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Abstract

Understanding and synthesizing programs that represent machine behavior is a funda-
mental aspect of artificial intelligence research. Traditional approaches to natural language
processing (NLP) have excelled in generating human-readable text but have largely re-
mained detached from program execution. Conversely, Neural Program Synthesis (NPS)
offers a paradigm shift by generating executable programs directly from specifications or
examples, thereby enabling a deeper understanding and manipulation of machine behav-
ior. The key difference between traditional NLP and NPS lies in the ability of the latter to
generate executable code, which can be executed to examine its behavior. This capability
not only facilitates the verification of synthesized solutions but also opens avenues for

learning from execution traces.

In this thesis, we explore the symbiotic relationship between neural program synthe-
sis (NPS) and program execution, highlighting how program execution serves as a fun-

damental aspect aiding in the synthesis of programs. This thesis comprises two main
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projects. The first project investigates whether learning program execution or synthesis

aids in learning the other. By analyzing the interplay between these two-aspects, we aim

to uncover insights into how neural networks can effectively comprehend and generate

executable code.

The second project focuses on learning to synthesize programs from entire execution

traces. We aim to enhance the efficiency and effectiveness of neural program synthesis

from diverse demonstration videos and propose realistic metrics to examine whether the

method can be applied in more practical scenarios.

Through a combination of structural analysis, empirical studies, and experimental

validation, this thesis seeks to advance our understanding of the impact of program ex-

ecution on neural program synthesis. By delving into the intricacies between program

representation and behavior, we aim to pave the way for more robust and intelligent Al

systems.

Keywords: Neural Program Synthesis, Machine Learning
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Chapter 1 Introduction

1.1 Background

1.1.1 Recent Advance in Deep Learning

Deep learning is a pivotal technique within the field of Machine Learning, demon-
strating remarkable success across various domains such as Computer Vision (CV), Natu-
ral Language Processing (NLP) [1, 17], Speech Recognition and Synthesis, Robotics [11],
Gaming [21], Autonomous Vehicles [25], and Recommendation Systems [4]. Deep learn-
ing utilizes neural networks with multiple layers like Convolutional Neural Networks (CNNs) [16],
Recurrent Neural Networks (RNNs), attention mechanisms, and transformers as models
that are designed to capture complex relationships between input data and predicted out-

comes.

Deep learning models are optimized through algorithms that adjust the weights and
biases of the network, often involving millions of parameters. The optimization process
involves learning a loss function that minimizes the discrepancy between the predicted
output and the ground truth. This learning process requires extensive annotated data to

accurately map the input to the desired output.”

1 doi:10.6342/NTU202401358
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1.1.2 Teach Neural Network to Learn Rules

On the other hand, rule-based systems are built on only a limited number of explicit
rules to address various situations. Prior works [30] have demonstrated that these models
struggle to generalize well to new scenarios, such as adding more bits in digit addition [30],
or increasing string lengths in string transformation tasks [7]. Given the constraints of
limited resources, it is neither realistic nor sample-efficient to exhaustively “remember”
the mapping of every data point to its desired output. Moreover, pure hand-engineered
rule-based systems often face challenges in extension and are susceptible to noise [7].

Consequently, researchers have been exploring effective neural methods to learn rules.

1.1.3 Programming By Example

A program consists of a set of instructions designed to guide a computer in performing
a specific task or solving a particular problem. These instructions dictate the actions the
computer should take under various conditions, making the program a typical rule-based
system. Programming By Example (PBE) is a fundamental aspect of learning programs
in the Artificial Intelligence (Al). Engineers provide the system with several instances of
inputs and their corresponding desired outputs to guide the inference of the program’s un-
derlying behavior. The machine’s objective is to fulfill these user-provided specifications

or examples.

1.1.4 Neural Program Induction and Synthesis

Two common approaches aimed at enabling machines to infer or create programs
from data are (1) Neural Programs Induction (2) Neural Program Synthesis. The former fo-

2 doi:10.6342/NTU202401358
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cuses on training neural networks to infer underlying rules or algorithms from input-output
examples, generating models that mimic a program’ s behavior and directly transform in-
put data to the desired output as specified. Meanwhile, the latter focuses on training neural
networks to infer the underlying rules or algorithms in the program, which are symbols or
languages predefined by programmers, generating models that output desired programs.
Humans can parse or compile these programs, execute them on the input data, and obtain
the output to verify whether these outputs meet the desired output in the specification or

examples. This thesis primarily investigates neural program synthesis.

1.1.5 The Execution Property of Program

A key difference between neural program synthesis and other applications of deep
neural networks, such as Natural Language Processing (NLP), is that neural program syn-
thesis generates ’explicit and executable’ programs. A common approach in deep neural
networks is to follow a supervised procedure to train a model that minimizes the differ-
ence between the predicted output and the ground truth. In addition to this, approaches
in neural program synthesis can leverage additional signals, such as compilation and ex-
ecution results of unit tests. This capability allows neural program synthesis to consider
aliasing programs ! [3], verify the grammar and execution of unit tests for predicted
programs before final submission [12], and even repair defective or partially correct pro-
grams [5, 10, 27, 28]. In summary, neural program synthesis can utilize program execu-
tion to ensure that the generated programs are both syntactically correct and semantically

meaningful.

laliasing programs: Programs consist of different tokens or representations that yield the same execution
results. When using a small number of input/output examples, the chance of program aliasing increase.

3 doi:10.6342/NTU202401358
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1.2 Research

In this section, I will introduce two research project conducted during my. master’
s studies, detailed in Chapter 3 and Chapter 4: (1) Bridging Neural Program Synthe-
sis and Execution (2) Demo2Program+: Improve Neural Program Synthesis from
Diverse Demonstration Videos and Evaluate on Demonstrations of Goal-Oriented
Task. Both projects are related to program execution. The first project investigates the
contributions of program execution to neural program synthesis, while the second project

explores the contributions of execution traces to neural program synthesis.

