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ABSTRACT

The Arctic amplification (AA), the phenomenon of amplified surface temperature response in
the Arctic compared with the response elsewhere, can emerge under both reduced and increased
carbon dioxide (CO2) forcings. In this study, we investigate the roles of feedback interactions
contributing to AA. We analyze climate model simulations forced by a wide range of CO2
concentrations (from 1/8 to 8 times preindustrial level). Our results show that AA occurs not only
under increasing CO2 but also under decreasing CO2, with the Arctic exhibiting an even stronger
cooling-induced AA than the warming-induced counterpart. Moreover, the Planck, lapse-rate, and
surface albedo feedbacks are identified as the primary contributors to AA in both scenarios. Among
these, the lapse-rate feedback, in particular, demonstrates a stronger influence under CO2 reduction,
thus reinforcing the asymmetric nature of AA in cooling versus warming climates. We also use a
moist energy balance model (MEBM) to emulate the contributions of each feedback, atmospheric
heat transport (AHT), and their interactions by locking the effect of each of them. We find that the
contribution of feedback interactions to polar amplification is overall stronger in the CO2 reduction
runs than in the CO2 increase runs. In particular, the lapse-rate feedback interaction in the CO2
increase runs leads to negative Arctic temperature change, whereas in the CO2 decrease runs leads to
positive temperature change. This result indicates that the interaction of lapse-rate feedback and other
feedbacks and AHT is a crucial process that gives rise to stronger AA in a cold climate state than that
in a warm one. The feedback interaction with AHT generally counteracts the effect of feedback-
feedback interactions. Our results highlight the importance of the nonlinear processes in producing

AA asymmetric response to cooling and warming forcing agents.
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Chapter 1 Introduction

Over the past 40 years, observational data indicate that near-surface air temperatures
in the Arctic have risen between 2 to 4 times more rapidly than in other parts of the world
(Serreze & Francis 2006, Serreze et al. 2009, Lenssen et al. 2019, Meredith et al. 2019,
England et al. 2021, Chylek et al. 2022, Rantanen et al. 2022). This phenomenon, known
as AA, has been widely attributed to elevated atmospheric CO2 levels (Manabe &
Wetherald 1975, Gillett et al. 2008, Jones et al. 2013, Previdi et al. 2020, Taylor et al.
2022) and is projected to persist in the future (Long & Collins 2013). In addition, there is
a vigorous debate focuses on whether the enhanced Arctic warming could influence
extreme weather events and climate variability in the mid-latitudes of the Northern
Hemisphere (Francis & Vavrus 2012, Barnes 2013, Cohen et al. 2014, Mori et al. 2014,
Barnes & Screen 2015, Overland et al. 2015, 2016, Cohen et al. 2018, Coumou et al. 2018,
Blackport et al. 2019, Blackport & Screen 2020a,b, Cohen et al. 2020, Zappa et al. 2021,
Smith et al. 2022). Attention to AA extends beyond warming conditions and includes
scenarios where CO2 levels diminish, potentially resulting in the Arctic cooling more
pronounced than other regions. Therefore, understanding the AA under varying CO2
concentrations is crucial, as it has profound implications for the ecology and
socioeconomics within the Arctic Circle, as well as for the dynamical changes in the
global climate system.

While most studies have focused on AA under increasing CO2 concentrations, which
can be simulated over century timescales (Pithan & Mauritsen 2014, Dai et al. 2019,
Previdi et al. 2020, Hu et al. 2022, Liang et al. 2022a), less is known about AA under

cooling scenarios. In these scenarios, Arctic cooling is expected to be more pronounced
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than cooling in other regions of the globe. Recent studies examining how aerosol
emissions affect global and Arctic climates suggest that AA can also emerge under cooling
influences (Jiang et al. 2020, England et al. 2021). On the other hand, paleo-climate
investigations have revealed that AA patterns manifest during both CO2 decreases and
increases. For instance, Hoffert & Covey (1992) and Miller et al. (2010) assessed AA’s
magnitude during climatic intervals such as the Holocene Thermal Maximum, Last
Glacial Maximum, Last Interglacial, and mid-Pliocene periods using paleo-climate
proxies. Nevertheless, these studies have not yet comprehensively compared the
mechanisms of AA under both cooling and warming scenarios, nor have they contrasted
the phenomenological and mechanistic differences between cooling driven and warming-
driven AA.

In climate change research, the timescale required for the climate system to reach
equilibrium in response to greenhouse gas forcing is often overlooked. Although previous
studies have suggested that the climate system gradually reaches equilibrium over
timescales ranging from hundreds to thousands of years (Dai et al. 2020, Dunne et al.
2020, Rugenstein et al. 2020), most current coupled model intercomparison projects still
focus on simulations spanning 150 years, such as Phase 6 of the Coupled Model
Intercomparison Project (CMIP6). For example, CMIP6 uses a 150-year abrupt fourfold
CO2 experiment to estimate equilibrium climate sensitivity (Eyring et al. 2016). However,
such simulation durations may be insufficient to fully capture the nonlinear feedback
mechanisms during long-term climate change, especially those involving dynamic
feedbacks in the Arctic and other high-latitude regions. Long-term simulations by
Rugenstein et al. (2020) show that as the simulation duration extends to 1000 years, the
global average temperature increase is significantly higher than that estimated from the

first 150 years. Our findings indicate that the response of Northern Hemisphere surface
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warming is nearly 500 years faster than that of cooling. Our study attempts to compare
the feedback mechanisms between the first and last 150 years of a 1000-year simulation,
which could greatly reveal the extent to which specific mechanisms are directly or
indirectly influenced by the long timescales required for ocean heat transport equilibrium
(Yang & Zhu, 2011). Studies by Jansen (2017) and Yang & Zhu (2011) emphasize that
oceanic vertical mixing and heat transport are crucial for near surface temperature
responses in high northern latitudes. In particular, Jansen (2017) highlights the direct
relationship between atmospheric cooling or warming and changes in deep ocean
circulation and stratification. Chalmers et al. (2022) further connects these response time
differences in high-latitude regions to the advance and retreat of sea ice and the associated
amplified lapse-rate feedback and surface albedo feedback timing. This study will not
only enhance our understanding of the dynamics of feedback mechanisms in the Arctic
under different simulation durations but also provide a new perspective for examining
Arctic feedback mechanisms, leading to a more comprehensive understanding of the
long-term changes in the climate system under varying conditions.

Recently, the traditional feedback analysis framework has been expanded to study
regional warming driven by spatially varying feedbacks (Armour et al. 2013, Pithan &
Mauritsen 2014). Some studies have investigated the contribution of each climate
feedback to Arctic Amplification, identifying that the lapse-rate feedback contributes the
most to Arctic Amplification, followed by changes in the Planck feedback and surface
albedo feedback (Pithan & Mauritsen 2014, Stuecker et al. 2018, Goosse et al. 2018).
Although water vapor feedback is ubiquitous, it is strongest in low-latitude regions and
contributes more to tropical warming than to Arctic warming, thus acting as a primary
factor that mitigates Arctic Amplification. Analyzing regional warming through the

spatial structure of feedbacks provides a computationally efficient approach and allows
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for a clean decomposition of surface warming, as the sum of the warming contributions
from individual feedbacks equals the total warming. However, this method does not
account for changes in AHT associated with the strength of individual feedbacks, which
can affect regional warming and potentially influence Arctic Amplification (Langen et al.
2012, Russotto & Biasutti 2020). Therefore, the traditional feedback analysis framework
may lack sufficient interpretation of the interactions between feedbacks and AHT when
attributing the Arctic Amplification effect.

Another approach to evaluating the impact of specific climate feedbacks is feedback
locking. This method involves “locking” a particular feedback within a model—holding
it artificially constant—and then assessing how the climate system responds to
perturbations when that feedback no longer adapts. The logic behind this approach is that
no feedback operates in isolation: they interact with one another as well as with the
broader climate system, particularly through mechanisms such as AHT. By comparing
scenarios in which a given feedback is locked versus fully active, we can attribute changes
in surface warming to that feedback and examine how other processes compensate. For
example, studies have locked surface albedo feedback and found that even though it
strongly influences polar amplification, its net effect on global mean temperature is
modest (Hall 2004, Graversen & Wang 2009). Furthermore, work has shown that AHT
can compensate for a locked feedback, allowing the climate to maintain a warming pattern
comparable to scenarios where all feedbacks freely adjust (Langen et al. 2012). These
compensations highlight the interconnected nature of feedbacks and processes: when one
feedback is altered, water vapor transport and other feedbacks shift to reach a new
equilibrium. Consequently, the warming attributed to individual feedbacks does not
simply sum to the total warming because other parts of the system respond dynamically

to changes in feedback strength, especially AHT (Russotto & Biasutti 2020).
4
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In this study, we combine radiative kernel techniques with a MEBM to disentangle
these complex interactions and quantify the contributions of various radiative feedbacks
and their coupled processes to Arctic Amplification. The MEBM framework allows us to
hold certain surface flux conditions fixed, ensuring that any resulting adjustments in the
climate system, including shifts in feedback distributions and atmospheric heat transport,
are clearly linked to the feedbacks themselves. By performing feedback locking
experiments within the MEBM, we can observe how changing one feedback alters the
meridional structure of moist static energy, modulates atmospheric heat transport, and

influences other feedbacks in turn. This approach goes beyond traditional methods by

revealing how each feedback’s role in Arctic Amplification is not an isolated property,
but rather the outcome of a delicate balance among radiative processes, surface heat
fluxes, and large-scale energy transports.

