine-tune CodeT5

on the demo2program dataset to enable it to learn the state and mechanisms of the Karel

world. Leveraging its pretrained knowledge and the fine-tuning process, the model gains

an understanding of the semantic and syntactic structures of the Karel Domain Specific

Language.

4.2.2 Using Visual Words of Action/Perception as Model’s Input

As Sun et al. [22] revealed, action and perception play important roles in synthesiz-

ing programs. Actions inherently correspond to functions used during program execution,

while perceptions represent conditions within the program. These elements form the ba-

sis for decision-making during program execution. In fact, we don’t even need the raw

input state; the actions and perceptions alone determine the decision-making process of

the program.

Hence, following the approach of Manchin et al. [15], we use actions and perceptions

as visual words instead of the raw state of Karel to feed into the model. We first train a

Convolutional Neural Network (CNN) classifier to predict the perception in each frame of
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state, and then train another CNN classifier to predict the action occurring between every

two adjacent frames. We then encode the action/perception predictions into visual words

as the model＇s input. The model synthesizes the output program from these input action/

perception visual words. In this way, we can filter out the raw input state with noise or

unseen states in new scenarios, which might be challenging for synthesis, but can still

predict their actions and perceptions.

4.2.3 Training on Data with Better Generating Heuristic

Liu et al. [14] improved the data generationmethod of the demo2program dataset [22]

in their work HPRL. They filtered out programs with meaningless movements such as ad-

jacent putMarker, pickMarker, turnLeft, and turnRight. Moreover, they gen-

erated valid execution traces that cover all branches of the program to address all possible

situations the program may encounter.

For the sake of convenient comparison with previous baselines [6, 8, 22], we primar-

ily utilize the demo2program dataset directly. However, we can also leverage the data

generation heuristic proposed by Liu et al. [14] to enhance the performance of our model.

4.2.4 Employing Action/Perception Prediction and Function/Branch

Prediction as Auxiliary Objective Loss Functions

Inspired by the method proposed by Sun et al. [22], which decodes actions and per-

ceptions as auxiliary objective functions, we also aim to incorporate some essential signals

of programs into our framework as auxiliary objective functions. However, since we have

already used action/perception as our visual words, it would be redundant for a power-
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ful transformer model to decode them again as an objective. To address this, we propose

“Function” and “Branch” as our new auxiliary objective loss functions.

• Function is composed of 5 Boolean values representing whether specific percep-

tions are used as conditions for machine decision-making at specific timesteps dur-

ing the execution of the program.

• Branch is composed of 5 Boolean values representing whether specific branching

functions (for example: while, if, else, ifelse, repeat) are called at spe-

cific timesteps during the execution of the program.

We believe these two features, Function and Branch, are important aspects of a pro-

gram. Therefore, we feed the output vector of the CodeT5 encoder into two decoders of

multi-layer perceptron to predict Function and Branch respectively. We use the Cross-

Entropy Loss between the Function and Branch prediction and the ground truth as our

multi-task objective.

4.2.5 Utilizing ExeDec [19] to Break Down Long Horizon Execution

Traces

Shi et al. [19] propose a decomposition-based program synthesis framework, ExeDec,

along with a benchmark of 5 generalization tasks to evaluate the generalization ability of

a program synthesizer. The ExeDec framework breaks down the synthesis process into

steps of synthesizing smaller subtasks instead of directly tackling a complex task.

At each step of the process:

1. ExeDec uses a subgoal model to predict the intermediate subgoal states Ot+1
k that
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Model Execution Sequence
demo2program 72.1 41.0
watch-reason-code 74.7 43.3
PLANS 91.6±1.3 34.2±0.5
t5-small 86.64 50.9
codet5-small 90.96 54.16
codet5-base 90.7 54.1
codet5p-220M 87.26 52.06

Table 4.1: Synthesis result (with method 1 and 2) on the dataset generated by
demo2program. The orange color means we reproduce other’s work [15], red color is
proposed by us.

will be achieved in the current step, instead of directly predicting the final desired

output Ok.

2. The synthesizer model then predicts a subprogram P t that can achieve the subgoal

states Ot+1
k by executing the subprogram P t on the current states Ot

k.

3. The predictionP t of the synthesizermodel is used to achieve the next current stateEt
k.

4. If the next current state Et
k matches Ok for all k examples, we combine all the

subprograms P 1, P 2, ... , P t to form a final prediction P and terminate.