1.2.1 Bridging Neural Program Synthesis and Execution

Neural Program Execution (NPE) refers to the use of neural networks to interpret
and execute computer programs. Unlike traditional program execution, which relies on
a predefined set of rules and a virtual machine or processor, neural program execution
involves a neural network learning to understand and perform the operations specified by
the program. This approach aims to create models that can infer the underlying rules and
behaviors of the program, dynamically follow the instructions, and execute them. Models
often learn by training on numerous example programs and their executions, enabling the

network to generalize and handle new programs.

Both Neural Program Synthesis and Neural Program Execution share the goal of
leveraging neural networks to automate and enhance aspects of programming and com-
putation. They both require an understanding of the structure and semantics of programs,

as well as the ability to interpret dynamic information from the environment in which the
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instructions or programs are applied.

In the context of Programming By Example (PBE), the data formats differ between
the two approaches. For Neural Program Synthesis, the model is provided with example
input-output (I/O) pairs and is tasked with predicting the corresponding programs. Con-
versely, for Neural Program Execution, the model is given the programs and example

inputs, and it aims to predict the desired outputs.

Building upon the shared characteristics of Neural Program Synthesis (NPS) and
Neural Program Execution (NPE) mentioned above, our research aims to explore the sim-
ilarities between these two approaches and investigate whether training in neural program
synthesis can enhance execution. We employ two different types of encoder-decoder
model structures—Long Short-Term Memory (LSTM) and Transformer—to determine
if sharing model weights between NPS and NPE is beneficial. Our research focuses on
the domain of string transformation, utilizing the Domain Specific Language (DSL) from

Devlin et al. [7] and generating our dataset based on the methodology of Shin et al. [20].

1.2.2 Demo2Program+: Improve Neural Program Synthesis from Di-
verse Demonstration Videos and Evaluate on Demonstrations

of Goal-Oriented Task

Understanding and interpreting decision-making logic in demonstration videos can
indeed facilitate machines in collaborating with and mimicking human behavior. Due to
its structured and predefined nature, a program offers an efficient approach to achieve
this. Hence, prior works [0, 8, 22] have utilized neural program synthesizers to explic-
itly synthesize programs from demonstration videos. By utilizing demonstration videos

5 doi:10.6342/NTU202401358
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or execution traces, this approach also addresses the limitation of most works in the Pro-
gram By Examples (PBE) paradigm, which only synthesize programs based on initial and
final states (I/O pairs) of the data processed by the program. Such methods often lack
detailed information about the intermediate steps and decisions made during the program’

s execution.

However, obtaining real-world video data with precise program annotations is often
challenging. Due to this difficulty, prior works [6, 8, 22] resort to generating artificial
data of programs and demonstration videos, which are then split into training, validation,
and testing sets. The method of creating this data involves purely random sampling of
program tokens by a specific probability to form a program. Subsequently, initial states
are randomly sampled and executed to obtain their traces, forming unit tests until a valid
program and corresponding unit tests are found. Consequently, this human-created data is
task-agnostic and often exhibits meaningless behavior. As a result, a domain gap persists
between models trained on synthetic data and their application in the scenarios that users

are interested in.

To this end, we utilize demonstration videos from Programmatic Reinforcement Learn-
ing (PRL) [ 14, 23] tasks as the target video to evaluate our method. Agents in these videos
follow an optimal program policy generated by Liu et al. [14], accomplishing a strategy
to fulfill the task and maximize the rewards they receive. Hence, this data more closely
resembles a decision-making process compared to artificially created data. We use these
videos as the model’ s input and calculate the rewards obtained by executing predicted

programs as our evaluation metric.

Based on this new metric, we incorporate several features to investigate whether these

6 doi:10.6342/NTU202401358
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improvements enhance our method, conducting our experiments in the Karel | 18] domain:

1. Utilizing Large Language Model (LLM): We employ a code generation lan-
guage model, essentially CodeT5 [26, 29], as it surpasses the common LSTM structure

seen in previous works.

2. Using Visual Words of Action/Perception as Model’s Input: Incorporating

visual words of action/perception as input to the model [15].

3. Training on Data with Better Generating Heuristic: We generate data using

Liu et al. [ 14]’s method that filter redundant information.

4. Employing Action/Perception Prediction and Function/Branch Prediction as
Auxiliary Objective Loss Functions: We use action/perception prediction and function/

branch prediction as our auxiliary objective loss functions.

S. Utilizing Exedec [19] to Break Down Long Horizon Execution Traces: We

leverage Exedec [19] to break down a long-horizon execution trace into smaller pieces.

7 doi:10.6342/NTU202401358
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Chapter 2 Literature Review

The literature review chapter provides a comprehensive understanding of the existing
knowledge, research trends, and advancements relevant to the subject matter of this study.
In this chapter, we delve into the current state of research in the fields of neural program
synthesis, demo2program, and programmatic reinforcement learning. Each of these
areas is pivotal to the development and advancement of artificial intelligence and machine

learning technologies.

We begin with an exploration of neural program synthesis, which involves the auto-
matic generation of computer programs using neural networks. Following this, we discuss
the line of demo2program framework, which focuses on the conversion of user demonstra-
tions into executable programs. We also examine programmatic reinforcement learning,
a technique that combines programming and reinforcement learning to enable machines

to learn complex tasks through interaction with their environment.

2.1 Neural Program Synthesis

Neural Program Synthesis (NPS) has emerged as a promising approach for automat-
ically generating programs from high-level specifications. This paradigm leverages the
power of neural networks to learn the mapping between input-output examples and their

9 doi:10.6342/NTU202401358
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corresponding programs. In this section, I will introduce two types of approaches in Neural

Program Synthesis: 1. Search-Based Program Synthesis 2. Seq2Seq Program Synthesis.

2.1.1 Search-Based Program Synthesis

Before the advent of neural networks for program synthesis, various search algo-
rithms and heuristics were proposed for the program-by-example (PBE) paradigm in pro-
gram synthesis. In search-based techniques, the output program is found using a process
or solver designed by humans, operating within a deterministic time step. However, the
cost of the search process, or the search space, increases exponentially with the token

length in a program.

