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中文摘要 

北極放大效應指北極表面溫度變化幅度相較於全球其他區域更為顯著的現象，且在二氧

化碳濃度降低和增加的情境下皆會出現，意指在二氧化碳減少造成全球冷卻的情境中，北極

冷卻將比全球平均冷卻更顯著。本研究探討反饋交互作用對北極放大效應的影響，我們分析

受到一系列廣泛的二氧化碳濃度（從工業化前的 1/8 倍到 8 倍）強迫的氣候模型模擬，結果

表明北極放大效應確實在二氧化碳濃度下降的情況下發生，且冷卻北極放大效應的強度比二

氧化碳濃度增加情境中的強度更強。反饋分析顯示，普朗克、失效率和反照率反饋是產生二

氧化碳增加和減少情境中北極放大效應的主要因素，但與二氧化碳濃度減少最相關的是失效

率反饋，其在冷卻情境中的強度比暖化情境中更強，不對稱的作用使得冷卻情境中有更強的

北極放大效應。我們也藉由逐一關閉濕能量平衡模型中各項反饋，分析各反饋機制、大氣熱

傳輸及其交互作用的貢獻。我們發現，在二氧化碳減少的冷卻模擬中，反饋交互作用對北極

放大效應的貢獻比二氧化碳增加的模擬中的貢獻更強。特別的是，當二氧化碳濃度增加時，

溫度垂直遞減率反饋的交互作用會導致負的北極溫度變化；而在二氧化碳濃度降低的情境下，

則會產生正的溫度變化。這表明，溫度垂直遞減率反饋與其他反饋及大氣熱傳輸的交互作用

是導致氣候冷卻情境下的北極放大效應比暖化情境更強的重要過程。反饋與大氣熱傳輸的交

互作用通常會抵銷反饋間的交互作用。我們的結果突顯了非線性過程在產生北極放大效應對

冷卻與暖化氣候不對稱反應中的重要性。 

 

關鍵詞：冷北極放大效應；二氧化碳強迫；反饋鎖定；氣候反饋交互作用；非線性過程 
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ABSTRACT 

  

The Arctic amplification (AA), the phenomenon of amplified surface temperature response in 

the Arctic compared with the response elsewhere, can emerge under both reduced and increased 

carbon dioxide (CO2) forcings. In this study, we investigate the roles of feedback interactions 

contributing to AA. We analyze climate model simulations forced by a wide range of CO2 

concentrations (from 1/8 to 8 times preindustrial level). Our results show that AA occurs not only 

under increasing CO2 but also under decreasing CO2, with the Arctic exhibiting an even stronger 

cooling-induced AA than the warming-induced counterpart. Moreover, the Planck, lapse-rate, and 

surface albedo feedbacks are identified as the primary contributors to AA in both scenarios. Among 

these, the lapse-rate feedback, in particular, demonstrates a stronger influence under CO2 reduction, 

thus reinforcing the asymmetric nature of AA in cooling versus warming climates. We also use a 

moist energy balance model (MEBM) to emulate the contributions of each feedback, atmospheric 

heat transport (AHT), and their interactions by locking the effect of each of them. We find that the 

contribution of feedback interactions to polar amplification is overall stronger in the CO2 reduction 

runs than in the CO2 increase runs. In particular, the lapse-rate feedback interaction in the CO2 

increase runs leads to negative Arctic temperature change, whereas in the CO2 decrease runs leads to 

positive temperature change. This result indicates that the interaction of lapse-rate feedback and other 

feedbacks and AHT is a crucial process that gives rise to stronger AA in a cold climate state than that 

in a warm one. The feedback interaction with AHT generally counteracts the effect of feedback-

feedback interactions. Our results highlight the importance of the nonlinear processes in producing 

AA asymmetric response to cooling and warming forcing agents. 
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Chapter 1 Introduction 

 

 Over the past 40 years, observational data indicate that near-surface air temperatures 

in the Arctic have risen between 2 to 4 times more rapidly than in other parts of the world 

(Serreze & Francis 2006, Serreze et al. 2009, Lenssen et al. 2019, Meredith et al. 2019, 

England et al. 2021, Chylek et al. 2022, Rantanen et al. 2022). This phenomenon, known 

as AA, has been widely attributed to	 elevated atmospheric CO2 levels (Manabe & 

Wetherald 1975, Gillett et al. 2008, Jones et al. 2013, Previdi et al. 2020, Taylor et al. 

2022) and is projected to persist in the future (Long & Collins 2013). In addition, there is 

a vigorous debate focuses on whether the enhanced Arctic warming could influence 

extreme weather events and climate variability in the mid-latitudes of the Northern 

Hemisphere (Francis & Vavrus 2012, Barnes 2013, Cohen et al. 2014, Mori et al. 2014, 

Barnes & Screen 2015, Overland et al. 2015, 2016, Cohen et al. 2018, Coumou et al. 2018, 

Blackport et al. 2019, Blackport & Screen 2020a,b, Cohen et al. 2020, Zappa et al. 2021, 

Smith et al. 2022). Attention to AA extends beyond warming conditions and includes 

scenarios where CO2 levels diminish, potentially resulting in the Arctic cooling more 

pronounced than other regions. Therefore, understanding the AA under varying CO2 

concentrations is crucial, as it has profound implications for the ecology and 

socioeconomics within the Arctic Circle, as well as for the dynamical changes in the 

global climate system. 