Our findings show that the Arctic’s characteristic lapse-rate feedback, commonly
viewed as closely tied to sea ice and surface albedo changes, is actually intertwined with
the distribution of atmospheric energy. In high-latitude regions where vertical convection
is relatively weak, energy convergence by AHT can amplify or counteract certain
feedbacks. Changes in the vertical temperature structure translate into distinct positive or
negative lapse-rate feedbacks, depending on the latitude and the relative strength of
surface and upper-atmospheric warming. The interaction between feedback locking and
MEBM simulations shows how changes in the vertical temperature structure, along with
changes in horizontal heat transport, affect where and how Arctic Amplification takes
place. In other words, while surface and radiative feedbacks are important drivers of
Arctic warming, their overall effect depends on how the entire climate system, especially
atmospheric heat transport, adjusts and responds to them. Thisway of

understanding feedback processes suggests that Arctic Amplification cannot be fully
5
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explained by local sea ice changes alone. Instead, it comes from the combined effects of
multiple feedbacks and large-scale energy flows working together.

High-latitude lapse-rate feedback makes a significant contribution to AA under
cooling scenarios. According to the method of Feldl et al. (2020), these feedbacks are
primarily divided into “upper” and “lower” contributions. This distinction is derived from
the separation of the high-latitude troposphere from other parts of the atmosphere by the
characteristic climatic isotropic surface. This decomposition clarifies that the positive
high-latitude lapse-rate feedback over polar oceans mainly arises as an atmospheric
response to regional sea ice loss, while it decreases in subpolar latitudes due to increased
poleward energy transport. Lapse-rate feedback manifests as negative feedback in low-
latitude regions, mainly driven by moist convection, which causes more pronounced
warming of the upper troposphere, increasing outgoing longwave radiation and thereby
offsetting further surface warming. Notably, most studies have concentrated on warming
scenarios, leaving cooling cases less explored. By distinguishing regional drivers of high-
latitude lapse-rate feedback, we gain insights into its interaction with non-local processes
such as heat transport and surface heat flux, further influencing Arctic Amplification.

We also analyze the regional and remote contributions of high-latitude lapse-rate
feedback following Feldl et al. (2020). This approach decomposes the feedback into
components associated with different atmospheric layers defined by the 285-K isotherm,
allowing us to isolate surface-driven processes, such as ocean-to-atmosphere energy
transfer linked to sea ice extent changes (Deser et al. 2015, Blackport & Kushner 2017,
Oudar et al. 2017, Dai et al. 2019) or albedo feedback (Graversen et al. 2014, Feldl et al.
2017, 2020), from those involving atmospheric convection and heat transport. Poleward
atmospheric heat transport, which warms the upper troposphere at high latitudes (Alexeev

et al. 2005, Caballero & Langen 2005, Hwang et al. 2011, Alexeev & Jackson 2013),
6
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supports a negative upper-level lapse-rate feedback. A clearer understanding of how

changes in CO2 concentrations affect AA will help improve the representation of high-

latitude feedback mechanisms in climate models and provide valuable insights into the

nonlinear characteristics of feedback interactions within the climate system.

Understanding how changes in CO2 concentrations influence AA is crucial for

gaining a more complete view of how the climate system responds, particularly in polar

regions. The primary objectives of this study include:

(1) Comparing AA under scenarios of increased and decreased CO2, identifying and
quantifying the contributions of key feedback mechanisms to AA.

(i)  Identifying and quantifying the contributions of various feedbacks to AA under
reduced CO2 conditions through feedback locking experiments.

(iii)  Discussing how interactions among feedback mechanisms and AHT influence the
strength of AA, revealing asymmetric responses between cooling and warming

scenarios.
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Chapter 2 Data and Methods

2.1 Feedback Analysis using Radiative Kernels

This study examines a series of fully coupled atmosphere-ocean-sea ice-land
simulations under various abrupt CO2 forcings levels (Mitevski et al. 2021, 2022). We
use the Community Earth System Model version 1 (CESM1, Kay et al. 2015), which
incorporates the Community Atmosphere Model version 5 (CAMS), the Community Ice
CodE version 4 (CICE4), the Community Land Model version 4 (CLM4), and the Parallel
Ocean Program version 2 (POP2), all using a horizontal resolution of 1 degree. Our
experiments consist of both enhanced and reduced CO2 concentrations relative to
preindustrial (PI) levels, specifically 0.125x, 0.25x, 0.5x, 1x (PI), 2x, 3x, 4x, 5%, 6x, 7X,
and 8x PI CO2. During all runs, the concentrations of other trace gases, ozone, and
aerosols are held constant at their PI values. Following the CMIP6 4xCO2 protocol
(Eyring et al. 2016), each simulation is initialized from PI conditions and integrated for
150 years. We define the response of any variable as the difference between each nxCO2
experiment and the 1xCO2 control, denoted as A, and use the final 30 years to represent
the equilibrium response. Additionally, we extend the existing 150-year instantaneous
2xCO2 and 0.5xCO2 simulations to 1000 years to investigate feedback asymmetry over
longer periods.

To quantify the strength of AA, we define a dimensionless Arctic Amplification

Factor (AAF) as:

_ ASA TArctiC

AAF = —/————
ASATglobal

where ASAT Arctic 18 the Arctic (60°-90°N) mean surface-air temperature response, and

8
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ASATgiobal 1s the global mean SAT response. This definition of AAF has been widely used,
and its physical interpretation has been discussed in many studies involving abrupt CO2
experiments on AA (Pithan & Mauritsen 2014, Goosse et al. 2018, Liang et al. 2022a).

To explore the drivers behind AA, we perform a feedback decomposition using the
Arctic (60°-90°N) and tropical (30°S-30°N) top-of-atmosphere (TOA) energy budgets
(Soden et al. 2008). The basic atmospheric energy budget relation can be expressed as:

AR+ AF —AH, =0
Here, AR is the response of net downward radiation at the TOA, AF is the response of the
horizontal convergence of atmospheric and oceanic energy transport, and AH, is the
ocean heat uptake response. The contribution from ocean heat storage dominates over the
negligible heat capacity of the atmosphere, land, and snow/ice melt (Polvani et al. 2020,
Liang et al. 2022b). We infer AF as the residual between AR and AH,. Following previous
work (Pithan & Mauritsen 2014, Polvani et al. 2020, Hahn et al. 2021, Jenkins & Dai
2021, Beer & Eisenman 2022, Liang et al. 2022b, Wu et al. 2023), we separate AR into
contributions from the Planck response (ARpL), the lapse-rate response (ARLr), the albedo
response (ARarg), the water vapor response (ARwv), and the cloud response (ARcrp). We
use radiative kernels from CAMS (Pendergrass et al. 2018) to accomplish this
decomposition. The effective radiative forcing (ERF), ARr, is determined using a
corresponding set of fixed-SST simulations that vary CO2 and by taking the 30-year
average change in TOA energy flux (Mitevski et al. 2021).
AR = ARy + ARp; + AR + ARy 5 + ARy + AR¢rp

Next, AOHT (the oceanic heat transport response) is derived as the difference
between AH, and the change in net surface heat flux (shortwave, longwave, latent, and
sensible) between ocean and atmosphere. The atmospheric heat transport response

(AAHT) then follows as the difference between AF and AOHT.
9
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All terms are converted into corresponding temperature changes by dividing by the
negative global mean Planck feedback parameter (—Ao), as described by Pithan &
Mauritsen (2014) and Goosse et al. (2018). Any residual in the radiative kernel
approximation is determined by comparing the total TOA radiation response to the sum
of these individual feedback contributions. In general, this residual tends to be small

compared to the other components.

2.2 Feedback Locking Analysis

This study employs the MEBM configuration described in Beer & Eisenman (2022)
to simulate changes in surface temperature and AHT under various CO2 forcings. The
MEBM is a simplified climate model that emphasizes horizontal energy transport,
assuming heat primarily diffuses within the atmosphere. We conducted feedback locking
experiments by fixing specific feedback parameters within the MEBM framework to
analyze the warming response in the absence of those feedbacks. In these experiments,
we quantified changes in surface temperature due to individual locked feedbacks by
comparing results from scenarios with all feedbacks active against those where one
feedback was locked.

