
doi:10.6342/NTU202503318

國立臺灣大學電機資訊學院資訊工程學系

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master’s Thesis

現代零知識查找論證的比較性能分析

A Comparative Performance Analysis of Modern
Zero-Knowledge Lookup Arguments

游祖鈞

Tzu-Chun Yu

指導教授: 廖世偉博士

Advisor: Shih-Wei Liao Ph.D.

中華民國 114年 7月

July, 2025

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Acknowledgements

終於寫完這篇論文了，有很多的感謝估計沒有機會親口表達，寫在這裡或

許更多是我自己的沉澱。感謝我的教授廖世偉給我很多自由讓我能夠在 SuDo實

習，接觸到真正的區塊鏈，也因此促成機會能夠得到以太坊基金會的 ZK Grant

Round贊助。這個論文的實現必須感謝 Harry,靖傑,育銘,如果沒有一開始你們一

起參與 pylookup的實現，這個 Rust版本根本不可能完成。也感謝 Plonkish框架的

製作者 Han，基於這框架 Lookup argument實現變得容易。謝謝 SuDo的每一個同

事，每天生活真的像 CJ講的一樣過得快樂又一起賺錢，在這裡我真正瞭解區塊

鏈，以及鏈上各種 Degen操作。謝謝以太坊基金會 PSE team的 Phini, Adrian, Mo,

有你們才有 Acceleration Program讓我可以碰到 Lookup argument以及很多很棒的

人。特別感謝元宇宙扶輪社頒發給我獎學金，這筆獎學金幫助了我出國參加會

議的費用，讓我得以把這個研究作得更好。感謝 Exponential Venture四巨頭品豪

CharmingJack你們是真心的好朋友。謝謝我的弟弟妹妹在 24年暑假我們在巴黎

一起跟爸爸度過最後的時光，希望我們永遠都好。最後感謝最重要的媽媽以及小

元，你們的陪伴讓我在工作學校與雜七雜八的事情之間有了歇息，希望你們健康

快樂，你們是我永遠的後盾。這兩年，加上休學的一年是三年，只能用白駒過隙

來形容，每一天都過得很充實，進來資工所之前我有很多想像，雖然最後好像不

是按照想像走，但我覺得我更瞭解自己、更追隨內心、也對無謂的社會框架怯魅，

我知道我在乎什麼也不在乎什麼。謝謝各位，我們繼續衝鋒

ii

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

摘要

零知識證明 (Zero-knowledge proofs, ZKP)是區塊鏈擴展性與隱私保護的關鍵

技術，尤其在 ZK rollup解決方案中扮演核心角色，其透過將大量計算轉移至鏈

下，有效提升交易吞吐量。然而，在這些系統中證明複雜的運算（例如虛擬機器

的單個操作碼）仍然是主要的性能瓶頸。為此，查找論證 (Lookup Argument)已成

為一項關鍵的最佳化技術，它允許計算步驟的有效性可以根據預定義的表格進行

高效驗證，從而避免了成本高昂的算術化過程。

儘管現存多種查找論證協定——包含 Plookup、Caulk、Baloo、CQ、Lasso與

LogupGKR——各自具備不同的理論複雜度，但市場上始終缺乏一份全面性的實

證效能比較，以指導開發者在實際應用中的選擇。

本論文對該領域作出四項關鍵貢獻：首先，我們增強並擴展了一個統一的

Rust基準測試框架，提供多線性與單變數多項式版本，為未來查找論證研究奠定

標準化基礎。其次，我們對六個主流協議進行了廣泛的基準測試，系統性地評估

了在不同表格大小與查找密度下的證明者時間、驗證者時間、證明大小及預處理

成本。第三，我們發現並解釋了 Lasso的證明大小在 K = 12時反直覺地減少的現

象，揭示了均勻 Limb分解 (uniform limb decomposition)能在多項式承諾方案中實

現更高效的批次處理。第四，我們確定了最佳的混合表格查找策略：小表格應使

用 LogUp GKR，而大表格則受益於 Lasso的分解方法。

研究結果從實證角度驗證了查找論證的技術演化路徑：從 Plookup對表格大

iii

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

小的線性依賴 (O(N))，到 Caulk雖然解決了前者問題卻引入了查找數量的平方

級瓶頸 (O(n2))，再到 Baloo與 CQ成功將其提升至準線性效率。更重要的是，本

研究揭示了 Lasso與 LogupGKR等現代協議實現了性能上的典範移轉 (paradigm

shift)，其證明者時間不僅比前代協議快上數個數量級，且在測試範圍內幾乎不受

表格大小與查找數量的影響。

本論文的結論指出，最佳查找協議的選擇並非絕對，而是一個高度依賴於應

用場景的工程決策，涉及在證明者時間、驗證成本、證明大小與預處理開銷之間

的多維度權衡。我們提供的實證數據，成功地彌合了漸進理論與現實性能之間的

鴻溝，為下一代零知識證明系統的開發者提供了關鍵且實用的選型指南。

關鍵字：查表論證、零知識簡潔非交互式知識論證、多項式承諾

iv

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Abstract

Zero-knowledge proofs (ZKPs) are foundational to blockchain scalability and pri-

vacy, particularly in ZK-rollups, which enhance transaction throughput by offloading

computation from the main chain. However, proving complex operations within these

systems, such as individual virtual machine opcodes, remains a significant performance

bottleneck. Lookup arguments have emerged as a critical optimization, enabling the ef-

ficient verification of computational steps against pre-defined tables, thereby avoiding

costly arithmetization. While a proliferation of lookup protocols—including Plookup,

Caulk, Baloo, CQ, Lasso, and LogupGKR—offer diverse theoretical complexities, a com-

prehensive empirical comparison to guide practical implementation has been lacking.

This thesis makes four key contributions to the field: First, we enhanced and ex-

tended a unified Rust-based benchmarking framework that provides both multilinear and

univariate polynomial versions, creating a standardized foundation for future lookup argu-

ment research. Second, we conducted an extensive benchmark of six prominent protocols,

systematically evaluating prover time, verifier time, proof size, and preprocessing costs

v

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

under varying table sizes and lookup densities. Third, we discovered and explained why

Lasso’s proof size counter-intuitively decreases at K = 12, revealing that uniform limb

decomposition enables more efficient batch processing in the Polynomial Commitment

Scheme. Fourth, we identified an optimal hybrid table lookup strategy where small tables

should use LogUp GKR while large tables benefit from Lasso’s decomposition method.

Our results empirically validate the theoretical evolution of these protocols, chart-

ing the progression from Plookup’s table-size dependency (O(N)) and Caulk’s lookup-

count bottleneck (O(n2)) to the quasi-linear efficiency of Baloo and CQ. Furthermore, we

demonstrate that modern protocols like Lasso and LogupGKR achieve a paradigm shift

in performance, offering prover times that are orders of magnitude faster and largely in-

dependent of table and lookup size within the tested ranges. This study concludes that the

optimal choice of a lookup protocol is a highly context-dependent engineering decision,

involving trade-offs between prover time, verification cost, proof size, and preprocessing

overhead. The empirical data herein provides a crucial, practical guide for developers,

bridging the gap between asymptotic theory and real-world performance to inform proto-

col selection in next-generation ZK-based systems.

Keywords: Lookup Argument, zk-SNARKs, Polynomial Commitment Schemes

vi

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Contents

Page

Verification Letter from the Oral Examination Committee i

Acknowledgements ii

摘要 iii

Abstract v

Contents vii

List of Figures xiii

List of Tables xiv

Chapter 1 Introduction 1

1.1 Research Introduction . 1

1.2 Research Contributions . 3

1.3 Research Motivation . 4

Chapter 2 Background 6

2.1 Key Properties of Zero-Knowledge Proofs 6

2.2 Interactive and Probabilistic Proofs: Incorporating Interaction and

Randomness . 7

2.3 Arithmetic circuit . 8

2.4 What＇s NARK, SNARK, and zkSNARK 10

2.5 The Preprocessing Setup (S) in SNARKs 12

vii

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

2.5.1 Types of Preprocessing Setups . 12

2.6 General Construction Paradigm for SNARKs 14

2.7 Functional Commitment Scheme . 16

2.8 Schwartz-Zippel Lemma and Fiat-Shamir Transform to Enable Poly-

nomial Zero Test and Equality Test 18

2.9 IOP, Polynomial IOP . 19

2.10 Application of SNARK: Rollups as a Layer 2 Solution 22

2.10.1 The Need for Scalability and the Rise of Rollups 22

2.10.2 Zero-Knowledge Rollups and a ZK-EVM/ZK-VM 22

2.10.3 General Toolchain for SNARK Development 25

2.11 Introduction to Lookup Arguments 26

2.12 Lookup Argument Example . 29

2.12.1 Range Proof . 29

2.12.1.1 Membership Testing via Lookup Argument 29

2.12.1.2 Bit Decomposition . 30

2.12.2 SHA-256 . 31

2.12.2.1 SHA-256 Compression Round 32

2.12.2.2 Core Functions Implementation via Lookup Arguments 32

2.13 Why Lookup “Argument” not Lookup “Proof” 34

2.14 Motivation for Benchmarking Lookup Arguments 35

2.15 Rationale for Protocol Selection . 38

2.16 Theoretical Comparison of Lookup Arguments 38

2.17 Key Differences and Evolution of Lookup Arguments 43

2.17.1 Plookup ([1]) . 43

2.17.1.1 Definitions . 44

2.17.1.2 The Protocol . 45

viii

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

2.17.1.3 Integration with the Plonk Protocol 46

2.17.1.4 Costs and Performance Characteristics 47

2.17.1.5 Generalizations and Optimizations 48

2.17.2 Caulk ([2]) . 48

2.17.2.1 Definitions . 49

2.17.2.2 The Protocol . 50

2.17.2.3 Costs and Performance Characteristics 52

2.17.2.4 Generalizations and Optimizations 52

2.17.3 Baloo ([3]) . 53

2.17.3.1 Core Components and Identities 53

2.17.3.2 The Protocol . 54

2.17.3.3 Costs and Performance Characteristics 55

2.17.3.4 Generalizations and Variants 56

2.17.4 CQ (Cached Quotients) ([4]) . 56

2.17.4.1 Core Idea and Key Equations 56

2.17.4.2 The Protocol . 57

2.17.4.3 Costs and Performance Characteristics 58

2.17.4.4 Generalizations and Variants 58

2.17.5 LogupGKR ([5]) . 59

2.17.5.1 Core Argument and GKR Application 59

2.17.5.2 The Protocol (GKR Interaction Summary) 60

2.17.5.3 Final Verification via Polynomial Commitments 60

2.17.5.4 Costs and Performance Characteristics 61

2.17.5.5 Generalizations and Variants 62

2.17.6 Lasso ([6]) . 63

2.17.6.1 Core Concepts and Variants 63

2.17.6.2 Offline Memory Checking 63

2.17.6.3 Spark (Sparse Polynomial Commitments) 64

2.17.6.4 Surge (Decomposable Tables) 64

2.17.6.5 Generalized Lasso (MLE-Structured Tables) 65

ix

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

2.17.6.6 The Protocol (Conceptual Flow for Variants) 65

2.17.6.7 Costs and Performance Characteristics 66

2.17.6.8 Generalizations and Variants 66

Chapter 3 Design and Experiment 70

3.1 Implementation Framework and Reference Implementations 70

3.2 Integration of Heterogeneous Lookup Arguments 72

3.2.1 Challenge: Heterogeneous Interfaces and Data Models 72

3.2.1.1 Different Input Data Structures 72

3.2.1.2 Differences in Proof Processes and Parameter Generation 73

3.2.2 Integration and Abstraction of Underlying Libraries 73

3.2.2.1 PlonkishBackend Trait 73

3.2.2.2 Abstractions for Polynomial Commitment Schemes . . 74

3.2.3 Shared Cryptographic Components for Fair Benchmarking 74

3.2.3.1 Polynomial Commitment Scheme Decoupling 74

3.2.3.2 Unified Sum-Check Protocol 75

3.2.3.3 Standardized Arithmetic Operations 75

3.2.3.4 Fiat-Shamir Transcript Standardization 76

3.2.4 Experimental Framework and Design 76

3.2.4.1 Implementation Framework 76

3.2.4.2 Evaluation Metrics and Scenario Design 77

3.2.4.3 Data Collection and Analysis 79

Chapter 4 Evaluation and Discussion 81

4.1 Performance Analysis and Visualization 81

4.1.1 Overall System Performance Comparison 81

4.1.1.1 Graph Interpretation 81

4.1.1.2 Performance Analysis 82

4.1.1.3 Effect of the N:n Ratio 83

4.1.1.4 Baloo Discrepancy and Caulk Implementation Bottleneck 83

4.1.1.5 Crossover Analysis: Lasso vs. LogupGKR 84

x

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

4.1.1.6 Interpretation of the Trend 86

4.1.1.7 Validation of Caulk’s Implementation Bottleneck . . . 87

4.1.1.8 Baloo Discrepancy . 88

4.2 Setup Time Performance Analysis 89

4.2.1 Experimental Setup and Methodology 89

4.2.2 Protocol Classification and Performance Characteristics 90

4.2.2.1 Linear Setup Time Protocols (O(N) Complexity) . . . 90

4.2.2.2 Sub-linear Setup Time Protocols (O(n) Complexity) . . 91

4.3 Proof Size and Verification Time Analysis 92

4.3.1 Proof Size Characteristics . 93

4.3.1.1 GKR-Based Protocols (LogupGKR, Lasso) 93

4.3.1.2 Permutation and Polynomial-Based Protocols (Plookup) 93

4.3.2 Why Lasso’s Proof Size Decreases at K = 12? 94

4.3.3 Verification Time Analysis . 96

4.3.3.1 Table Size Independence 96

4.3.3.2 Protocol Performance Stratification 96

4.4 Completness and Soundness . 97

4.5 Theoretical and Experimental Analysis 98

4.5.1 Plookup . 98

4.5.2 Caulk . 99

4.5.3 Baloo and CQ . 100

4.5.4 Lasso and LogupGKR . 101

4.5.5 Practical Implications and Design Trade-offs 102

4.5.5.1 Secondary Importance Justification 102

4.5.5.2 Design Philosophy Implications 103

4.5.6 Conclusion . 103

xi

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Chapter 5 Conclusion and Future Work 105

5.1 Summary of Key Findings . 105

5.2 Limitations of the Study . 107

5.3 Future Work and Open Questions 108

5.3.1 Expanding Benchmarking Scenarios 108

5.3.1.1 Dynamic and Vector Lookups 108

5.3.1.2 Performance in Recursive and Accumulative Settings . 109

5.3.2 Analysis of Advanced Protocol Features 109

5.3.2.1 Homomorphism and Aggregatability 110

5.3.2.2 Cross-Implementation Benchmarking 110

5.3.3 Application-Oriented Protocol Selection 110

References 112

xii

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

List of Figures

2.1 A diagram illustrating the arithmetic circuit. 9

2.2 A diagram illustrating the ZK-EVM architecture. Source: [7] 24

2.3 Illustration of a lookup argument using a precomputed table. Source: [8] . 28

4.1 Prover time versus lookup table size K for different N:n ratios (2, 4, 8,

and 16 from top-left to bottom-right). All graphs use logarithmic scales on

the y-axis. The lines represent different lookup argument systems: Baloo

(blue), CQ (orange), Caulk (green), Lasso (red), LogupGKR (purple), and

Plookup (brown). 84

4.2 Prover time versus lookup count n with fixed table size K = 11 (N =

2048). Both axes use logarithmic scales. The lookup count n is varied by

adjusting the N : n ratio parameter. 87

4.3 Setup time versus lookup table size K for different N:n ratios (2, 4, 8, and

16 from top-left to bottom-right). All graphs use logarithmic scales on the

y-axis. The protocols demonstrate clear bifurcation into linear-time (CQ,

Caulk, Plookup, Baloo) and sub-linear-time (Lasso, LogupGKR) categories. 92

4.4 Proof size in bytes versus lookup table size K for N:n ratio of 4.0. The

graph demonstrates the fundamental difference between GKR-based pro-

tocols (logarithmic growth) and permutation-based protocols (constant size). 94

4.5 Verification time in milliseconds versus lookup table size K for N:n ratio

of 4.0. The graph shows the independence of verification time from table

size and the performance tier stratification among different protocols. . . 97

xiii

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

List of Tables

2.1 Comparison of characteristics of various lookup protocols (horizontal full

version) . 42

xiv

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Chapter 1 Introduction

1.1 Research Introduction

Zero-knowledge proofs (referred to as ZKPs hereafter) [9] play an increasingly es-

sential role in the blockchain ecosystem, especially within Ethereum. Their main uses

include boosting both privacy and scalability. Concerning privacy, ZKPs allow for trans-

action validation without disclosing sensitive information. In terms of scalability, they

can offload computations from the main chain—a method known as ’rollups’ [10]. ZK

rollups, categorized as a Layer 2 scaling solution, consolidate several transactions and

present a ZKP to the main chain for validity verification, thereby enhancing transaction

speed and minimizing costs.

However, proving computational statements within a ZK rollup often involves con-

verting problems into arithmetic circuits, which can be complex and resource-intensive.

Early efforts focused on proving Ethereum Virtual Machine execution (ZK-EVM) [11].

Due to challenges, the research community has shifted towards proving compiled versions

of Ethereum nodes (ZK-VM), such as those based on RISC-V [12], which offer simplicity

and wider adoption.

To further simplify proving, lookup arguments have emerged as a promising tech-

1

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

nique [1]. These arguments prove that values of a witness polynomial are all contained

within a pre-defined public table. Here, ’argument’ rather than ’proof’ is used due to the

computational soundness of these systems, which relies on cryptographic assumptions.

Lookup arguments are now finding their way into production-level code, such as Halo2

[13], and are being employed in the latest ZK-VM designs to prove individual opcode

executions.

This paper aims to delve into the application of Lookup Arguments in ZKPs, specifi-

cally benchmarking the performance differences among various protocols such as Plookup

[1], Baloo [3], CQ [4], and LogupGKR [5]. While theoretical analyses provide insights

into the asymptotic complexities of these protocols, real-world performance can devi-

ate significantly. Therefore, we conduct extensive benchmarking to provide a practical

evaluation of Lookup Arguments, determining their actual performance characteristics

and trade-offs beyond what can be inferred from theoretical analysis alone. This work

is motivated by the understanding that theoretical superiority does not always translate

to practical efficiency. We aim to demonstrate the true performance characteristics of

Lookup Arguments experimentally. We intend to use experimental data to compare their

performance under different N/n ratios and analyze the trade-offs in preprocessing, prov-

ing time, verification time, and proof size. These analyses will provide a reference for

developers when choosing appropriate Lookup protocols and further the advancement of

zero-knowledge proof technology in the blockchain field.

2

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

1.2 Research Contributions

This thesis makes the following key contributions to the field of applied cryptography

and zero-knowledge proof systems:

1. Enhanced Unified Benchmarking Framework: We extended and implemented an

existing benchmarking framework to support comprehensive evaluation of lookup argu-

ment protocols. Our implementation provides both multilinear and univariate polynomial

versions, creating a standardized foundation that future researchers can directly reference

when implementing new lookup argument schemes.

2. Comprehensive Empirical Evaluation of Modern Protocols: We conducted an ex-

tensive benchmark of six prominent lookup protocols: Plookup [1], Caulk [2], Baloo [3],

CQ [4], Lasso [6], and LogupGKR [5]. The evaluation systematically quantifies their

performance across four critical metrics: prover time, verifier time, proof size, and pre-

processing cost, under a wide range of table sizes and lookup densities.

3. Analysis of Lasso’s Table Decomposition Optimization: We discovered and ex-

plained why Lasso’s proof size counter-intuitively decreases at K = 12. The key insight

is that uniform limb decomposition (when K is divisible by limb size) enables more effi-

cient batch processing in the Polynomial Commitment Scheme compared to non-uniform

decomposition, resulting in smaller proofs despite larger table sizes.

4. Hybrid Table Lookup Strategy: We identified an optimal approach where small

tables should use LogUp GKR while large tables benefit from Lasso’s decomposition

method. Our analysis shows that other existing protocols lack significant advantages in

either regime, making this hybrid approach the most efficient overall strategy.

3

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

1.3 Research Motivation

The proliferation of zero-knowledge (ZK) rollups [10] has established lookup ar-

guments as a critical optimization for blockchain scalability. These arguments dramat-

ically reduce the proving overhead of complex computations by verifying them against

pre-computed tables. This has led to a rapid evolution of protocols, from the foundational

Plookup [1] to advanced sublinear-N systems like Caulk [2], Baloo [3], CQ [4], and the

paradigm-shifting Lasso [6] and LogupGKR [5].

However, the theoretical complexity of these protocols, often expressed in Big O no-

tation, provides an incomplete picture of their real-world performance. Factors such as

constant overheads, implementation-specific optimizations, underlying library efficiency,

and practical trade-offs between prover time, verifier time, and proof size are not captured

by asymptotic analysis. Developers and researchers currently lack a comprehensive, em-

pirical benchmark that directly compares these systems under unified conditions. This

gap between theory and practice creates uncertainty when selecting the most appropriate

protocol for a given application, potentially leading to suboptimal engineering decisions.

This thesis is motivated by the critical need to bridge this gap by providing a rigorous,

practical, and comparative performance analysis of modern lookup arguments.