While most studies have focused on AA under increasing CO2 concentrations, which 

can be simulated over century timescales (Pithan & Mauritsen 2014, Dai et al. 2019, 

Previdi et al. 2020, Hu et al. 2022, Liang et al. 2022a), less is known about AA under 

cooling scenarios. In these scenarios, Arctic cooling is expected to be more pronounced 



doi:10.6342/NTU202404648

 2 

than cooling in other regions of the globe. Recent studies examining how aerosol 

emissions affect global and Arctic climates suggest that AA can also emerge under cooling 

influences (Jiang et al. 2020, England et al. 2021). On the other hand, paleo-climate 

investigations have revealed that AA patterns manifest during both CO2 decreases and 

increases. For instance, Hoffert & Covey (1992) and Miller et al. (2010) assessed AA’s 

magnitude during climatic intervals such as the Holocene Thermal Maximum, Last 

Glacial Maximum, Last Interglacial, and mid-Pliocene periods using paleo-climate 

proxies. Nevertheless, these studies have not yet comprehensively compared the 

mechanisms of AA under both cooling and warming scenarios, nor have they contrasted 

the phenomenological and mechanistic differences between cooling driven and warming-

driven AA. 

In climate change research, the timescale required for the climate system to reach 

equilibrium in response to greenhouse gas forcing is often overlooked. Although previous 

studies have suggested that the climate system gradually reaches equilibrium over 

timescales ranging from hundreds to thousands of years (Dai et al. 2020, Dunne et al. 

2020, Rugenstein et al. 2020), most current coupled model intercomparison projects still 

focus on simulations spanning 150 years, such as Phase 6 of the Coupled Model 

Intercomparison Project (CMIP6). For example, CMIP6 uses a 150-year abrupt fourfold 

CO2 experiment to estimate equilibrium climate sensitivity (Eyring et al. 2016). However, 

such simulation durations may be insufficient to fully capture the nonlinear feedback 

mechanisms during long-term climate change, especially those involving dynamic 

feedbacks in the Arctic and other high-latitude regions. Long-term simulations by 

Rugenstein et al. (2020) show that as the simulation duration extends to 1000 years, the 

global average temperature increase is significantly higher than that estimated from the 

first 150 years. Our findings indicate that the response of Northern Hemisphere surface 
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warming is nearly 500 years faster than that of cooling. Our study attempts to compare 

the feedback mechanisms between the first and last 150 years of a 1000-year simulation, 

which could greatly reveal the extent to which specific mechanisms are directly or 

indirectly influenced by the long timescales required for ocean heat transport equilibrium 

(Yang & Zhu, 2011). Studies by Jansen (2017) and Yang & Zhu (2011) emphasize that 

oceanic vertical mixing and heat transport are crucial for near surface temperature 

responses in high northern latitudes. In particular, Jansen (2017) highlights the direct 

relationship between atmospheric cooling or warming and changes in deep ocean 

circulation and stratification. Chalmers et al. (2022) further connects these response time 

differences in high-latitude regions to the advance and retreat of sea ice and the associated 

amplified lapse-rate feedback and surface albedo feedback timing. This study will not 

only enhance our understanding of the dynamics of feedback mechanisms in the Arctic 

under different simulation durations but also provide a new perspective for examining 

Arctic feedback mechanisms, leading to a more comprehensive understanding of the 

long-term changes in the climate system under varying conditions. 

Recently, the traditional feedback analysis framework has been expanded to study 

regional warming driven by spatially varying feedbacks (Armour et al. 2013, Pithan & 

Mauritsen 2014). Some studies have investigated the contribution of each climate 

feedback to Arctic Amplification, identifying that the lapse-rate feedback contributes the 

most to Arctic Amplification, followed by changes in the Planck feedback and surface 

albedo feedback (Pithan & Mauritsen 2014, Stuecker et al. 2018, Goosse et al. 2018). 

Although water vapor feedback is ubiquitous, it is strongest in low-latitude regions and 

contributes more to tropical warming than to Arctic warming, thus acting as a primary 

factor that mitigates Arctic Amplification. Analyzing regional warming through the 

spatial structure of feedbacks provides a computationally efficient approach and allows 
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for a clean decomposition of surface warming, as the sum of the warming contributions 

from individual feedbacks equals the total warming. However, this method does not 

account for changes in AHT associated with the strength of individual feedbacks, which 

can affect regional warming and potentially influence Arctic Amplification (Langen et al. 

2012, Russotto & Biasutti 2020). Therefore, the traditional feedback analysis framework 

may lack sufficient interpretation of the interactions between feedbacks and AHT when 

attributing the Arctic Amplification effect. 

Another approach to evaluating the impact of specific climate feedbacks is feedback 

locking. This method involves “locking” a particular feedback within a model—holding 

it artificially constant—and then assessing how the climate system responds to 

perturbations when that feedback no longer adapts. The logic behind this approach is that 

no feedback operates in isolation: they interact with one another as well as with the 

broader climate system, particularly through mechanisms such as AHT. By comparing 

scenarios in which a given feedback is locked versus fully active, we can attribute changes 

in surface warming to that feedback and examine how other processes compensate. For 

example, studies have locked surface albedo feedback and found that even though it 

strongly influences polar amplification, its net effect on global mean temperature is 

modest (Hall 2004, Graversen & Wang 2009). Furthermore, work has shown that AHT 

can compensate for a locked feedback, allowing the climate to maintain a warming pattern 

comparable to scenarios where all feedbacks freely adjust (Langen et al. 2012). These 

compensations highlight the interconnected nature of feedbacks and processes: when one 

feedback is altered, water vapor transport and other feedbacks shift to reach a new 

equilibrium. Consequently, the warming attributed to individual feedbacks does not 

simply sum to the total warming because other parts of the system respond dynamically 

to changes in feedback strength, especially AHT (Russotto & Biasutti 2020). 
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In this study, we combine radiative kernel techniques with a MEBM to disentangle 

these complex interactions and quantify the contributions of various radiative feedbacks 

and their coupled processes to Arctic Amplification. The MEBM framework allows us to 

hold certain surface flux conditions fixed, ensuring that any resulting adjustments in the 

climate system, including shifts in feedback distributions and atmospheric heat transport, 

are clearly linked to the feedbacks themselves. By performing feedback locking 

experiments within the MEBM, we can observe how changing one feedback alters the 

meridional structure of moist static energy, modulates atmospheric heat transport, and 

influences other feedbacks in turn.	This approach goes beyond traditional methods by 

revealing how each feedback’s role in Arctic Amplification is not an isolated property, 

but rather the outcome of a delicate balance among radiative processes, surface heat 

fluxes, and large-scale energy transports. 