The MEBM approximates AHT as a diffusion process involving surface temperature
and specific humidity, capturing temperature and AHT changes similar to comprehensive
climate models while maintaining computational efficiency (Bonan et al. 2018, Armour
et al. 2019). Numerous studies have established MEBM’s utility in evaluating individual
radiative feedbacks’ impact on temperature and AHT under global warming (Hwang &
Frierson 2010, Rose et al. 2014, Roe et al. 2015, Russotto & Biasutti 2020). By

incorporating latent heat effects from atmospheric water vapor transport, MEBM builds

10
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on a dry energy balance model framework, providing a more accurate depiction of AHT
dynamics, particularly in high-latitude regions.

In our feedback locking analysis, simulations were conducted for each feedback
locking scenario to assess their temperature contributions. To “lock™ a specific feedback
within this framework, Beer & Eisenman (2022) modify the original TOA energy budget
equation by removing the contribution of that feedback. This is achieved mathematically
by adjusting the feedback parameter A; for the targeted feedback, as shown in the modified
energy budget equation:

A—2A)AT_;+ AR +AF —AH, =0
where T-; denotes the temperature response when the feedback Ai is locked. Total warming
T depends nonlinearly on A, as discussed by Roe & Baker (2007). Locking a feedback
fixes the temperature change associated with that feedback, while interactions among
feedbacks modify the overall warming response. Each feedback influences AHT,
adjusting according to regional warming changes induced by other feedbacks.

By solving this equation, we isolate the temperature contribution due solely to the
locked feedback, AT;, by taking the difference between the total warming and the
temperature response with the locked feedback:

AT; = AT — AT_;

For further accuracy in describing feedback interactions, the warming contributions
due to feedback locking can be separated into three components: direct warming from
individual feedback, interactions among feedbacks, and interactions between feedbacks
and AHT. This means that the influence of an individual feedback on temperature not
only directly affects the climate system but also modifies the response of other feedbacks
through changes in total warming and AHT. This approach allows us to effectively

distinguish the direct contributions of individual feedbacks from all other nonlinear
11
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interactions.
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Chapter 3 Results

3.1 Asymmetric Climate Response under CO2 Forcing

We first examine the time series of annual mean SAT over the Arctic and the globe
throughout the 150-year simulations (Figure 1a). As expected in abrupt CO2 experiments,
both Arctic and global SATs adjust rapidly during the first 30 years before gradually
approaching a quasi-equilibrium state. Correspondingly, sea ice extent (SIE) either
expands or contracts in response to the forcing (Figure 1b). For instance, under 7x and
8xCO2, the sea ice melts rapidly within the first 15 years, resulting in an ice-free Arctic
thereafter, whereas lower CO2 scenarios produce a slow but steady growth in SIE. The
degree of sea ice response reflects the intensity of the CO2 forcing. Throughout the 150-
year integration, the AAF is consistently larger under reduced CO2 conditions than under
elevated CO2 conditions (Figure 1c). This outcome, which may seem unexpected,
highlights an inherent asymmetry in the intensity of AA between scenarios of increasing

versus decreasing CO2 levels.
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We then examine the mean responses of Arctic SAT, SIE, and turbulent heat flux
over the final 30 years to illustrate their coupling relationships and reveal the mechanisms
under varying CO2 forcing intensities. These variables exhibit consistent patterns of
variation with CO2 forcing intensity and are strongly interrelated (black lines in Figures
2a-c). This alignment reflects a well-established feedback process: as CO2 increases,
Arctic SAT rises, accelerating sea ice melt and exposing more open water, thus enhancing
ocean-atmosphere heat exchange (Deser et al. 2010, Screen & Simmonds 2010, Goosse
et al. 2018, Dai et al. 2019, Liang et al. 2022a). The same feedback loop operates when
CO2 decreases, as seen in the 0.125x%, 0.25x, and 0.5xCO2 experiments.

A particular feature worth noting is a kink in the 4xCO2 experiment, linked to a
shutdown of the Atlantic Meridional Overturning Circulation (AMOC) (Mitevski et al.
2021). Previous research indicates that many CMIP5 and CMIP6 models exhibit
substantial AMOC weakening under increasing CO2 forcing (Rugenstein et al. 2013,
Winton et al. 2013, Palter 2015, Trossman et al. 2016, Caesar et al. 2020). The reduction
in Arctic sea ice can also influence the strength of AMOC by increasing freshwater flux,
but this relationship is not unidirectional (Oudar et al. 2017, Sévellec et al. 2017).
Mitevski et al. (2021) demonstrated that, in abrupt CO2 experiments using CESM1 and
GISS-E2.1-G, the AMOC collapses at 4xCO2 and 3xCO2 respectively, and does not
recover under even stronger forcing. Their findings suggest that ocean dynamics play a
key role, beyond simple ocean-atmosphere interactions.

Focusing on AAF, a central focus of this study, all three cold AAF values exceed all
corresponding warm AAF values (Figure 2d). We also observe that with increasing CO2
forcing intensity (except for the 4xCO2 case), the warm AAF tends to decrease, a trend
documented in previous studies and primarily attributed to the relatively small reduction

in SIE and the subsequent weaker heat flux exchange between the ocean and atmosphere

15

doi:10.6342/NTU202404648



under near-ice-free conditions (Deser et al. 2010, Screen & Simmonds 2010, Chung et al.

2021, Liang et al. 2022a). In contrast, differing from the warm AAF (except for the

4xCO2 case), the highest cold AAF occurs in the 0.25xCO2 experiment rather than in the

0.125xCO2 experiment. We explain this by noting that under near-complete ice coverage,

sea ice cannot expand significantly further as CO2 is reduced, meaning the incremental

SIE increase from 0.125x to 0.25xCQ2 is smaller than that from 0.25x to 0.5xCO2 (Figure

2b). Consequently, changes in turbulent heat flux and Arctic SAT are relatively small,

resulting in a lower AAF at 0.125xCO2 than at 0.25xCO2. Additionally, the collapse of

the AMOC indeed affects the strength of the AAF, as clearly shown in Figure 2d. Despite

the collapse of the AMOC, Arctic-related feedbacks continue to produce AA due to the

persistent CO2 radiative forcing on the climate system.

(a) Arctic SAT Response

(b) Arctic SIE Response
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Figure 2: Annual-mean responses during the final 30 simulation years for each nxCO2

experiment: (a) Arctic SAT, (b) Arctic SIE, (¢) turbulent heat flux (latent + sensible), and

(d) AAF. Error bars represent the 95% confidence intervals, derived using Student’s t-

distribution.
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Here, we conducted feedback analysis to seek a clear explanation for why cold AAF
is greater than warm AAF. For each feedback, ERF, and meridional heat transport, we
compared their values in the Arctic region with those in the tropical region, following
previous studies (Pithan & Mauritsen 2014, Hahn et al. 2021, Beer & Eisenman 2022,
Liang et al. 2022b). Figure 3a and b display the results from the 0.125xCO2 and 8xCO2
experiments, comparing their differences and similarities. The Planck, lapse-rate, and
albedo feedbacks stand out as the main drivers of both cold and warm AA, as their
responses exceed the one-to-one line (gray dashed line), indicating stronger Arctic
responses than the global mean. In contrast, water vapor feedback works to reduce AA,
and the other feedbacks, along with meridional heat transport, show minimal influence,
clustering near the one-to-one line.

Examining these three key feedbacks further; their relative importance differs under
increasing versus decreasing CO2. As shown in Figure 3a, for the 0.125xCO2 scenario,
the Planck and lapse-rate feedbacks play more prominent roles than the albedo feedback.
In the 8xCO2 scenario, all three feedbacks are similarly important. We quantify their
relative importance using the Euclidean distance from the one-to-one line (Figure 3c).
Under cooling conditions, the Planck and lapse-rate feedbacks clearly surpass the albedo
feedback in strength, as indicated by their statistically distinguishable distances. When
forcing intensifies (except for the unique 4xCO2 case), the differences in their relative
strengths diminish. Under warming conditions, though the albedo feedback becomes
more significant, it does not statistically outpace the other two feedbacks, suggesting that
all three contribute comparably. These results indicate that the dominance of Planck and
lapse-rate feedbacks in cooling scenarios primarily explains the larger magnitude of AA,

while the albedo feedback remains essential for maintaining a positive AA signal.
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Figure 3: Feedback and meridional heat transport contributions to annual-mean Arctic
SAT relative to the tropics under (a) 0.125xCO2 and (b) 8xCO2 abrupt forcings,
calculated with radiative kernels. The gray dashed line indicates a one-to-one relationship,
helping to identify which mechanisms enhance or reduce AA. In (c), the Euclidean
distance of the Planck, lapse-rate, and albedo feedbacks from this line reflects their
relative importance. We used 10,000 bootstrap iterations to estimate uncertainties in (a)
and (b), while error bars in (c) show 95% confidence intervals from Student’s t-

distribution.