To address this challenge, Balog et al. [2] integrate neural network architectures with
search-based techniques, rather than replacing them entirely. They predict the probability
of the presence or absence of individual functions in a program to facilitate the search
process. Similarly, Ellis et al. [9] also focus on learning the presence of functions. They
determine whether a specific sequence of tokens is common in the dataset and, if so, add
a new function to the library to represent this sequence. This augmentation of the library
space speeds up the search process. Both methods cleverly integrate search techniques
with neural network learning techniques, enhancing the efficiency and effectiveness of

program synthesis.

2.1.2 Seq2Seq - Recurrent Neural Networks

Seq2Seq models, often utilized in natural language processing tasks, have been adapted
for program synthesis. These models employ an encoder-decoder architecture to take se-

10 doi:10.6342/NTU202401358
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quences of input-output pairs and generate the corresponding programs. One significant
advantage of this approach is that programs can be executed before final submission, al-
lowing the model to maintain a beam of several candidate programs and choose the one

that satisfies the given specification.

Devlin et al. [7] adapted an attentional Long Short-Term Memory (LSTM) structure
and demonstrated that the Neural Program Synthesis (NPS) architecture outperforms both
Neural Program Induction architectures and rule-based approaches. Additionally, their
work showed that NPS is robust to noisy examples, highlighting its effectiveness in prac-
tical scenarios. Subsequently, numerous works utilizing LSTM have emerged, as LSTM

is adept at encoding time series or sequences.

Bunel et al. [3] highlighted the problem of program aliasing, where different pro-
grams composed of varying tokens or representations yield the same execution results but
are still considered correct. Additionally, models with LSTM structures in an end-to-end
style often synthesize programs with syntactic errors, leading to failures in compilation
or execution. To address these issues, they used reinforcement learning (RL) to tackle

program aliasing and implemented a syntax checker to prevent syntactic errors.

2.1.3 Seq2Seq - Transformer

After Google’s paper ”Attention Is All You Need” [24], pre-trained transformer mod-
els for Natural Language (NL) like BERT and GPT have gained significant popularity in
the machine learning research community. These models have also been shown to transfer
well to common Programming Languages (PL) like Python and C++, benefiting a broad
set of code-related tasks.

11 doi:10.6342/NTU202401358
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Beyond applying the same processes used in Natural Language to Programming Lan-
guages, Yue Wang [29] proposed an encoder-decoder transformer model-named CodeT5,
pre-trained on several tasks that utilize the characteristics of program tokens, such as
span prediction and identifier (token type) prediction. CodeT5 unifies the language model
framework to solve various code-related tasks, including code generation, code transla-

tion, code summarization, and code refinement.

Following this, Le et al. [12] proposed CodeRL, which uses unit tests as rewards,
similar to the approach of Bunel et al. [3]. By combining the important signals from spec-
ifications with the advantages of pre-trained transformer models, they achieved excellent
results. The current state-of-the-art code generation models are predominantly trained

using similar concepts and extensive amounts of high-quality data.

2.2 Demo2Program

”Demo2program,” proposed by Sun et al. [22], stands for “learning to synthesize
program from diverse demonstration videos”. In this line of work, the model is trained
to understand the decision-making process of the machine and interpret it as a program.
They use entire intermediate execution states as examples in the Programming By Ex-
ample (PBE) paradigm. Long Short-Term Memory (LSTM) networks are employed to
encode each execution sequence (or demonstration video) into a vector. These vectors
are then aggregated to summarize all videos into a compact vector, which is subsequently

used to decode program tokens.

Additionally, they use a multi-task objective to decode all action and perception se-
quences from the encoded demonstration vector. This ensures that the model captures

12 doi:10.6342/NTU202401358
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every event occurring in each step of the encoding process while performing supervised

learning on the program tokens.

This multi-task objective method leverages more information from the execution pro-
cess, emphasizing that actions and perceptions are important signals. Actions inherently
correspond to functions used during program execution, while perceptions represent con-
ditions within the program. These elements form the basis for decision-making during
program execution. Building on this concept, Dang-Nhu [6] directly predicted the percep-
tions occurring in each frame of the state and the actions occurring between two adjacent
states using a Convolutional Neural Network (CNN). These actions and perceptions were
then treated as specifications, and a rule-based solver was used to search for a program

that satisfies these specifications.

However, Dang-Nhu’s [6] method caused the model to lose its ability to tolerate
noise, similar to methods used before the advent of neural network approaches. Addition-
ally, exhaustively searching for programs using a rule-based solver is time-consuming,
especially when the program structure is complex or the length of the programs and videos
is long. Therefore, in our project (detailed in Chapter 4), we use a Large Language Model
(LLM) instead of a rule-based solver, combining the advantages of neural networks with

improved noise tolerance and efficiency.

Furthermore, previous works have evaluated their methods on synthetic data gener-
ated using the same heuristics as the training data. This artificial data is created by ran-
dom sampling, making it task-agnostic and containing many meaningless behaviors that
do not appear in actual decision-making situations. Therefore, we evaluate our methods

on videos from Programmatic Reinforcement Learning (PRL) tasks, where the machine’s
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behavior is more strategic compared to human-created data.

2.3 Programmatic Reinforcement Learning

In contrast to policies in Deep Reinforcement Learning (DRL) that directly generate
actions given a state, Programmatic Reinforcement Learning (PRL) synthesizes programs
structured in a Domain-Specific Language (DSL) to guide agent behavior. Program poli-
cies can be parsed and executed based on an initial state when applied to the environment.
Before application, users can interpret the policy and filter out any risky programs, al-
lowing for human inspection as an additional safety measure. Furthermore, the structured

nature of the program enhances the policy’s generalizability to unseen scenarios.