Our findings show that the Arctic’s characteristic lapse-rate feedback, commonly 

viewed as closely tied to sea ice and surface albedo changes, is actually intertwined with 

the distribution of atmospheric energy. In high-latitude regions where vertical convection 

is relatively weak, energy convergence by AHT can amplify or counteract certain 

feedbacks. Changes in the vertical temperature structure translate into distinct positive or 

negative lapse-rate feedbacks, depending on the latitude and the relative strength of 

surface and upper-atmospheric warming. The interaction between feedback locking and 

MEBM simulations shows how changes in the vertical temperature structure, along with 

changes in horizontal heat transport, affect where and how Arctic Amplification takes 

place. In other words, while surface and radiative feedbacks are important drivers of 

Arctic warming, their overall effect depends on how the entire climate system, especially 

atmospheric heat transport, adjusts and responds to them. This way of 

understanding feedback processes suggests that Arctic Amplification cannot be fully 
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explained by local sea ice changes alone. Instead, it comes from the combined effects of 

multiple feedbacks and large-scale energy flows working together. 

High-latitude lapse-rate feedback makes a significant contribution to AA under 

cooling scenarios. According to the method of Feldl et al. (2020), these feedbacks are 

primarily divided into “upper” and “lower” contributions. This distinction is derived from 

the separation of the high-latitude troposphere from other parts of the atmosphere by the 

characteristic climatic isotropic surface. This decomposition clarifies that the positive 

high-latitude lapse-rate feedback over polar oceans mainly arises as an atmospheric 

response to regional sea ice loss, while it decreases in subpolar latitudes due to increased 

poleward energy transport. Lapse-rate feedback manifests as negative feedback in low-

latitude regions, mainly driven by moist convection, which causes more pronounced 

warming of the upper troposphere, increasing outgoing longwave radiation and thereby 

offsetting further surface warming. Notably, most studies have concentrated on warming 

scenarios, leaving cooling cases less explored. By distinguishing regional drivers of high-

latitude lapse-rate feedback, we gain insights into its interaction with non-local processes 

such as heat transport and surface heat flux, further influencing Arctic Amplification. 

We also analyze the regional and remote contributions of high-latitude lapse-rate 

feedback following Feldl et al. (2020). This approach decomposes the feedback into 

components associated with different atmospheric layers defined by the 285-K isotherm, 

allowing us to isolate surface-driven processes, such as ocean-to-atmosphere energy 

transfer linked to sea ice extent changes (Deser et al. 2015, Blackport & Kushner 2017, 

Oudar et al. 2017, Dai et al. 2019) or albedo feedback (Graversen et al. 2014, Feldl et al. 

2017, 2020), from those involving atmospheric convection and heat transport. Poleward 

atmospheric heat transport, which warms the upper troposphere at high latitudes (Alexeev 

et al. 2005, Caballero & Langen 2005, Hwang et al. 2011, Alexeev & Jackson 2013), 
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supports a negative upper-level lapse-rate feedback. A clearer understanding of how 

changes in CO2 concentrations affect AA will help improve the representation of high-

latitude feedback mechanisms in climate models and provide valuable insights into the 

nonlinear characteristics of feedback interactions within the climate system. 

Understanding how changes in CO2 concentrations influence AA is crucial for 

gaining a more complete view of how the climate system responds, particularly in polar 

regions. The primary objectives of this study include: 

(i) Comparing AA under scenarios of increased and decreased CO2, identifying and 

quantifying the contributions of key feedback mechanisms to AA. 

(ii) Identifying and quantifying the contributions of various feedbacks to AA under 

reduced CO2 conditions through feedback locking experiments. 

(iii) Discussing how interactions among feedback mechanisms and AHT influence the 

strength of AA, revealing asymmetric responses between cooling and warming 

scenarios.  
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Chapter 2 Data and Methods 

 

2.1 Feedback Analysis using Radiative Kernels 

This study examines a series of fully coupled atmosphere-ocean-sea ice-land 

simulations under various abrupt CO2 forcings levels (Mitevski et al. 2021, 2022). We 

use the Community Earth System Model version 1 (CESM1, Kay et al. 2015), which 

incorporates the Community Atmosphere Model version 5 (CAM5), the Community Ice 

CodE version 4 (CICE4), the Community Land Model version 4 (CLM4), and the Parallel 

Ocean Program version 2 (POP2), all using a horizontal resolution of 1 degree. Our 

experiments consist of both enhanced and reduced CO2 concentrations relative to 

preindustrial (PI) levels, specifically 0.125x, 0.25x, 0.5x, 1x (PI), 2x, 3x, 4x, 5x, 6x, 7x, 

and 8x PI CO2. During all runs, the concentrations of other trace gases, ozone, and 

aerosols are held constant at their PI values. Following the CMIP6 4xCO2 protocol 

(Eyring et al. 2016), each simulation is initialized from PI conditions and integrated for 

150 years. We define the response of any variable as the difference between each nxCO2 

experiment and the 1xCO2 control, denoted as ∆, and use the final 30 years to represent 

the equilibrium response. Additionally, we extend the existing 150-year instantaneous 

2xCO2 and 0.5xCO2 simulations to 1000 years to investigate feedback asymmetry over 

longer periods.  