Finally, we analyze the spatial distribution of the Planck feedback parameter (Figure
4). In warming experiments, the strongest values appear between 85°N and 90°N and
diminish somewhat as CO2 increases; in cooling experiments, peak values shift to around

70°N-80°N. This spatial pattern may be linked to changes in sea ice extent. In contrast,
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tropical regions show less variation in the spatial scale or intensity of the Planck feedback
(Figure 4a). These findings suggest that the enhancement of the Planck feedback in
cooling scenarios is driven not only by its overall magnitude but also by its distinct spatial

configuration at high latitudes.

(a) Ap. over the Tropical Region (b) Ap. over the Polar-cap Region
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Figure 4: Meridional distribution of the Planck feedback parameter over the (a) tropics

and (b) Arctic.

Finally, we analyze the influence of sea ice on the distribution and intensity
variations of albedo feedback. This relationship is closely linked to the seasonal retreat of
Arctic sea ice during the summer period, when surface albedo feedback from shortwave
radiation reaches its maximum. Additionally, it affects the winter boundary layer, where
longwave lapse-rate feedback attains its peak (Zhou et al., 2023). This relationship can
be explained by the seasonal interactions among the atmosphere, ocean, and cryosphere.
Models with greater summer sea ice concentration reduction also show larger reductions
in late autumn/early winter sea ice concentration. The more significant reduction in sea
ice concentration in autumn and winter is associated with a greater increase in surface
sensible and latent heat fluxes among models, along with a greater reduction in
temperature inversion. This, in turn, necessitates a stronger correction in the lower-layer
lapse-rate feedback, leading to further warming. Across the Arctic, models with greater
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sea ice loss produce larger temperature inversion weakening and more substantial
corrections in lapse-rate feedback. This relationship also shows spatial robustness.

To further explore how the vertical temperature distribution contributes to the
significant role of lapse-rate feedback, we examined the vertically averaged temperature
profiles over the polar and tropical regions and their sensitivity to the global mean SAT
response (Figure 5). It is evident that under cooling scenarios, the Arctic (representative
of the vertically uniform component associated with the Planck feedback) shows greater
sensitivity at 1000 hPa, with stronger temperature differences and temperature inversion
in the lower troposphere. This indicates that the forcing asymmetry of the lapse-rate
feedback has contributions from both the upper and lower layers. In contrast, the
temperature gradient distribution in the warming experiments (Figure 5d-j) is relatively
smoother, and the gradient distributions are similar across different levels of CO2 forcing.
This result demonstrates not only the weaker intensity of lapse-rate feedback in the

warming experiments but also the limited impact of increased CO2 on lapse-rate feedback.
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Figure 5: Vertical temperature distribution in the Arctic region. (a-j) Zonal mean for CO2

concentrations ranging from 0.125x to 8x. (k) Changes in the Arctic vertical temperature

distribution relative to changes in the global mean temperature.

Long-term Climate Asymmetry in Warming and Cooling

Experiments

Research on surface cooling under greenhouse gas reductions is relatively limited,

especially over multi-century timescales. We conducted 1000-year simulations and found
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that, after 150 years, global temperatures continue to increase slightly, with the pace of
warming remaining nearly constant (Figure 6). In contrast, the average Arctic temperature
in the cooling experiments continues to decrease significantly. This indicates that the
cooling experiments require a longer time to reach equilibrium compared to the warming
experiments. Cold AA remains stronger than warm AA for nearly the entire 1000-year
period, though its intensity gradually diminishes over time. At year 150, the surface
temperature response in high-latitude regions is similar in magnitude between 2xCO2
warming and 0.5xCO2 cooling (Figure 6b), with the response being slightly larger for
0.5xCO2 than for 2xCO2. After 150 years, the 0.5xCO2 cooling continues and intensifies
globally, particularly in high-latitude regions. In contrast, the global and high-latitude

warming under 2xCO2 remains relatively stable after 150 years.
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Figure 6: Time series of (a) average SAT anomalies and (b) AAF for the Arctic and global

regions over 1000 years.
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We used feedback analysis to examine changes in the strength of individual
feedbacks. The lapse-rate feedback shows the largest difference between 2xCO2 warming
and 0.5xCO2 cooling (Figure 7), making it the primary contributor to asymmetry in the
1000-year simulations. This is likely due to the high heat capacity of the ocean (Stouffer
et al. 2004). The ocean can absorb excess heat from the atmosphere and store it over long
timescales. This heat storage capacity results in a slower response of the ocean to changes
in radiative forcing, leading to a prolonged effect on radiative equilibrium. The results
highlight the importance of ocean heat transport for climate equilibrium and its influence
on lapse-rate feedback. Lapse-rate feedback is identified as the most significant source of
cold AA over both century and multi-century timescales. Additionally, Kay et al. (2024)
found that the asymmetry in response is most pronounced at the sea ice edge. Under
greenhouse cooling, the sea ice edge gradually shifts southward into midlatitude oceans,
a process amplified by positive lapse-rate and surface albedo feedbacks. However, the
time evolution of the albedo feedback does not exhibit as large a change as the lapse-rate

feedback.

Arctic-averaged Radiative Feedback
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Figure 7: Radiative feedback parameters for the region north of 45°N, showing the first
(open circles) and last (solid circles) 150 years of the 2xCO2 (red) and 0.5xCO2 (blue)

experiments. Error bars indicate standard deviations across the 150-year averages.
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3.3 Asymmetric Interaction and AHT Contributions

We compared the results of feedback locking (Figure 8) with those from the
traditional feedback analysis (Figure 3). The results reveal significant differences between
these two methods, especially regarding water vapor and lapse-rate feedbacks. In the
traditional feedback analysis, water vapor feedback is the largest opposing factor to Arctic
amplification. The water vapor feedback parameter is positive everywhere, but its values
are much larger in tropical regions than in the Arctic. In contrast, in the feedback locking
analysis, water vapor feedback becomes the largest contributor to Arctic amplification.
For the lapse-rate feedback, it is the primary contributor to Arctic amplification in the
traditional feedback analysis. However, in the feedback locking analysis, its contribution
to Arctic temperatures in the cooling experiments diminishes, and it has a near-neutral
effect in the warming experiments, as it cools the tropics and Arctic by similar amounts.
Lapse-rate feedback no longer plays a dominant positive role in AA within the feedback
locking analysis. These differences highlight the importance of interactions between each

feedback process and other feedbacks, as well as AHT.
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Figure 8: Contributions of individual feedbacks and meridional heat transport to the
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forcings, derived through feedback locking analysis. The gray dashed line (one-to-one
line) helps distinguish which mechanisms enhance or reduce AA. (c¢) The Euclidean
distance of the Planck, lapse-rate, and albedo feedbacks from the one-to-one line,

indicating their relative importance.

In the experiments where water vapor feedback is locked, the MEBM allows the
climate system to adjust to the absence of water vapor feedback, leading to changes in
temperature. The removal of water vapor feedback reduces warming concentrated in
tropical regions, decreasing the temperature gradient between the equator and poles,
which in turn reduces AHT in the MEBM or leads to compensatory contributions from
other feedbacks (Figure 9b). When water vapor feedback is suppressed, AHT heating

slightly increases in the Arctic, while heat is transported away from the equator, causing
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tropical cooling. The contribution of feedback interactions increases significantly,
indicating that water vapor feedback plays a positive role in supporting other feedbacks.
In contrast, the individual contribution of water vapor feedback to the overall feedback
experienced in the Arctic is smaller than in the tropics. Overall, water vapor can interact
with other positive feedbacks as a positive feedback in the Arctic.

Another feedback that differs significantly between the traditional feedback analysis
using radiative kernels and the feedback locking method is lapse-rate feedback, which is
also a key mechanism contributing to the asymmetry of Arctic warming (Figure 9a). The
direct effect of lapse-rate feedback (individual contribution) reduces the temperature
gradient between the equator and poles, leading to a decrease in the meridional
temperature gradient, which causes a negative contribution of MSE transport out of the
Arctic. Thus, the changes in AHT reduce the extent of Arctic amplification, counteracting
the effects of regional feedbacks. Notably, the role of feedback interactions is opposite
between the cooling and warming scenarios. Feedback interaction represents the
difference between the total equilibrium temperature in the MEBM and the AHT
contribution, as compared to the individual contribution. To fully understand the
asymmetry, it is necessary to further separate the contributions of upper and lower layers
when locking lapse-rate feedback. This helps to identify whether the asymmetry arises
from AHT or surface sea ice effects. Overall, we find that in the feedback locking method,
lapse-rate feedback leads to tropical cooling, with warming in the Arctic under cooling
scenarios and cooling under warming scenarios, providing a more detailed understanding
of the asymmetry compared to the traditional feedback analysis.