Shi et al. [19] tests ExeDec on their benchmark to show that this framework has

a ability of generalization, which perfectly fits our needs. Therefore, we reproduce a

ExeDec on Karel domain with a demonstration version instead of programming by I/O

pairs. Both the subgoal model and the synthesizer model are CodeT5.
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4.3 Results and Discussion

4.3.1 Synthesis Results (with method 1 and 2

Table 4.1 show a result of applying visual word and fine-tuning CodeT5 (i.e. using

method 1 and 2 mentioned in Section 4.2) on synthesizing program in demo2program

dataset. Execution means the ratio of the program prediction that meet the specification

on all the example, i.e., behave the same as the ground truth. Sequence means the ratio of

the program prediction matches the ground truth exactly. We reproduce VT4 [15] on the

Karel domain and try three different size of CodeT5 model. All the method perform good

the human-generated dataset, we use CodeT5-small as our structure in later discussion.

Method fourCorners topOff harvester Maze stairClimber doorkey oneStroke seeder average
ground truth 1 1 1 1 1 1 0.711 1 0.964
D2P_k=1 -0.001 -0.001 -0.001 -0.001 0 -0.001 -0.001 -0.001 -0.001
D2P_k=100 0 0 0.1944 -0.001 -0.001 -0.001 0.7111 0.0278 0.116
CodeT5_k=1 0 0 0 0.2 1 0 0.6222 0 0.228
CodeT5_k=100 0.250 0.9 0.1389 0.6 1 0 0.7889 0.1389 0.477

Table 4.2: Compare our model with D2P in PRL.

We then compared this setting with our reproduced demo2program (D2P) in PRL

task. K means choose the best program that can get the highest reward among the k

most probable candidates. Reward for each task is calculated from the mean of rewards

yielded in all example. We can see that original structure of D2P can not generalize to a

goal-oriented dataset other than their syntactic dataset, but our method can.

We want to further improved the performance of our method, so we tried the method

3, 4, 5 (mentioned in Section 4.2) to see whether there is an improved.
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Method fourCorners topOff harvester Maze stairClimber doorkey oneStroke seeder average
ground truth 1 1 1 1 1 1 0.711 1 0.964
hprl 25k 1.000 1.000 0.139 1.000 1.000 0.000 0.119 0.139 0.550
demo2program 0.175 0.700 0.139 0.800 0.700 0.000 0.883 0.000 0.425
hprl 800k 0.250 1.000 0.000 1.000 1.000 0.200 0.575 0.028 0.507

Table 4.3: Testing the effect of fine-tuning on different dataset.

4.3.2 Comparing the Dataset Generation Method (with method 3)

We use the heuristic mentioned in Section 4.2.3 to generate datasets in different size:

25k and 800k. We fine-tuned our model in different dataset and evaluate it on PRL tasks.

The results is presented in Table 4.3. We can see that the better heuristic help model

learning, and the larger amount of data point may be redundant.

4.3.3 Multi Task Objective Loss - function&branch (with method 4)

dataset: demo2program Exact Execution
Train Eval Test Train Eval Test

no loss 100 52.96 54.07 100 88.4 88.64
ap loss 100 53.08 54.68 100 89.68 89.92
all loss 100 53.24 54.84 100 89.78 90.22

Table 4.4: Performance metrics on synthetic dataset for using different auxiliary loss

Table 4.4 shows that using auxiliary loss of Action/Perception and Function/Branch

slightly increase the performance in the synthetic dataset. But there is no obvious im-

provement when evaluating PRL tasks, as shown in Table 4.5.

fourCorners topOff harvester Maze stairClimber doorkey oneStroke seeder average
ground truth 1.000 1.000 1.000 1.000 1.000 1.000 0.711 1.000 0.964
D2P, no loss 0.000 0.500 0.167 1.000 1.000 0.000 0.053 0.000 0.389
D2P, ap loss 0.250 0.500 0.167 0.800 0.900 0.000 0.028 0.000 0.342
D2P, all loss 0.075 0.900 0.167 1.000 0.700 0.000 -0.001 0.028 0.399
hprl, no loss 0.175 1.000 0.111 1.000 1.000 0.050 0.086 0.000 0.464
hprl, ap loss 0.150 1.000 0.139 1.000 1.000 0.000 0.111 0.028 0.468
hprl, all loss 0.175 0.300 0.028 1.000 1.000 0.000 0.108 0.167 0.372

Table 4.5: PRL Performance metrics for fine-tuning on different dataset and using differ-
ent auxiliary loss
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4.3.4 ExeDec (with method 5)

ExeDec reproduce is implemented by my team member, Wei-Hsu Lee. The detail is

elaborated in his thesis [13]. We can yield two observation: 1. subgoal model is really

hard to train. 2. Even training synthesizer model with ground truth subgoal states, we still

cannot obtain a correct program that terminate the process during evaluation.