While state-of-the-art protocols like Lasso [6] and LogupGKR [5] theoretically out-

perform their predecessors, a narrow focus on only the ’best’ systems provides an incom-

plete picture. A key motivation for this thesis is to move beyond a simple ”winner-takes-

all” comparison. We argue that a comprehensive benchmark, including foundational and

intermediate protocols, is crucial for several reasons: first, to quantify the real-world per-

4

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

formance gaps predicted by asymptotic theory; second, to empirically validate the histor-

ical evolution of the field, demonstrating why modern designs are superior; and third, to

uncover the nuanced engineering trade-offs and niche use cases that persist even for the-

oretically ’inferior’ protocols. This work aims to provide a holistic, data-driven narrative

that is valuable for both expert practitioners and newcomers to the field.

5

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Chapter 2 Background

Before delving into the complexity of lookup arguments, it is essential to establish

an understanding of the underlying cryptographic concepts. This section introduces the

core properties of Zero-Knowledge Proofs (ZKP) [14] and several key ideas that form

the foundation of modern proof systems, such as Succinct Non-interactive ARgument

of Knowledge (SNARK) [15, 16]. These fundamental concepts provide the necessary

background for understanding more advanced techniques.

2.1 Key Properties of Zero-Knowledge Proofs

ZKPs are characterized by three essential properties:

Completeness: A ZKP protocol exhibits completeness if, given a true statement, an honest

prover can successfully convince an honest verifier of its truth. In other words,

when the prover genuinely possesses the knowledge or has accurately performed

the computation, they should be able to generate a proof that will be accepted by

the verifier.

Soundness: A ZKP protocol demonstrates soundness if, given a false statement, no dis-

6

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

honest prover can convince an honest verifier of its truth, except with a negligible

probability. This implies that it should be computationally infeasible for an indi-

vidual who lacks the requisite knowledge or who has not accurately performed the

computation to produce a proof that the verifier will accept.

Zero-Knowledge: A ZKP protocol possesses the property of zero-knowledge if, when the

statement is true, the verifier acquires no information beyond the fact that the state-

ment is indeed true. This is the fundamental privacy-preserving attribute of ZKPs.

The proof does not disclose any additional information concerning the underlying

knowledge or computation.

These core properties definewhat a ZKP system achieves. Beyond these foundational

characteristics, ZKPs can also be categorized based on their interaction model.

2.2 Interactive and Probabilistic Proofs: Incorporating Inter-

action and Randomness

In the realm of advanced proof systems, two fundamental concepts significantly de-

part from traditional, static notions of verification: interaction and randomness. These

elements are central to the framework of Interactive and Probabilistic Proofs [14, 17].

The first key ingredient is Interaction. Unlike conventional proof verification where a

verifier passively examines a provided proof, interactive proof systems involve a dynamic

exchange. The verifier actively engages in a non-trivial dialogue or protocol with the

prover. This interaction allows the verifier to query the prover and gain conviction about

7

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

the truth of a statement through a structured conversation, rather than by simply ”reading”

a pre-compiled document.

The second crucial component is Randomness on the part of the verifier. In this

paradigm, the verifier is a randomized algorithm, often conceptualized as having the abil-

ity to perform actions akin to ”tossing coins” as a primitive operation during the verifica-

tion process. This introduction of randomness means that the verifier’s decision to accept

or reject a proof is not necessarily deterministic. Consequently, there is a small, con-

trolled probability that the verifier might err, either by rejecting a true statement or, less

commonly in well-designed systems, accepting a false one. The power of such systems

lies in the ability to make this error probability arbitrarily small.

These two elements—direct interaction between the prover and verifier, and the veri-

fier’s use of randomness—fundamentally redefine the verification process, leading to pow-

erful and often more efficient proof systems for complex computational problems.

2.3 Arithmetic circuit

When discussing the transformation of computational problems into a format amenable

to certain proof systems like SNARK, arithmetic circuits offer a fundamental and crucial

model. An arithmetic circuitC is typically defined over a finite fieldF = {0, 1, . . . , p−1},

where p is a prime number greater than 2. Such a circuit can be viewed as a function

C : F n → F , which takes n inputs from the field F and produces a single output also

within F .

Structurally, an arithmetic circuit is a directed acyclic graph (DAG). In this graph,

8

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

internal nodes represent arithmetic operations, commonly addition (+), subtraction (-), or

multiplication (×) gates. The inputs to the circuit (or leaf nodes) are labeled with either

constants (such as 1) or input variables x1, x2, . . . , xn.

A key characteristic of arithmetic circuits is that each circuit naturally defines an

n-variate polynomial over the field F . The structure of the circuit itself provides an ”

evaluation recipe” for this polynomial. For instance, the circuit depicted in Figure 2.1

computes its output polynomial through a composition of intermediate addition, subtrac-

tion, and multiplication gates.

Figure 2.1: A diagram illustrating the arithmetic circuit.

The size of an arithmetic circuit, often denoted as |C|, is defined by the total number

of gates it contains. This size is a common metric for the complexity of the computation

represented by the circuit. In the context of zero-knowledge proofs, converting a computa-

tional problem into an arithmetic circuit (a process known as arithmetization) is a primary

step in constructing a proof, and the circuit’s size directly influences the proof generation

time and resource consumption.1

1https://rdi.berkeley.edu/zk-learning/assets/Lecture2-2023.pdf

9

http://dx.doi.org/10.6342/NTU202503318
https://rdi.berkeley.edu/zk-learning/assets/Lecture2-2023.pdf

doi:10.6342/NTU202503318

2.4 What’s NARK, SNARK, and zkSNARK

Non-interactive Arguments of Knowledge (NARKs), particularly those involving a

preprocessing step, are foundational cryptographic systems. A NARK allows a prover to

convince a verifier of the knowledge of a secret witness w that, along with a public state-

ment x, satisfies a given public arithmetic circuit C. This relationship is often expressed

as C(x, w) = 0, where x is a public statement in F n (for some field F) and w is a secret

witness in F m.

The system typically involves a Preprocessing (or Setup) phase, denoted by an al-

gorithm S. This algorithm takes the circuit C as input and generates public parameters,

which can be split into prover parameters (pp) and verifier parameters (vp).

The core interaction then proceeds non-interactively:

• The Prover, using its parameters pp, the public statement x, and its secret witness

w, executes a proving algorithm P (pp, x, w) to produce a proof π.

• The Verifier, using its parameters vp, the public statement x, and the received proof

π, executes a verification algorithm V (vp, x, π) to either accept or reject the proof.

Formally, a preprocessing NARK can be defined as a triple of algorithms (S, P, V):

S(C)→ (pp, vp): The setup algorithm generates public parameters for the prover and

verifier based on the circuit C.

P (pp, x, w)→ π: The prover algorithm takes the prover parameters, public statement,

and secret witness to generate a proof π.

10

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

V (vp, x, π)→ accept or reject: The verifier algorithm takes the verifier parameters, pub-

lic statement, and proof to decide on its validity. It’s often assumed in the security

analysis of such systems that all algorithms and any adversary have access to a ran-

dom oracle.

Building upon this, a SNARK (Succinct Non-interactive ARgument of Knowledge)

[15] is a special type of preprocessing NARK that offers crucial efficiency properties.

A SNARK is also defined by a triple (S, P, V), where S is the same setup algorithm.

However, P and V have additional characteristics:

• The proving algorithm P (pp, x, w) produces a short proof π. This ”succinctness”

means the length of the proof, len(π), is sublinear with respect to the size of the

witness |w|. For example, if the witness has n elements, the proof size might be

proportional to log n or
√

n.

• The verification algorithm V (vp, x, π) is fast to verify. The time taken for verifica-

tion, time(V), is typically sublinear in the size of the circuit |C| andmight depend on

the size of the public statement |x| (often denoted as Oλ(|x|, sublinear(|C|)), where

λ is the security parameter). An example of a sublinear function is f(n) =
√

n.

These properties of succinct proof size and fast verification make SNARKs particularly

attractive for applications where communication bandwidth and verifier computation are

constrained, such as in blockchain systems.

Finally, a widely sought-after variant is the zk-SNARK. This refers to a SNARK

that additionally incorporates the property of zero-knowledge. This means that the proof

not only convinces the verifier of the statement’s truth but does so without revealing any

11

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

information about the witness (w) beyond the veracity of the statement itself.

In summary, these cryptographic arguments form a hierarchy of concepts, where

SNARKs build upon NARKs by adding succinctness, and zk-SNARKs further enhance

them with zero-knowledge. While the term ”zk-SNARK” has become ubiquitous, it is

crucial to recognize which of these properties is being leveraged in a given context. In

applications focused on privacy, the zero-knowledge aspect is paramount. However, for

blockchain scaling solutions like ZK-rollups—a central topic of this thesis—the driving

force is the succinctness (’S’) of the proof, which allows a Layer 1 chain to efficiently

verify a large batch of off-chain transactions. Understanding this distinction is fundamen-

tal as we proceed to explore the other critical components that constitute these powerful

proof systems.

2.5 The Preprocessing Setup (S) in SNARKs

The setup phase, denoted as S(C), is a critical preliminary step in SNARKs, re-

sponsible for generating public parameters (pp, vp) required by the prover and verifier,

respectively, for a given computation C. This setup often involves the use of random bits,

denoted as r. The nature and handling of this randomness lead to different types of setup

procedures, each with distinct trust assumptions and properties.

2.5.1 Types of Preprocessing Setups

The methodology for generating these parameters can be broadly categorized as fol-

lows:

12

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Trusted Setup per Circuit: In this model, the setup S(C; r) utilizes random bits r that are

specific to a particular circuit C. It is paramount that this randomness r be kept

secret, especially from the prover. If the prover were to learn these secret random

bits r, the security of the system could be compromised, potentially allowing the

prover to generate convincing proofs for false statements. This necessitates a new

trusted setup ceremony for each distinct circuit or program.

Trusted but Universal (Updatable) Setup: To overcome the limitation of per-circuit se-

tups, universal or updatable setups have been developed. In this approach, a portion

of the secret randomness r is independent of any specific circuit C. The setup pro-

cess S can be seen as a two-stage procedure:

1. Sinit(λ; r) → gp: A one-time initial setup is performed using a security pa-

rameter λ and secret randomness r to generate global parameters (gp). This

secret r must be kept secure.

2. Sindex(gp, C) → (pp, vp): Subsequently, for any specific circuit C, these

global parameters (gp) can be used by a deterministic algorithm Sindex to derive

the specific public parameters (pp, vp) for that circuit. This model allows for a

single, initial trusted ceremony, after which parameters for multiple different

circuits can be generated without new secret randomness. ”Updatable” vari-

ants further allow multiple parties to contribute to the initial randomness in a

way that as long as at least one party is honest and discards their randomness,

the overall setup is secure.

Transparent Setup: Considered an ideal scenario in terms of trust assumptions, a trans-

parent setup is one where the generation of public parameters S(C) does not rely

13

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

on any secret data or randomness that needs to be kept hidden and later destroyed.

In such systems, all data used for the setup is publicly available, or the randomness

is generated in a publicly verifiable way (e.g., derived from a public beacon or us-

ing nothing-up-my-sleeve numbers). This entirely obviates the need for a trusted

setup ceremony, eliminating concerns about the potential compromise or mishan-

dling of secret setup parameters. Consequently, transparent setups are often pre-

ferred as they offer stronger and more verifiable security guarantees regarding the

setup phase.

The choice of setup mechanism has significant implications for the practicality, se-

curity, and trust model of a SNARK system. While trusted setups were common in earlier

SNARK constructions, ongoing research increasingly focuses on developing and improv-

ing transparent setup methodologies.

2.6 General Construction Paradigm for SNARKs

The construction of SNARKs for general circuits often follows a two-step paradigm,

combining distinct cryptographic and information-theoretic primitives. This approach can

be visualized as taking two primary ingredients and ”compiling” or ”combining” them to

yield the desired SNARK.

The two core components in this paradigm are:

1. A Functional Commitment Scheme: This is a cryptographic object. A functional

commitment scheme allows a party to commit to a function (or a polynomial rep-

resenting the computation) in such a way that they can later prove properties about

14

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

this function (e.g., its evaluation at a certain point) without necessarily revealing

the entire function. The commitment is binding (the committer cannot change the

function after commitment) and often hiding (the commitment does not reveal the

function).

2. A Compatible Interactive Oracle Proof (IOP): This is an information-theoretic ob-

ject. An IOP is a type of interactive proof system where the prover sends messages

that can be thought of as oracles (functions). The verifier, instead of reading these

oracles entirely, makes a limited number of queries to them. The security of an

IOP is information-theoretic, meaning it does not rely on computational hardness

assumptions but rather on the properties of information and probability. For use in

SNARK construction, this IOP needs to be ”compatible” with the chosen functional

commitment scheme.

These two components are then brought together—conceptually, one might imagine

them being processed or compiled (as suggested by the blender anology in some presenta-

tions)—to produce the SNARK for general circuits. The functional commitment scheme

is used to compile the IOP into a concrete, non-interactive argument, making the prover’s

messages (oracles) succinct and efficiently verifiable. The properties of the commitment

scheme ensure the cryptographic soundness of the resulting SNARK, while the IOP pro-

vides the underlying proof structure and efficiency.

Further details on functional commitment schemes and Interactive Oracle Proofs

would typically follow to elaborate on their specific properties and how their combination

achieves the desired SNARK characteristics (succinctness, non-interactivity, and knowl-

edge soundness).

15

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

2.7 Functional Commitment Scheme

A core cryptographic primitive underpinning the construction of many Succinct Non-

interactive Arguments of Knowledge (SNARKs) is the functional commitment scheme.

To understand these, it’s helpful to first consider basic data commitments. These typically

involve a commit(m, r) algorithm that produces a commitment com from a message m

and randomness r (i.e., commit(m, r) → com), and a verify(m, com, r) algorithm

that subsequently checks this (i.e., verify(m, com, r)→ accept or reject). Such

schemes are characterized by being binding, meaning a committer cannot feasibly open a

single commitment to two different messages, and hiding, where the commitment com re-

veals little information about the committed message m. A standard construction employs

a cryptographic hash function H , where com := H(m, r), deriving its security from the

properties of H (formally, H :M×R→ T).

Functional commitments elevate this concept by enabling commitment not just to

static data, but to an entire function f chosen from a predefined family F = {f : X →

Y }. In this paradigm, a prover selects f ∈ F and randomness r, sends a commitment

comf ← commit(f, r) to a verifier. Subsequently, for any input x ∈ X , the prover can

provide a claimed output y ∈ Y alongwith a proof π. This proof π is crucial as it convinces

the verifier that f(x) = y, that f indeed belongs to the family F , and that this is the same

function to which comf corresponds.

Formally, a functional commitment scheme for a function family F is defined by

three algorithms:

• setup(1λ) → gp: This algorithm takes a security parameter λ and outputs public

16

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

parameters gp.

• commit(gp, f, r)→ comf : Given the public parameters gp, a function f ∈ F , and

randomness r, this algorithm produces a commitment comf . The scheme is binding

and often, optionally, hiding.

• eval(Prover P, Verifier V): This defines the interaction for proving and ver-

ifying an evaluation. The prover P (gp, f, x, y, r) generates a short proof π for a

claimed evaluation f(x) = y. The verifier V (gp, comf , x, y, π) then checks this

proof and outputs accept or reject.

This eval step essentially functions as a proof system (often a zero-knowledge SNARK,

or zk-SNARK) for the relation asserting that f(x) = y, f ∈ F , and that comf is the

commitment to f using gp and some r.

The versatility of functional commitments is demonstrated by several important types

crucial for modern cryptography:

• Polynomial commitments [18, 19] allow for committing to univariate polynomials

f(X) over a field Fp of degree at most d (e.g., f(X) ∈ Fp[X]≤d) and proving their

evaluations at specified points.

• Multilinear commitments [19, 20] extend this to multilinear polynomials in k vari-

ables over Fp (e.g., f(X1, . . . , Xk) where the degree in each variable is at most 1),

allowing proofs of evaluation on specific input vectors.

• Vector commitments [21, 22] (e.g., Merkle trees) enable commitment to a vector

u⃗ = (u1, . . . , ud) ∈ Fd
p. They allow for proving individual elements, i.e., fu⃗(i) = ui

for a given index i.

17

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

• Inner Product Commitments (IPAs) [23, 24] facilitate commitment to a vector u⃗ ∈

Fd
p and allow the prover to open an inner product with a public vector v⃗, i.e., proving

fu⃗(v⃗) = ⟨u⃗, v⃗⟩.

These varied schemes provide a rich toolkit for constructing advanced cryptographic pro-

tocols by enabling parties to verifiably bind themselves to complex mathematical objects

and their properties.

2.8 Schwartz-Zippel Lemma and Fiat-Shamir Transform to

Enable Polynomial Zero Test and Equality Test

A fundamental principle underpinning many cryptographic protocols, including Suc-

cinct Non-interactive Arguments of Knowledge (SNARKs) for polynomial properties, is

the Schwartz-Zippel Lemma [25, 26]. This lemma states that for any non-zero polynomial

f ∈ Fp[X] of degree at most d, the probability that f(r) = 0 for a randomly chosen point

r ← Fp is at most d/p. When the field size p is significantly larger than d (e.g., p ≈ 2256

and d ≤ 240), the ratio d/p becomes negligible. Consequently, if f(r) = 0 for a random r,

f must be the identically zero polynomial with overwhelmingly high probability (w.h.p).

This provides a simple probabilistic zero test.

This principle naturally extends to an equality test for two polynomials f, g ∈ Fp[X]

of degree at most d: if f(r) = g(r) for a random r, then f ≡ g w.h.p., because this is

equivalent to testing if the polynomial (f − g)(X), also of degree at most d, is zero. The

Schwartz-Zippel lemma also generalizes to multivariate polynomials, where d represents

the total degree.

18

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

An interactive protocol for verifying the equality of two committed polynomials

(given commitments comf , comg) typically proceeds as a public coin protocol. The veri-

fier selects a random challenge point r ← Fp and sends it to the prover. The prover com-

putes y ← f(r) and y′ ← g(r), then returns (y, πf) and (y′, πg) to the verifier. Here, πf

and πg are proofs, generated using the underlying polynomial commitment scheme, ver-

ifying the correctness of these evaluations with respect to comf and comg, respectively.

The verifier accepts if both proofs πf , πg are valid and if y = y′.

To transform this interactive protocol into a non-interactive argument (a SNARK),

the Fiat-Shamir transform [27] is applied. This heuristic employs a cryptographic hash

function H : M → R (modeled as a random oracle, and often instantiated with func-

tions like SHA256 in practice). Instead of receiving r from the verifier, the prover com-

putes the challenge r autonomously by hashing a public message x (which could include

comf , comg, and other relevant contextual information): r ← H(x). The prover then

calculates y ← f(r), y′ ← g(r), generates the evaluation proofs πf , πg, and sends the

tuple (y, y′, πf , πg) to the verifier. The verifier also computes r ← H(x) independently

and performs the same verification checks. This non-interactive construction constitutes

a SNARK for polynomial equality, provided that the ratio d/p is negligible and the hash

function H behaves as a random oracle.

2.9 IOP, Polynomial IOP

The second pivotal component in the general paradigm for constructing SNARKs

for arbitrary circuits, complementing functional commitment schemes, is the Functional

Interactive Oracle Proof (F-IOP), or more generally, an Interactive Oracle Proof (IOP)

19

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

[28, 29]. The primary objective of an F-IOP is to ”boost” a given functional commitment

scheme to achieve a SNARK capable of proving statements about general arithmetic cir-

cuits. For instance, a polynomial commitment scheme designed for polynomials in Fp[X]

of degree at most d, when combined with a suitable Poly-IOP (an IOP tailored for poly-

nomial properties), can yield a SNARK for any circuit C whose size or complexity (e.g.,

number of gates) is bounded by d. Formally, let C(x, w) represent an arithmetic circuit

where x ∈ Fn
p is the public input and w is the private witness; an F-IOP serves as a proof

system to demonstrate the existence of such a witness w satisfying C(x, w) = 0.

The F-IOP typically begins with a Setup(C) phase that generates public parameters

pp for the prover and vp for the verifier. The verifier’s parameters vpmight include oracles

for certain initial functions (denoted in some contexts as f0, f−1, . . . , f−s) from the relevant

function family F . The interaction proceeds in rounds: the Prover P (pp, x, w) sends an

oracle representing a function fi ∈ F to the Verifier V (vp, x), who then responds by

sampling a random challenge ri ← Fp and sending it back to the prover. This exchange

may repeat for t rounds. After all oracle messages f1, . . . , ft have been exchanged, the

verifier performs a final decision step, often denoted as verifyf0,...,f−s,f1,...,ft
(x, r1, . . . , rt′),

which depends on the initial oracles (if any), the prover’s oracles, the public input x, and

all collected random challenges. A key feature is that the verifier can efficiently query any

of the prover’s oracles fi at any desired point.

F-IOPs are characterized by several crucial properties. Completeness ensures that

if a valid witness w exists such that C(x, w) = 0, the verifier will accept the proof with

probability 1. (Unconditional) Knowledge Soundness, a defining property of IOPs, guar-

antees that if a (possibly malicious) prover convinces the verifier, then a corresponding

witness w must exist and can be extracted. Specifically, an extractor algorithm, given ora-

20

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

cle access to the prover’s messages (e.g., x, f1, r1, . . . , rt−1, ft), can output such a witness

w. Optionally, if the goal is to construct a zk-SNARK, the F-IOP can also be designed

to possess zero-knowledge, ensuring that the verifier learns nothing about w beyond the

truth of the statement C(x, w) = 0.