Other radiative feedbacks show less pronounced differences between the traditional
feedback analysis and the feedback locking analysis. The differences may be less

noticeable because the positive individual contributions of albedo and Planck feedbacks
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lead to a negative AHT contribution and positive effects on other feedbacks, canceling
each other out. As a result, their contribution to Arctic warming is greater than their
contribution to tropical warming, even when interactions with other feedbacks and AHT
are included. For cloud feedbacks, the interactions are stronger in the Arctic compared to
the tropics. Mauritsen et al. (2013) emphasized the importance of the coupling between
cloud feedbacks, atmospheric circulation, water vapor, and lapse-rate feedbacks in
influencing climate change in a deepening troposphere. Climate models may also
underestimate the amount of supercooled liquid water in high-latitude clouds, which
could lead to an underestimation of the potential contribution of cloud feedbacks to Arctic

warming (Middlemas et al. 2020).
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Figure 9: Decomposition of feedback contributions when selectively locking (a) lapse-

rate feedback, (b) water vapor feedback, (c) albedo feedback, (d) Planck feedback, and
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(e) cloud feedback in the 0.125x and 8xCO2 experiments. These results highlight how
constraining individual feedbacks alters the overall AA response under different CO2

forcing scenarios.

Figure 10 shows the spatial comparison between the upper and lower lapse-rate
feedback parameters and the sea ice changes in the form of maps. The results indicate that
both the upper and lower lapse-rate feedback parameters have a spatial distribution
similar to that of sea ice changes. In the cooling experiments, strong signals are
concentrated in the Bering Sea, North Pacific, and North Atlantic, while in the warming
experiments, the signals are mainly concentrated in the central Arctic Ocean. Sea ice
retreat alters the atmospheric temperature structure, particularly after summer sea ice
melts, as the warming of the ocean mixed layer weakens the temperature inversion
through ocean-atmosphere heat exchange in autumn and winter, which in turn leads to a
positive lapse-rate feedback and stronger surface warming. This suggests that sea ice
distribution directly influences both the upper and lower lapse-rate feedbacks. We believe
that these results highlight the importance of sea ice and surface heat flux in affecting
surface temperatures, as well as the limitations of the Radiative Kernels method. In the
Radiative Kernels method, lapse-rate feedback is calculated based on the temperature
difference between the entire atmospheric column and the surface temperature. Due to
weaker vertical convection in the Arctic, the stronger signal is primarily driven by surface
temperature. When the surface temperature undergoes significant changes due to sea ice
variation, the entire column exhibits a strong lapse-rate feedback signal. This is also
related to the stronger stratospheric warming observed in the cooling experiments (Figure

5).
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(a) Distribution of Arctic Sea Ice and Upper Layer Lapse-rate Feedback
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(b) Distribution of Arctic Sea Ice and Lower Layer Lapse-rate Feedback
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Figure 10: Changes in Arctic sea ice distribution and the distribution of the (a) upper and

(b) lower lapse-rate feedback parameters.

We further conducted feedback locking analysis for the upper and lower lapse-rate

feedbacks separately to explore how each is influenced by atmospheric heat transport and

sea ice distribution. Figure 11 shows that both the upper and lower lapse-rate feedbacks

exhibit asymmetry in Arctic amplification, with a larger contribution in the cooling

experiments compared to the warming experiments. In the lower lapse-rate feedback
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locked experiments (Figure 11a), the temperature changes under the cooling and warming
scenarios show similar patterns. The lower lapse-rate feedback is one of the key
contributors to Arctic amplification, mainly driven by feedback interactions. Its
importance may be much greater than the individual contribution from the lapse-rate
feedback alone. In conclusion, the results of the lower lapse-rate feedback demonstrate
the positive contribution of the Arctic bottom-warm structure to Arctic amplification. The
feedback locking method emphasizes the significant impact of feedback interactions,
showing that the lower lapse-rate feedback is a positive contributor to Arctic amplification
in both the traditional feedback analysis and the feedback locking method.

In addition to the regional effects of sea ice changes on the atmospheric heat
structure at lower atmospheric levels, AHT in the atmosphere also exerts a remote
influence on the lapse-rate feedback. Figure 11b shows that the upper lapse-rate feedback
induces stronger asymmetry, and it is also the primary driver of changes in AHT
interactions. It is worth noting that the upper lapse-rate feedback shows a negative
contribution in the warming experiments, whereas it generally has a positive contribution
to other feedbacks in the Arctic. This could be due to the top-warm structure of the tropical
upper lapse-rate feedback, which enhances the transfer of AHT from the Arctic to the
tropics. We suggest that the simplified process of fixing sea ice in the MEBM highlights

the influence of lapse-rate feedback on AHT.
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Figure 11: Decomposition of contributions in experiments where the lower lapse-rate
feedback (a) and upper lapse-rate feedback (b) are locked under the 0.125x scenario, and
where these feedbacks are similarly locked under the 8xCO2 scenario (c-d). These
comparisons highlight how variations in the vertical temperature structure influence the

magnitude of Arctic Amplification across different forcing scenarios.

Our focus is on the warming experiments, where the regionally averaged upper
lapse-rate feedback over the Arctic exhibits a negative value. This differs from results
using the radiative kernel method (Figure 12¢ and d), where the upper lapse-rate remains
lower than the lower lapse-rate consistently across latitudes. The negative upper lapse-
rate values in the tropics strongly influence meridional energy transport, sending more
energy toward lower latitudes and thus affecting the global energy balance and
equilibrium temperature.

When comparing cooling and warming experiments, we find that Arctic temperature
is influenced by both atmospheric heat transport and sea ice conditions. In the cooling
scenarios, the latitude bands where upper lapse-rate feedback remains positive roughly
correspond to regions with persistent sea ice coverage, generally north of about 70°N.
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Here, upper lapse-rate feedback is stably positive with little spatial variation. Moving
south into regions where sea ice seasonally grows or melts, the upper lapse-rate feedback
weakens and turns negative. Similarly, in the warming experiments, large reductions in
sea ice cause upper lapse-rate feedback to decrease rapidly, leading to an almost complete
absence of positive upper lapse-rate feedback signals as the Arctic becomes increasingly
ice-free.

During the warming experiments, sea ice loss shifts the ice boundary northward,
exposing more open ocean and reducing other feedback contributions, such as albedo
feedback. As a result, positive lapse-rate feedback regions shift poleward and diminish in
extent, resulting in a net negative lapse-rate feedback contribution in the Arctic. In
summary, lapse-rate feedback emerges as the primary mechanism contributing to the
asymmetry of Arctic Amplification, interacting with other feedbacks and atmospheric
heat transport. This asymmetry stems from the stark differences in sea ice conditions
under different CO2 forcing scenarios; the stronger and more positive lapse-rate feedback
signature in cooling experiments contrasts with the negative upper lapse-rate feedback in

warming experiments shaped by ice-free conditions.
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Figure 12: Meridional distribution of (a) feedback parameter, (b) individual temperature
contributions (calculated using radiative kernels), and (c) temperature contributions from

feedback locking results for the entire column, lower, and upper lapse-rate feedbacks.

Finally, Figure 13 summarizes the distribution of AA strength across all CO2
increase and reduction experiments. In the MEBM, the AA strength for the all-feedbacks-
active scenario is generally weaker than that of the GCM, though it still shows the
asymmetry where the AA values in the three cooling experiments are generally greater
than those in the seven warming experiments. When feedback locking is used to
successively deactivate each feedback or surface heat flux, the most pronounced
asymmetry is found in the lapse-rate feedback, especially in the upper lapse-rate feedback.
The contribution of lower lapse-rate feedback to AA remains relatively consistent across

different CO2 forcing levels. Albedo feedback is also an important contributor to AA,
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though its asymmetry is less pronounced. The other feedbacks exhibit more uniform

contributions overall.