Unlike the Programming By Example (PBE) paradigm, where the model is trained to
fulfill a specification, the model in PRL is trained to optimize a reward given a task with a
clear goal. This makes the policy a strategy with a specific purpose. Executing this policy
on several initial states generates demonstrations that serve as an ideal target for evaluating
our method. If we can synthesize programs based on demonstrations from PRL, it would

demonstrate our method’s superiority in learning a decision-making process.
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Chapter 3 Bridging Neural Program

Synthesis and Execution

As discussed in Section 1.2.1, learning neural program synthesis and learning neural
program execution both require an understanding of the structure and semantics of pro-
grams, as well as the ability to interpret dynamic information from the environment in
which the instructions or programs are applied. Our research aims to explore the simi-
larities between these two approaches and investigate whether training in neural program

synthesis can enhance execution.

In the context of Programming By Example (PBE), the data formats differ between
the two approaches. For Neural Program Synthesis, the model is provided with exam-
ple input-output (I/O) pairs and is tasked with predicting the corresponding programs.
Conversely, for Neural Program Execution, the model is given the programs and exam-
ple inputs, and it aims to predict the desired outputs. Hence, the structure design of the

encoder and decoder should be both different between NPS and NPE.

In this chapter, I will discuss the problem formulation, model design, and the result

discussion.
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3.1 Problem Overview

3.1.1 Problem Formulation

The goal of neural program synthesis is to token-by-token generate a program pre-
diction P’ that can correctly produce the desired outputs given a set of k input-output (I/O)
string examples {(Ix, Oy) | k = 1,2,..., K}. Here Oy, represents the output obtained by
executing the ground truth program P on the k-th input [,. The synthesized program P’

should be able to produce the same output O, when applied to the corresponding input /.

The goal of neural program execution is to predict the output Oy, for a given set of k
input string examples [ and a program P. The model should accurately replicate the

output O as if the ground truth program P were executed on the k-th input .

Both paradigms use Cross-Entropy Loss to calculate the difference between the ground
truth and the prediction at a token wise level. We minimize Cross-Entropy Loss as our

objective function.

3.1.2 Domain Specific Language

I = January | O; = jan

I, = February | O, = feb

I3 = March O3 = mar

P = ToCase(Lower, SubStr(1,3))
Table 3.1: FlashFill Example

Following the approach of Robustfill [7] we conducted our experiments in a string
transformation domain, structuring our program P in a Domain Specific Language (DSL)
as defined in Figure A.1. The inputs [}, and the outputs Oy, are strings composed of multiple
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characters, and the program P functions as a transformation mechanism, converting one

string into another.

An example of this process is illustrated in Table 3.1. The program ToCase (Lower,
SubStr(1,3)) truncates the input strings to obtain substrings from positions 1 to 3 and

then converts these substrings to lowercase.

3.1.3 Training Data

However, the FlashFillTest dataset used by Devlin et al. [7] in Robustfill is not pub-
licly available. Therefore, we generated our own dataset based on the DSL of FlashFillTes.

Our data generation method follows the approach of Shin et al. [20]:

1. We first sample program tokens token-by-token to form a valid program P that

can be correctly parsed and executed.

2. Then, we sample string characters token-by-token to form a valid input string that
is syntactically correct for the program to process and generate the corresponding

output string.

Step 2 is repeated until we have 16 pairs of input-output (I/O) strings and a corresponding
program that satisfies the requirements, which are then added as one data point to the

dataset.

We created a dataset with 100,000 training examples, 5,000 validation examples, and

5,000 testing examples.

Table 3.2 presents an example of our generated data. Let’s take /; as an example:

The program P is a nested function where the innermost components are “Regex 1 (
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inputs outputs
I; =Ne{Tetvr}Agu,m[Ngz.Hctbg]Dd?0p | O = Tetvr
I, = Dk0Qq,Agh(Xao}Cxqp:0v@Qey,Czc# | Oy = Agh
I3 = rD)Nun) It,Sdb$Zkmz :Hv#3Vr!Sy) | O3 = It
P =Concat c( GetToken n( Propcase -3 n) v(
SubStr s( Regex r( Alphanum O End r)
Regex r( Propcase -4 End r) s) v) c)

Table 3.2: Our String Transformation Dataset Example

Alphanum O End r)” and “Regex r( Propcase -4 End r)”. These expressions rep-
resent “find the ending position of the Oth string in alphanumeric character” and “find the

ending position of the -4th string in properly cased character,” respectively.
» 7{” is identified as the Oth string in alphanumeric character.
* ”Ngz” is identified as the -4th string in properly cased character.
Next, the two positions found by the above functions are used as indices for the

SubStr s( indexl index2 s) function, which truncates characters before index1 and

after index2.

The resulting substring “{Tetvr}Agu,m[Ngz" is then passed as an argument to GetToken
n( Propcase -3 n) v( arguement v) to obtain the -3th string in properly cased char-

acter Tetvr.

After forming an expression of length 1, we use Concat c( c) to concatenate more

expressions if the program’s expression length is greater than 1.

3.2 Methods and Preliminary Results

In this section, we discuss the encoder-decoder architecture in the program synthe-

sizer for Neural Program Synthesis and in the program executor for Neural Program Ex-
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= -
-

: : last hidden

(a) The encoder of program synthesizer (b) The decoder of program synthesizer

Figure 3.1: The structure of the a simple version of synthesizer. Brown squares are
representing vectors, blue squares are for trainable module, green squares are for functions
of arithmetic computation.

ecution. Also, we discuss how the setting of teacher forcing and the scheduled-sampling

affect the result.

3.2.1 Examine the Effects of the Attention Layer in Program Synthe-
sizer and the Effects of the Scheduled Sampling

Simple Version of Program Synthesizer We first try a simple version of LSTM-based

program synthesizer as in ??:

Encoder (Simple Version) Each character in the input and output strings is embedded
into a vector with a hidden size of 100. These embedded character vectors, along with an
initial zero hidden vector and cell vector, are then fed sample-wise into a long short-term
memory (LSTM) network.
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We concatenate the final hidden vector of the input string with the final hidden vector
of the output string, and similarly concatenate the final cell vector of the input string with
the final cell vector of the output string within the LSTM. We then compute the mean

value across all 16 examples.

This concatenated input/output vector is fed into an I/O encoder, which consists of
multiple linear layers with a hyperbolic tangent activation function, completing the en-
coding process for the input/output strings. The resulting encoded I/O vector has a size of

300, aligning with the size of the program embedding.