To illustrate these concepts, consider a (somewhat contrived) example of a Poly-IOP

designed to prove the relation X ⊆ W for sets X, W ⊆ Fp, framed as C(X, W) = 0.

The prover, knowing X (public) and W (private witness), defines polynomials: g(Z) :=

∏
x′∈X(Z−x′) (the vanishing polynomial forX , known to the verifier), f(Z) := ∏

w′∈W (Z−

w′) (vanishing polynomial for W), and q(Z) := f(Z)/g(Z). The assertion X ⊆ W im-

plies that g(Z) must be a factor of f(Z), meaning q(Z) is a polynomial. The prover sends

oracles for f(Z) and q(Z) (both asserted to be polynomials of degree at most d, where

d ≥ |W |). The verifier then picks a random point r ← Fp, queries the oracles to obtain

f(r) and q(r), computes g(r) itself, and accepts if f(r) = g(r) · q(r). By the Schwartz-

Zippel Lemma, this equality at a random point implies f(Z) = g(Z)q(Z) as polynomials

w.h.p., thus confirming X ⊆ W . The knowledge soundness is demonstrated by an extrac-

tor that, if the verifier accepts, can recover W by finding all the roots of the polynomial

f(Z) (obtained from its oracle). This F-IOP, when compiled with a polynomial commit-

ment scheme, would allow the prover to commit to f and q, and then prove the evaluation

f(r) = g(r)q(r) non-interactively or with minimal interaction.

21

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

2.10 Application of SNARK: Rollups as a Layer 2 Solution

2.10.1 The Need for Scalability and the Rise of Rollups

Many public blockchains face significant scalability challenges. For instance, Ethereum

has a block time of around 12 seconds, while VISA can process over 6,000 transactions

per second. There is a clear demand for blockchain systems that offer greater scalability.

In this context, rollups [30, 31] have emerged as a notable solution aimed at enhancing

blockchain scalability. These protocols aim to augment transaction throughput and di-

minish operational costs by offloading transaction execution from the primary blockchain

layer (Layer 1), while concurrently leveraging the security mechanisms of the main chain

for data availability and transaction settlement. Within the domain of rollups, two prin-

cipal paradigms exist for delegating computational tasks: optimistic rollups and zero-

knowledge (ZK) rollups.

2.10.2 Zero-Knowledge Rollups and a ZK-EVM/ZK-VM

Specifically, ZK rollups function as a Layer 2 scaling methodology that aggregates

multiple transactions into a batch and subsequently submits a succinct zero-knowledge

proof (ZKP) to the Layer 1 chain, thereby cryptographically verifying the validity of

the aggregated transactions. This topic is unrelated to the aspects of privacy that zero-

knowledge proofs (ZKP) effectively leverage but the succinctness properties that ZKP

possess. This strategy substantially reduces the volume of transaction data that must be

processed and verified by the main chain, resulting in improved transaction processing

22

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

speeds and reduced transaction fees.

To facilitate the off-chain computation paradigm, it is necessary to deploy an off-

chain prover that generates ZKPs and an on-chain verifier that validates these proofs.

However, it is pertinent to note that general ZK rollups typically cannot directly provide

proofs for arbitrary programs written in high-level blockchain domain-specific languages

(DSLs) such as Solidity. Instead, they are configured to give proofs for custom, pre-

defined logic that is specific to the rollup’s design.

The process of generating a ZKP involves several critical steps. Initially, the com-

putational statement to be proven, like the correct execution of a program, is transformed

into a structured format that a zero-knowledge proof system can understand. This often

involves representing the computation as an arithmetic circuit. An arithmetic circuit es-

sentially breaks down the computation into a series of basic operations, typically addition

and multiplication, forming a network of ’gates.’ Different zero-knowledge proof pro-

tocols exist, each with its own specific way of handling these arithmetic circuits. These

protocols define the rules and procedures for how the prover creates the proof and how the

verifier checks it. Each protocol imposes its own constraints and syntax on how the cir-

cuit must be formulated. For example, one prominent protocol is PLONK. In the context

of the PLONK protocol, the arithmetic circuit needs to be structured precisely according

to PLONK’s specifications, as PLONK primarily operates on addition and multiplication

gates to perform its verification process. A corresponding interactive or non-interactive

prover and verifier protocol, often classified as a zkSNARK (Succinct Non-interactive

Argument of Knowledge), then governs the proof generation and verification procedures.

It bears repeating that general ZK rollups typically do not provide proofs for arbitrary

23

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

smart contracts written in blockchain DSLs like Solidity. Consequently, concerted efforts

have been dedicated to the development of Zero-Knowledge Ethereum Virtual Machines

(ZK-EVMs) [32–34]. The overarching objective of a ZK-EVM is to construct arithmetic

circuits that cryptographically attest to the correct execution of the Ethereum Virtual Ma-

chine, as illustrated in Figure 2.2. For each step of the EVM execution, the prover is tasked

with demonstrating the relationship between the current execution state, the prior execu-

tion state, and the subsequent execution state. Subsequently, the verifier must validate

this entire bundle of state transition attestations. Proving EVM execution requires prov-

ing the validity of individual EVM opcodes, such as add, mul, and sub. It should be noted

that while basic arithmetic operations such as addition and multiplication map relatively

straightforwardly onto arithmetic circuits (which frequently employ addition and multipli-

cation gates), other opcode operations can introduce significant computational overhead

for proof generation. For instance, operations such as bit shifts or manipulations of 32-bit

integers (which often require decomposing the integer into its constituent bits, thereby ne-

cessitating approximately 32 constraints, one per bit, to ensure consistency with the binary

representation) become computationally intensive.

Figure 2.2: A diagram illustrating the ZK-EVM architecture. Source: [7]

24

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

In light of the inherent complexities associated with ZK-EVM design, a notable shift

in research focus has transpired within the community, transitioning away from ZK-EVMs

and toward Zero-Knowledge Virtual Machines (ZK-VMs) [35–37]. This alternative ap-

proach entails proving the execution of a compiled representation of an Ethereum node,

such as Go Ethereum or Rust Ethereum, after it has been translated into a simpler in-

struction set architecture, such as RISC-V. This paradigm shift is largely motivated by

the inherent simplicity and widespread adoption of the RISC-V instruction set. However,

even with the simplification offered by ZK-VMs, proving every single instruction or op-

eration in an execution trace remains a significant computational burden. This has led to

the development of more specialized techniques, such as lookup arguments.

2.10.3 General Toolchain for SNARK Development

In practical applications, generating a SNARK proof for a specific computation typ-

ically follows a structured toolchain. The process often begins with developers writing

a program using a domain-specific language (DSL) tailored for SNARK development.

Examples of such DSLs include Circom [38], ZoKrates [39], Leo [40], Zinc [41], Cairo

[42], and Noir [43], among others. These languages are designed to simplify the expres-

sion of computations in a way that is amenable to SNARK systems, abstracting away

some of the complexities of direct circuit or constraint system construction. This high-

level DSL program is then processed by a compiler. The compiler’s role is to translate

the program into a SNARK-friendly format, which is an intermediate representation that

the SNARK proof system can directly operate on. Common examples of these formats

include arithmetic circuits, Rank-1 Constraint Systems (R1CS), or even specialized byte-

code like EVM (EthereumVirtual Machine) bytecode if targeting blockchain applications.

25

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Once the computation is in this suitable format, it is fed into the SNARK backend prover.

The prover, often depicted as a complex engine, takes this representation of the computa-

tion, along with the specific public input x and the private witness w (which demonstrates

the correctness of the computation for that input), and performs what is generally a heavy

computation. The result of this intensive proving process is a succinct proof, denoted as

π. This proof π can then be delivered to a verifier to efficiently check the validity of the

original computation without needing access to the private witness w. This pipeline facil-

itates the development of SNARK-based applications by providing higher-level tools and

abstracting the intricate details of the underlying cryptographic primitives.

2.11 Introduction to Lookup Arguments

Traditionally, computational logic has been expressed through arithmetic circuits.

Although more complex components, often termed ”gadgets,” can be constructed by com-

bining these elementary gates to facilitate reusability, these gadgets are invariably ex-

panded into their constituent addition and multiplication gates during circuit processing.

This naturally prompts an inquiry into the feasibility of incorporating novel computational

gates beyond simple addition and multiplication.

Significant advancements, particularly from research related to the Plonk proof sys-

tem [44], have introduced the capability to define more sophisticated fundamental compu-

tational units. If the relationship between the inputs and outputs of a specific computation

can be described by a predefined polynomial, this computation can be encapsulated as a

basic unit. This innovation is known as a ”custom gate,” which can effectively be under-

stood as a versatile, multi-input ”polynomial gate.”

26

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

The evolution of gate design progressed further with the introduction of ”lookup

gates,” notably described in the GW20 ([1]) paper. Unlike custom gates, the input-output

behavior of lookup gates is not confined to polynomial relationships; instead, they can

represent arbitrary, predefined relations. The conceptual basis for lookup gates is the

use of a pre-established table, external to the circuit, where each row explicitly defines a

valid input-output tuple for the intended operation. For instance, a table might enumer-

ate specific valid tuples like (in1, in2, in3, out1) without necessarily adhering to a simple

algebraic formula. Given such a table, a lookup gate can be integrated into a circuit, and

its operation is constrained to match one of the input-output entries present in this table,

as shown in Figure 2.3. Such a mechanism is also commonly referred to as a lookup

argument or lookup constraint.

When lookup gates are incorporated into a circuit within a proof system like Plonk,

the protocol undertakes the verification of the gate’s operational validity. This process

involves consulting the predefined lookup table to ascertain if the observed input-output

tuple from the gate’s execution corresponds to an existing row. The gate’s operation is

deemed legitimate if a matching entry is found; otherwise, it is considered invalid, and the

proof would be rejected.

In practical implementations, lookup gates find significant utility in representing bit-

wise operations efficiently. For example, an 8-bit XOR operation (mapping two 8-bit

inputs to an 8-bit output) can be fully specified using a lookup table containing 216 en-

tries. Moreover, for cryptographic algorithms that extensively use bitwise operations,

such as SHA256, the application of lookup arguments, sometimes facilitated by special-

ized structures like ”spread tables” (which help decompose values for table lookups), can

substantially improve the efficiency of representing these operations within a circuit. For

27

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

instance, consider the bit shift operation mentioned earlier. Instead of creating a cumber-

some arithmetic circuit to perform the bit shift, we can make a lookup table that lists all

possible input values and their corresponding shifted outputs. Proving the correctness of

a bit shift in a ZK-VM then reduces to showing that the input and output values from the

execution are present in this table.

Figure 2.3: Illustration of a lookup argument using a precomputed table. Source: [8]

This technique of using lookup arguments allows for a dramatic simplification of

the circuits needed for SNARK proofs, leading to significant performance improvements,

especially for operations that are expensive to represent directly in arithmetic circuits.

28

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

2.12 Lookup Argument Example

2.12.1 Range Proof

Two primary methodologies are employed for constructing range proofs in zero-

knowledge circuits: a lookup-based approach and a bit decomposition approach.

2.12.1.1 Membership Testing via Lookup Argument

This method transforms the range proof problem into a membership test within a

predefined set. The core idea is that if a value x is present in a lookup table containing all

valid values for a given range, it is de facto within that range.

Proof Steps and Formulas A public lookup table, denoted as T , is pre-computed to con-

tain all possible values for a specific bit-length. For an 8-bit integer, the table is defined

as:

T = {0, 1, 2, . . . , 254, 255}

To prove that a value x is an 8-bit integer, the circuit imposes a single constraint:

x ∈ T

This constraint is a lookup argument, which can be efficiently verified by the underlying

zero-knowledge proof protocol.

Characteristics

29

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

• Advantages: The verification cost remains nearly constant and highly efficient, ir-

respective of the size of the range.

• Disadvantages: This approach necessitates the pre-computation and storage of the

lookup table, which introduces additional setup costs and memory overhead.

2.12.1.2 Bit Decomposition

This alternative method involves decomposing the number into its constituent bits

and applying algebraic constraints to validate its range. The central concept is that any

n-bit number can be represented as a weighted sum of its n bits.

Proof Steps and Formulas For an 8-bit numberx, it is decomposed into eight bits, b0, b1, . . . , b7.

The proof consists of two main steps:

1. Prove that each bi is a bit: The value of each bit must be either 0 or 1. This is

enforced by the quadratic constraint:

bi · (bi − 1) = 0

2. Prove that the bit combination equals x: The weighted sum of the bits must recon-

struct the original number x.

x =
7∑

i=0
bi · 2i = b7 · 27 + b6 · 26 + · · ·+ b1 · 21 + b0 · 20

Characteristics

30

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

• Advantages: No pre-computation or storage is required, making the circuit self-

contained.

• Disadvantages: The number of constraints grows linearly with the number of bits,

leading to an increased verification cost for larger ranges.

2.12.2 SHA-256

The implementation of the SHA-256 hash function [45] within a zero-knowledge

circuit can be efficiently realized through the use of lookup arguments, primarily centered

around a 16-bit lookup table. This design is optimized for larger circuits, requiring a

minimum of 216 rows and targeting a maximum constraint degree of 9.

A key component of this architecture is the spread table, which maps a 16-bit input

to a 32-bit output where the original bits are interleaved with zeros. This table serves a

dual purpose: it facilitates bitwise operations and implicitly performs range checks, thus

obviating the need for a separate range check table.

31

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

2.12.2.1 SHA-256 Compression Round

The SHA-256 algorithm performs 64 rounds of compression. Each round updates

the 32-bit state variables A, B, C, D, E, F, G, H based on the following operations:

Ch(E, F, G) = (E ∧ F)⊕ (¬E ∧G)

Maj(A, B, C) = (A ∧B)⊕ (A ∧ C)⊕ (B ∧ C)

Σ0(A) = (A ≫ 2)⊕ (A ≫ 13)⊕ (A ≫ 22)

Σ1(E) = (E ≫ 6)⊕ (E ≫ 11)⊕ (E ≫ 25)

H ′ = H + Ch(E, F, G) + Σ1(E) + Kt + Wt

Enew = reduce6(H ′ + D)

Anew = reduce7(H ′ + Maj(A, B, C) + Σ0(A))

where≫ denotes a circular right shift and reducei handles a carry of up to i.

2.12.2.2 Core Functions Implementation via Lookup Arguments

Modular Addition To perform addition modulo 232, operands are decomposed into 16-

bit chunks. For a ⊞ b = c, we have (aH , aL) ⊞ (bH , bL) = (cH , cL), which is constrained

using field addition:

carry · 232 + cH · 216 + cL = (aH + bH) · 216 + aL + bL

Each 16-bit chunk is range-checked by looking it up in the spread table’s ”dense” column.

The carry value is constrained to its precise range using polynomial constraints.

32

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Maj Function The Maj(A, B, C) function is implemented using 4 lookups. By lever-

aging the fact that the inputs A, B, C are available in their ”spread” form from previous

rounds, we compute their sum in the field: M ′ = A′ + B′ + C ′. The result of the Maj

function corresponds to the odd bits of this sum, which are extracted via lookups.

Ch Function The Ch(E, F, G) function is implemented in 8 lookups. Similar to Maj,

we assume the spread forms E ′, F ′, G′ are available. The logic is implemented by com-

puting two intermediate values, P ′ = E ′ + F ′ and Q′ = (spread(232 − 1) − E ′) + G′.

The sum of the odd bits of P ′ and Q′ yields the Ch result.

Σ0 and Σ1 Functions The Σ0(A) and Σ1(E) functions are each implemented using 6

lookups. The 32-bit input is split into smaller bit-length pieces. The spread forms of these

pieces are obtained via lookups in the spread table. The rotated and XORed result is then

computed as a linear combination of these spread pieces, and the final output is extracted

from the even bits of the resulting value, again using lookups.

Message Scheduling (σ0 and σ1) The message schedule expands the initial 16 words

(W0, . . . , W15) to 64 words. The expansion uses the σ0 and σ1 functions:

Wi = σ1(Wi−2) ⊞ Wi−7 ⊞ σ0(Wi−15) ⊞ Wi−16

σ0(X) = (X ≫ 7)⊕ (X ≫ 18)⊕ (X ≫ 3)

σ1(X) = (X ≫ 17)⊕ (X ≫ 19)⊕ (X ≫ 10)

33

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

where≫ is a right shift. The implementation of σ0 and σ1 follows the same pattern as Σ0

and Σ1, decomposing the input word into pieces and utilizing the spread lookup table to

perform the bitwise operations efficiently.

By systematically applying lookup arguments, primarily through the versatile spread

table, the complex bitwise operations of SHA-256 are transformed into a set of efficient

and verifiable circuit constraints. This demonstrates the power of lookup arguments in

constructing complex cryptographic primitives within zero-knowledge proof systems.

2.13 Why Lookup “Argument” not Lookup “Proof”

The primary reason for this terminology lies in the difference between computational

soundness and statistical/perfect soundness:

Argument: This term is used for proof systems where soundness relies on computational

assumptions. These assumptions might include the difficulty of solving problems

like discrete logarithms, the security of cryptographic pairings, or the collision re-

sistance of hash functions. In such systems, a computationally bounded (typically

polynomial-time) malicious prover has only a negligible probability of deceiving

the verifier. However, an adversary with unlimited computational power could po-

tentially break the soundness and create a false proof. Many practical systems, in-

cluding SNARKs based on pairings (like those using KZG commitments, which

are relevant to lookup protocols such as Plookup, Baloo, and CQ), fall into this

category. They inherit the computational soundness from their underlying crypto-

graphic primitives.

34

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Proof: This term is reserved for systems that offer statistical or perfect soundness. In

these systems, even a prover with unlimited computational power cannot deceive

the verifier, or can only do so with a statistically negligible probability. Such strong

soundness is often achieved by systems based on Probabilistically Checkable Proofs

(PCPs) or information-theoretic principles, like the Interactive Oracle Proofs (IOPs)

underlying some FRI-based STARKs.

Since lookup protocols are typically built using polynomial commitment schemes (e.g.,

KZG, Pedersen, IPA) whose soundness is computational, the resulting lookup system in-

herits this computational soundness and is therefore classified as an ”argument.”

2.14 Motivation for Benchmarking Lookup Arguments

From a theoretical complexity perspective (Big O notation), we seem to have a good

grasp of how different lookup protocols perform. So, why bother with time-consuming

and effort-intensive benchmarking? Here are some key reasons:

1. Constant Factors and Lower-Order Terms Matter: Theoretical complexity (e.g.,

O(n log n), O(n log2 n), O(n2)) describes growth trends as the input size n ap-

proaches infinity, neglecting constant factors and lower-order terms. In practical

applications, n may be large but not infinite. For real-world n values, a theoreti-

cally slower algorithm (like O(n log2 n)) with a very small constant factor might

actually run faster than a theoretically superior algorithm (like O(n log n)) with a

large constant factor. Example: In our benchmark, Baloo is theoretically superior to

Plookup for very large N . However, at N = 8n, its actual proof time is slower than

35

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Plookup’s. This strongly suggests that Baloo (in this specific implementation) has

a very large constant factor or computational overhead related to log2 n, or Plookup

has a very small constant factor.

2. Validating Theoretical Analysis: Theoretical analysis itself can contain errors, omis-

sions, or oversimplified assumptions. Benchmarking serves as an experimental val-

idation to check if theoretical predictions align with real-world scenarios. Exam-

ple: Baloo’sO(n log2 n) theoretical complexity assumes the availability of efficient

algorithms for arbitrary point set interpolation/evaluation. If these efficient algo-

rithms are not present in the actual library or implementation, then the theoretical

analysis doesn’t apply to that specific implementation, and the benchmark reveals

this discrepancy.

3. Assessing Implementation Quality and Library Impact: For the same algorithm,

different implementations, programming languages, underlying libraries (e.g., for

algebraic operations, FFT), and compiler optimizations can lead to vast perfor-

mance differences. Benchmarking tests the performance of a specific implemen-

tation, not just an abstract algorithm. It helps uncover bottlenecks within particu-

lar libraries or code paths. Example: LogupGKR performed exceptionally well in

this benchmark. This might be partly due to the inherent superiority of its proto-

col, but it could also reflect the highly efficient GKR/Sumcheck implementation

(crate::piop::gkr::fractional_sum_check) it relies on.

4. Identifying Real-World Bottlenecks: Theoretical analysis often focuses on compu-

tationally intensive steps, but actual performance is also influenced by various fac-

tors such as memory access, cache efficiency, parallelism, data structure choices,

36

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

and serialization/deserialization overhead. Benchmarking can expose these practi-

cal bottlenecks that theoretical analysis might overlook. Example: CQ’s theoretical

prover complexity is excellent, but the benchmark highlighted its massive time and

potential space overhead during the preprocessing phase. This is a critical bottle-

neck that must be considered in actual deployment.

5. Comparing Different Trade-offs: Different lookup protocols involve various trade-

offs across aspects like proving time, verification time, proof size, preprocessing

time, memory usage, homomorphicity, and aggregatability. While theoretical anal-

ysis can compare a single metric (e.g., prover asymptotic complexity), benchmark-

ing provides a more comprehensive, multi-dimensional performance picture. This

helps developers make more informed choices based on specific application scenar-

ios. For instance, if verification time is paramount, Plookup or LogupGKR might

be chosen; if aggregatability is needed, CQ is the preferred option; and if extremely

large fixed tables need to be processed and preprocessing is acceptable, CQ’s fast

prover might be very attractive.