GCM Full LR LLR ULR PL ALB WV CLD

0.125x ‘

1.5

Figure 13: AAF for the GCM with all feedbacks active (full column) and scenarios where

each individual feedback is active under CO2 forcing ranging from 0.125x to 8x. Crosses

(%) indicate negative values, where the AAF decreases.
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Chapter 4 Discussion

We adopted the radiative kernel technique (Soden et al. 2008) to quantify the role of
radiative feedbacks in contributing to cold and warm AA. However, the radiative kernel
technique may be limited by state dependence. For example, a study using the MPIESM-
LR radiative kernel showed that the strength of albedo feedback weakened by 50% in the
4xCO2 experiment compared to the control pre-industrial run (Block & Mauritsen 2013),
indicating a significant state dependence of albedo feedback. Indeed, we observed that
albedo feedback became less important under 2xCO2 and 0.5xCO?2. Jonko et al. (2013)
further used the radiative kernel technique to decompose the contributions of each
feedback into changes in radiative fluxes and the influence of climate response on
temperature changes, finding that variations in Planck and water vapor feedback were
primarily driven by changes in radiative fluxes associated with shifts in climate states.
We also noted a slight increase in the residuals averaged over the Arctic when CO2
concentrations exceed five times the pre-industrial levels, reflecting larger changes in the
polar mean when using the radiative kernel technique, as shown in Jonko et al. (2013).
Therefore, further research is needed to validate the application of the radiative kernel
technique in both warming and cooling states.

According to Jansen (2017), changes in atmospheric CO2 concentrations
significantly alter ocean circulation and stratification, thereby affecting the uptake and
release of carbon by the oceans. However, these changes are not entirely symmetrical
across different ocean regions. When CO?2 increases, global warming shrink sea ice extent,
weakening deep ocean stratification, particularly in the deep waters around Antarctica,

making it easier for oceanic carbon to be released back into the atmosphere. In contrast,
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when CO2 decreases, lower temperatures encourage sea ice growth and brine rejection,
strengthening deep ocean stratification, which limits the release of carbon from the deep
ocean. This asymmetry in ocean carbon dynamics implies that different ocean regions
respond to CO2 changes in varying degrees of carbon uptake and release, potentially
influencing long-term global carbon cycles and climate trends. Additionally, shifts in
ocean heat distribution patterns also affect long-term climate. Fabiano et al. (2024)
showed that the rate of warming in the Southern Ocean significantly increases over long
timescales, with heating primarily concentrated in the South Atlantic and Indian Oceans
under lower forcing scenarios, and expanding to the Pacific under higher forcing
scenarios. This aligns with the findings of Rugenstein et al. (2016), who noted that heat
uptake efficiency in the Southern Ocean is lower under higher forcing scenarios, leading
to shifts in ocean heat distribution across different timescales. Consequently, the
interpretation of long-term changes in lapse-rate feedbacks in this study must consider
regional variations in ocean energy distribution to confirm the drivers of feedback
mechanism changes over century timescales.

We employed the classic separation of lapse-rate and water vapor feedbacks,
allowing for a more direct comparison with traditional feedback analyses that also adopt
this separation. However, it is important that the quantification of feedback contributions
depends on how feedbacks and contributions are defined, which should be considered
when comparing studies. A recent study by Russotto & Biasutti (2020), which also
employed the feedback locking method, investigated how feedbacks contribute to Arctic
amplification in a set of idealized slab ocean aquaplanet GCM simulations that excluded
sea ice. Similar to our findings, they observed a positive contribution of water vapor
feedback to Arctic amplification. However, their simulations lacked albedo feedback,

which is a major positive feedback in the Arctic and interacts significantly with water
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vapor feedback in our results—though quantifying this interaction is challenging. Another
point worth noting is that both feedback locking and traditional feedback analysis
typically assume a linear relationship between feedbacks and warming, where surface
temperature changes are approximately proportional to the feedbacks. Under this
assumption, the vertical temperature changes in the atmosphere are generally attributed
to lapse-rate feedback. Henry & Merlis (2019) found that when linearizing the Stefan-
Boltzmann law, Planck feedback is expected to weaken Arctic amplification due to the
nonlinear nature of the law altering the vertical warming structure. Specifically, the
enhanced lapse-rate feedback partially diminishes the impact of the weakening Planck
feedback, leading to a strong AA.

One limitation of the feedback locking analysis to consider is that the results depend
on the degree of simplification in the complex energy exchange processes within the
model and on the assumption of state-dependent feedback parameters. In GCMs, these
parameters may evolve with changing climate conditions. As such, the temperature
changes in the MEBM feedback locking simulations are expected to differ from those in
comprehensive GCM feedback locking simulations, where GCMs represent more
processes and effectively have feedback parameters calculated interactively. In contrast,
in the MEBM simulations presented here, each feedback parameter remains fixed when
other feedbacks are locked. Although this is anticipated to be a source of inaccuracy,
previous studies have shown that treating feedback patterns as time-invariant provides a
relatively accurate approximation for climates ranging from pre-industrial to 2xCO2

conditions (Dai et al. 2020).
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Chapter 5 Conclusion

In this study, we utilized a series of abrupt CO2 experiments using a state-of-the-art
fully coupled climate model to compare the phenomena and mechanisms behind cold and
warm AA. Our findings show that when CO2 concentrations decrease, AA intensifies
more than it does under CO?2 increases, indicating a pronounced asymmetry. Feedback
analysis reveals that enhanced lapse-rate feedbacks plays key role in driving cold AA,
which interact with sea ice reduction, turbulent heat flux, and SAT. This asymmetry aligns
with the research framework summarized in Figure 14, where both feedback
decomposition and feedback locking approaches highlight the importance of lapse-rate
feedback and its interplay with atmospheric heat transport and sea ice distribution. While
the global surface temperature may respond differently to increases or decreases in CO2,
the Arctic demonstrates a distinct set of underlying mechanisms that shape its asymmetric
response. Further research is needed to better understand the feedback processes and
radiative forcings contributing to Arctic asymmetry, as these may fundamentally depend

on the nonlinear dynamics of the Arctic climate response (Sumata et al. 2023).
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Figure 14: Research framework exploring whether the intensity and mechanisms of AA

are symmetric.

In quantifying the physical mechanisms behind high-latitude lapse-rate feedback, we
distinguished the effects of local sea ice processes from those of remote atmospheric
energy transport, showing a clear spatial link between lapse-rate feedback and sea ice
retreat. By analyzing sea ice distribution changes, the connection between positive lapse-
rate feedback over the Arctic Ocean and reduced sea ice became clearer, consistent with
the feedback and heat transport decomposition highlighted in the framework. Additionally,
century-scale coupled simulations demonstrate that the response timescales differ for
warming and cooling scenarios, with surface warming responses occurring on decadal
scales, while surface cooling responses emerge over centuries. We also identified lapse-
rate feedback as the most significant source of asymmetry, a finding supported by
feedback locking analysis that reveals significant and nonlinear interactions between
atmospheric heat transport and feedbacks. Furthermore, the ocean’s long-term adjustment,

influenced by vertical mixing and deep-ocean heat transfer, indirectly affects the climate
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system’s response timescale.

The weakening of warm AA is primarily attributed to the changing relationship
between lapse-rate feedback and other feedbacks, particularly as upper-level lapse-rate
feedback transitions from positive to negative under increased CO2. In summary, this
study explored the roles of various feedback mechanisms in cold and warm AA through
both traditional feedback analysis and feedback locking methods, emphasizing how the
interplay between sea ice changes, atmospheric heat transport, and lapse-rate feedback
leads to asymmetric Arctic responses. Our results suggest that considering both CO2
increases and decreases offers a richer perspective on AA’s underlying mechanisms and
can inform climate policy and future carbon management strategies. Moreover, our
findings indicate that aerosol-induced cooling could also produce conditions leading to
cold AA. While the geographic distribution and temporal evolution of aerosol radiative
forcing differ from those of CO2 forcing, previous studies have suggested that the cooling
effects induced by aerosol loading could lead to the occurrence of cold AA (Feichter et al.

2004, Ming & Ramaswamy 2009, Jiang et al. 2020, England et al. 2021).
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APPENDIX

Global warming is characterized by an increase in SAT, with an accelerated rise
particularly evident in the latter half of the 20th century (Eyring et al. 2021). However,
changes in SAT can be influenced by various factors. The first source of variability comes
from external forcings, such as increases in greenhouse gas concentrations, variations in
anthropogenic and natural biomass burning aerosols, ozone depletion, solar fluctuations,
volcanic eruptions, and land-use changes. This externally driven variation is referred to
as forced variability. The second source of variability arises from internal processes
within the atmosphere, oceans, cryosphere, land, and biosphere, along with their
interactions (Cassou et al. 2018). This type of variability is known as internal variability,
manifesting fluctuations inherent to the climate system that can emerge even without the
effect of external forcings.