Decoder (Simple Version) Each program token in the program is embedded into a vec-
tor with a hidden size of 300. These embedded program vectors, along with an initial
hidden and cell vector from the encoded I/O vector, are then fed into a long short-term
memory (LSTM) network. The output program tokens are fed into a token classifier,
which consists of multiple linear layers with a Leaky Rectified Linear Unit (LeakyReLU)
activation function. The token with the highest probability is then sampled as the program

token.

Decoder Training Policies: Teacher Forcing and Scheduled Sampling When training
sequence-to-sequence models, such as those used in neural program synthesis, the choice
of decoder training policy can significantly impact the model’s performance. One common
approach is Teacher Forcing, where the model is trained by providing the ground truth
token as the next input token at each step, rather than using the model’s own predictions.
This method helps the model learn the correct sequence of tokens more quickly and ensures

stable training by always feeding the correct context. However, a major drawback of
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Teacher Forcing is that it can lead to a discrepancy between training and inference, as the

model is never exposed to its own errors during training.

To address this issue, Scheduled Sampling is introduced as an alternative training pol-
icy. Scheduled Sampling gradually transitions from Teacher Forcing to using the model’
s own predictions during training. Initially, the ground truth tokens are used as inputs, but
over time, the model increasingly relies on its own predicted tokens. This approach helps
mitigate the exposure bias introduced by Teacher Forcing, as the model learns to handle
its own mistakes and better adapt to the conditions it will face during inference. Sched-
uled Sampling strikes a balance between stability and robustness, aiming to improve the

model’s generalization and performance on unseen data.

Here, we implement scheduled sampling by linearly decreasing the ratio of using
ground truth tokens from 1 to 0 during the training phases, spanning from the 50th epoch
to the 100th epoch. Both scheduled sampling and teacher forcing are trained for 150

epochs to facilitate a thorough comparison of our results.

Adding attention layer of program synthesizer To evaluate the effectiveness of in-
corporating attention mechanisms in neural program synthesis, we aim to compare its
performance against the simpler structure described earlier. The motivation behind in-
troducing attention is to enable the model to focus on relevant parts of the input/output
examples, potentially enhancing its ability to capture complex relationships within the
data. We hypothesize that the attention mechanism will allow the model to dynamically
weigh the importance of different I/O pair tokens when generating the output program,

thus improving its performance in synthesizing programs from input/output examples.

Table 3.3 presents the preliminary training status during the selection of the neural
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[bs,N*(IL+OL),100]

[bs,N*(IL+OL);400]

(a) The encoder with attention

(b) The decoder with attention

Figure 3.2: The structure of the synthesizer with attention layer. Brown squares are
representing vectors, blue squares are for trainable module, green squares are for functions
of arithmetic computation.

Method accuracy/train | accuracy/eval | loss/train | loss/eval
teacher forcing 0.9789 0.7234 0.0581 6.956
scheduled sampling 0.9087 0.7708 0.2563 1.069
attention layer + teacher 0.9705 0.1641 0.08274 | 10.741
forcing

attention layer + sched- 0.9342 0.8101 0.1869 0.7713
uled sampling

Table 3.3: The preliminary training status during architecture selection

program synthesis architecture. The table includes four different training configurations:
(1) Teacher Forcing, (2) Scheduled Sampling, (3) Attention Layer with Teacher Forc-
ing, and (4) Attention Layer with Scheduled Sampling. For each configuration, the table
shows the accuracy ! and loss metrics both during training (accuracy/train, loss/train) and

evaluation (accuracy/eval, loss/eval).

In the results, we observe that when utilizing Teacher Forcing alone, the model achieves
high training accuracy of 97.89%. However, the evaluation accuracy drops notably to

72.34%, indicating potential overfitting. On the other hand, Scheduled Sampling shows

! Accuracy here refers to the ratio of predicted program tokens that match the ground truth.
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a significant improvement in evaluation accuracy (77.08%), suggesting that it effectively
mitigates overfitting by introducing a mechanism that forces the model to rely less on the
ground truth during training. This only comes with a slight decrease in training accuracy

(90.87%) despite the model has already fully relied on its own prediction here.

Introducing an attention layer along with Teacher Forcing dramatically decreases
the evaluation accuracy to 16.41%, indicating a substantial drop in generalization per-
formance. This observation aligns with the notion that the attention mechanism, while
beneficial for focusing on relevant parts of the input, may lead to overfitting by allowing
the model to memorize the training data more effectively. However, when the attention
layer is combined with Scheduled Sampling, the evaluation accuracy improves signifi-
cantly to 81.01%, surpassing all other configurations. This suggests that the attention
mechanism, when used in conjunction with Scheduled Sampling, enhances the model’s
ability to synthesize programs from input/output examples by enabling it to dynamically

weigh the importance of different input tokens, thereby achieving better generalization.

In conclusion, the results demonstrate that employing an attention layer alongside
Scheduled Sampling yields the best performance in terms of evaluation accuracy. This
combination effectively balances the benefits of attention in capturing complex relation-
ships within the data while mitigating overfitting through Scheduled Sampling, making it

the optimal choice for neural program synthesis tasks.

23 doi:10.6342/NTU202401358


http://dx.doi.org/10.6342/NTU202401358

(bs*n,input_len,100)

(bs*n,1,input_Ten

(a) The encoder of program executor (b) The decoder of program executor

Figure 3.3: The structure of the program executor. Brown squares are representing
vectors, blue squares are for trainable module, green squares are for functions of arithmetic
computation.

Train | Valid | Test
Exact match of synthesis 73.65 | 29.92 | 29.58
All-sample-right of synthesis | 75.75 | 37.92 | 35.43
Exact match of execution 0.66 | 034 | 037
Partial-sample-right of execution | 27.05 | 17.47 | 16.53
Table 3.4: Result of neural program synthesis and neural program execution

3.2.2 Experiment results on Neural Program Synthesis and Unsuc-

cessful results on Neural Program Execution

After decide the architecture of program synthesizer, we also design our execution
predictor with similar concept (illustrated in Figure 3.3). However, in the context of neural
program execution, the performance of the executor fell short of expectations. (Result is
presented in Table 3.4.) 2 This was compounded by the complexity of both the training
settings and the evaluation metrics. Consequently, the original intention of utilizing neural

program execution to aid in neural program synthesis became less feasible.