6. Discovering Unexpected Behavior and Bugs: Sometimes, benchmarks reveal un-

expected performance issues that were not anticipated theoretically, and they may

even hint at bugs in the implementation. For example, if a protocol’s performance

grows far beyond its theoretical complexity with increasing input size, it could in-

dicate a bug or a severe efficiency problem in the implementation.

37

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

2.15 Rationale for Protocol Selection

The selection of protocols for this benchmark is guided by two main factors. Firstly,

the field of lookup arguments is relatively new, with the chosen protocols representing

the most significant proposals from the last few years. Secondly, each protocol introduces

a distinct design philosophy, which makes a comparative analysis particularly insightful.

Plookup [1] stands as the foundational work. Caulk [2] and Baloo [3] pioneered the con-

cept of subtables to achieve sublinear prover complexity. CQ [4] explored the trade-offs

of preprocessing and the power of the logarithmic derivative technique. LogupGKR [5]

builds upon this by integrating the GKR protocol [46] for enhanced efficiency in a multi-

linear extension setting. Finally, Lasso [6] introduced a novel approach of decomposing

large, structured tables into smaller, more manageable ones. This deliberate selection cov-

ers the key evolutionary steps and diverse design trade-offs in modern lookup arguments.

2.16 Theoretical Comparison of Lookup Arguments

The comparative evaluation of modern lookup argument protocols requires a multi-

dimensional analysis, moving beyond singular metrics to capture the nuanced trade-offs

inherent in their design. This section delineates the key characteristics, performance pa-

rameters, and mathematical notations used to systematically compare these protocols, pro-

viding a formal basis for their evaluation.

38

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Protocol Feature Dimensions

The protocols are assessed across several critical dimensions that reflect their com-

putational cost, efficiency, and structural properties.

Prover Field & Group Complexity These metrics quantify the asymptotic complexity of

operations required by the prover. Field Complexity refers to arithmetic operations

(e.g., addition, multiplication) over the finite field, while Group Complexity per-

tains to more expensive elliptic curve operations (e.g., scalar multiplication) which

are fundamental to the polynomial commitment scheme (PCS).

Sub-linearity This binary characteristic indicateswhether the prover’s computational work-

load scales sub-linearly with respect to the table size N . A protocol with this prop-

erty (i.e.,, ‘Yes‘) is critically advantageous for applications involving very large

lookup tables, as its proving cost is not dominated by the table’s size.

Pre-processing This refers to the one-time computational and storage costs incurred dur-

ing a setup phase prior to any proof generation. Certain protocols require an expen-

sive pre-processing step that is dependent on the entire table sizeN , whereas others,

particularly those designed for structured tables (‘struct.‘), may require minimal to

no pre-processing.

Proof Size This metric measures the size of the final proof object, typically in terms of the

number of elliptic curve group elements (G1,G2) and finite field elements (F). It is

a crucial factor for applications constrained by on-chain storage or communication

bandwidth.

39

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Homomorphic This indicates whether the protocol’s underlying commitment scheme sup-

ports homomorphic properties. Homomorphism allows for computations on com-

mitted data, which is a powerful feature for efficiently handling advanced construc-

tions such as multi-column (vector) lookups.

Aggregatable This property describes the protocol’s capacity for efficiently aggregating

multiple proofs into a single, compact proof that can be verified with a cost sig-

nificantly lower than verifying each proof individually. This is essential for the

scalability of systems like ZK-rollups.

Technique This identifies the core cryptographic or algebraic method upon which the pro-

tocol is built. Examples include permutation checks, sub-table extraction (‘Ext.‘),

and logarithmic derivatives (‘LogDeriv‘).

Commitment Scheme This specifies the type of Polynomial Commitment Scheme (PCS)

required by the protocol. Some protocols are designed to be generic (‘Any PCS‘),

while others depend on the specific properties of a particular scheme, such as Kate-

Zaverucha-Goldberg (KZG).

Domain This describes the mathematical structure over which the polynomials in the pro-

tocol are defined, such as a univariate multiplicative subgroup (‘Univar. Sub.‘) or

a multilinear Boolean hypercube (‘ML Hypercube‘).

Prover-defined G2 This indicates whether the generated proof contains a G2 group ele-

ment that is dynamically computed by the prover. The presence of such an element

(‘Yes‘) can significantly complicate or inhibit proof aggregation, which often relies

on fixed-base G2 points.

40

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Key Parameters and Notations

The following parameters and notations are used to articulate the complexity and size

of the proofs.

N The size of the lookup table, representing the total number of entries.

m The number of lookup queries to be proven. Note that in the thesis text, n is often used

interchangeably with m.

G1,G2 Elements of two distinct elliptic curve groups used in pairing-based cryptography.

F An element of the underlying finite field.

PCS, ML-PCS Acronyms for Polynomial Commitment Scheme and Multilinear Polyno-

mial Commitment Scheme, respectively.

O(log N)F This describes a component of the proof size consisting of a number of field

elements that grows logarithmically with the table size N . This is characteristic of

GKR-based protocols.

O(log m + log N)F + O(log m)G1 This describes a composite proof size. The total size

includes a number of field elements growing logarithmically with both query count

m and table size N , in addition to a number of G1 group elements growing log-

arithmically with the query count m. This structure is characteristic of the Lasso

protocol.

41

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/N
TU

202503318

Table 2.1: Comparison of characteristics of various lookup protocols (horizontal full version)

Features

Protocol
Prover
Field

Prover
Group

Sub-
linear?

Pre-
process

Proof
Size

Homo-
morphic

Aggr-
otable

Tech-
nique

Commit-
ment Domain

Prover
G2?

Plookup O(N log N) O(N) No None 5 G1 No Yes Permutation Any PCS
Univar.
Sub. No

Caulk O(m2 + m log N) O(m2) Yes O(N log N) 14 G1, 1 G2 Yes No
Subtable
Ext. KZG Arbitrary Yes

Baloo O(m log2 m) O(m) Yes O(N log N) 12 G1, 1 G2 Yes No
Subtable+

Lin KZG Arbitrary Yes

CQ O(m log m) O(m) Yes O(N log N) 8 G1 Yes Yes
LogDeriv+

CQ KZG
Univar.
Sub. No

logUp-GKR O(m log m) O(M) No None
cG1/

O(log N)× F Yes Yes
LogDeriv+

GKR
Any

ML-PCS
ML

Hypercube No

Lasso
O(m + N)/

O(cm)
O(m + N)/

O(cm) Yes
None
(struct.)

O(log m + log N)× F +
O(log m)G1 Yes Yes

Sparse
Poly

Any
ML-PCS

ML
Hypercube No

42

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

2.17 Key Differences and Evolution of Lookup Arguments

2.17.1 Plookup ([1])

Plookup [1] is one of the earliest lookup protocols. It proves that a query vector

f ∈ Fm is contained in a table vector t ∈ FN (i.e., {fj} ⊆ {ti}).

Plookup’s core idea is based on permutation checks over sorted vectors. To handle

multisets, a common technique, particularly in later integrations like Plonkup, is to use a

randomized difference check. Conceptually, given vectors t, f , an auxiliary sorted vector

s ∈ FN+m (which is f ∪ t sorted according to t), and bivariate polynomials derived from

these vectors, one can establish the lookup claim. For instance, using random challenges

β, γ:

F (β, γ) = (1 + β)m
m∏

j=1
(γ + fj)

N−1∏
k=1

(γ(1 + β) + tk + βtk+1) (2.17.1)

G(β, γ) :=
m+N−1∏

k=1
(γ(1 + β) + sk + βsk+1) (2.17.2)

Then the following holds:

F (β, γ) ≡ G(β, γ) ⇐⇒ ({fj} ⊆ {ti} AND s = (f, t)) (2.17.3)

The equivalence relies on unique factorization of polynomials and matching factors

corresponding to elements from f and transitions in t and s.

43

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

2.17.1.1 Definitions

• m (query count) andN (table size) are independent, though for practical implemen-

tation in a single proof system, they are often padded to fit within a domain of size

2k.

• H = {g, . . . , gN = 1} is a multiplicative subgroup of order N in F.

• For a vector p ∈ FN , p(x) ∈ F[X]<N is its polynomial interpolation over H , so

pi = p(gi).

• Li(x) ∈ F[X]<N is the i-th Lagrange polynomial on H .

• s ∈ F2N−1 is (f, t) sorted by t. (Assuming m = N − 1 for this vector length).

Polynomial Representation: To process the vector s within the polynomial frame-

work of zero-knowledge proofs, the protocol must convert this vector into polynomial

form. Since the length of s (which is n + d) typically exceeds the size of the evaluation

domain H (a multiplicative subgroup of size n + 1 used by the protocol), it is impossible

to represent s completely using a single polynomial.

The solution is to partition the long vector s into two segments and represent them

using two independent polynomials h1 and h2:

• h1(x): This polynomial, when evaluated at points in the multiplicative subgroup H

(i.e., at gi), yields values corresponding to the first half of the vector s. Specifically,

h1(gi) = si for i = 1, . . . , N .

• h2(x): This polynomial, when evaluated at points inH , yields values corresponding

to the second half of the vector s. Specifically, h2(gi) = sN+i−1 for i = 1, . . . , N .

44

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

This polynomial decomposition enables the protocol to handle vectors that exceed

the domain size while maintaining the algebraic structure necessary for efficient zero-

knowledge verification.

2.17.1.2 The Protocol

1. Prover: Computes and commits to polynomials h1(x), h2(x) ∈ F[X]<N such that

for i = 1, . . . , N :

h1(gi) = si (2.17.4)

h2(gi) = sN+i−1 (2.17.5)

2. Verifier: Sends random challenges β, γ ∈ F to the prover.

3. Prover: Computes and commits to an accumulator polynomial Z(x) ∈ F[X]<N

such that Z(g) = 1, Z(gN) = 1, and for i = 2, . . . , N − 1:

Z(gi) = (1+β)i−1
∏i−1

l=1(γ + fl)(γ(1 + β) + tl + βtl+1)∏i−1
l=1(γ(1 + β) + h1(gl) + βh1(gl+1))(γ(1 + β) + h2(gl) + βh2(gl+1))

(2.17.6)

45

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

4. Verifier: Checks the following identities for all x ∈ H:

L1(x)(Z(x)− 1) = 0 (2.17.7)

LN(x)(Z(x)− 1) = 0 (2.17.8)

LN(x)(h1(x)− h2(gx)) = 0 (2.17.9)

(x− gN)Z(x)(1 + β)(γ + f(x))(γ(1 + β) + t(x) + βt(gx)) =

(x− gN)Z(gx)(γ(1 + β) + h1(x) + βh1(gx))(γ(1 + β) + h2(x) + βh2(gx))

(2.17.10)

The polynomialZ(x) aggregates the ratioF (β, γ)/G(β, γ). The checks ensureZ(g) =

Z(gN) = 1 and the correct accumulation at each step.

2.17.1.3 Integration with the Plonk Protocol

The table vector t is predefined and can be committed to during a preprocessing

phase. In Plonk, lookups are treated as special types of gates. The query vector f is

typically derived from a combination (folding) of Plonk’s witness columns (wa, wb, wc).

A selector polynomial, qK(X), distinguishes lookup gates.

Preprocessing phase: Commitments to Plonk selectors [qL(X)], . . . , [qC(X)]; lookup

selector [qK(X)]; permutation polynomials [σa(X)], . . . ; and table columns [t1(X)],

Protocol Steps (Simplified):

1. Round 1 (Witness commitments): Prover commits [wa(X)], [wb(X)], [wc(X)].

2. Round 2 (Table Folding Challenge): Verifier sends η.

46

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

3. Round 3 (LookupVector Commitments): Prover constructs t(X) (folded table∑
ηjtj(X))

and f(X) (where f(ωi) is ∑
ηjwj(ωi) if qK(ωi) = 1, else a default value). Prover

computes s, splits it into polynomial representations (e.g., h1(X), h2(X) as above),

and commits to commitments for s.

4. Round 4 (Challenges): Verifier sends (β1, γ1) for Plonk permutation, and (β2, γ2)

for Plookup.

5. Round 5 (Accumulator Commitments): Prover commits Plonk accumulator [zperm(X)]

and Plookup accumulator [zlookup(X)].

6. Round 6 (Quotient Challenge): Verifier sends αagg.

7. Round 7 (Quotient Polynomial Commitment): Prover aggregates all constraints

(Plonk arithmetic, permutation, Plookup) into a single polynomial, computes quo-

tient Tquot(X), commits [Tquot(X)].

8. Subsequent Rounds (Opening Proof): Standard opening proof and verification.

2.17.1.4 Costs and Performance Characteristics

• Prover Asymptotics: O(N log N) field operations (for polynomial interpolation and

FFTs) and O(N) group operations.

• Sublinear in Table Size N?: No.

• Preprocessing: None, beyond standard PCS setup if table is not pre-committed.

• Proof Size (KZG): Approx. 5 G1 elements and 9 field elements.

• Verifier Work (KZG): Approx. 2 pairing evaluations.

47

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

• Commitment Scheme: Can use any Polynomial Commitment Scheme (PCS).

• Domain: Univariate, over a multiplicative subgroup.

2.17.1.5 Generalizations and Optimizations

Plookup can be generalized to multiple witness polynomials f1, . . . , fw and tables

t1, . . . , tw by using a random linear combination challenge α′
agg to aggregate them into

single f = ∑(α′
agg)ℓfℓ and t = ∑(α′

agg)ℓtℓ.

If the table represents a range of consecutive integers (e.g., tl+1 = tl + 1), the accu-

mulation for Z(gi) can be simplified.

The Plonkup protocol [47] integrates Plookup with Plonk, allowing lookups as gen-

eralized Plonk gates.

2.17.2 Caulk ([2])

Core Idea Introduced the first lookup argument with a prover workload that is sublinear

in the size of the table (N). Caulk’s core innovation is to extract a small sub-table

containing only the necessary values and prove its correctness against the full table

commitment using precomputed KZG proofs. It then proves, in zero-knowledge,

that the query values are contained within this smaller, hidden sub-table.

Key Bottleneck While sublinear in the table size N , the prover’s work has a quadratic

dependency on the number of lookups (O(m2)). This complexity arises from con-

structing a polynomial that checks the relationship between the query values and the

extracted sub-table, making it inefficient for a large number of lookups in a single

48

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

proof.

The core idea is to avoid operating on the full table polynomial C(X). Instead, the

prover constructs a commitment to a sub-table polynomial CI(X) that interpolates the

subset of c corresponding to the values in a. It uses precomputation to efficiently prove

that CI(X) is a valid sub-table of C(X). The main challenge is then to prove that the

polynomial for the query values, ϕ(X), is correctly related to the hidden sub-tableCI(X).

This is achieved by creating an auxiliary ”coordinate” polynomial u(X) that maps the

query domain to the hidden locations in the table domain and using it to check for value

equality. This is verified with three core polynomial equations, which are batched for

efficiency:

C(X)− CI(X) = zI(X)H1(X) (2.17.11)

zI(u(X)) = zVm(X)H2(X) (2.17.12)

CI(u(X))− ϕ(X) = zVm(X)H3(X) (2.17.13)

Equation (2.17.11) proves that CI(X) is a sub-table of C(X). Equation (2.17.12)

proves that the coordinates in u(X) are roots of the sub-table’s vanishing polynomial

zI(X). Equation (2.17.13) proves that evaluating the sub-table at these coordinates yields

the query values from ϕ(X).

2.17.2.1 Definitions

• m is the number of lookup queries; N is the size of the lookup table.

49

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

• H = {1, ω, . . . , ωN−1} is a multiplicative subgroup of order N used for the table

domain.

• Vm = {1, ν, . . . , νm−1} is a multiplicative subgroup of order m used for the query

domain.

• {λi(X)} are the Lagrange basis polynomials over H16; {µj(X)} are the Lagrange

basis polynomials over Vm.

• C(X) = ∑N
i=1 ciλi(X) is the polynomial interpolation of the table vector c.

• ϕ(X) = ∑m
j=1 ajµj(X) is the polynomial interpolation of the query vector a.

• I ⊂ [N] is the set of secret indices in the table c that correspond to the values in a.

• CI(X) is the polynomial interpolating the sub-vector cI over the domain locations

{ωi−1}i∈I .

• zI(X) = ∏
i∈I(X − ωi−1) is the vanishing polynomial for the sub-table locations.

• u(X) = ∑m
j=1 ωij−1µj(X) is the coordinate polynomial that maps the j-th query to

its location ωij−1 in the table’s domain.

2.17.2.2 The Protocol

1. Prover (Sub-table Extraction & Coordinate Mapping):

• Identifies the subset of indices I ⊂ [N] such that {ci}i∈I contains all values

from the query vector a.

• Constructs blinded, committed polynomials: CI(X) (sub-table values), zI(X)

(sub-table vanishing poly), and u(X) (coordinate mapping).

50

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

• Using precomputed proofs, the prover computes a commitment to the quotient

H1(X) for the sub-table check in Eq. (2.17.11).

• Proves that the outputs of u(X) are valid N -th roots of unity using a sub-

protocol (π′
unity).

• Sends commitments [CI]1, [zI]1, [u]1, [H1]2 and the proof π′
unity to the verifier.

2. Verifier→ Prover: Sends a random batching challenge χ.

3. Prover (Constraint Aggregation):

• Aggregates the location check (Eq. (2.17.12)) and value check (Eq. (2.17.13))

into a single polynomial relation using χ: zI(u(X))+χ(CI(u(X))−ϕ(X)) =

zVm(X)H2(X).

• Commits to the combined quotient [H2]1 and sends it to the verifier.

4. Verifier→ Prover: Sends a random evaluation point challenge α.

5. Prover→ Verifier (Openings):

• Computes evaluations v1 = u(α) and v2 = zI(v1) + χCI(v1).

• Creates and sends batched KZG opening proofs for u(X) at α, for zI(X) +

χCI(X) at v1, and for the aggregated relation at α.

6. Verifier (Verification):

• Checks the sub-protocol proof π′
unity.

• Checks the pairing equation for the sub-table extraction: e([C]1−[CI]1, [1]2) =

e([zI]1, [H1]2).

51

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

• Reconstructs commitments to the aggregated polynomials using the prover’s

commitments and challenges.

• Verifies the three KZG opening proofs to confirm all polynomial relations

hold.

2.17.2.3 Costs and Performance Characteristics

• Prover Asymptotics: Õ(m2 +m log N). Them2 term comes from composing poly-

nomials of degree m.

• Sublinear in Table Size N?: Yes, which is its primary advantage over prior work.

• Preprocessing: Requires a one-time setup of O(N log N) to compute and store all

single-opening KZG proofs for the table elements.

• Proof Size (KZG): Constant size. For the lookup argument, it is approximately

14G1, 1G2, and 4F elements.

• Verifier Work (KZG): O(log(log N)) scalar operations and a constant number of

pairings (4 pairings after batching).

• Commitment Scheme: Exclusively uses the KZG polynomial commitment scheme.

• Domain: Univariate polynomials over multiplicative subgroups of roots of unity.

2.17.2.4 Generalizations and Optimizations

Caulk supports lookups with repeated values, as the protocol proves subset member-

ship without regard to order or multiplicity within the query vector. The protocol can also

52

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

be used to generate proofs about ”sub-lookup tables”. The paper details several optimiza-

tions, such as batching multiple KZG openings at the same point and batching multiple

pairing checks to reduce verifier work.

2.17.3 Baloo ([3])

The Evolution Baloo is the direct successor to Caulk, specifically designed to fix the

O(m2) bottleneck. It achieved a nearly optimal prover time of O(m log2 m).

Core Technique It retains Caulk’s subtable extraction idea but replaces its inefficient lookup

proof with a highly optimized framework based on linear relations and a Checkable

Subspace Sampling (CSS) argument. This allows for proving the relationship be-

tween the lookup values and the extracted sub-table in quasi-linear time.

Remaining Weakness Its proof contains a prover-definedG2 element ([zI]2), whichmakes

it difficult to aggregate multiple proofs recursively—a critical feature for scaling ZK

systems.

Baloo [3] is an indexed lookup argument proving {ai} ⊆ {ti} by reducing it to a

matrix-vector relation MtI = a. Here tI is a sub-vector of t, and M has unit-vector rows,

ensuring ai is a copy of (tI)j .

2.17.3.1 Core Components and Identities

Baloo protocol is constructed to prove a set of core algebraic relations between its

constituent polynomials. The cryptographic checks using KZG commitments serve to

verify these underlying identities.

53

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

1. Subtable Equations: To prove tI ⊆ t, the Prover constructs two quotient polynomi-

als, QI(X) and WH\I(X), which satisfy the following identities:

t(X)− tI(X) = QI(X) · zI(X) (2.17.14)

zH(X) = WH\I(X) · zI(X) (2.17.15)

2. Matrix Structure and Consistency Equations: To prove the unit-vector structure of

the matrixM, the Prover constructs a quotient polynomial q2(X) satisfying the first

identity below. The second identity is a direct evaluation check to ensure consis-

tency between the row and column samplings.

e(X)(β − v(X)) + zI(β)
zI(0)

v(X) = q2(X) · zV (X) (2.17.16)

d(β) = e(α) (2.17.17)

3. Dot Product Equation: To execute the sum-check argument for the dot product, the

Prover constructs a quotient polynomial q1(X) that satisfies the following equation:

d(X)tI(X)− a(α)−Xg(X) = q1(X) · zI(X) (2.17.18)

2.17.3.2 The Protocol

1. P (Setup & Subtable): Commits CtI
, [zI(X)]1, [zI(X)]2, Cv. Sends proofs for sub-

table extraction.