To quantify the strength of AA, we define a dimensionless Arctic Amplification 

Factor (AAF) as:  

𝐴𝐴𝐹 =
∆𝑆𝐴𝑇!"#$%#
∆𝑆𝐴𝑇&'()*'

 

where ∆SATArctic is the Arctic (60°-90°N) mean surface-air temperature response, and 
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∆SATglobal is the global mean SAT response. This definition of AAF has been widely used, 

and its physical interpretation has been discussed in many studies involving abrupt CO2 

experiments on AA (Pithan & Mauritsen 2014, Goosse et al. 2018, Liang et al. 2022a). 

To explore the drivers behind AA, we perform a feedback decomposition using the 

Arctic (60°-90°N) and tropical (30°S-30°N) top-of-atmosphere (TOA) energy budgets 

(Soden et al. 2008). The basic atmospheric energy budget relation can be expressed as: 

Δ𝑅 + Δ𝐹 − Δ𝐻( = 0 

Here, ∆R is the response of net downward radiation at the TOA, ∆F is the response of the 

horizontal convergence of atmospheric and oceanic energy transport, and ∆𝐻( 	 is the 

ocean heat uptake response. The contribution from ocean heat storage dominates over the 

negligible heat capacity of the atmosphere, land, and snow/ice melt (Polvani et al. 2020, 

Liang et al. 2022b). We infer ΔF as the residual between ΔR and ΔHo. Following previous 

work (Pithan & Mauritsen 2014, Polvani et al. 2020, Hahn et al. 2021, Jenkins & Dai 

2021, Beer & Eisenman 2022, Liang et al. 2022b, Wu et al. 2023), we separate ΔR into 

contributions from the Planck response (ΔRPL), the lapse-rate response (ΔRLR), the albedo 

response (ΔRALB), the water vapor response (ΔRWV), and the cloud response (ΔRCLD). We 

use radiative kernels from CAM5 (Pendergrass et al. 2018) to accomplish this 

decomposition. The effective radiative forcing (ERF), ΔRF, is determined using a 

corresponding set of fixed-SST simulations that vary CO2 and by taking the 30-year 

average change in TOA energy flux (Mitevski et al. 2021). 

Δ𝑅 = Δ𝑅+ + Δ𝑅,- + Δ𝑅-. + Δ𝑅!-/ + Δ𝑅01 + Δ𝑅2-3 

Next, ΔOHT (the oceanic heat transport response) is derived as the difference 

between ΔHo and the change in net surface heat flux (shortwave, longwave, latent, and 

sensible) between ocean and atmosphere. The atmospheric heat transport response 

(ΔAHT) then follows as the difference between ΔF and ΔOHT. 
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All terms are converted into corresponding temperature changes by dividing by the 

negative global mean Planck feedback parameter (−λ0), as described by Pithan & 

Mauritsen (2014) and Goosse et al. (2018). Any residual in the radiative kernel 

approximation is determined by comparing the total TOA radiation response to the sum 

of these individual feedback contributions. In general, this residual tends to be small 

compared to the other components. 

 

2.2 Feedback Locking Analysis 

 This study employs the MEBM configuration described in Beer & Eisenman (2022) 

to simulate changes in surface temperature and AHT under various CO2 forcings. The 

MEBM is a simplified climate model that emphasizes horizontal energy transport, 

assuming heat primarily diffuses within the atmosphere. We conducted feedback locking 

experiments by fixing specific feedback parameters within the MEBM framework to 

analyze the warming response in the absence of those feedbacks. In these experiments, 

we quantified changes in surface temperature due to individual locked feedbacks by 

comparing results from scenarios with all feedbacks active against those where one 

feedback was locked. 

The MEBM approximates AHT as a diffusion process involving surface temperature 

and specific humidity, capturing temperature and AHT changes similar to comprehensive 

climate models while maintaining computational efficiency (Bonan et al. 2018, Armour 

et al. 2019). Numerous studies have established MEBM’s utility in evaluating individual 

radiative feedbacks’ impact on temperature and AHT under global warming (Hwang & 

Frierson 2010, Rose et al. 2014, Roe et al. 2015, Russotto & Biasutti 2020). By 

incorporating latent heat effects from atmospheric water vapor transport, MEBM builds 
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on a dry energy balance model framework, providing a more accurate depiction of AHT 

dynamics, particularly in high-latitude regions. 

In our feedback locking analysis, simulations were conducted for each feedback 

locking scenario to assess their temperature contributions. To “lock” a specific feedback 

within this framework, Beer & Eisenman (2022) modify the original TOA energy budget 

equation by removing the contribution of that feedback. This is achieved mathematically 

by adjusting the feedback parameter λi for the targeted feedback, as shown in the modified 

energy budget equation: 

(𝜆 − 𝜆%)Δ𝑇4% +Δ𝑅+ + Δ𝐹 − Δ𝐻( = 0 

where T−i denotes the temperature response when the feedback λi is locked. Total warming 

T depends nonlinearly on λ, as discussed by Roe & Baker (2007). Locking a feedback 

fixes the temperature change associated with that feedback, while interactions among 

feedbacks modify the overall warming response. Each feedback influences AHT, 

adjusting according to regional warming changes induced by other feedbacks. 

By solving this equation, we isolate the temperature contribution due solely to the 

locked feedback, ∆𝑇% , by taking the difference between the total warming and the 

temperature response with the locked feedback: 

∆𝑇% =	∆𝑇 − ∆𝑇4% 

For further accuracy in describing feedback interactions, the warming contributions 

due to feedback locking can be separated into three components: direct warming from 

individual feedback, interactions among feedbacks, and interactions between feedbacks 

and AHT. This means that the influence of an individual feedback on temperature not 

only directly affects the climate system but also modifies the response of other feedbacks 

through changes in total warming and AHT. This approach allows us to effectively 

distinguish the direct contributions of individual feedbacks from all other nonlinear 
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interactions. 