While forced variability has largely driven the large-scale and long-term trends in
SAT over the 1900-2020 period (Deser et al. 2012, Kay et al. 2015), the specific
contributions of internal and forced variability remain complex and not fully understood.
In particular, internal variability plays a key role on shorter timescales and smaller spatial
scales. For instance, the leading mode of internal variability in global SAT is the El Nifio
Southern Oscillation (ENSO), marked by significant temperature anomalies in the
equatorial Pacific and widespread teleconnections, with a periodicity of 2 to 7 years
(Wang & Picaut 2004, Wang et al. 2017). Other important modes of internal variability
include Interdecadal Pacific Variability (Newman et al. 2016) and Atlantic Multidecadal
Variability (Zhang et al. 2019), which influence climate patterns over decadal to

multidecadal scales. The slowed warming observed during 2002—-2012, often termed the
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global warming hiatus, has been linked to Interdecadal Pacific Variability (Kosaka & Xie
2013, Meehl et al. 2013, England et al. 2014) and reduced heat uptake by the Atlantic and
Southern oceans (Chen & Tung 2014, 2018). Additionally, internal variability may
include centennial to multi-centennial fluctuations, potentially influencing trends
observed from 1900 to 2015 (Bonnet et al. 2021, Fan et al. 2023)

Distinguishing between forced and internal variability is crucial in detection and
attribution studies, as it enables us to separate the climate response to radiative forcing
changes and gain a clearer understanding of internal climate variability. However,
instrumental records are available only from 1850 onwards with only one realization, and
the relatively short duration of these observations complicates efforts to accurately
characterize internal variability. Methods for identifying both types of variability include
approaches that consider linear trends (Swart et al. 2015, Vincent et al. 2015), quadratic
trends (Enfield & Cid-Serrano 2010), global-mean values (Trenberth & Shea 2006) and
a linear regression (Ting et al. 2009) as estimates of forced variability. Nonetheless, these
methods may not capture the full temporal evolution of temperature accurately,
particularly struggling to account for abrupt cooling events following large volcanic
eruptions (Schmidt et al. 2018). To remedy this issue, a family of methods based on linear
inverse modeling (Penland & Matrosova 1994, 2006) and empirical orthogonal functions
(EOFs, Ting et al. 2009) has been utilized to separate the internal variability modes and
investigate its relation to other climate components, such as the Atlantic meridional
overturning circulation (e.g., Frankignoul et al. 2017).

An alternative approach to separate internal variability from forced variability is to
conduct climate model simulations with large ensemble members, each with different
initial conditions (Deser et al. 2020). This methodology has been employed to overcome

the limitations of sparse observational data. Previous studies have estimated forced
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variability using the ensemble mean, which is assumed to effectively reduce the variance
associated with internal variability by a factor equal to the number of ensemble members
(Harzallah & Sadourny 1995, Hawkins & Sutton 2009, Ting et al. 2009, Solomon et al.
2011, Deser et al. 2014, Frankcombe et al. 2015). Consequently, many modeling centers
have conducted extensive ensemble simulations, often with more than 10 ensemble
members (Jeffrey et al. 2013, Rodgers et al. 2015, Deser et al. 2020). Some results of
these simulations are archived as single-model initial-condition large ensembles (SMILEs;
Deser et al. 2020), providing a valuable dataset for developing methods to distinguish
between forced and internal variability. Additionally, using members of a large ensemble
as surrogate observations allows for direct comparison of individual results with the
ensemble mean.

The Community Earth System Model 2 (CESM2) Single Forcing Large Ensemble
Project  (https://www.cesm.ucar.edu/working-groups/climate/simulations/cesm2single-
forcing-le) was developed to explore the roles of both forced and internal variability. This
project includes four sets of simulations, each with more than 10 members, driven by
individual climate forcing agents: greenhouse gases (GHG), anthropogenic aerosols
(AER), biomass burning aerosols (BMB), and a combination of other factors (EE),
including volcanic eruptions, solar irradiance variations, ozone, and landuse changes.
Alongside the all-forcing simulations from the CESM2 Large Ensemble Project
(https://www.cesm.ucar.edu/community-projects/lens2), this dataset allows for detailed
analysis and quantification of the contributions of different forcings to climate change
and variability.

Recent studies have been widely attempted to exploit artificial intelligence
techniques to study the forced and internal variability using large ensemble simulations

(e.g., Bone et al. 2023, Ham et al. 2023). For example, Bone et al. (2024) trained a U-Net
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model with CMIP5/6 simulations to filter out the internal variability signal in surface air
temperature, leaving forced variability. In contrast, Sweeney et al. (2023), using CMIP6
and CESM2 large ensemble, trained a neural network to single out a unique temperature
trend pattern driven by internal variability. These studies motive us to apply similar deep
learning approach to large-ensemble simulations. In this study we use the simulation sets
of CESM2 single forcing large ensemble to train a convolution neural network to separate
the forced variability from internal variability for each single forcing runs.

We begin by examining the annual-mean SAT anomalies and variability from the
CESM2 single-forcing large ensemble. Figure 1a shows the mean SAT anomalies from
2020 to 2050 for all-forcing simulations (herein referred to as ALL). Typical global
warming spatial patterns emerge, including amplified warming in the Arctic, stronger
warming over land compared to oceans, reduced warming in the North Atlantic (also
known as the ’Atlantic warming hole’), and El Nifo-like warming in the eastern tropical
Pacific. The variability, quantified by the standard deviation of SAT anomalies, is highest
in the Arctic, particularly in the Barents-Kara Seas (Figure 1b). This is largely due to
significant sea-ice retreat and the related sea ice-albedo feedback, which contribute to
substantial year-to-year variation. Other regions with notable variability include the North

Pacific and the eastern tropical Pacific.
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Figure 1: Temperature anomaly and internal variability, defined as the standard deviation
across 15 ensemble members, are examined for the period 2020 to 2050 in CESM2. The
panels show different forcing scenarios: (a, b) all forcings combined, (c, d) greenhouse

gas (GHQG) forcing, (e, f) aerosol (AER) forcing, (g, h) biomass burning (BMB) forcing,

and (i, j) everything else (EE) forcings.

The GHG simulation exhibits similar mean warming and variability patterns

(Figures 1c and d) compared to the ALL simulation, although with an overall greater
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magnitude. In contrast, the AER simulation results in global cooling patterns (Figure 1e)
that are opposite in sign to the GHG simulation. Notably, regions of strong cooling in the
AER simulations do not align precisely with regions of strong warming in the GHG
simulation. For example, the largest cooling is not observed in the Arctic, but rather in
the North America. While the mean SAT anomalies are smaller in the Arctic, the
variability remains high (Figure 1f). The mean SAT anomalies in the BMB and EE
simulations are much weaker (Figures 1g and 11); however, substantial variability persists
in the Arctic (Figures 1h and 1j), indicating the amplified effect of the strong sea-ice
albedo feedback.

We then examine the time series of global-mean and Arctic-mean SAT anomalies
over the 1850-2050 period. The GHG forcing drives global and Arctic warming,
beginning in the early 1900s and accelerating after the 1950s (red lines in Figures 2a and
2¢). In contrast, the AER forcing induces sustained global and Arctic cooling from the
1950s, leveling off around 2010 (blue lines in Figures 2a and 2c). The other two forcing
agents cause comparatively smaller variations in global and Arctic SAT (yellow and green
lines in Figures 2a and 2c¢). In the EE simulation, notable features are still evident, such
as the SAT drop in the early 1990s due to the Pinatubo volcanic eruption. The sum of all
single-forcing time series closely resembles the ALL simulation (gray lines in Figures 2a

and 2c), indicating a high degree of additivity for Arctic and global SAT.
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Figure 2: (a) Global and (c) Arctic annual mean surface air temperature anomalies in
CESM2, referenced to the 1850—1899 period. The data are processed using the ensemble
mean to highlight the forced signal, serving as the target air temperature reference for
CNN-based predictions of the forced signal. The CNN-generated forced signal is depicted

in (b) global and (d) Arctic annual mean anomalies.

We use a convolutional neural network (CNN) to carry out the training task and
present its architecture in Figure 3. The input to the network is a single time step of a
global SAT map with a spatial resolution of 96x144. The CNN architecture consists of
two sequential combinations of convolutional layers with ReLU activation and max-
pooling operations, followed by three fully connected layers. The output layer consists of
10 values, representing the global and Arctic averages for each of the five different forcing
types (ALL, AER, BMB, EE, GHG) for the input SAT map at the specified time step.
This network architecture effectively captures and transforms spatial patterns in SAT data,
enabling the model to predict the corresponding global and Arctic averages under

different forcing scenarios.
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Figure 3: A schematic of the CNN architecture, where the input consists of monthly mean
global temperature maps. The architecture includes two convolutional layers and two
maximum pooling layers, followed by three fully connected layers that produce 10 output
values. These outputs correspond to the global and Arctic mean responses to all, GHG,

AER, BMB, and EE forcings, respectively.