We hypothesize that observation 1 is due to the fact that predicting a subgoal from

an out of distribution input is no easier than predicting a program from an out of distri-

bution input. We hypothesize that observation 2 is because there is still many prediction

error from step by step, which may cause error propagation. As a result, this method can

be beneficial if we carefully hand-craft the algorithm and use a good representation of

subgoals.

4.4 Conclusion

Due to the difficulty in obtaining real-world labeled demonstration and program

data, the demo2program approach typically relies on training with synthetic data. We

use demonstrations of programmatic reinforcement learning tasks to mimic a execution of

real world strategy making decision and propose five methods to generalize to a wider data

distribution: 1. Utilizing Large Language Model as our encoder-decoder 2. Using visual

words of action/perception as model＇s input 3. Training on data with better generating

heuristic 4. Employing function/branch prediction as auxiliary objective loss functions 5.

Utilizing ExeDec to break down long horizon execution traces

In our experiment, methods 1, 2, and 3 improved the performance of synthesizing
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program policies on PRL tasks. However, we did not observe significant improvements

when directly using methods 4 and 5.

We analyzed that there are three potential cases of dataset distribution misalignment

between the synthetic dataset and the real-world dataset: 1. Demonstrations generated by

excessively long programs. 2. Demonstrations generated by overly deep programs (i.e.,

too many layers of branching/looping). 3. The sequence and combination of demonstra-

tion frames in the real-world dataset are not present in the synthetic dataset.

We believe that, if themethod architecture is carefully designed, method 4 can slightly

help with the second case, while method 5 can address the first and third cases.
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Appendix A — Domain Specific

Language

A.1 String Transformation Domain

Program p := Concat(e1, e2, e3, ...)

Expression e := f | n | n1(n2) | n(f) | ConstStr(c)
Substring f := SubStr(k1, k2)

Nesting n := GetToken(t, i) | ToCase(s)
| Replace(δ1, δ2) | Trim()
| GetUpto(r) | GetFrom(r)
| GetFirst(t, i) | GetAll(t)

Position k := −30,−29, ..., 1, 2, ..., 30 | r
Regex r := t1 | · · · | tn | δ1 | · · · | δm
Type t := NUMBER | WORD | ALPHANUM

| ALLCAPS | PROPCASE | LOWER
| DIGIT | CHAR

Case s := PROPER | ALLCAPS | LOWER
Index i := −5,−4,−3,−2, 1, 2, 3, 4, 5

Character c := A − Z, a − z, 0 − 9 | δ
Delimiter δ := &, .?!@()[]%{}/ :; $#”′

Boundary y := Start | End

Figure A.1: Domain Specific Language (DSL) of string transformation domain: Syn-
tax of the string transformation DSL based on Robustfill [7].
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A.2 Karel Domain

Program ρ := DEF run m( s m)

Repetition n := 0..19
Perception h := frontIsClear | leftIsClear | rightIsClear |

markersPresent | noMarkersPresent
Condition b := perception h | not perception h

Action a := move | turnLeft | turnRight |
putMarker | pickMarker

Statement s := WHILE c( b c) w( s w) | s1s2 | a |
REPEAT R=n r( s r) | IF c( b c) i( s i) |
IFELSE c( b c) i( s1 i) ELSE e( s2 e)

Figure A.2: The Karel DSL grammar.
It describes the Karel domain-specific lan-
guage’s actions, perceptions, and control
flows. The domain-specific language is ob-
tained from Liu et al. [14].

Goal: Put a marker 
at the goal location Task completedGoal: Find the key 

to open the door

Figure A.3: An example Karel task –
DOORKEY. The agent first needs to find
the key (marker) in the left room, which
will open the door (wall) to the right room.
Navigating to the goal marker in the right
room and placing the picked marker on
it will grant the full reward for the task.
This sparse-reward task has been found
to pose significant challenges to previous
PRL methods, as it necessitates a greater
capability in long-horizon strategy formu-
lation.
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Appendix B — Program Aliasing

(a) Partial Specification as I/O Pair

Program A

def run():
repeat(4):

putMarker()
move()
turnLeft()

Program B

def run():
while(noMarkersPresent):

putMarker()
move()
turnLeft()

Figure B.4: Program Aliasing is one difficulty of program synthesis (pointed out by
Bunel et al. [3]): For the input-output specification given in (B.4a), both programs are
semantically correct. However, supervised training would penalize the prediction of Pro-
gram B, if A is the ground truth.
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