2Exact match: The ratio of predicted program is same as the ground truth. A/l-sample-right: The ratio of
predicted program meets all I/O pairs specification, it consider aliasing program as correct. Partial-sample-
right of execution: The ratio that predicted output string is correct samplewisely.
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3.3 Discussion with Contributions from Team Member

Furthermore, our team member, Wei-Hsu Lee, delved into another facet of the re-
search as documented in his master thesis [13]. Instead of focusing on investigating the
structure of LSTM, he conducted experiments with CodeT5 [29]. Lee directly fed input
data into the code-generating language model, CodeT5, and fine-tuned it. His experimen-

tal setup yielded the following observations:

1. Training with neural program execution did not significantly aid neural program

synthesis.

2. The effectiveness varied when training with different I/O and program settings:
single program with multiple I/O, multiple programs with single I/O, and multiple

inputs with multiple outputs.

3. The model was confused by different programs with partially identical input-output

pairs.
4. Utilizing natural language data from Wikipedia as evaluation data performed poorly

compared to the original testing set.

From these experiments, three key insights emerged:

1. Large Language Models (LLMs) demonstrate significantly greater power than hand-

crafted LSTM models.

2. Randomly generated datasets fail to generalize well to other data distributions.

3. Trivial settings have a substantial impact.
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Considering these findings, we have opted to conclude this project at its current stage.
Our subsequent project Demo2Program+: Improve Neural Program Synthesis from Di-
verse Demonstration Videos and Evaluate on Demonstrations of Goal-Oriented Taskalso

benefits from these insights.
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Chapter 4 Demo2Program+

Demo2Program+: Improve Neural Program Synthesis from Diverse Demonstration

Videos and Evaluate on Demonstrations of Goal-Oriented Task.

As discussed in the introduction section (Section 1.2.2) and the literature review sec-

tion (Section 2.2), we have two primary directions:

1. Enhancing the performance of Demo2Program based on insights gleaned from pre-

vious works [6, &, 22].

2. Employing demonstrations from Programmatic Reinforcement Learning (PRL) tasks

to assess our method, aiming for higher rewards.

In this chapter, I will discuss the problem overview, method design, and the result.

4.1 Problem Overview

4.1.1 Karel Environment and Domain Specific Language

We conduct our experiment on Karel domain. Karel is a programming language used
in educational contexts, particularly in the field of computer science and programming
education. In the Karel programming language, the language interacts with a simulated
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machine or environment where the robot (Karel) operates. This simulated environment
typically consists of a grid world where Karel can move around, pick up, and put down
markers. The Domain Specific Language (DSL) defined in Figure A.2 provides com-

mands that control Karel’s actions within this environment.

Programmatic Reinforcement Learning Tasks for evaluating includes 8 tasks: , TOPOFF,
DoORrRKEY, FOURCORNERS, HARVESTER, MAZE, SEEDER, STAIRCLIMBER, and ONESTROKE [ 14,
23]. Figure A.3 presents an example of the task DOORKEY. We use demonstrations from

an sample well-trained program policy from Liu et al. [14] as our specification.

4.1.2 Problem Formulation

Generally, the problem formulation remains the same as in Section 3.1.1, except that
in Chapter 4, we use execution traces Dj, instead of I/O pairs I, Og. Dj is actually
composed of the states S}, from several frames. Here, S}, represents the state at the ¢-th

timestep of the k-th example.

We use original dataset generated by demo2program [22] with 25,000 training ex-
amples, 5,000 validation examples, and 5,000 testing examples. Also, we discuss the

heuristic of generation in Section 4.2.3.

4.2 Methods

We utilize 5 technique to improve the performance of demo2program:

1. Utilizing Large Language Model (LLM) as our encoder-decoder.

2. Using Visual Words of Action/Perception as Model’ s Input.
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3. Training on Data with Better Generating Heuristic.

4. Employing Action/Perception Prediction and Function/Branch Prediction’as Aux-

iliary Objective Loss Functions.

5. Utilizing Exedec [19] to Break Down Long Horizon Execution Traces.

4.2.1 Utilizing Large Language Model as Our Encoder-Decoder

As previously concluded, transformer-based models are more powerful than LSTM-
based models. Therefore, we utilize CodeT5 [29] as our model. We fine-tune CodeT5
on the demo2program dataset to enable it to learn the state and mechanisms of the Karel
world. Leveraging its pretrained knowledge and the fine-tuning process, the model gains
an understanding of the semantic and syntactic structures of the Karel Domain Specific

Language.

4.2.2 Using Visual Words of Action/Perception as Model’s Input

As Sun et al. [22] revealed, action and perception play important roles in synthesiz-
ing programs. Actions inherently correspond to functions used during program execution,
while perceptions represent conditions within the program. These elements form the ba-
sis for decision-making during program execution. In fact, we don’t even need the raw
input state; the actions and perceptions alone determine the decision-making process of

the program.

Hence, following the approach of Manchin et al. [ 15], we use actions and perceptions
as visual words instead of the raw state of Karel to feed into the model. We first train a
Convolutional Neural Network (CNN) classifier to predict the perception in each frame of
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state, and then train another CNN classifier to predict the action occurring between every
two adjacent frames. We then encode the action/perception predictions into visual words
as the model’ s input. The model synthesizes the output program from these input action/
perception visual words. In this way, we can filter out the raw input state with noise or
unseen states in new scenarios, which might be challenging for synthesis, but can still

predict their actions and perceptions.

4.2.3 Training on Data with Better Generating Heuristic

Liuetal. [14] improved the data generation method of the demo2program dataset [22]
in their work HPRL. They filtered out programs with meaningless movements such as ad-
jacent putMarker, pickMarker, turnLeft, and turnRight. Moreover, they gen-
erated valid execution traces that cover all branches of the program to address all possible

situations the program may encounter.