∆𝑇% = 𝜆%
∆𝑇
−𝜆5

+
∑ 𝜆6∆𝑇%%76

−𝜆5
+
∆𝐹 − ∆𝐹4%

−𝜆5
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Chapter 3 Results 

 

3.1 Asymmetric Climate Response under CO2 Forcing 

 We first examine the time series of annual mean SAT over the Arctic and the globe 

throughout the 150-year simulations (Figure 1a). As expected in abrupt CO2 experiments, 

both Arctic and global SATs adjust rapidly during the first 30 years before gradually 

approaching a quasi-equilibrium state. Correspondingly, sea ice extent (SIE) either 

expands or contracts in response to the forcing (Figure 1b). For instance, under 7x and 

8xCO2, the sea ice melts rapidly within the first 15 years, resulting in an ice-free Arctic 

thereafter, whereas lower CO2 scenarios produce a slow but steady growth in SIE. The 

degree of sea ice response reflects the intensity of the CO2 forcing. Throughout the 150-

year integration, the AAF is consistently larger under reduced CO2 conditions than under 

elevated CO2 conditions (Figure 1c). This outcome, which may seem unexpected, 

highlights an inherent asymmetry in the intensity of AA between scenarios of increasing 

versus decreasing CO2 levels. 
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Figure 1: (a) Annual-mean Arctic and global mean SAT time series for each nxCO2 

experiment. (b) and (c) Same as in (a), but showing annual-mean Arctic SIE and AAF, 

respectively. The gray shaded area in (b) denotes ice-free conditions, defined as SIE 

falling below 1,000,000 square kilometers. 
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We then examine the mean responses of Arctic SAT, SIE, and turbulent heat flux 

over the final 30 years to illustrate their coupling relationships and reveal the mechanisms 

under varying CO2 forcing intensities. These variables exhibit consistent patterns of 

variation with CO2 forcing intensity and are strongly interrelated (black lines in Figures 

2a-c). This alignment reflects a well-established feedback process: as CO2 increases, 

Arctic SAT rises, accelerating sea ice melt and exposing more open water, thus enhancing 

ocean-atmosphere heat exchange (Deser et al. 2010, Screen & Simmonds 2010, Goosse 

et al. 2018, Dai et al. 2019, Liang et al. 2022a). The same feedback loop operates when 

CO2 decreases, as seen in the 0.125x, 0.25x, and 0.5xCO2 experiments.  

A particular feature worth noting is a kink in the 4xCO2 experiment, linked to a 

shutdown of the Atlantic Meridional Overturning Circulation (AMOC) (Mitevski et al. 

2021). Previous research indicates that many CMIP5 and CMIP6 models exhibit 

substantial AMOC weakening under increasing CO2 forcing (Rugenstein et al. 2013, 

Winton et al. 2013, Palter 2015, Trossman et al. 2016, Caesar et al. 2020). The reduction 

in Arctic sea ice can also influence the strength of AMOC by increasing freshwater flux, 

but this relationship is not unidirectional (Oudar et al. 2017, Sévellec et al. 2017). 

Mitevski et al. (2021) demonstrated that, in abrupt CO2 experiments using CESM1 and 

GISS-E2.1-G, the AMOC collapses at 4xCO2 and 3xCO2 respectively, and does not 

recover under even stronger forcing. Their findings suggest that ocean dynamics play a 

key role, beyond simple ocean-atmosphere interactions. 

Focusing on AAF, a central focus of this study, all three cold AAF values exceed all 

corresponding warm AAF values (Figure 2d). We also observe that with increasing CO2 

forcing intensity (except for the 4xCO2 case), the warm AAF tends to decrease, a trend 

documented in previous studies and primarily attributed to the relatively small reduction 

in SIE and the subsequent weaker heat flux exchange between the ocean and atmosphere 



doi:10.6342/NTU202404648

 16 

under near-ice-free conditions (Deser et al. 2010, Screen & Simmonds 2010, Chung et al. 

2021, Liang et al. 2022a). In contrast, differing from the warm AAF (except for the 

4xCO2 case), the highest cold AAF occurs in the 0.25xCO2 experiment rather than in the 

0.125xCO2 experiment. We explain this by noting that under near-complete ice coverage, 

sea ice cannot expand significantly further as CO2 is reduced, meaning the incremental 

SIE increase from 0.125x to 0.25xCO2 is smaller than that from 0.25x to 0.5xCO2 (Figure 

2b). Consequently, changes in turbulent heat flux and Arctic SAT are relatively small, 

resulting in a lower AAF at 0.125xCO2 than at 0.25xCO2. Additionally, the collapse of 

the AMOC indeed affects the strength of the AAF, as clearly shown in Figure 2d. Despite 

the collapse of the AMOC, Arctic-related feedbacks continue to produce AA due to the 

persistent CO2 radiative forcing on the climate system. 

 

 

Figure 2: Annual-mean responses during the final 30 simulation years for each nxCO2 

experiment: (a) Arctic SAT, (b) Arctic SIE, (c) turbulent heat flux (latent + sensible), and 

(d) AAF. Error bars represent the 95% confidence intervals, derived using Student’s t-

distribution. 
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Here, we conducted feedback analysis to seek a clear explanation for why cold AAF 

is greater than warm AAF. For each feedback, ERF, and meridional heat transport, we 

compared their values in the Arctic region with those in the tropical region, following 

previous studies (Pithan & Mauritsen 2014, Hahn et al. 2021, Beer & Eisenman 2022, 

Liang et al. 2022b). Figure 3a and b display the results from the 0.125xCO2 and 8xCO2 

experiments, comparing their differences and similarities. The Planck, lapse-rate, and 

albedo feedbacks stand out as the main drivers of both cold and warm AA, as their 

responses exceed the one-to-one line (gray dashed line), indicating stronger Arctic 

responses than the global mean. In contrast, water vapor feedback works to reduce AA, 

and the other feedbacks, along with meridional heat transport, show minimal influence, 

clustering near the one-to-one line.  