2. V→ P: Sends challenge α.

54

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

3. P (Row Sampling & Dot Product): Computes d(X) = M(α, X), commits Cd.

Computes g(X), q1(X) for Eq. (2.17.18), commits Cg, Cq1 .

4. V→ P: Sends challenge β.

5. P (Column Sampling & CP-Expansion): Computes e(X) = M(X, β), commitsCe.

Computes q2(X) for Eq. (2.17.16), commits Cq2 .

6. V→ P: Sends challenge ζ .

7. P→ V (Evaluations): Sends aα, eα, dβ, zI0, zIβ, eζ .

8. V→ P: Sends batching challenges γi.

9. P→V (Openings): Sends batched KZG openings for identities fromEqs. (2.17.18),

(2.17.16).

10. V (Verification): Verifies Subtable pairings, consistency eα = dβ (Eq. (2.17.17)),

and all KZG openings.

2.17.3.3 Costs and Performance Characteristics

• Prover Asymptotics: O(n log2 n) field operations, O(n) group operations (where n

is number of queries). Uses non-subgroup operations.

• Sublinear in Table Size N?: Yes, with preprocessing.

• Preprocessing: O(N log N) forG1 elements and field operations (for precomputing

all single-opening KZG proofs for the table).

• Proof Size (KZG): Moderate, e.g., 12 G1 elements, 1 G2 element.

55

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

• Verifier Work (KZG): Moderate, e.g., 5 pairing evaluations.

• Homomorphic Table Commitment?: Yes, crucial for multi-column lookups via ran-

dom linear combination.

• Aggregatable?: No (not easily, due to prover-defined G2 element [zI(X)]2).

• Commitment Scheme: Relies on KZG pairing-based commitments.

• Domain: Operates over arbitrary subsets of a subgroup for tI .

Benchmark results indicate Baloo’s prover performance can be slower than Plookup

for certain N/n ratios or specific implementations, possibly due to high constant factors

in field operations on arbitrary sets.

2.17.3.4 Generalizations and Variants

Baloo supports multi-list queries by preserving additively homomorphic properties

of table commitments.

2.17.4 CQ (Cached Quotients) ([4])

Cached Quotients (CQ) [4] is a lookup argument using logarithmic derivatives to

prove {fj} ⊆ {tk}. It avoids subtable extraction, operating on the full table t.

2.17.4.1 Core Idea and Key Equations

The logarithmic derivative of P (X) = ∏(X − rk) is ∑ 1
X−rk

. The lookup proof

involves verifying at a random β:

56

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

n∑
j=1

1
β − fj

=
N∑

k=1

mk

β − tk

(2.17.19)

where mk is multiplicity of tk in f . This is done by checking three conditions using

polynomials A(X) (for mk/(β − tk)), M(X) (for mk), T (X) (for tk), B(X) (for 1/(β −

fj)), and F (X) (for fj):

(a) A(X)(β − T (X))−M(X) = QA(X)ZHt(X)

(b) B(X)(β − F (X))− 1 = QB(X)ZHf
(X)

(c) |Ht| · A(0) = |Hf | ·B(0) (derived from ∑
A(ω) = ∑

B(ν))

These are verified using KZG pairing checks for ((a))-((b)) and openings for ((c)).

2.17.4.2 The Protocol

1. V→ P: Sends random challenge β.

2. P: Computes values mk/(β − tk), 1/(β − fj). Constructs polynomials

A(X), M(X), B(X), F (X), QA(X), QB(X).

3. P→ V: Sends commitments CA, CM , CB, CF , CQA
, CQB

. (CT , CZHt
, CZHf

may be

preprocessed/derived).

4. V→ P: Requests openings (e.g., A(0), B(0), and points for batched KZG).

5. P→ V: Sends opened values and proofs.

6. V: Verifies KZG pairing identities for ((a)), ((b)), sum check ((c)), and all openings.

57

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

2.17.4.3 Costs and Performance Characteristics

• Prover Asymptotics: O(n log n) field operations (FFT-based), O(n) group opera-

tions.

• Sublinear in Table Size N?: Yes, with preprocessing.

• Preprocessing: O(N log N) forG1 elements and field operations (for ”cached quo-

tients”). Can be very large (”terabytes” for large N).

• Proof Size (KZG): Small, e.g., 8 G1 elements, 0 prover-defined G2 elements.

• Verifier Work (KZG): Moderate, e.g., 5 pairing evaluations.

• Homomorphic Table Commitment?: Yes.

• Aggregatable?: Yes, due to fixed G2 points.

• Commitment Scheme: Relies on KZG pairing-based commitments.

• Domain: Univariate, over multiplicative subgroups.

CQ offers strong asymptotic prover efficiency but has a very significant preprocess-

ing cost.

2.17.4.4 Generalizations and Variants

The core technique focuses on efficient full-table operations for lookups.

58

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

2.17.5 LogupGKR ([5])

LogupGKR [5] enhances the LogUp argument [48] by using the Goldwasser-Kalai-

Rothblum (GKR) protocol [46] to prove LogUp’s fractional sumchecks. This reduces

prover commitment overhead, requiring commitment only to a multiplicity column. As-

sumes familiarity with MLEs, sumcheck, and GKR.

2.17.5.1 Core Argument and GKR Application

LogUp, like CQ, uses logarithmic derivatives. For witness MLEswi(X⃗), table t(X⃗),

multiplicities m(X⃗) (all over Hn = {±1}n), LogUp proves at random α:

M∑
i=1

 ∑
x⃗∈Hn

1
α− wi(x⃗)

− ∑
x⃗∈Hn

m(x⃗)
α− t(x⃗)

= 0 (2.17.20)

This is a claim ∑
z⃗

peff (z⃗)
qeff (z⃗) = 0. GKR verifies this using a layered arithmetic circuit

computing the sum via projective coordinates (a, b) for a/b.

Layer k computes (pk(x⃗), qk(x⃗)) from children in layer k + 1:

pk(x⃗) = pk+1(x⃗, 1)qk+1(x⃗,−1) + pk+1(x⃗,−1)qk+1(x⃗, 1) (2.17.21)

qk(x⃗) = qk+1(x⃗, 1)qk+1(x⃗,−1) (2.17.22)

The GKR protocol interactively reduces claims from layer 0 down to layer n (inputs

peff , qeff). For the LogUp sum, peff and qeff are constructed over n + k′ variables (k′ =

59

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

⌈log2(M+1)⌉) using Lagrange polynomials to select appropriate terms fromEq. (2.17.20).

2.17.5.2 The Protocol (GKR Interaction Summary)

1. Initial Claim: Prover claims p0 = 0, q0 ̸= 0 for the sum (2.17.20).

2. Layer Reduction (Iterative): For each layer k = 0, . . . , n + k′ − 1:

• Verifier provides random challenge λk. Prover and Verifier run sumcheck on

pk(r⃗k) + λkqk(r⃗k) (where r⃗k is point from previous round).

• This sumcheck reduces the claim to evaluations at the child points (e.g., pk+1(ρ⃗k,±1), qk+1(ρ⃗k,±1)).

• Verifier sendsµk to combine these into a single point claim for pk+1(r⃗k+1), qk+1(r⃗k+1).

3. Final Step: Claims reduce to evaluations of base MLEs t(X⃗), m(X⃗), wi(X⃗) at a

random point. Verifier checks these via oracle access or openings.

2.17.5.3 Final Verification via Polynomial Commitments

The GKR protocol concludes by reducing the initial fractional sumcheck claim to

evaluation claims on the base multilinear extensions (t, m, wi, . . .) at a final random point,

let’s call it r⃗final, derived from the verifier’s challenges throughout the interaction.

To ensure the prover provides the correct evaluations at r⃗final without the verifier

needing the full polynomials, a Polynomial Commitment Scheme (PCS) is used. This

final step works as follows:

1. Commit Phase (Upfront): Before the GKR protocol starts, the prover commits to the

table polynomial t(X⃗), the witness polynomials wi(X⃗), and the newly constructed

60

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

multiplicity polynomial m(X⃗). These commitments are sent to the verifier.

2. Opening Phase (Conclusion): After the GKR interaction, the prover provides the

claimed evaluations of these polynomials at the random point r⃗final. The prover

then uses the PCS to generate a single, batched opening proof, πopen, for all these

evaluations.

3. Verification: The verifier checks the opening proof πopen against the initial commit-

ments and the claimed evaluations. If the check passes, the verifier is convinced

that the evaluations are correct and thus accepts the original proof.

This is the crucial step that connects the abstract GKR interaction to the concrete

polynomials of the lookup argument. The efficiency gain highlighted in LogupGKR is

that the prover only needs to commit to one extra column—the multiplicities m(X⃗)—

compared to the original problem statement (which already includes t andwi). This avoids

the need for numerous helper columns found in other lookup arguments.

2.17.5.4 Costs and Performance Characteristics

• ProverAsymptotics: Arithmetic cost for GKR fractional sumcheck is approx. |Hn+k′ |·

(43 Mult + 29 Add). Critically, only one additional commitment is required: the

multiplicity column m(X⃗).

• Sublinear in Table Size N?: Yes, as it avoids large table-related commitments if

M ≪ N .

• Preprocessing: No table-specific preprocessing is needed beyond standard PCS

setup.

61

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

• Proof Size (GKR): Typically small, related to log(circuit size).

• Verifier Work (GKR): Efficient, logarithmic in circuit size.

• Key Benefit: Drastically reduced commitment cost compared to traditional LogUp.

Benchmarks show LogupGKR can be extremely fast in practice for both prover and

verifier, outperforming pairing-based methods, especially when preprocessing is undesir-

able.

It is insightful to compare LogupGKR with CQ, as both leverage the logarithmic

derivative technique. Their approaches to optimization, however, diverge significantly.

LogupGKR employs the GKR protocol, whose primary advantage lies in its iterative ver-

ification process where intermediate layers do not require separate cryptographic commit-

ments, thus substantially reducing commitment overhead. In contrast, CQ adopts a strat-

egy of extensive preprocessing. It precomputes and caches commitments for quotients

corresponding to every entry in the lookup table. This allows for the efficient composi-

tion of the final quotient polynomial commitment (QA) during the proving phase, which

also saves significant commitment costs, but at the expense of a potentially massive and

costly preprocessing step.

2.17.5.5 Generalizations and Variants

Univariate Extension: LogupGKR can be applied to univariate polynomials by trans-

forming univariate commitments to multilinear ones via an IOP, using bit-decomposition

of the univariate domain. The core GKR fractional sumcheck remains similar.

62

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

2.17.6 Lasso ([6])

Lasso [6] provides a framework for *Indexed Lookup Arguments*, proving fi = tai
,

and techniques for large tables, often by exploiting table structure.

2.17.6.1 Core Concepts and Variants

An Indexed Lookup Argument proves for query f , index a, table t:

∀i ∈ [0, m− 1), fi = tai
(2.17.23)

Lasso presents several approaches:

1. Offline Memory Checking: Models lookups as VM reads.

2. Spark (Sparse Polynomial Commitments): Efficient PCS for sparse selector matri-

ces.

3. Surge (Decomposable Tables): Leverages Spark for tables that decompose into

smaller sub-tables.

4. Generalized Lasso (MLE-Structured Tables): For tables where entries ti can be

computed efficiently from index i.

2.17.6.2 Offline Memory Checking

Proves lookup by verifying aVMmemory access log. Ensuresmultiset equality: S0∪

{Wj} = Sm∪{Rj}, where S0 is initial memory (table t, counters 0), Rj = (aj, fj, cj) are

63

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

read logs,Wj = (aj, fj, cj +1) are write logs (counter increment), and Sm is final memory

state. Verified via Grand Product Argument, which compares randomized fingerprints of

the multisets.

2.17.6.3 Spark (Sparse Polynomial Commitments)

For sparse MLE g(X) with m non-zero entries hj at kj = (kj,x, kj,y) (2D example).

To prove g(u) = v:

v = ∑m−1
j=0 hj · eq(kj,x, ux) · eq(kj,y, uy). Let e

(x)
j = eq(kj,x, ux), etc.

The sum v = ∑
hje

(x)
j e

(y)
j is verified by sumcheck, reducing to point evaluations

of h, e(x), e(y). Correctness of e(x), e(y) (i.e., e
(x)
j = eq(kj,x, ux)) is proven by Offline

Memory Checking against implicit tables defined by eq(·, ux) and eq(·, uy). Prover cost

is O(m + cN1/c) where c is a tunable parameter.

2.17.6.4 Surge (Decomposable Tables)

Applies to fi = tai
where tk = G(t(0)[dim(0)(k)], . . . , t(c−1)[dim(c−1)(k)]).

The relation ∑
b M(r, b)t(col(b)) = f(r) is transformed using decomposition:

f(r) = ∑
b G(e(0)(b), . . . , e(c−1)(b)) · eq(b, r), where e(s)(b) = t(s)[dim(s)(col(b))].

Verified by sumcheck, reducing to point evaluations of e(s). Correctness of each e(s)

proven by Offline Memory Checking against sub-table t(s).

64

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

2.17.6.5 Generalized Lasso (MLE-Structured Tables)

For tables where ti is cheaply computable from i. Verifies ∑
y M(r, y)t(y) = f(r)

using a ”Sparse-Dense Sumcheck”. This sumcheck is optimized for sparse M(r, ·) and

efficiently evaluable t(·). Reduces to point evaluations M(r, ρ), t(ρ). M(r, ρ) verified

using Spark. t(ρ) verified by PCS opening or direct computation by Verifier.

2.17.6.6 The Protocol (Conceptual Flow for Variants)

Specific protocols vary, but generally involve:

1. Commitments: Prover commits to queries f , indices a (or selector matrix M), and

any auxiliary vectors (e.g., e(s) in Surge, counters in OMC). Table t (or sub-tables)

may be pre-committed or, if structured, implicitly defined and not committed to at

all.

2. Challenges: Verifier sends random challenges for sumchecks, combinations, eval-

uation points.

3. Sumchecks / Reductions: Core relations are reduced via sumcheck protocols (stan-

dard, sparse-dense, or GKR-like).

4. Point Evaluations & Openings: Prover provides evaluations of polynomials at chal-

lenged points, along with PCS proofs.

5. Recursive Proofs (if any): Some components like Spark or Surge use Offline Mem-

ory Checking internally, which itself is another lookup-like argument.

65

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

2.17.6.7 Costs and Performance Characteristics

Lasso’s goal is often to make prover costs dependent on query count m rather than

large table size N , especially for structured tables.

• Offline Memory Checking: Prover cost O(m + N) for constructing logs and poly-

nomials. Grand Product argument varies.

• Spark: Prover cost for eval argument O(m + cN1/c) (with c-dim decomposition).

• Surge: Depends on sub-table sizes and complexity of G. Aims for O(m + ∑ |t(s)|).

• Generalized Lasso: Prover cost for Sparse-Dense Sumcheck can be O(cm) if N =

mc and t has the required structure for ”condensation”.

• Key Idea: Leverage table structure (decomposition, MLE-structure) or query spar-

sity.

2.17.6.8 Generalizations and Variants

Lasso offers a suite of tools. Decomposable tables include RangeCheck, bitwise

operations (AND, OR, XOR), equality (EQ), less-than (LTU), shifts (SLL), each with

specific decomposition functions G and sub-tables. The choice of protocol depends on

table properties.

Summary of Evolution

1. From O(N) to Sublinear(N): Caulk made the crucial leap by shifting the workload

from the entire table to a small, extracted sub-table.

66

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

2. From O(m2) to O(m log m): The Baloo→ cq evolution fixed the new bottleneck

introduced by Caulk, making the cost nearly linear in the number of lookups. cq

further refined this by enabling efficient proof aggregation.

3. From Table Commitment to Table-Free: Lasso changed the game entirely. Instead

of proving inclusion in a committed table, it proves a sparse relationship. For struc-

tured tables, it removes the table commitment dependency altogether, enabling mas-

sive tables and making the prover’s cost dependent only on the accessed data, not

the entire potential lookup space.

Benchmarking Related Literature Review

As Zero-Knowledge Proofs (ZKPs) transition from theoretical constructs to practical

applications, the need for robust performance evaluation and benchmarking of different

proof systems has become critical [49, 50]. However, the landscape has been characterized

by a lack of standardized testing frameworks, reproducible results, and uniform evaluation

metrics, creating significant challenges for developers in selecting optimal solutions for

their specific use cases [49]. In response, recent academic and community efforts have

produced a body of work focused on benchmarking, spanning comprehensive frameworks,

platform-specific comparisons, and application-oriented optimizations.

Comprehensive Benchmarking Frameworks and Comparative Studies

To address the absence of standardized evaluation in the ZKP ecosystem, researchers

have developed holistic benchmarking frameworks. zk-Bench stands out as the first com-

67

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

prehensive benchmarking framework and estimator tool designed specifically for general-

purpose ZKP systems, particularly SNARKs [49]. Its evaluation scope ranges from low-

level cryptographic arithmetic libraries to high-level ZKP circuits, with the goal of pro-

viding reproducible and fair comparative data [49]. The analysis from zk-Bench revealed

that the performance of ZKP tools varies significantly with hardware, showing perfor-

mance gains of up to 50% on CPU-optimized machines and 40% on memory-optimized

machines, depending on the tool [49]. Furthermore, the study offers a detailed quantita-

tive comparison of the setup, proving, and verification phases of different proof systems,

such as Groth16 and Plonk [49].

In addition to new frameworks, systematic reviews have provided high-level com-

parisons of major ZKP technologies. The work by El-Hajj et al., for instance, evaluates

the efficiency of zk-SNARKs, zk-STARKs, and Bulletproofs in real-world scenarios [51].

Their findings conclude that zk-SNARKs produce the smallest proofs, while zk-STARKs

generate the largest proofs but are the fastest in proof generation and verification times;

Bulletproofs were found to be the slowest in both aspects [51]. Such studies offer devel-

opers a high-level overview of the inherent trade-offs between different ZKP families.

Platform-Specific and Application-Specific Benchmarking

Beyond general frameworks, a significant body of work focuses on evaluating per-

formance within specific platforms or for particular applications. The zk-benchmarking

project, for example, is a suite designed to compare ZK virtual machines (ZK-VMs), cur-

rently benchmarking STARK-based systems like Polygon Miden and RISC Zero [50].

This initiative emphasizes a set of core principles, ensuring its benchmarks are relevant,

68

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

neutral, idiomatic, and reproducible [50]. Its test cases include critical building blocks for

real-world applications, such as iterated hashing and Merkle inclusion proofs [50].

Other research provides deep-dive benchmarks for specific development ecosystems.

Steidtmann et al. presented comprehensive benchmarking results for various signature

schemes and hash functions implemented in Circom [52]. This work aids developers

working within the Circom environment by providing concrete performance insights to

guide the selection of appropriate cryptographic schemes for their applications [52].

Furthermore, research has also targeted the optimization and evaluation of specific

components for target environments like blockchains. Guo et al. focused on benchmark-

ing ZK-friendly hash functions, such as Poseidon2, for EVM-compatible blockchains [53].

Their results demonstrated that using Poseidon2 can reduce on-chain costs by 73% on

EVM chains and improve proof generation times, thereby enhancing privacy and effi-

ciency in ZKP-based protocols [53]. This component-level benchmarking is crucial for

engineering high-performance and cost-effective ZKP applications.

69

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Chapter 3 Design and Experiment

3.1 Implementation Framework and Reference Implementa-

tions

My implementation is based on the plonkish framework [54], which provides the

building blocks for constructing zkSNARKs, such as MSM, FFT, transcript, and sum-

check. A complete list of these components can be found in the plonkish_backend [55].

However, the lookup argument itself is not included in this framework, so I needed to

implement it myself.

I referenced the following implementations and integrated the concepts into the plonkish

framework. Due to significant differences in the implementation approaches of each

repository, I essentially had to write the code from scratch after understanding the core

concepts.

• Plookup: The production-grade implementation in halo2 [56].

• Caulk: The research-grade implementation in [57].

• Baloo: No known implementation.

70

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

• CQ: The research-grade implementation in [58].

• LogupGKR: No known implementation, but fractional sumcheck is implemented

in [59].

• Lasso: This is highly coupled with Jolt, a zkVM. The implementation is available

at [60], but it is tightly coupled with Jolt and could not be used directly. I had to

rewrite it. Fortunately, DoHoonKim8 wrote halo2-lasso [61], and I based my

implementation on their work, modifying some of the plonkish code to make it

run. The details of my modifications can be found in this commit [62]. After these

modifications, I was able to integrate it and run it.

In the preceding chapters, we explored the theoretical constructions and complex-

ities of various lookup arguments. However, theoretical analysis alone provides only

a high-level comparison of asymptotic behavior. Real-world performance is invariably

influenced by implementation-specific optimizations, underlying cryptographic libraries,

and the specific hardware environment. To conduct a comprehensive and equitable eval-

uation of the leading schemes—from foundational protocols like Plookup [1] to the latest

sublinear-N advancements such as Caulk [2], Baloo [3], CQ [4], Lasso [6], and LogupGKR [5]

—this section details our experimental design, implementation framework, and empirical

results.