The CNN model effectively generates the forced component for each forcing agent
using a single member that was not involved in the training process (Figures 2b and 2d).
The CNN predictions capture the key characteristics of GHG-induced warming, AER-
induced cooling, and the smaller SAT variations associated with BMB and EE. Notably,
the CNN-predicted SAT time series also replicate the specific SAT declines in the early
1990s resulting from the Pinatubo volcanic eruption in the ALL and EE simulations. One
discrepancy is that the CNN-generated global SAT time series tend to appear smoother
than the true forced time series, especially for the EE and BMB simulations, which exhibit
weaker variability. However, this discrepancy is less pronounced in the Arctic SAT time

series.
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Figure 4: Correlation coefficients between the annual data of the (a) global and (b) Arctic
targets from CESM2 and the corresponding CNN-generated results. Panels (c) and (d)
show the root-mean-square error (RMSE) for the global and Arctic regions. Error bars
represent the standard deviation across 15 ensemble members, with thinner bars

indicating the results after detrending.

To further evaluate the CNN’s performance, we calculate the temporal correlation
coefficient and the RMSE between the CNN-predicted time series and the true time series
for the 1850-2050 period. With the exception of the BMB case, the correlation
coefficients are relatively high for both global-mean and Arctic-mean SATs (Figures 4a
and 4b), indicating that the CNN effectively captures the temporal variability of the forced
SAT responses. The lower correlation coefficient for the BMB case may stem from the
smoother time series predicted by the CNN, as previously discussed, which significantly
reduces the year-to-year variation in SATs associated with BMB forcing. While the
correlation coefficient provides insight into how well the CNN model can predict

temporal variability, the RMSE highlights potential mean bias between the CNN-
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predicted and true time series. We observe that the RMSE for the ALL case, in both global
and Arctic time series, is higher than the RMSEs for each individual forcing (Figures 4c
and 4d). This finding suggests that although the CNN captures year-to-year variability
well for the ALL case, it may mis-estimate the mean state. Due to the amplified Arctic
SAT response resulting from Arctic amplification, the RMSE for the Arctic time series is
greater than for the global one. To further examine this long-term trend effect, we also
remove the linear trend for each case and repeat the correlation coefficient and RMSE

calculations, yielding similar results (thin bars in Figure 4).
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Figure 5: Occlusion sensitivity using CESM2 dataset.

We next aim to improve the interpretability of the CNN by conducting an occlusion
analysis (Zeiler 2014, Ham et al. 2023). The heatmap generated from this analysis
highlights regions with high values, both positive and negative (Figure 5). A prominent
area is the Arctic, where significant values appear in the Arctic Ocean, contributing
positively to the CNN’s learning across most regions in the northern high-latitudes. This
pattern aligns well with the AA phenomenon. However, focusing on the AA hotspot,
specifically the Barents-Kara Seas with the highest amplification (Zhong et al. 2018,
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Chen et al. 2021, Kumar et al. 2021), we observe that the heatmap values are not
exceptionally high in this area. This suggests that the CNN may not fully capture this
prominent feature to distinctly separate the forced Arctic and global SAT signals. Notably,
a negative value is present across the Fram Strait, which may be linked to the
climatological ocean currents and sea-ice transport out of the Arctic domain.

In land areas, regions such as North America and northeastern Siberia and Asia show
large negative values. The combination of these negative values and the positive values
over the Arctic might reflect the so-called Arctic warm-continental cold SAT pattern
associated with AA (e.g., Cohen et al. 2014, Kug et al. 2015) or internal variability
(Francis & Skific 2015, Vavrus 2018). Interestingly, values over land are generally larger
than those over the oceans, resonating with the dominant global warming spatial feature
where land warms more than the ocean (Joshi et al. 2008, Boer 2011, Byrne & O’Gorman
2013). Additionally, large values are observed in Antarctica, with positive values in
eastern Antarctica and negative values in western Antarctica. This may represent a zonal
wavenumber-1 pattern, possibly related to the variability in large-scale atmospheric

circulation in the Southern Hemisphere.

51

doi:10.6342/NTU202404648



-100 -50 0 50 100

(b) Arti; ALL

90°5 e " — 90°5 o W L o
120°W 60°W 0° 60°E 120°E 180°E 120°W 60°W 0° 60°E 120°E 180°E

(d) Arctic AAER

120°W 60°W 0° 60°E 120°E 180°E 120°W 60°W 0° 60°E 120°E 180°E

90°s = s > nt Yy
120°w 60°W 0° 60°E 120°E 180°E 120°w 60°W 0° 60°E 120°E 180°E

(g) Global EE (h) Arctic EE
— . ==

L '.‘ “' T

60°S 60°S
) 2 .
%0°s ; =ry s = AT a0
120°wW 60°W 0° 60°E 120°E 180°E 120°w 60°W 0° 60°E 120°E 180°E

_(i) Global GHG . (j) Arctic GHG

Figure 6: Occlusion sensitivity using CESM2 dataset for (a, b) ALL forcing and single

forcing (c, e, g, 1) global and (d, f, h, j) Arctic average.

The occlusion analysis also enables us to focus on a single output, allowing us to
create heatmaps attributed to one specific forcing agent. For each individual forcing, we
observe a spatial distribution similar to that shown in Figure 6. One notable feature that
stands out from the ALL heatmap is the overall negative values in the Northern
Hemisphere and positive values in the Southern Hemisphere. This pattern reflects the

inter-hemispheric gradient, a unique spatial response to global warming that has been
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widely discussed in previous studies (Chiang & Friedman 2012, Ma et al. 2012, Vallis et
al. 2015). The result suggests that the CNN has learned this feature, aiding in the removal
of internal variability and the distinction of forced responses.

The CNN training exercise is based on CESM2 single-forcing simulations with large
ensembles. A relevant question that follows is whether this trained CNN can be applied
to simulations from other climate models with single forcings. If so, it would suggest that
the trained CNN model is generalizable to other simulated datasets. To test this, we use
data from the Detection and Attribution Model Intercomparison Project (DAMIP,
https://damip.lbl.gov/) under CMIP6. We select four models that provide more than 10
ensemble members for both GHG and AER simulations. It is noted that the four models
from DAMIP did not offer BMB and EE simulations. The results are presented in Figures

7 and 8.
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Figure 7: Panels (a), (c), (i), and (k) show the global SAT for the four models, CanESMS5,

CNRM-CM6-1, MIROC6, and IPSL-CM6A-LR, respectively. Panels (b), (d), (j), and (1)
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display the CNN-generated global SAT for the respective models. Panels (e), (g), (m),

and (o) present the Arctic SAT for each of these models, while panels (f), (h), (n), and (p)

represent the CNN-generated Arctic SAT.
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Figure 8: Panels (a) and (b) display the correlation coefficients between the annual data

of the global and Arctic targets from CanESMS5 and the corresponding CNN-generated

results. Panels (e) and (f) show the root-mean-square error (RMSE) for the global and

Arctic regions, respectively. The same structure is used for other models: panels (c), (d),
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Finally, and perhaps most intriguingly, we apply the trained CNN to observational
data to estimate the forced response for each of the four forcing agents. We use SAT data
from the Hadley Centre (referred to as HadCRUT) because due to the higher accuracy of
reanalysis data in reflecting actual atmospheric conditions, which helps to better
understand and evaluate the biases present in our network model. The output global SAT
time series for ALL forcings exhibits similar decadal variations to the HadCRUT time
series before 1970 (Figure 9a). A warming trend becomes apparent after around 1975;
however, the CESM2 SAT time series for ALL forcing overall shows smaller values than
the HadCRUT SAT series. Notably, the CO2 contribution dominates, as the CO2 and ALL
time series are closely aligned, which differs from the CESM?2 results, while the BMB
and EE contributions remain minimal. Unexpectedly, the AER time series does not exhibit
the cooling trend seen in the CESM2 AER time series. Instead, the HadCRUT AER time
series shows a relatively flat trajectory, suggesting that the CNN may not effectively
distinguish the AER-forced signal within the observational global SAT data. For the
Arctic, the estimated forced time series show similar evolution to the HadCRUT with
ALL and CO2 stronger in amplitude (Figure 9b). This seems not reasonable as the Arctic

SAT response tends to amplified the global SAT one.
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Figure 9: The annual mean data from HadCRUT are represented by a pink line. Other
colors indicate the CNN-generated forcing decomposition results, with thin lines
depicting the direct outputs and thick lines illustrating the smoothed results obtained using

a five-year moving average.

This limitation is evident in the temporal correlation and RMSE results (Figure 9).
The correlation coefficients are generally lower than in previous cases, with values for
the AER and BMB cases falling below 0.2 (Figures 10a and b). In some instances,
opposite signs appear, such as for the BMB global SAT and AER Arctic SAT. Additionally,
the RMSE values are larger (Figures 10c and d). These results suggest that the CNN
model, trained on CESM2 simulations, may not generalize effectively to observational

records. We will explore possible reasons for this in future studies.
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Arctic targets from CESM2 and CNN-generated HadCRUT results. Panels (c) and (d)
show the RMSE for the global and Arctic regions. Error bars represent the standard
deviation across 15 ensemble members, with thinner bars indicating the results after

detrending.
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