For the sake of convenient comparison with previous baselines [6, 8, 22], we primar-
ily utilize the demo2program dataset directly. However, we can also leverage the data

generation heuristic proposed by Liu et al. [ 14] to enhance the performance of our model.

4.2.4 Employing Action/Perception Prediction and Function/Branch

Prediction as Auxiliary Objective Loss Functions

Inspired by the method proposed by Sun et al. [22], which decodes actions and per-
ceptions as auxiliary objective functions, we also aim to incorporate some essential signals
of programs into our framework as auxiliary objective functions. However, since we have

already used action/perception as our visual words, it would be redundant for a power-
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ful transformer model to decode them again as an objective. To address this, we propose

“Function” and “Branch” as our new auxiliary objective loss functions.

» Function is composed of 5 Boolean values representing whether specific percep-
tions are used as conditions for machine decision-making at specific timesteps dur-

ing the execution of the program.

* Branch is composed of 5 Boolean values representing whether specific branching
functions (for example: while, if, else, ifelse, repeat) are called at spe-

cific timesteps during the execution of the program.

We believe these two features, Function and Branch, are important aspects of a pro-
gram. Therefore, we feed the output vector of the CodeTS5 encoder into two decoders of
multi-layer perceptron to predict Function and Branch respectively. We use the Cross-
Entropy Loss between the Function and Branch prediction and the ground truth as our

multi-task objective.

4.2.5 Utilizing ExeDec [19] to Break Down Long Horizon Execution

Traces

Shietal. [19] propose a decomposition-based program synthesis framework, ExeDec,
along with a benchmark of 5 generalization tasks to evaluate the generalization ability of
a program synthesizer. The ExeDec framework breaks down the synthesis process into

steps of synthesizing smaller subtasks instead of directly tackling a complex task.

At each step of the process:

1. ExeDec uses a subgoal model to predict the intermediate subgoal states O,tfl that
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Model Execution | Sequence
demo2program 72.1 41.0
watch-reason-code 74.7 43.3
PLANS 91.6+1.3 | 34.2+0.5
86.64 50.9

codet5-small 90.96 54.16
codet5-base 90.7 54.1
codet5p-220M 87.26 52.06

Table 4.1: Synthesis result (with method 1 and 2) on the dataset generated by

demo2program. The
proposed by us.

color means we reproduce other’s work [15], red color is

will be achieved in the current step, instead of directly predicting the final desired

output Oy.

2. The synthesizer model then predicts a subprogram P! that can achieve the subgoal

states OZ,H by executing the subprogram P’ on the current states O}.

3. The prediction P* of the synthesizer model is used to achieve the next current state E.

4. If the next current state E} matches Oy, for all k examples, we combine all the

subprograms P!, P2, ..., P! to form a final prediction P and terminate.

Shi et al. [19] tests ExeDec on their benchmark to show that this framework has

a ability of generalization, which perfectly fits our needs. Therefore, we reproduce a

ExeDec on Karel domain with a demonstration version instead of programming by I/O

pairs. Both the subgoal model and the synthesizer model are CodeTS5.
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4.3 Results and Discussion

4.3.1 Synthesis Results (with method 1 and 2

Table 4.1 show a result of applying visual word and fine-tuning CodeT5 (i.e. using
method 1 and 2 mentioned in Section 4.2) on synthesizing program in demo2program
dataset. Execution means the ratio of the program prediction that meet the specification
on all the example, i.e., behave the same as the ground truth. Sequence means the ratio of
the program prediction matches the ground truth exactly. We reproduce VT4 [15] on the
Karel domain and try three different size of CodeT5 model. All the method perform good

the human-generated dataset, we use CodeT5-small as our structure in later discussion.

Method fourCorners topOff harvester Maze stairClimber doorkey oneStroke seeder average
ground truth 1 1 1 1 1 1 0.711 1 0.964
D2P k=1 -0.001 -0.001 -0.001  -0.001 0 -0.001 -0.001 -0.001  -0.001
D2P_ k=100 0 0 0.1944  -0.001 -0.001 -0.001 0.7111 0.0278  0.116
CodeT5_k=1 0 0 0 0.2 1 0 0.6222 0 0.228
CodeT5_k=100 0.250 0.9 0.1389 0.6 1 0 0.7889  0.1389  0.477

Table 4.2: Compare our model with D2P in PRL.

We then compared this setting with our reproduced demo2program (D2P) in PRL
task. K means choose the best program that can get the highest reward among the &
most probable candidates. Reward for each task is calculated from the mean of rewards
yielded in all example. We can see that original structure of D2P can not generalize to a

goal-oriented dataset other than their syntactic dataset, but our method can.

We want to further improved the performance of our method, so we tried the method

3,4, 5 (mentioned in Section 4.2) to see whether there is an improved.
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Method fourCorners topOff harvester Maze stairClimber doorkey oneStroke seeder average

ground truth 1 1 1 1 1 1 0.711 1 0.964
hprl 25k 1.000 1.000 0.139 1.000 1.000 0.000 0.119 0.139  0.550
demo2program 0.175 0.700 0.139 0.800 0.700 0.000 0.883 0.000  0.425
hprl 800k 0.250 1.000 0.000 1.000 1.000 0.200 0.575 0.028  0.507

Table 4.3: Testing the effect of fine-tuning on different dataset:

4.3.2 Comparing the Dataset Generation Method (with method 3)

We use the heuristic mentioned in Section 4.2.3 to generate datasets in different size:
25k and 800k. We fine-tuned our model in different dataset and evaluate it on PRL tasks.
The results is presented in Table 4.3. We can see that the better heuristic help model

learning, and the larger amount of data point may be redundant.