Examining these three key feedbacks further; their relative importance differs under 

increasing versus decreasing CO2. As shown in Figure 3a, for the 0.125xCO2 scenario, 

the Planck and lapse-rate feedbacks play more prominent roles than the albedo feedback. 

In the 8xCO2 scenario, all three feedbacks are similarly important. We quantify their 

relative importance using the Euclidean distance from the one-to-one line (Figure 3c). 

Under cooling conditions, the Planck and lapse-rate feedbacks clearly surpass the albedo 

feedback in strength, as indicated by their statistically distinguishable distances. When 

forcing intensifies (except for the unique 4xCO2 case), the differences in their relative 

strengths diminish. Under warming conditions, though the albedo feedback becomes 

more significant, it does not statistically outpace the other two feedbacks, suggesting that 

all three contribute comparably. These results indicate that the dominance of Planck and 

lapse-rate feedbacks in cooling scenarios primarily explains the larger magnitude of AA, 

while the albedo feedback remains essential for maintaining a positive AA signal.  
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Figure 3: Feedback and meridional heat transport contributions to annual-mean Arctic 

SAT relative to the tropics under (a) 0.125xCO2 and (b) 8xCO2 abrupt forcings, 

calculated with radiative kernels. The gray dashed line indicates a one-to-one relationship, 

helping to identify which mechanisms enhance or reduce AA. In (c), the Euclidean 

distance of the Planck, lapse-rate, and albedo feedbacks from this line reflects their 

relative importance. We used 10,000 bootstrap iterations to estimate uncertainties in (a) 

and (b), while error bars in (c) show 95% confidence intervals from Student’s t-

distribution. 

 

Finally, we analyze the spatial distribution of the Planck feedback parameter (Figure 

4). In warming experiments, the strongest values appear between 85°N and 90°N and 

diminish somewhat as CO2 increases; in cooling experiments, peak values shift to around 

70°N–80°N. This spatial pattern may be linked to changes in sea ice extent. In contrast, 
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tropical regions show less variation in the spatial scale or intensity of the Planck feedback 

(Figure 4a). These findings suggest that the enhancement of the Planck feedback in 

cooling scenarios is driven not only by its overall magnitude but also by its distinct spatial 

configuration at high latitudes. 

 

 

Figure 4: Meridional distribution of the Planck feedback parameter over the (a) tropics 

and (b) Arctic. 

 

Finally, we analyze the influence of sea ice on the distribution and intensity 

variations of albedo feedback. This relationship is closely linked to the seasonal retreat of 

Arctic sea ice during the summer period, when surface albedo feedback from shortwave 

radiation reaches its maximum. Additionally, it affects the winter boundary layer, where 

longwave lapse-rate feedback attains its peak (Zhou et al., 2023). This relationship can 

be explained by the seasonal interactions among the atmosphere, ocean, and cryosphere. 

Models with greater summer sea ice concentration reduction also show larger reductions 

in late autumn/early winter sea ice concentration. The more significant reduction in sea 

ice concentration in autumn and winter is associated with a greater increase in surface 

sensible and latent heat fluxes among models, along with a greater reduction in 

temperature inversion. This, in turn, necessitates a stronger correction in the lower-layer 

lapse-rate feedback, leading to further warming. Across the Arctic, models with greater 
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sea ice loss produce larger temperature inversion weakening and more substantial 

corrections in lapse-rate feedback. This relationship also shows spatial robustness. 

To further explore how the vertical temperature distribution contributes to the 

significant role of lapse-rate feedback, we examined the vertically averaged temperature 

profiles over the polar and tropical regions and their sensitivity to the global mean SAT 

response (Figure 5). It is evident that under cooling scenarios, the Arctic (representative 

of the vertically uniform component associated with the Planck feedback) shows greater 

sensitivity at 1000 hPa, with stronger temperature differences and temperature inversion 

in the lower troposphere. This indicates that the forcing asymmetry of the lapse-rate 

feedback has contributions from both the upper and lower layers. In contrast, the 

temperature gradient distribution in the warming experiments (Figure 5d-j) is relatively 

smoother, and the gradient distributions are similar across different levels of CO2 forcing. 

This result demonstrates not only the weaker intensity of lapse-rate feedback in the 

warming experiments but also the limited impact of increased CO2 on lapse-rate feedback. 
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Figure 5: Vertical temperature distribution in the Arctic region. (a-j) Zonal mean for CO2 

concentrations ranging from 0.125x to 8x. (k) Changes in the Arctic vertical temperature 

distribution relative to changes in the global mean temperature. 

 

3.2 Long-term Climate Asymmetry in Warming and Cooling 

Experiments 

 

Research on surface cooling under greenhouse gas reductions is relatively limited, 

especially over multi-century timescales. We conducted 1000-year simulations and found 
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that, after 150 years, global temperatures continue to increase slightly, with the pace of 

warming remaining nearly constant (Figure 6). In contrast, the average Arctic temperature 

in the cooling experiments continues to decrease significantly. This indicates that the 

cooling experiments require a longer time to reach equilibrium compared to the warming 

experiments. Cold AA remains stronger than warm AA for nearly the entire 1000-year 

period, though its intensity gradually diminishes over time. At year 150, the surface 

temperature response in high-latitude regions is similar in magnitude between 2xCO2 

warming and 0.5xCO2 cooling (Figure 6b), with the response being slightly larger for 

0.5xCO2 than for 2xCO2. After 150 years, the 0.5xCO2 cooling continues and intensifies 

globally, particularly in high-latitude regions. In contrast, the global and high-latitude 

warming under 2xCO2 remains relatively stable after 150 years. 