The central objective is to systematically quantify and compare the performance of

these lookup arguments across four key metrics: Proving Time, Verification Time, Setup

and Preprocessing Cost, and Proof Size. In this section, we will first introduce the im-

plementation framework that forms the basis of our evaluation. Subsequently, we will

elaborate on the design of our benchmarking scenarios, which are crafted to highlight the

71

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

strengths and weaknesses of each scheme under various conditions. The empirical results

presented in next section will provide a solid foundation for the analysis and conclusions

that follow.

3.2 Integration of Heterogeneous Lookup Arguments

The core challenge in evaluating lookup arguments lies in their heterogeneous math-

ematical tools, data structures, and proof processes. This section details our unified bench-

marking framework that integrates these diverse schemes into a single executable testing

environment.

3.2.1 Challenge: Heterogeneous Interfaces and Data Models

Each scheme adopts data representations optimized for its theoretical model, creating

significant integration challenges:

3.2.1.1 Different Input Data Structures

Schemes such as Plookup [1], CQ [4], and Caulk [2] accept two vectors as input:

a lookup vector lookup: Vec<Fr> and a table vector table: Vec<Fr>. Baloo’s [3]

implementation requires a more complex internal structure, directly handling polynomials

and their evaluations at specific points, and constructing multiple auxiliary polynomials

(such as v(X), D(X), E(X), etc.) during the proof process. LogupGKR’s [5] theory is

based on logarithmic derivatives and the GKR protocol [46], with its direct input being

multiple multisets. This requires converting traditional lookup and table structures into its

72

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

specific format, including calculating the multiplicities of each table element. Lasso [6] is

based on sparse polynomial commitments, with its Prover focusing on the non-zero entries

of the lookup matrix M , and its input structure also differs from other schemes.

3.2.1.2 Differences in Proof Processes and Parameter Generation

Setup Dependencies: PCS-based schemes (Plookup [1], Caulk [2], Baloo [3]) re-

quire KZG SRS generation, while LogupGKR [5] and Lasso [6] employ alternative setup

procedures.

3.2.2 Integration and Abstraction of Underlying Libraries

3.2.2.1 PlonkishBackend Trait

In our codebase, the PlonkishBackend trait defines a more generic interface, includ-

ing standard lifecycle methods such as setup, preprocess, prove, and verify. This

allows solutions like Caulk [2] to be implemented as an instance of this trait.

1 impl<M> Caulk<M> {

2 // These functions constitute the specific interface of the

Caulk solution

3 pub fn setup(...) -> ...

4 pub fn prove(...) -> ...

5 pub fn verify(...) -> ...

6 }

Listing 3.1: Caulk Implementation Structure

73

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

3.2.2.2 Abstractions for Polynomial Commitment Schemes

This modular design enables future PCS replacements (e.g., IPA [24] or FRI) through

simple type alias modifications.

1 // Bind Plookup to a specific PCS via type alias

2 type PlookupBn256 = plookup::Plookup<Fr, UnivariateKzg<Bn256>>;

Listing 3.2: PCS Abstraction

3.2.3 Shared Cryptographic Components for Fair Benchmarking

To achieve rigorous apple-to-apple comparisons, our benchmarking framework em-

ploys a unified set of cryptographic primitives that eliminates implementation-specific

performance variations. This design ensures that observed performance differences stem

from protocol design choices rather than underlying library disparities.

3.2.3.1 Polynomial Commitment Scheme Decoupling

The framework implements a sophisticated trait-based decoupling mechanism that

separates proving protocols from their underlying PCS implementations. Located in plonkish_backend/

src/backend/, each protocol’s Prover and Verifier are implemented as generic structures

parameterized by a PolynomialCommitmentScheme trait.

All protocols utilize identical KZG implementations on halo2_curves::bn256, en-

suring performance variations reflect protocol design rather than implementation differ-

ences.

74

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

3.2.3.2 Unified Sum-Check Protocol

The shared Sum-Check implementation (plonkish_backend/src/piop/sum_check/

classic.rs) provides a standardized foundation for multilinear polynomial verification.

This component is particularly crucial for protocols like LogupGKR [5] and Lasso [6],

which rely heavily on Sum-Check operations as their computational core. The unified

implementation ensures that these protocol comparisons reflect algorithmic design differ-

ences rather than Sum-Check implementation variations.

3.2.3.3 Standardized Arithmetic Operations

Two fundamental arithmetic operations are standardized across all implementations:

Multi-Scalar Multiplication (MSM): Located in plonkish_backend/src/util/

arithmetic/msm.rs, this component handles the computationally intensive elliptic curve

operations ∑n
i=1 si · gi. Since KZG commitments fundamentally reduce to MSM oper-

ations, this standardization ensures equitable treatment of all polynomial commitment-

dependent protocols.

Fast Fourier Transform (FFT): The implementation (plonkish_backend/src/util/

arithmetic/fft.rs) employs an optimized iterative Radix-2 Cooley-Tukey algorithm

with several performance enhancements:

• In-place computation minimizing memory allocation overhead

• Pre-computed evaluation domains with cached roots of unity

• Bit-reversal permutation optimization for improved cache locality

75

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

• Coset FFT support required for quotient polynomial calculations

These optimizations ensure that polynomial multiplication and division operations—

fundamental to all lookup protocols—operate at consistent efficiency levels across differ-

ent schemes.

3.2.3.4 Fiat-Shamir Transcript Standardization

The unified transcript implementation (plonkish_backend/src/util/transcript.rs)

standardizes the non-interactive transformation process. All protocols utilize identical

sponge construction algorithms for generating challenge scalars (α, β, γ, etc.), ensuring

consistent security assumptions and eliminating transcript-related performance variations

from the comparison.

3.2.4 Experimental Framework and Design

3.2.4.1 Implementation Framework

Our evaluation is based on a unified, high-performance Rust implementation frame-

work designed for benchmarking cryptographic protocols. This framework is available at

nooma-42/Lookup-Argument 1.

Hardware Environment: All benchmarks were conducted on an Apple M4 system

equipped with a 10-core CPU, 10-core GPU, 24GB unified memory, and 512GB SSD

storage. This configuration provides consistent computational resources and eliminates

hardware-induced performance variations across different protocol evaluations.
1https://github.com/nooma-42/Lookup-Argument

76

http://dx.doi.org/10.6342/NTU202503318
https://github.com/nooma-42/Lookup-Argument

doi:10.6342/NTU202503318

• Core Architecture: Built upon the plonkish research repository, providing foun-

dational polynomial operations and PIOP components [28]. All six lookup schemes

are integrated within this unified architecture.

• Parallel Execution Engine: To accelerate comprehensive testing, the framework

incorporates a two-tiered parallel execution model using the rayon crate.

– Benchmark-Level Parallelism: Multiple benchmark configurations (combina-

tions of system, table size, and lookup ratio) are executed concurrently across

available CPU cores.

– Algorithm-Level Parallelism: Specific algorithms, such as Lasso and LogupGKR,

whose internal structures are amenable to parallelization, are implemented to

leverage this feature. This provides a practical lens through which to view the-

oretical algorithm design, as schemes with inherently parallelizable structures

can achieve significant real-world speedups on multi-core hardware.

• Standalone Nature: It is important to note that the current implementations of these

lookup arguments function as standalone modules within the Plonkish framework.

They are not yet directly integrated with a complete front-end constraint system like

Halo2 [13], but are designed to benchmark the core cryptographic primitives in a

controlled environment.

3.2.4.2 Evaluation Metrics and Scenario Design

To comprehensively evaluate the performance of the different lookup arguments,

we designed a series of benchmarking scenarios focused on the four critical metrics.

The benchmark parameters are primarily controlled by K, which defines the table size

77

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

as N = 2K , and ratio, which defines the lookup size as n = N/ratio. In our compar-

ative analysis, we unify the benchmark task for all lookup arguments to that of a range

check. The primary rationale for this standardization is to accommodate the architec-

tural design of the Lasso protocol. Lasso’s efficiency is contingent upon the lookup table

being ”decomposable”—that is, expressible as a function of smaller, independent subta-

bles. A canonical decomposable function for range checks is well-established, making it

a practical use case for Lasso. Conversely, lookups on arbitrary, unstructured datasets do

not possess a readily available decomposable structure, rendering them incompatible with

Lasso’s core mechanism. Therefore, standardizing on range checks creates a level playing

field, enabling a direct performance evaluation of Lasso alongside protocols like CQ and

Plookup.

Prover Time Analysis under Varying Parameters Prover time is often the most critical

bottleneck in ZK-SNARK systems. Our analysis is designed to validate the theoretical

complexities of each protocol by observing its response to changing parameters.

• Impact of Table Size (N) and Lookup Size (n): We measure prover time while vary-

ing K (from 4 to 13) and ratio (from 2 to 16) to systematically test each protocol’s

scaling behavior. Based on theoretical analysis, we expect Plookup to exhibitO(N)

degradation due to its linear dependency on table size, while sublinear-N protocols

should scale primarily with n rather than N . This experimental design allows us to

isolate and validate key complexity differences: Caulk’s quadraticO(n2) bottleneck

versus the more efficient O(n log n) behavior of Baloo and CQ, while confirming

that Lasso and LogupGKR remain largely insensitive to lookup size variations.

78

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Verification Time and Proof Size Analysis While verification time and proof size are

often considered critical metrics, they are less decisive in our evaluation context. Since

all evaluated protocols produce SNARK proofs that can be efficiently verified by smart

contracts, the practical differences in verification performance have minimal impact on

real-world deployment scenarios. Nevertheless, we empirically measure and present these

metrics to provide a complete performance profile and identify any notable variations

among the schemes.

Setup and Preprocessing Costs The one-time setup cost is a crucial factor for applica-

tions, particularly those involving large, static tables.

• Setup Requirements: Protocols differ significantly in preprocessing needs—from

O(N log N) table-dependent setup (CQ, Caulk) to minimal preprocessing (Lasso,

LogupGKR), affecting their suitability for different application scenarios.

3.2.4.3 Data Collection and Analysis

The benchmarking framework is designed to systematically collect performance data

across all parameter combinations. The results are then aggregated and visualized to fa-

cilitate a clear comparative analysis.

• Data Logging: The framework logs all performance metrics (prover time, verifier

time, proof size, setup time) for each benchmark run.

• Visualization: The collected data is used to generate plots that illustrate the perfor-

mance trends of each protocol as a function of table size and lookup ratio. These

79

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

visualizations are essential for interpreting the results and drawing meaningful con-

clusions.

By combining a unified implementation framework with a carefully designed set of

benchmarking scenarios, we can provide a comprehensive and equitable evaluation of

the leading lookup argument schemes. The results of this evaluation will offer valuable

insights into the practical trade-offs of each protocol and guide the selection of the most

appropriate scheme for different application requirements.

80

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Chapter 4 Evaluation and Discussion

4.1 Performance Analysis and Visualization

This section presents a comprehensive performance analysis through four carefully

designed visualizations that collectively demonstrate the evolution and comparative ad-

vantages of different lookup argument systems. These figures provide empirical validation

of theoretical complexity analyses and reveal critical insights into the practical implica-

tions of algorithmic design choices.

4.1.1 Overall System Performance Comparison

4.1.1.1 Graph Interpretation

Each graph plots the time it takes to generate a proof against the size of the lookup

table.

X-Axis (Lookup Table Size K): This represents the size of the data table being looked

up. The size is exponential, calculated as 2K . So, as K increases from 5 to 13, the table

size grows dramatically.

81

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Y-Axis (Proving Time): This is the time in milliseconds (ms) required to generate

the proof, shown on a logarithmic scale. A straight line on this type of plot indicates

exponential growth. Flatter lines mean the system scales better with larger table sizes.

Lines: Each colored line represents a different lookup protocol being tested (Baloo,

CQ, Caulk, Lasso, LogupGKR, Plookup). These are the systems implemented in the

plonkish_backend of the Rust project.

N:n Ratio: Each of the four graphs is generated with a different “N:n ratio” (2, 4, 8,

and 16). This ratio compares the number of lookups performed (N) to the size of the table

(n). A higher ratio means more lookups are being done relative to the table’s size.

4.1.1.2 Performance Analysis

Across all four graphs, a clear performance pattern emerges:

Top Performers: Lasso and LogupGKR are consistently the fastest systems by a large

margin. Their proving times are significantly lower and increase much more slowly as the

table size grows. This superior scalability is visible in their relatively flat lines on the

graphs.

Mid-Tier Performers: Plookup, Baloo, and CQ form a middle group. Their perfor-

mance is much slower than Lasso and LogupGKR, and they scale less efficiently with

larger tables, as shown by their steeper curves.

Slowest Performer: Caulk is consistently the slowest protocol. Its proving time in-

creases very rapidly with table size, making it the least scalable option among those tested.

82

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

4.1.1.3 Effect of the N:n Ratio

By comparing the four charts, we can see how the number of lookups affects perfor-

mance:

As the N:n ratio increases from 2 to 16, the proving time for all systems increases.

This is expected, as a higher ratio means the system must do more work.

The relative performance ranking does not change. Lasso and LogupGKR remain

the fastest, and Caulk remains the slowest, regardless of the ratio.

The performance gap between the top performers and the rest of the systems becomes

even more pronounced at higher ratios.

In summary, these benchmarks clearly demonstrate that for the range of parameters

tested, Lasso and LogupGKR offer substantially better performance and scalability for

proving lookups compared to the other systems, as shown in Figure 4.1.

4.1.1.4 Baloo Discrepancy and Caulk Implementation Bottleneck

The benchmark results reveal specific implementation-related performance issues

that warrant detailed examination, particularly regarding Baloo’s validation discrepancy

and Caulk’s implementation bottleneck that significantly impact the overall system per-

formance comparison.

83

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Figure 4.1: Prover time versus lookup table size K for different N:n ratios (2, 4, 8, and 16
from top-left to bottom-right). All graphs use logarithmic scales on the y-axis. The lines
represent different lookup argument systems: Baloo (blue), CQ (orange), Caulk (green),
Lasso (red), LogupGKR (purple), and Plookup (brown).

4.1.1.5 Crossover Analysis: Lasso vs. LogupGKR

While both Lasso and LogupGKR are top performers, they are not identical. A dis-

tinct crossover pattern reveals how their relative performance changes based on the lookup

table size (K) and the lookup frequency (N : n ratio).

The general trend is that LogupGKR is often slightly faster for very small table sizes,

but Lasso quickly overtakes it and becomes the faster protocol as the table size increases.

Here is a breakdown of the crossover point in each graph:

N:n Ratio = 2:

• For small tables (K = 5, 6), LogupGKR (purple) has a slight performance advantage.

84

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

• The crossover occurs between K=6 and K=7.

• For K ≥ 7, Lasso (red) is consistently faster.

N:n Ratio = 4:

• LogupGKR is faster at K=5.

• The two are nearly identical in performance at K=6 and K=7.

• The crossover happens around K=7.

• For K ≥ 8, Lasso establishes a clear performance lead.

N:n Ratio = 8:

• LogupGKR is faster only at the smallest table size, K=5.

• The crossover happens early, between K=5 and K=6.

• For all K ≥ 6, Lasso is the faster system.

N:n Ratio = 16:

• Similar to the previous chart, LogupGKR is only faster at K=5.

• The crossover again occurs between K=5 and K=6.

• For all subsequent table sizes, Lasso is faster.

85

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

4.1.1.6 Interpretation of the Trend

The key takeaway is that the crossover point shifts to a smaller table size as theN : n

ratio increases. This suggests that Lasso’s architecture scales more effectively not just

with table size, but also with the lookup density (the number of lookups relative to the

table size). When an application requires a large number of lookups (a high N : n ratio),

Lasso’s performance advantage becomes apparent even with smaller tables.

Lasso and LogupGKR Consistency: Both systems maintain exceptional stability

across all tested values of n, confirming their theoretical independence from lookup count.

While LogupGKR may be marginally faster for very small tables with low lookup fre-

quency, Lasso demonstrates superior scalability for larger tables or high-frequency lookup

scenarios.

Plookup’s Stability: Plookup (brown) exhibits a nearly straight trajectory, demon-

strating that with fixed table size N , its O(N + n) complexity is dominated by the O(N)

constant term and remains insensitive to variations in n. While Plookup’s absolute per-

formance is slow, its predictable behavior represents a significant advantage in scenarios

with varying lookup requirements.

Baloo and CQ Success: Both Baloo (blue) and CQ (orange) exhibit nearly straight

curves similar to Plookup, indicating successful reduction ofn-dependency from quadratic

to near-linear complexity. Even as the number of lookups n increases substantially, their

performance remains stable, completely resolving Caulk’s bottleneck.

In conclusion, while both top-performing systems are excellent, the choice depends

on the specific use case:

86

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

• For applications with very small tables and a low number of lookups, LogupGKR

may be marginally faster.

• For applications involving larger tables or a high frequency of lookups, Lasso demon-

strates superior scalability and is the more efficient choice.

4.1.1.7 Validation of Caulk’s Implementation Bottleneck

Figure 4.2 provides the most insightful analysis in our study by isolating the impact

of lookup count n while maintaining a fixed large table size.

Figure 4.2: Prover time versus lookup count n with fixed table size K = 11 (N = 2048).
Both axes use logarithmic scales. The lookup count n is varied by adjusting the N : n
ratio parameter.

Caulk’s Proving Time Quadratic Complexity Validation: The Caulk system (green)

exhibits an extremely steep upward trajectory. In the double-logarithmic coordinate sys-

tem, the theoretical slope for y = x2 complexity is 2, while linear complexity y = x

exhibits a slope of 1. Caulk’s observed slope significantly exceeds all other systems, pro-

viding clear visual confirmation of its O(n2) complexity. When the lookup count n in-

87

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

creases from 128 to 1024, the execution time escalates from hundreds of milliseconds to

tens of seconds, demonstrating the undesirable nature of this scaling behavior.

4.1.1.8 Baloo Discrepancy

Empirical Observation: For both the Baloo and CQ systems, modifications to the

ratio parameter (corresponding to changes in n) demonstrate minimal impact on prover

time when the parameter K remains fixed.

Theoretical Framework: According to theoretical analysis, Baloo’s prover time com-

plexity isO(m log2 m), while CQ achievesO(m log m) complexity, wherem corresponds

to the parameter n in our experimental setup.

Analysis of Theoretical-Experimental Discrepancies:

From a purely theoretical perspective, prover time should exhibit a decreasing trend

as n decreases. Specifically, when K = 10 remains fixed, varying the ratio from 2 to

16 (corresponding to n changing from 29 to 26) should result in observable reductions in

prover time due to the logarithmic dependency on m.

However, experimental data for Baloo reveals that whenK = 10, the recorded prover

times are 1012ms, 1002ms, 1025ms, and 984ms, respectively. These measurements fail

to demonstrate a clear decreasing trend and instead exhibit fluctuations that appear to be

within measurement uncertainty bounds.

Potential Explanations for Observed Discrepancies:

Several factors may contribute to the apparent discrepancy between theoretical pre-

dictions and experimental observations:

88

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

• Constant Factor Dominance: Asymptotic complexity notation like O(m log m) de-

scribes long-term behavior but does not account for constant factors and lower-

order terms. In practical implementations, total execution time can be expressed as

C · f(m) + D, where C is the complexity-dependent coefficient and D represents

fixed overhead costs. When the parameter range is relatively constrained (e.g., 26 to

29) or when the constant termD constitutes a significant proportion of the total exe-

cution time, variations in the C · f(m) component may be masked by measurement

noise and constant overhead.

• Implementation-Specific Overheads: Practical implementations may incorporate

memory allocation strategies, initialization procedures, or other system-level op-

erations designed to handle varying values of n. These implementation details can

introduce fixed overhead costs that remain constant across different parameter val-

ues, thereby obscuring the theoretical scaling behavior.

4.2 Setup Time Performance Analysis

The setup phase represents a critical component in the practical deployment of lookup

argument systems. This section presents a comprehensive analysis of setup time perfor-

mance across different lookup protocols under varying lookup density conditions.

4.2.1 Experimental Setup and Methodology

The setup time analysis employs four distinct N:n ratios (2, 4, 8, and 16) to evalu-

ate protocol performance under different lookup density scenarios. The y-axis represents

89

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

setup time in milliseconds using a logarithmic scale, while the x-axis indicates lookup

table size K, where the actual table size is N = 2K . On logarithmic plots, a linear re-

lationship indicates exponential growth, corresponding to linear time complexity O(N)

with respect to table size.

4.2.2 Protocol Classification and Performance Characteristics

The experimental results reveal a clear bifurcation of protocols into two distinct per-

formance categories based on their fundamental algorithmic approaches:

4.2.2.1 Linear Setup Time Protocols (O(N) Complexity)

This category encompasses protocols that require comprehensive preprocessing of

the entire lookup table, resulting in setup times that scale linearly with table size N.

CQ and Caulk: These protocols exhibit the highest setup overhead within this cate-

gory. Their setup procedures involve expensive precomputational operations across the

entire table N, resulting in substantial computational costs. The linear scaling behavior is

clearly visible as straight-line trajectories on the logarithmic plots.