4.3.3 Multi Task Objective Loss - function&branch (with method 4)

dataset: demo2program Exact Execution
Train Eval Test Train Eval Test
no loss 100 5296 54.07 100 88.4 88.64
ap loss 100 53.08 54.68 100 89.68 89.92
all loss 100 5324 54.84 100 89.78 90.22

Table 4.4: Performance metrics on synthetic dataset for using different auxiliary loss

Table 4.4 shows that using auxiliary loss of Action/Perception and Function/Branch
slightly increase the performance in the synthetic dataset. But there is no obvious im-

provement when evaluating PRL tasks, as shown in Table 4.5.

fourCorners topOff harvester Maze stairClimber doorkey oneStroke seeder average

ground truth 1.000 1.000 1.000 1.000 1.000 1.000 0.711 1.000 0.964
D2P, no loss 0.000 0.500 0.167 1.000 1.000 0.000 0.053 0.000 0.389
D2P, ap loss 0.250 0.500 0.167 0.800 0.900 0.000 0.028 0.000 0.342
D2P, all loss 0.075 0.900 0.167 1.000 0.700 0.000 -0.001 0.028 0.399
hprl, no loss 0.175 1.000 0.111 1.000 1.000 0.050 0.086 0.000 0.464
hprl, ap loss 0.150 1.000 0.139 1.000 1.000 0.000 0.111 0.028 0.468
hprl, all loss 0.175 0.300 0.028 1.000 1.000 0.000 0.108 0.167 0.372

Table 4.5: PRL Performance metrics for fine-tuning on different dataset and using differ-
ent auxiliary loss
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4.3.4 ExeDec (with method 5)

ExeDec reproduce is implemented by my team member, Wei-Hsu Lee. The detail is
elaborated in his thesis [13]. We can yield two observation: 1. subgoal model is really
hard to train. 2. Even training synthesizer model with ground truth subgoal states, we still

cannot obtain a correct program that terminate the process during evaluation.

We hypothesize that observation 1 is due to the fact that predicting a subgoal from
an out of distribution input is no easier than predicting a program from an out of distri-
bution input. We hypothesize that observation 2 is because there is still many prediction
error from step by step, which may cause error propagation. As a result, this method can
be beneficial if we carefully hand-craft the algorithm and use a good representation of

subgoals.

4.4 Conclusion

Due to the difficulty in obtaining real-world labeled demonstration and program
data, the demo2program approach typically relies on training with synthetic data. We
use demonstrations of programmatic reinforcement learning tasks to mimic a execution of
real world strategy making decision and propose five methods to generalize to a wider data
distribution: 1. Utilizing Large Language Model as our encoder-decoder 2. Using visual
words of action/perception as model’ s input 3. Training on data with better generating
heuristic 4. Employing function/branch prediction as auxiliary objective loss functions 5.

Utilizing ExeDec to break down long horizon execution traces

In our experiment, methods 1, 2, and 3 improved the performance of synthesizing
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program policies on PRL tasks. However, we did not observe significant improvements

when directly using methods 4 and 5.

We analyzed that there are three potential cases of dataset distribution misalignment
between the synthetic dataset and the real-world dataset: 1. Demonstrations generated by
excessively long programs. 2. Demonstrations generated by overly deep programs (i.e.,
too many layers of branching/looping). 3. The sequence and combination of demonstra-

tion frames in the real-world dataset are not present in the synthetic dataset.

We believe that, if the method architecture is carefully designed, method 4 can slightly

help with the second case, while method 5 can address the first and third cases.
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Appendix A — Domain Specific

Language

A.1 String Transformation Domain

Program p
Expression e
Substring f
Nesting n

Position k
Regex r
Type t

Case s
Index ¢
Character ¢
Delimiter §

Boundary y

Concat(ey, eq, €3, ...)
flIn|ni(ng) | n(f)|ConstStr(c)
SubStr(ky, ky)
GetToken(t,1i) | ToCase(s)
Replace(dy,0,) | Trim()
GetUpto(r) | GetFrom(r)
GetFirst(t,i) | GetAll(t)
-30,-29,...,1,2,..,30 | r
t1| |tn’51’ ’(Sm
NUMBER | WORD | ALPHANUM
ALLCAPS | PROPCASE | LOWER
DIGIT | CHAR

PROPER | ALLCAPS | LOWER
5, —4,-3,-2,1,2,3,4,5
A—Za—2z0-9]|0

&, 1@()[|%{}/ :; $#”

Start | End

Figure A.1: Domain Specific Language (DSL) of string transformation domain: Syn-

tax of the string transformation DSL based on Robustfill [7].
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A.2 Karel Domain

Program p := DEF run m( s m)
Repetition n := 0..19
Perception h := frontIsClear | leftIsClear | rightIsClear |
markersPresent | noMarkersPresent
Condition b := perception h | not perception h
Action a := move | turnLeft | turnRight |
putMarker | pickMarker
Statement s := WHILE c¢(bc) w( sw) | s1s2 | a |
REPEATR=nr(sr)|IFc(bc)i(si)|
IFELSE c¢(bc) i( s1 i) ELSE e( s2 €)

Figure A.2: The Karel DSL grammar.
It describes the Karel domain-specific lan-
guage’s actions, perceptions, and control
flows. The domain-specific language is ob-
tained from Liu et al. [14].

42

Goal: Find the key
to open the door

Goal: Put a marker

at the goal location Tasiicomplet@ii

Figure A.3: An example Karel task —
DoorKEY. The agent first needs to find
the key (marker) in the left room, which
will open the door (wall) to the right room.
Navigating to the goal marker in the right
room and placing the picked marker on
it will grant the full reward for the task.
This sparse-reward task has been found
to pose significant challenges to previous
PRL methods, as it necessitates a greater
capability in long-horizon strategy formu-
lation.
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Appendix B — Program Aliasing

Program A Program B
g ® o def run(): def run():
® repeat (4): while (noMarkersPresent) :
putMarker () putMarker ()
move () move ()
turnLeft () turnLeft ()
(a) Partial Specification as I/O Pair

Figure B.4: Program Aliasing is one difficulty of program synthesis (pointed out by
Bunel et al. [3]): For the input-output specification given in (B.4a), both programs are
semantically correct. However, supervised training would penalize the prediction of Pro-

gram B, if A is the ground truth.
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