 

 

Figure 6: Time series of (a) average SAT anomalies and (b) AAF for the Arctic and global 

regions over 1000 years. 
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We used feedback analysis to examine changes in the strength of individual 

feedbacks. The lapse-rate feedback shows the largest difference between 2xCO2 warming 

and 0.5xCO2 cooling (Figure 7), making it the primary contributor to asymmetry in the 

1000-year simulations. This is likely due to the high heat capacity of the ocean (Stouffer 

et al. 2004). The ocean can absorb excess heat from the atmosphere and store it over long 

timescales. This heat storage capacity results in a slower response of the ocean to changes 

in radiative forcing, leading to a prolonged effect on radiative equilibrium. The results 

highlight the importance of ocean heat transport for climate equilibrium and its influence 

on lapse-rate feedback. Lapse-rate feedback is identified as the most significant source of 

cold AA over both century and multi-century timescales. Additionally, Kay et al. (2024) 

found that the asymmetry in response is most pronounced at the sea ice edge. Under 

greenhouse cooling, the sea ice edge gradually shifts southward into midlatitude oceans, 

a process amplified by positive lapse-rate and surface albedo feedbacks. However, the 

time evolution of the albedo feedback does not exhibit as large a change as the lapse-rate 

feedback. 

 

Figure 7: Radiative feedback parameters for the region north of 45°N, showing the first 

(open circles) and last (solid circles) 150 years of the 2xCO2 (red) and 0.5xCO2 (blue) 

experiments. Error bars indicate standard deviations across the 150-year averages. 
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3.3 Asymmetric Interaction and AHT Contributions  

 

We compared the results of feedback locking (Figure 8) with those from the 

traditional feedback analysis (Figure 3). The results reveal significant differences between 

these two methods, especially regarding water vapor and lapse-rate feedbacks. In the 

traditional feedback analysis, water vapor feedback is the largest opposing factor to Arctic 

amplification. The water vapor feedback parameter is positive everywhere, but its values 

are much larger in tropical regions than in the Arctic. In contrast, in the feedback locking 

analysis, water vapor feedback becomes the largest contributor to Arctic amplification. 

For the lapse-rate feedback, it is the primary contributor to Arctic amplification in the 

traditional feedback analysis. However, in the feedback locking analysis, its contribution 

to Arctic temperatures in the cooling experiments diminishes, and it has a near-neutral 

effect in the warming experiments, as it cools the tropics and Arctic by similar amounts. 

Lapse-rate feedback no longer plays a dominant positive role in AA within the feedback 

locking analysis. These differences highlight the importance of interactions between each 

feedback process and other feedbacks, as well as AHT. 
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Figure 8: Contributions of individual feedbacks and meridional heat transport to the 

annual-mean Arctic SAT relative to the tropics under (a) 0.125xCO2 and (b) 8xCO2 

forcings, derived through feedback locking analysis. The gray dashed line (one-to-one 

line) helps distinguish which mechanisms enhance or reduce AA. (c) The Euclidean 

distance of the Planck, lapse-rate, and albedo feedbacks from the one-to-one line, 

indicating their relative importance. 

 

In the experiments where water vapor feedback is locked, the MEBM allows the 

climate system to adjust to the absence of water vapor feedback, leading to changes in 

temperature. The removal of water vapor feedback reduces warming concentrated in 

tropical regions, decreasing the temperature gradient between the equator and poles, 

which in turn reduces AHT in the MEBM or leads to compensatory contributions from 

other feedbacks (Figure 9b). When water vapor feedback is suppressed, AHT heating 

slightly increases in the Arctic, while heat is transported away from the equator, causing 
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tropical cooling. The contribution of feedback interactions increases significantly, 

indicating that water vapor feedback plays a positive role in supporting other feedbacks. 

In contrast, the individual contribution of water vapor feedback to the overall feedback 

experienced in the Arctic is smaller than in the tropics. Overall, water vapor can interact 

with other positive feedbacks as a positive feedback in the Arctic. 

Another feedback that differs significantly between the traditional feedback analysis 

using radiative kernels and the feedback locking method is lapse-rate feedback, which is 

also a key mechanism contributing to the asymmetry of Arctic warming (Figure 9a). The 

direct effect of lapse-rate feedback (individual contribution) reduces the temperature 

gradient between the equator and poles, leading to a decrease in the meridional 

temperature gradient, which causes a negative contribution of MSE transport out of the 

Arctic. Thus, the changes in AHT reduce the extent of Arctic amplification, counteracting 

the effects of regional feedbacks. Notably, the role of feedback interactions is opposite 

between the cooling and warming scenarios. Feedback interaction represents the 

difference between the total equilibrium temperature in the MEBM and the AHT 

contribution, as compared to the individual contribution. To fully understand the 

asymmetry, it is necessary to further separate the contributions of upper and lower layers 

when locking lapse-rate feedback. This helps to identify whether the asymmetry arises 

from AHT or surface sea ice effects. Overall, we find that in the feedback locking method, 

lapse-rate feedback leads to tropical cooling, with warming in the Arctic under cooling 

scenarios and cooling under warming scenarios, providing a more detailed understanding 

of the asymmetry compared to the traditional feedback analysis. 

Other radiative feedbacks show less pronounced differences between the traditional 

feedback analysis and the feedback locking analysis. The differences may be less 

noticeable because the positive individual contributions of albedo and Planck feedbacks 



doi:10.6342/NTU202404648

 27 

lead to a negative AHT contribution and positive effects on other feedbacks, canceling 

each other out. As a result, their contribution to Arctic warming is greater than their 

contribution to tropical warming, even when interactions with other feedbacks and AHT 

are included. For cloud feedbacks, the interactions are stronger in the Arctic compared to 

the tropics. Mauritsen et al. (2013) emphasized the importance of the coupling between 

cloud feedbacks, atmospheric circulation, water vapor, and lapse-rate feedbacks in 

influencing climate change in a deepening troposphere. Climate models may also 

underestimate the amount of supercooled liquid water in high-latitude clouds, which 

could lead to an underestimation of the potential contribution of cloud feedbacks to Arctic 

warming (Middlemas et al. 2020). 