Plookup and Baloo: While still exhibiting linear scaling with table size N, these

protocols demonstrate improved constant factors compared to CQ and Caulk. Their setup

times remain predictably proportional to table size, but with reduced algorithmic constants

that translate to better practical performance.

Insensitivity to Lookup Density: A critical characteristic of this category is that setup

time remains relatively unchanged across different N:n ratios. Since these protocols must

90

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

process the entire table N regardless of the number of lookups required, variations in

lookup density (n) have minimal impact on setup performance.

4.2.2.2 Sub-linear Setup Time Protocols (O(n) Complexity)

This category represents a paradigmatic shift in lookup argument design, where setup

time scales primarily with the number of lookups rather than table size.

Lasso and LogupGKR: These protocols demonstrate exceptional setup efficiency,

with their performance curves appearing nearly horizontal on logarithmic plots. This be-

havior indicates that setup time is predominantly determined by the number of lookups

(n) rather than table size (N), as demonstrated in Figure 4.3.

Adaptive Scaling with Lookup Density: The most remarkable characteristic of these

protocols is their sensitivity to the N:n ratio. As this ratio increases (indicating sparser

lookups), their setup time curves become increasingly flat. In the N:n = 16 configura-

tion, both Lasso and LogupGKR exhibit nearly constant setup times across all tested table

sizes, demonstrating that their setup procedures successfully decouple from table size de-

pendencies.

Practical Implications: This performance characteristic represents a fundamental ad-

vantage for applications requiring lookups from large tables with relatively few queries.

The ability to achieve setup times independent of table size N enables practical deploy-

ment in scenarios previously considered computationally prohibitive.

91

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Figure 4.3: Setup time versus lookup table size K for different N:n ratios (2, 4, 8, and
16 from top-left to bottom-right). All graphs use logarithmic scales on the y-axis. The
protocols demonstrate clear bifurcation into linear-time (CQ, Caulk, Plookup, Baloo) and
sub-linear-time (Lasso, LogupGKR) categories.

4.3 Proof Size and Verification Time Analysis

While proving time and setup efficiency represent the primary performance bottle-

necks in practical deployments of lookup argument systems, proof size and verification

time constitute secondary considerations that merit examination for completeness. These

metrics are generally of reduced importance due to their inherently constrained nature in

modern zero-knowledge proof systems, where protocol design typically ensures that both

proof sizes remain compact and verification procedures are efficient regardless of compu-

tational complexity.

92

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

4.3.1 Proof Size Characteristics

The analysis of proof size reveals fundamental differences in the underlying crypto-

graphic approaches employed by different protocol families.

4.3.1.1 GKR-Based Protocols (LogupGKR, Lasso)

GKR-based protocols employ an iterative reduction approach, analogous to peeling

layers of an onion. The proof construction process systematically reduces large problems

into smaller subproblems across log(N) layers, with each layer requiring verification of

the correctness of the reduction step.

Dynamic Growth Pattern (O(log N)): The proof size in these systems exhibits loga-

rithmic growth with respect to table size. This scaling behavior arises because the proof

must encode the intermediate results and verification data for each reduction layer. Conse-

quently, larger lookup tables necessitate more reduction layers, resulting in proportionally

larger proofs.

4.3.1.2 Permutation and Polynomial-Based Protocols (Plookup)

Permutation-based protocols adopt a transformation and compression paradigm. The

entire lookup problem is transformed into a comprehensive algebraic identity, which is

subsequently compressed using polynomial commitment techniques.

Constant Size Pattern (O(1)): The proof size in these systems remains constant re-

gardless of table size, as illustrated in Figure 4.4. This property emerges because the fi-

nal proof consists of a fixed number of cryptographic objects (commitments and opening

93

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

proofs) whose size is independent of the underlying computation complexity. The poly-

nomial commitment scheme effectively compresses arbitrary-sized computational proofs

into constant-sized cryptographic certificates.

Figure 4.4: Proof size in bytes versus lookup table size K for N:n ratio of 4.0. The
graph demonstrates the fundamental difference between GKR-based protocols (logarith-
mic growth) and permutation-based protocols (constant size).

4.3.2 Why Lasso’s Proof Size Decreases at K = 12?

In our benchmark analysis of the Lasso protocol, we observed a non-monotonic rela-

tionship between the table size parameter, denoted by K, and the final proof size. While

the proof size generally increases with K, a notable anomaly occurs at the transition from

K = 11 to K = 12. Specifically, benchmark data from benchmark_results_v2.csv

shows that for a fixed N_to_n_Ratio of 8, the proof size decreases from 24,256 bytes

at K = 11 to 20,160 bytes at K = 12. This counter-intuitive result prompted a deeper

investigation into the protocol’s implementation.

Our analysis of the source code reveals that this phenomenon is not an error, but a

94

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

deterministic outcome of Lasso’s core table decomposition mechanism, which is highly

sensitive to the arithmetic properties ofK. The root cause lies in the DecomposableTable

trait implementation for RangeTablewithin the file plonkish_backend/src/backend/

lasso.rs. The chunk_bits() method in this implementation divides the K bits of a

table index into smaller limbs of a fixed size, which is set to 4 in our benchmark context.

• For K = 12, which is a multiple of the limb size 4, the table index is uniformly

decomposed into three 4-bit chunks: [4, 4, 4]. This results in three structurally

identical sub-tables and their corresponding multilinear polynomials. The unifor-

mity of this structure allows for highly efficient batch processing within the Poly-

nomial Commitment Scheme (PCS), as all polynomials are defined over the same

domain and can be treated homogeneously.

• For K = 11, which is prime, the decomposition is necessarily non-uniform, result-

ing in chunks of [4, 4, 3]. This heterogeneity forces the protocol to handle two

different types of sub-tables (4-bit and 3-bit).

This structural asymmetry introduces additional complexity into the proof generation.

Specifically, to create a single batch opening proof for polynomials of different sizes,

the underlying cryptographic machinery must account for their different domains. This

requires including additional structured information, in the form of Evaluation<F> in-

stances, into the proof transcript to certify the consistency of operations across these het-

erogeneous domains. These additional Evaluation<F> instances, which contain field

elements and metadata, are the concrete artifacts that increase the total size of the serial-

ized proof. Therefore, the efficiency gained from a uniform decomposition at K = 12

outweighs the marginal increase in table size, leading to a smaller final proof compared to

95

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

the less efficient, non-uniform decomposition required for K = 11.

4.3.3 Verification Time Analysis

The verification time analysis reveals performance characteristics that fundamentally

differ from the proving time patterns observed in previous sections.

4.3.3.1 Table Size Independence

The most significant characteristic across all protocols is the independence of verifi-

cation time from lookup table size K. The verification curves remain essentially flat across

all tested table sizes, with observed variations primarily attributable to measurement noise

rather than algorithmic scaling.

This behavior exemplifies a fundamental advantage ofmodern succinct non-interactive

argument (SNARK) systems: verification cost remains constant or exhibits only logarith-

mic growth, regardless of the underlying computational complexity, as demonstrated in

Figure 4.5. This property enables practical deployment scenarios where computationally

intensive proofs can be verified efficiently by resource-constrained parties.

4.3.3.2 Protocol Performance Stratification

The verification time results demonstrate clear stratification into two distinct perfor-

mance tiers:

High-EfficiencyVerification Tier: Protocols such as Plookup, Baloo, and CQ demon-

strate verification times in the range of 1-4 milliseconds across all configurations. This

96

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

efficiency stems from their reliance on well-optimized polynomial commitment schemes

and streamlined verification procedures.

Moderate-Efficiency Verification Tier: Lasso and LogupGKR exhibit verification

times approximately one order of magnitude higher (10-40 milliseconds). This perfor-

mance characteristic reflects the additional complexity introduced by their sophisticated

proof structures, which require more extensive verification procedures despite their supe-

rior proving efficiency.

Figure 4.5: Verification time in milliseconds versus lookup table size K for N:n ratio
of 4.0. The graph shows the independence of verification time from table size and the
performance tier stratification among different protocols.

4.4 Completness and Soundness

To verify the correctness of our lookup argument implementations, we conducted

comprehensive completeness and soundness testing using two fundamental operations:

addition (add) and range queries. Our testing methodology employed systematic parame-

ter variation across all lookup argument systems, testing with lookup table sizesK ranging

97

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

from 6 to 10, and lookup frequency ratios of 2, 4, and 8. For each parameter combination,

we executed 10 independent test runs to ensure statistical reliability.

Completeness Testing: We verified that all valid lookup operations correctly generate

proofs that pass verification. For completeness validation, we tested scenarios where the

lookup arguments should legitimately verify, confirming that our implementations cor-

rectly produce valid proofs for authentic lookup queries.

Soundness Testing: We validated the security properties by testing scenarios de-

signed to fail verification. In soundness testing, we deliberately introduced invalid lookup

attempts and confirmed that the verification process correctly rejects these malicious or

incorrect proofs, thereby ensuring the cryptographic security of each lookup argument

system.

4.5 Theoretical and Experimental Analysis

In this section, we conduct a comprehensive analysis by comparing the experimen-

tal performance data of each lookup system with their respective theoretical foundations.

This comparative analysis provides insights into the practical implications of theoretical

complexity and validates the effectiveness of different design approaches.

4.5.1 Plookup

Theoretical Framework: The Plookup protocol exhibits a prover time complexity of

O(N log N), where N represents the table size. Since N = 2K , the system demonstrates

high sensitivity to the parameter K. According to theoretical analysis, both proof size

98

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

and verification time should remain relatively small and stable across different parameter

configurations. The setup time should also correlate linearly with table size N .

Experimental Validation:

Prover Time: The experimental results demonstrate strong alignment with theoretical

predictions. Prover time increases significantly with K values, escalating from approxi-

mately 30ms at K = 5 to over 20 seconds at K = 13. This behavior fully conforms to the

expected O(N log N) complexity.

Setup Time: Setup time exhibits a linear relationship with N , growing from approxi-

mately 107ms atK = 5 to approximately 3.2 seconds atK = 13. The performance curves

remain virtually unchanged across different N : n ratios, confirming that setup costs are

insensitive to lookup density.

Proof Size and Verification Time: Proof size consistently remains at 672 bytes, while

verification time maintains stability within the 1-12ms range across all test configurations.

4.5.2 Caulk

Theoretical Framework: The Caulk system presents a preprocessing time complexity

of O(N log N) and a prover time complexity of O(m2 + m log N), where m denotes the

number of lookups and N represents the table size. This complexity structure implies

that increasing K contributes to time growth through the log N term, while increasing n

(equivalent to m) results in quadratic time growth due to the m2 term.

Experimental Validation:

Setup Time: The data validate the theoretical predictions, with setup time increas-

99

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

ing sharply with K, growing from approximately 266ms at K = 5 to over 19 minutes

(1,154,120ms) at K = 13, consistent with the expected O(N log N) behavior.

Prover Time: Prover time demonstrates extreme sensitivity to both K and ratio pa-

rameters. With a fixed ratio of 2, increasing K from 5 to 13 results in prover time escala-

tion from 108ms to nearly 34 minutes (2,040,396ms), clearly demonstrating the dominant

influence of the m2 term. Conversely, with K fixed at 11, varying the ratio from 2 to

16 causes prover time to decrease dramatically from approximately 209 seconds to ap-

proximately 1.7 seconds. This behavior perfectly validates the O(m2) characteristic and

confirms Caulk’s theoretical bottleneck.

4.5.3 Baloo and CQ

Theoretical Framework: BothBaloo andCQwere designed to address Caulk’s quadratic

bottleneck, aiming to reduce prover time complexity to near-linearO(m log m) orO(m log2 m).

Theoretically, prover time should increase primarily quasi-linearly with n (equivalent to

m), while demonstrating reduced sensitivity to ratio variations. Preprocessing time re-

mains dependent on N .

Experimental Validation:

Baloo: The experimental results confirm theoretical predictions. Baloo’s prover time

is primarily influenced by K, increasing from approximately 75ms at K = 5 to over

30 seconds at K = 13. Critically, when K remains fixed, prover time demonstrates

insensitivity to ratio changes. For instance, at K = 10, ratio variations from 2 to 16

result in prover time fluctuations within the narrow range of 984-1025ms, contrasting

sharply with Caulk’s performance and demonstrating successful mitigation of the O(m2)

100

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

bottleneck.

CQ: CQ exhibits performance characteristics similar to Baloo, with prover time re-

maining insensitive to ratio variations, confirming that its complexity indeed scales quasi-

linearly withm. The data support CQ’s superior constant factors, particularly for largerK

values (e.g., K = 13), where CQ’s prover time (approximately 4 seconds) significantly

outperforms Baloo’s (approximately 30 seconds). However, CQ’s setup time (approxi-

mately 90 seconds atK = 13) significantly exceeds Baloo’s (approximately 1.8 seconds),

reflecting different technical trade-offs.

4.5.4 Lasso and LogupGKR

Theoretical Framework: Lasso employs sparse polynomial commitments, making

prover costs depend primarily on the number of lookups m rather than the total table size

N . LogupGKR utilizes GKR optimization for logarithmic derivative lookups, theoreti-

cally reducing the number of polynomials requiring prover commitment, thereby lowering

computational costs.

Experimental Validation:

Lasso: The experimental results strongly support theoretical predictions. Lasso’s

prover time demonstrates exceptional speed and stability, with most tests completing

within 30-70ms across all configurations where K ranges from 5 to 13. This performance

indicates that prover cost remains virtually independent of table size N , representing a

significant practical advantage. Setup time also remains at extremely low levels (approx-

imately 100-130ms), validating the system’s low preprocessing dependency.

101

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

LogupGKR: The system’s prover time exhibits exceptional speed and stability, re-

maining largely unaffected by both K and ratio parameters, with most measurements

falling between 10-116ms. Its performance parallels Lasso’s efficiency, demonstrating

the effectiveness of the GKR optimization approach.

Overall, Lasso and LogupGKR achieve optimal prover time performance across all

evaluated systems, representing the current state-of-the-art in lookup argument efficiency.

4.5.5 Practical Implications and Design Trade-offs

4.5.5.1 Secondary Importance Justification

Proof size and verification time represent secondary performance considerations for

several fundamental reasons:

Protocol Design Constraints: Modern zero-knowledge proof systems are specifically

designed to ensure that both proof sizes and verification times remain practically manage-

able. The cryptographic foundations of these systems inherently constrain these metrics

to acceptable ranges, regardless of the underlying computational complexity.

Proving Time Dominance: In practical deployments, proving time typically repre-

sents the primary computational bottleneck. The time required to generate proofs often

exceeds verification time by several orders of magnitude, making proving efficiency the

critical factor in system performance optimization.

Resource Allocation Considerations: In typical deployment scenarios, proof gen-

eration occurs on computationally powerful prover systems, while verification may be

102

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

performed by resource-constrained validators. The asymmetric nature of this relationship

means that optimizing proving efficiency provides greater practical benefit than marginal

improvements in verification performance.

4.5.5.2 Design Philosophy Implications

The observed trade-offs between proving efficiency and verification performance re-

flect fundamental design philosophy differences:

Prover-Optimized Systems (Lasso, LogupGKR): These protocols prioritize proving

efficiency at the expense of increased verification complexity. This design choice is jus-

tified in scenarios where proof generation frequency significantly exceeds verification

frequency, or where prover resources are more constrained than verifier resources.

Balanced Systems (Plookup, Baloo, CQ): These protocols attempt to achieve reason-

able performance across all metrics, accepting moderate proving inefficiency in exchange

for superior verification characteristics. This approach is appropriate for applications re-

quiring frequent verification by multiple parties.

4.5.6 Conclusion

The analysis of proof size and verification time provides valuable insights into the

comprehensive performance characteristics of lookup argument systems. While these

metrics represent secondary considerations compared to proving time and setup efficiency,

they reveal important design trade-offs that influence protocol selection for specific de-

ployment scenarios. The fundamental independence of verification time from computa-

103

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

tional complexity validates the theoretical foundations of modern SNARK systems and

confirms their suitability for practical zero-knowledge applications.

104

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

Chapter 5 Conclusion and Future Work

This thesis embarked on a comprehensive investigation into the practical perfor-

mance of modern zero-knowledge lookup arguments, a cornerstone technology for en-

hancing the scalability of blockchain systems like ZK rollups. Motivated by the under-

standing that theoretical asymptotic complexity does not solely determine real-world effi-

ciency, our primary objective was to bridge the gap between theory and practice through

rigorous, empirical benchmarking. By implementing and systematically evaluating a suite

of prominent lookup protocols—from the foundational Plookup to the state-of-the-art

Lasso and LogupGKR—within a unified framework, we have generated concrete data

to guide developers and researchers in this rapidly advancing field.

5.1 Summary of Key Findings

Our experimental evaluation successfully charted the performance evolution of lookup

arguments, providing empirical validation for the field’s theoretical advancements. The

key findings are summarized as follows:

• Validation of the Evolutionary Path: We empirically confirmed the performance

narrative of lookup arguments. Plookup’s prover time demonstrated a clear linear

105

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

dependency on table size (O(N)), making it suitable for small tables but impractical

for large-scale applications. We then validated the critical performance bottleneck

of Caulk, whose O(n2) complexity in the number of lookups (n) severely limits its

utility, despite being the first to achieve sublinearity in table size. Its successors,

Baloo and CQ, were shown to effectively resolve this bottleneck, exhibiting quasi-

linear performance (O(n log n)) that remains stable even with a high volume of

lookups.

• Paradigm Shift in Prover Performance: The most significant finding of this study

is the paradigm-shifting performance of Lasso and LogupGKR. These protocols

delivered prover times that were consistently orders of magnitude faster than their

predecessors. Their performance exhibited remarkable stability across varying ta-

ble sizes and lookup counts, underscoring the profound impact of novel techniques

such as sparse polynomial commitments (Lasso) and GKR-based optimizations for

logarithmic derivatives (LogupGKR).

• Elucidation of Practical Trade-offs: A central conclusion drawn from our analysis

is that there is no universally superior lookup protocol. The selection is a nuanced

engineering decision dictated by application-specific requirements. We quantified

a multi-dimensional trade-off involving:

– Prover Time vs. Proof Size: Lasso and LogupGKR offer unparalleled prover

speed at the cost of larger proof sizes compared to pairing-based schemes.

– Preprocessing vs. Prover Time: Protocols like CQ and Caulk require signif-

icant, table-dependent preprocessing, making them suitable for applications

with large, static tables where this one-time cost can be amortized. In con-

106

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

trast, the low-to-zero preprocessing overhead of Lasso and LogupGKRmakes

them ideal for dynamic or extremely large structured tables.

– Verification Time and Aggregation: Pairing-based schemes like Plookup and

CQ offer extremely fast verification times and, in CQ’s case, native aggregata-

bility, which is a critical feature for recursive proof systems.

5.2 Limitations of the Study

While this study provides a comprehensive benchmark, it is subject to certain limi-

tations that offer context for the results:

• Implementation-Specific Performance: The performance was evaluated on a single,

albeit unified, Rust implementation based on the ‘plonkish‘ backend. Results could

differ with other cryptographic libraries, programming languages, or low-level op-

timizations not explored in this work.

• Hardware Dependency: All benchmarks were executed on a specific hardware con-

figuration. Performance on different architectures, particularly those with varying

core counts and cache hierarchies, may differ, especially for highly parallelizable

protocols.

• Scope of Parameters: The tested range of table sizes (N = 25 to 211) and lookup

ratios, while broad, does not cover all possible scenarios. The performance advan-

tages of sublinear-N protocols might become even more pronounced at extremely

large N/n ratios not tested here.

107

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

• Standalone Primitives: The protocols were benchmarked as standalone cryptographic

primitives. They were not integrated into a fully-fledged, end-to-end ZK-rollup or

ZK-VM system, which would introduce additional overheads from the constraint

system, front-end compiler, and on-chain components.

5.3 Future Work and Open Questions

The benchmarking framework presented in this paper provides a foundational com-

parison of contemporary lookup arguments. However, several dimensions remain to be

explored to fully understand their practical trade-offs and guide future research. This sec-

tion outlines key areas for future investigation.

5.3.1 Expanding Benchmarking Scenarios

Our current evaluation focuses on single-column lookups into static tables. Real-

world applications often present more complex requirements.

5.3.1.1 Dynamic and Vector Lookups

Future work should extend the benchmark suite to include:

• Dynamic Tables: Scenarios where the table’s content is generated by the prover

during proof execution, such as in modeling RAM state. This would critically test

the performance of protocols in environments where extensive preprocessing is in-

feasible. The online computational cost for Plookup and LogUpGKR, and the ap-

108

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

plicability of preprocessing for Baloo and CQ, would be key areas of analysis.

• Vector Lookups: Practical applications frequently require lookups of tuples ormulti-

column records (e.g., (address, value, timestamp)). An essential extension

is to implement and evaluate strategies for handling such lookups, particularly the

overhead associated with techniques like random linear combinations (RLC). This

analysis should quantify the additional computational burden on the prover and any

resulting increase in proof size.

5.3.1.2 Performance in Recursive and Accumulative Settings

Certain protocols, such as those employed in Lasso and Proofs for Deep Thought,

are explicitly optimized for recursive proof composition. A valuable line of inquiry would

be to design a benchmark that simulates a recursive or incremental computation setting,

where each step performs a limited number of lookups. Such a test would measure the cost

of the accumulation prover and could highlight the strengths of CQ, with its aggregation-

friendly verifier, and LogUpGKR, due to its potentially low single-step overhead.

5.3.2 Analysis of Advanced Protocol Features

Beyond raw performance, the structural properties of these protocols have significant

practical implications.

109

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

5.3.2.1 Homomorphism and Aggregatability

• Homomorphic Properties: The support for homomorphic commitments in Baloo

and CQ (via KZG) is a powerful feature, particularly for vector lookups. A targeted

benchmark could be designed to quantify this benefit, for instance, by comparing

the cost of a single batched proof for a vector lookup against proving multiple in-

dependent lookups.

• Proof Aggregation: Amore detailed analysis is needed regarding proof composabil-

ity. We should elaborate on how CQ’s use of a fixed-base G2 element in its verifier

facilitates straightforward integration with recursive SNARKs (e.g., Nova-style ac-

cumulation). In contrast, the challenges posed by Baloo’s variable-base G2 point,

[zI]2, which complicates standard aggregation techniques, should be thoroughly in-

vestigated.

5.3.2.2 Cross-Implementation Benchmarking

To distinguish between protocol-inherent characteristics and implementation-specific

artifacts, it would be beneficial to compare the same protocol across different backend

cryptographic libraries (e.g., arkworks versus the original halo2 codebase). This would

help isolate performance bottlenecks and provide a more normalized comparison.

5.3.3 Application-Oriented Protocol Selection

Ultimately, the choice of a lookup argument is application-dependent. Future anal-

ysis should focus on creating a clear mapping between application profiles and protocol

110

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

strengths.

• Large, Static Tables (N ≫ n): For use cases like range checks or cryptographic

primitive lookups (e.g., AES S-boxes), CQ and an optimized Baloo appear to be

strong candidates, provided the one-time preprocessing cost is amortizable.

• Dynamic Tables (N ≈ n): In scenarios like RAM or state machine modeling, the

low setup cost of Plookup and LogUpGKR may offer a decisive advantage where

the preprocessing of Baloo or CQ is inapplicable.

• Recursive Applications: For lookup-intensive recursive computations (e.g., Jolt

or the ”lookup singularity”), the primary candidates are protocols designed for

this paradigm, including CQ (due to aggregatability) and LogUpGKR (due to low

single-step overhead).

111

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

References

[1] A. Gabizon and D. Khovratovich, “Plookup: A simplified polynomial protocol for

lookup tables,” Cryptology ePrint Archive, 2020.

[2] A. Zapico, V. Buterin, D. Khovratovich, M. Maller, A. Nitulescu, and M. Simkin,

“Caulk: Lookup arguments in sublinear time,” in Proceedings of the 2022 ACM

SIGSAC Conference on Computer and Communications Security, pp. 3121–3134,

2022.

[3] A. Zapico, A. Gabizon, D. Khovratovich, M. Maller, A. Nitulescu, and M. Simkin,

“Baloo: Nearly optimal lookup arguments,” Cryptology ePrint Archive, 2022.

[4] L. Eagen, D. Fiore, and A. Gabizon, “cq: Cached quotients for fast lookups,”

Cryptology ePrint Archive, 2022.

[5] S. Papini and U. Haböck, “Logup-gkr: A more efficient approach for proving

lookups,” Cryptology ePrint Archive, 2023.

[6] S. Setty, J. Thaler, and R. Wahby, “Lasso: lookup arguments for rlc-based snarks,”

Cryptology ePrint Archive, 2023.

[7] U. B. RDI, “Zk learning group lecture 12: Zkvm and zkevm.” https://rdi.

berkeley.edu/zk-learning/assets/lecture12.pdf. Accessed: 2024.

112

http://dx.doi.org/10.6342/NTU202503318
https://rdi.berkeley.edu/zk-learning/assets/lecture12.pdf
https://rdi.berkeley.edu/zk-learning/assets/lecture12.pdf

doi:10.6342/NTU202503318

[8] HackerNoon, “Exploring lookup arguments.” https://hackernoon.com/

exploring-lookup-arguments. Accessed: 2024.

[9] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of interactive

proof systems,” in SIAM Journal on computing, vol. 18, pp. 186–208, SIAM, 1989.

[10] V. Buterin, “An incomplete guide to rollups.” https://vitalik.ca/general/

2021/01/05/rollup.html, 2021.

[11] P. Team, “zkevm: Scaling ethereum with zero knowledge proofs,” Technical Report,

2022.

[12] R. Z. Team, “Risc zero: A zero-knowledge virtual machine,” Technical Report,

2022.

[13] S. Bowe, J. Grigg, and D. Hopwood, “Halo 2,” Cryptology ePrint Archive, 2019.

[14] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of interac-

tive proof systems,” in Proceedings of the seventeenth annual ACM symposium on

Theory of computing, pp. 291–304, 1985.

[15] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable collision re-

sistance to succinct non-interactive arguments of knowledge, and back again,” in

Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,

pp. 326–349, 2012.

[16] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span programs and

succinct nizks without pcps,” in Annual international conference on the theory and

applications of cryptographic techniques, pp. 626–645, Springer, 2013.

113

http://dx.doi.org/10.6342/NTU202503318
https://hackernoon.com/exploring-lookup-arguments
https://hackernoon.com/exploring-lookup-arguments
https://vitalik.ca/general/2021/01/05/rollup.html
https://vitalik.ca/general/2021/01/05/rollup.html

doi:10.6342/NTU202503318

[17] M. Ben-Or, O. Goldreich, S. Goldwasser, J. Håstad, J. Kilian, S. Micali, and P. Ro-

gaway, “Everything provable is provable in zero-knowledge,” in Conference on the

Theory and Application of Cryptography, pp. 37–56, Springer, 1988.

[18] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commitments to poly-

nomials and their applications,” in International conference on the theory and

application of cryptology and information security, pp. 177–194, Springer, 2010.

[19] B. Parno, M. Raykova, and V. Vaikuntanathan, “Succinct arguments from multi-

prover interactive proofs and their efficiency benefits,” in Annual Cryptology

Conference, pp. 255–272, Springer, 2013.

[20] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song, “Libra: Succinct

zero-knowledge proofs with optimal prover computation,” in Annual International

Cryptology Conference, pp. 733–764, Springer, 2019.

[21] D. Catalano and D. Fiore, “Vector commitments and their applications,” in

Public-Key Cryptography–PKC 2013, pp. 55–72, Springer, 2013.

[22] R. W. Lai and G. Malavolta, “Subvector commitments with application to succinct

arguments,” Cryptology ePrint Archive, 2019.

[23] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell, “Bulletproofs:

Short proofs for confidential transactions and more,” in 2018 IEEE symposium on

security and privacy (SP), pp. 315–334, IEEE, 2018.

[24] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell, “Bulletproofs:

Short proofs for confidential transactions and more,” in 2018 IEEE symposium on

security and privacy (SP), pp. 315–334, IEEE, 2018.

114

http://dx.doi.org/10.6342/NTU202503318

doi:10.6342/NTU202503318

[25] J. T. Schwartz, “Fast probabilistic algorithms for verification of polynomial identi-

ties,” Journal of the ACM, vol. 27, no. 4, pp. 701–717, 1980.

[26] R. Zippel, “Probabilistic algorithms for sparse polynomials,” in International

symposium on symbolic and algebraic manipulation, pp. 216–226, 1979.

[27] A. Fiat and A. Shamir, “How to prove yourself: practical solutions to identifi-

cation and signature problems,” in Conference on the Theory and Application of

Cryptographic Techniques, pp. 186–194, Springer, 1986.

[28] E. Ben-Sasson, A. Chiesa, and N. Spooner, “Interactive oracle proofs,” in Theory of

Cryptography Conference, pp. 31–60, Springer, 2016.

[29] N. Ron-Zewi and R. D. Rothblum, “Fast reed-solomon interactive oracle

proofs of proximity,” in International Colloquium on Automata, Languages, and

Programming, pp. 1–14, 2016.

[30] J. Teutsch and C. Reitwiessner, “Truebit: A scalable verification solution for

blockchains,” arXiv preprint arXiv:1908.04756, 2017.

[31] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Felten, “Arbitrum:

Scalable, private smart contracts,” in 27th USENIX Security Symposium, pp. 1353–

1370, 2018.

[32] P. Team, “Polygon zkevm: A zk-rollup with ethereum virtual machine opcodes.”

https://polygon.technology/polygon-zkevm, 2022.

[33] M. Labs, “Matter labs zksync 2.0: A zk-rollup using zero-knowledge proofs.”

https://docs.zksync.io/, 2022.

[34] S. Team, “Scroll: Native zkevm layer 2 for ethereum.” https://scroll.io/, 2023.

115

http://dx.doi.org/10.6342/NTU202503318
https://polygon.technology/polygon-zkevm
https://docs.zksync.io/
https://scroll.io/

doi:10.6342/NTU202503318

[35] R. Zero, “Risc zero: A zero-knowledge virtual machine.” https://risczero.

com/, 2023.

[36] S. Labs, “Sp1: A performant, open-source zero-knowledge virtual machine.”

https://github.com/succinctlabs/sp1, 2024.

[37] J. Thaler et al., “Jolt: Snarks for virtual machines via lookups.” https://jolt.

a16zcrypto.com/, 2024.

[38] Iden3, “Circom: A circuit compiler for zero knowledge proofs.” https://docs.

circom.io/.

[39] J. Eberhardt et al., “Zokrates: A toolbox for zksnarks on ethereum.” https://

zokrates.github.io/.

[40] Aleo, “Leo: A functional, statically-typed programming language built for writing

private applications.” https://leo-lang.org/.

[41] M. Labs, “Zinc: A framework for zk-snark development.” https://zinc.

matterlabs.dev/.

[42] StarkWare, “Cairo: A turing-complete stark-friendly cpu architecture.” https://

www.cairo-lang.org/.

[43] A. Protocol, “Noir: A domain specific language for snark proving systems.” https:

//noir-lang.org/.

[44] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permutations over

lagrange-bases for oecumenical noninteractive arguments of knowledge,” in

Annual International Conference on the Theory and Applications of Cryptographic

Techniques, pp. 517–552, Springer, 2019.

116

http://dx.doi.org/10.6342/NTU202503318
https://risczero.com/
https://risczero.com/
https://github.com/succinctlabs/sp1
https://jolt.a16zcrypto.com/
https://jolt.a16zcrypto.com/
https://docs.circom.io/
https://docs.circom.io/
https://zokrates.github.io/
https://zokrates.github.io/
https://leo-lang.org/
https://zinc.matterlabs.dev/
https://zinc.matterlabs.dev/
https://www.cairo-lang.org/
https://www.cairo-lang.org/
https://noir-lang.org/
https://noir-lang.org/

doi:10.6342/NTU202503318

[45] NIST, “Secure hash standard (shs),” Tech. Rep. FIPS PUB 180-4, National Institute

of Standards and Technology, 2015.

[46] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating computation: interac-

tive proofs for muggles,” in Proceedings of the fortieth annual ACM symposium on

Theory of computing, pp. 113–122, 2008.

[47] L. Pearson, J. Fitzgerald, H. Masip, M. Bellés-Muñoz, and J. L. Muñoz-Tapia,

“Plonkup: Reconciling plonk with plookup,” Cryptology ePrint Archive, 2022.

[48] U. Haböck, “Multivariate lookups based on logarithmic derivatives,” Cryptology

ePrint Archive, 2022.

[49] J. Ernstberger, S. Chaliasos, G. Kadianakis, S. Steinhorst, P. Jovanovic, A. Gervais,

B. Livshits, and M. Orrù, “zk-bench: A toolset for comparative evaluation and per-

formance benchmarking of snarks,” 2023. Technical University of Munich, Imperial

College London, EthereumFoundation, University College London, Centre National

de la Recherche Scientifique.

[50] N. Gailly et al., “zk-benchmarking: Benchmarking zk-circuits in circom.” https:

//github.com/delendum-xyz/zk-benchmarking, 2023. Delendum Research.

[51] M. El-Hajj et al., “Evaluating the efficiency of zk-snark, zk-stark, and bulletproof in

real-world scenarios: A benchmark study,” Information, 2024. Systematic Review,

3 citations.

[52] C. Steidtmann et al., “Benchmarking zk-circuits in circom,” IACRCryptology ePrint

Archive, 2023. 2 citations.

117

http://dx.doi.org/10.6342/NTU202503318
https://github.com/delendum-xyz/zk-benchmarking
https://github.com/delendum-xyz/zk-benchmarking

doi:10.6342/NTU202503318

[53] H. Guo et al., “Benchmarking zk-friendly hash functions and snark proving systems

for evm-compatible blockchains,” arXiv preprint, 2024. 1 citation.

[54] han0110, “plonkish: A zksnark building block framework.” https://github.com/

han0110/plonkish/commit/303cf244803ea56d1ac8c24829ec4c67e4e798ab,

2023. Accessed: 2024-07-28.

[55] han0110, “plonkish_backend in plonkish framework.” https://github.com/

han0110/plonkish/tree/main/plonkish_backend, 2023. Accessed: 2024-07-

28.

[56] Z. Foundation, “halo2: A zk-snark library.” https://github.com/zcash/halo2.

Accessed: 2024-07-28.

[57] caulk crypto, “caulk: An implementation of the caulk lookup ar-

gument.” https://github.com/caulk-crypto/caulk/commit/

8210b51fb8a9eef4335505d1695c44ddc7bf8170. Accessed: 2024-07-28.

[58] geometryxyz, “cq: An implementation of the cq lookup ar-

gument.” https://github.com/geometryxyz/cq/commit/

c0e499cdf866631b5079a2ae6837e26df784d0eb. Accessed: 2024-07-28.

[59] han0110, “Fractional sum check implementation in plonkish.” https:

//github.com/han0110/plonkish/blob/main/plonkish_backend/src/

piop/gkr/fractional_sum_check.rs. Accessed: 2024-07-28.

[60] a16z crypto, “Jolt: Snarks for virtual machines via lookups.” https://github.

com/a16z/jolt/commit/a2eb0ad5bc1b96b73480b2dc4d95199e2efe3a7a. Ac-

cessed: 2024-07-28.

118

http://dx.doi.org/10.6342/NTU202503318
https://github.com/han0110/plonkish/commit/303cf244803ea56d1ac8c24829ec4c67e4e798ab
https://github.com/han0110/plonkish/commit/303cf244803ea56d1ac8c24829ec4c67e4e798ab
https://github.com/han0110/plonkish/tree/main/plonkish_backend
https://github.com/han0110/plonkish/tree/main/plonkish_backend
https://github.com/zcash/halo2
https://github.com/caulk-crypto/caulk/commit/8210b51fb8a9eef4335505d1695c44ddc7bf8170
https://github.com/caulk-crypto/caulk/commit/8210b51fb8a9eef4335505d1695c44ddc7bf8170
https://github.com/geometryxyz/cq/commit/c0e499cdf866631b5079a2ae6837e26df784d0eb
https://github.com/geometryxyz/cq/commit/c0e499cdf866631b5079a2ae6837e26df784d0eb
https://github.com/han0110/plonkish/blob/main/plonkish_backend/src/piop/gkr/fractional_sum_check.rs
https://github.com/han0110/plonkish/blob/main/plonkish_backend/src/piop/gkr/fractional_sum_check.rs
https://github.com/han0110/plonkish/blob/main/plonkish_backend/src/piop/gkr/fractional_sum_check.rs
https://github.com/a16z/jolt/commit/a2eb0ad5bc1b96b73480b2dc4d95199e2efe3a7a
https://github.com/a16z/jolt/commit/a2eb0ad5bc1b96b73480b2dc4d95199e2efe3a7a

doi:10.6342/NTU202503318

[61] DoHoonKim8, “halo2-lasso: An implementation of lasso lookup argument in

halo2.” https://github.com/DoHoonKim8/halo2-lasso/pull/4. Accessed:

2024-07-28.

[62] nooma 42, “Lasso integration modifications.” https://github.com/nooma-42/

Lookup-Argument/commit/47acf4f764586fc3e83cea54de60e002c477b6b2.

Accessed: 2024-07-28.

119

http://dx.doi.org/10.6342/NTU202503318
https://github.com/DoHoonKim8/halo2-lasso/pull/4
https://github.com/nooma-42/Lookup-Argument/commit/47acf4f764586fc3e83cea54de60e002c477b6b2
https://github.com/nooma-42/Lookup-Argument/commit/47acf4f764586fc3e83cea54de60e002c477b6b2

	4dab205a6874c36923574916dcb48db0e631dd672ddd4e0630b5aa26e95de472.pdf
	口試委員審定書
	4dab205a6874c36923574916dcb48db0e631dd672ddd4e0630b5aa26e95de472.pdf
	Acknowledgements
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Research Introduction
	Research Contributions
	Research Motivation

	Background
	Key Properties of Zero-Knowledge Proofs
	Interactive and Probabilistic Proofs: Incorporating Interaction and Randomness
	Arithmetic circuit
	What’s NARK, SNARK, and zkSNARK
	The Preprocessing Setup (S) in SNARKs
	Types of Preprocessing Setups

	General Construction Paradigm for SNARKs
	Functional Commitment Scheme
	Schwartz-Zippel Lemma and Fiat-Shamir Transform to Enable Polynomial Zero Test and Equality Test
	IOP, Polynomial IOP
	Application of SNARK: Rollups as a Layer 2 Solution
	The Need for Scalability and the Rise of Rollups
	Zero-Knowledge Rollups and a ZK-EVM/ZK-VM
	General Toolchain for SNARK Development

	Introduction to Lookup Arguments
	Lookup Argument Example
	Range Proof
	Membership Testing via Lookup Argument
	Bit Decomposition

	SHA-256
	SHA-256 Compression Round
	Core Functions Implementation via Lookup Arguments

	Why Lookup ``Argument'' not Lookup ``Proof''
	Motivation for Benchmarking Lookup Arguments
	Rationale for Protocol Selection
	Theoretical Comparison of Lookup Arguments
	Key Differences and Evolution of Lookup Arguments
	Plookup (GW20)
	Definitions
	The Protocol
	Integration with the Plonk Protocol
	Costs and Performance Characteristics
	Generalizations and Optimizations

	Caulk (ZBK+22)
	Definitions
	The Protocol
	Costs and Performance Characteristics
	Generalizations and Optimizations

	Baloo (ZGK+22)
	Core Components and Identities
	The Protocol
	Costs and Performance Characteristics
	Generalizations and Variants

	CQ (Cached Quotients) (EFG22)
	Core Idea and Key Equations
	The Protocol
	Costs and Performance Characteristics
	Generalizations and Variants

	LogupGKR (PH23)
	Core Argument and GKR Application
	The Protocol (GKR Interaction Summary)
	Final Verification via Polynomial Commitments
	Costs and Performance Characteristics
	Generalizations and Variants

	Lasso (STW23)
	Core Concepts and Variants
	Offline Memory Checking
	Spark (Sparse Polynomial Commitments)
	Surge (Decomposable Tables)
	Generalized Lasso (MLE-Structured Tables)
	The Protocol (Conceptual Flow for Variants)
	Costs and Performance Characteristics
	Generalizations and Variants

	Design and Experiment
	Implementation Framework and Reference Implementations
	Integration of Heterogeneous Lookup Arguments
	Challenge: Heterogeneous Interfaces and Data Models
	Different Input Data Structures
	Differences in Proof Processes and Parameter Generation

	Integration and Abstraction of Underlying Libraries
	PlonkishBackend Trait
	Abstractions for Polynomial Commitment Schemes

	Shared Cryptographic Components for Fair Benchmarking
	Polynomial Commitment Scheme Decoupling
	Unified Sum-Check Protocol
	Standardized Arithmetic Operations
	Fiat-Shamir Transcript Standardization

	Experimental Framework and Design
	Implementation Framework
	Evaluation Metrics and Scenario Design
	Data Collection and Analysis

	Evaluation and Discussion
	Performance Analysis and Visualization
	Overall System Performance Comparison
	Graph Interpretation
	Performance Analysis
	Effect of the N:n Ratio
	Baloo Discrepancy and Caulk Implementation Bottleneck
	Crossover Analysis: Lasso vs. LogupGKR
	Interpretation of the Trend
	Validation of Caulk's Implementation Bottleneck
	Baloo Discrepancy

	Setup Time Performance Analysis
	Experimental Setup and Methodology
	Protocol Classification and Performance Characteristics
	Linear Setup Time Protocols (O(N) Complexity)
	Sub-linear Setup Time Protocols (O(n) Complexity)

	Proof Size and Verification Time Analysis
	Proof Size Characteristics
	GKR-Based Protocols (LogupGKR, Lasso)
	Permutation and Polynomial-Based Protocols (Plookup)

	Why Lasso's Proof Size Decreases at K=12?
	Verification Time Analysis
	Table Size Independence
	Protocol Performance Stratification

	Completness and Soundness
	Theoretical and Experimental Analysis
	Plookup
	Caulk
	Baloo and CQ
	Lasso and LogupGKR
	Practical Implications and Design Trade-offs
	Secondary Importance Justification
	Design Philosophy Implications

	Conclusion

	Conclusion and Future Work
	Summary of Key Findings
	Limitations of the Study
	Future Work and Open Questions
	Expanding Benchmarking Scenarios
	Dynamic and Vector Lookups
	Performance in Recursive and Accumulative Settings

	Analysis of Advanced Protocol Features
	Homomorphism and Aggregatability
	Cross-Implementation Benchmarking

	Application-Oriented Protocol Selection

	References