 

Figure 9: Decomposition of feedback contributions when selectively locking (a) lapse-

rate feedback, (b) water vapor feedback, (c) albedo feedback, (d) Planck feedback, and 
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(e) cloud feedback in the 0.125x and 8xCO2 experiments. These results highlight how 

constraining individual feedbacks alters the overall AA response under different CO2 

forcing scenarios. 

 

Figure 10 shows the spatial comparison between the upper and lower lapse-rate 

feedback parameters and the sea ice changes in the form of maps. The results indicate that 

both the upper and lower lapse-rate feedback parameters have a spatial distribution 

similar to that of sea ice changes. In the cooling experiments, strong signals are 

concentrated in the Bering Sea, North Pacific, and North Atlantic, while in the warming 

experiments, the signals are mainly concentrated in the central Arctic Ocean. Sea ice 

retreat alters the atmospheric temperature structure, particularly after summer sea ice 

melts, as the warming of the ocean mixed layer weakens the temperature inversion 

through ocean-atmosphere heat exchange in autumn and winter, which in turn leads to a 

positive lapse-rate feedback and stronger surface warming. This suggests that sea ice 

distribution directly influences both the upper and lower lapse-rate feedbacks. We believe 

that these results highlight the importance of sea ice and surface heat flux in affecting 

surface temperatures, as well as the limitations of the Radiative Kernels method. In the 

Radiative Kernels method, lapse-rate feedback is calculated based on the temperature 

difference between the entire atmospheric column and the surface temperature. Due to 

weaker vertical convection in the Arctic, the stronger signal is primarily driven by surface 

temperature. When the surface temperature undergoes significant changes due to sea ice 

variation, the entire column exhibits a strong lapse-rate feedback signal. This is also 

related to the stronger stratospheric warming observed in the cooling experiments (Figure 

5). 
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Figure 10: Changes in Arctic sea ice distribution and the distribution of the (a) upper and 

(b) lower lapse-rate feedback parameters. 

 

We further conducted feedback locking analysis for the upper and lower lapse-rate 

feedbacks separately to explore how each is influenced by atmospheric heat transport and 

sea ice distribution. Figure 11 shows that both the upper and lower lapse-rate feedbacks 

exhibit asymmetry in Arctic amplification, with a larger contribution in the cooling 

experiments compared to the warming experiments. In the lower lapse-rate feedback 
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locked experiments (Figure 11a), the temperature changes under the cooling and warming 

scenarios show similar patterns. The lower lapse-rate feedback is one of the key 

contributors to Arctic amplification, mainly driven by feedback interactions. Its 

importance may be much greater than the individual contribution from the lapse-rate 

feedback alone. In conclusion, the results of the lower lapse-rate feedback demonstrate 

the positive contribution of the Arctic bottom-warm structure to Arctic amplification. The 

feedback locking method emphasizes the significant impact of feedback interactions, 

showing that the lower lapse-rate feedback is a positive contributor to Arctic amplification 

in both the traditional feedback analysis and the feedback locking method. 

In addition to the regional effects of sea ice changes on the atmospheric heat 

structure at lower atmospheric levels, AHT in the atmosphere also exerts a remote 

influence on the lapse-rate feedback. Figure 11b shows that the upper lapse-rate feedback 

induces stronger asymmetry, and it is also the primary driver of changes in AHT 

interactions. It is worth noting that the upper lapse-rate feedback shows a negative 

contribution in the warming experiments, whereas it generally has a positive contribution 

to other feedbacks in the Arctic. This could be due to the top-warm structure of the tropical 

upper lapse-rate feedback, which enhances the transfer of AHT from the Arctic to the 

tropics. We suggest that the simplified process of fixing sea ice in the MEBM highlights 

the influence of lapse-rate feedback on AHT.  
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Figure 11: Decomposition of contributions in experiments where the lower lapse-rate 

feedback (a) and upper lapse-rate feedback (b) are locked under the 0.125x scenario, and 

where these feedbacks are similarly locked under the 8xCO2 scenario (c-d). These 

comparisons highlight how variations in the vertical temperature structure influence the 

magnitude of Arctic Amplification across different forcing scenarios. 

 

 Our focus is on the warming experiments, where the regionally averaged upper 

lapse-rate feedback over the Arctic exhibits a negative value. This differs from results 

using the radiative kernel method (Figure 12c and d), where the upper lapse-rate remains 

lower than the lower lapse-rate consistently across latitudes. The negative upper lapse-

rate values in the tropics strongly influence meridional energy transport, sending more 

energy toward lower latitudes and thus affecting the global energy balance and 

equilibrium temperature. 

When comparing cooling and warming experiments, we find that Arctic temperature 

is influenced by both atmospheric heat transport and sea ice conditions. In the cooling 

scenarios, the latitude bands where upper lapse-rate feedback remains positive roughly 

correspond to regions with persistent sea ice coverage, generally north of about 70°N. 
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Here, upper lapse-rate feedback is stably positive with little spatial variation. Moving 

south into regions where sea ice seasonally grows or melts, the upper lapse-rate feedback 

weakens and turns negative. Similarly, in the warming experiments, large reductions in 

sea ice cause upper lapse-rate feedback to decrease rapidly, leading to an almost complete 

absence of positive upper lapse-rate feedback signals as the Arctic becomes increasingly 

ice-free. 

During the warming experiments, sea ice loss shifts the ice boundary northward, 

exposing more open ocean and reducing other feedback contributions, such as albedo 

feedback. As a result, positive lapse-rate feedback regions shift poleward and diminish in 

extent, resulting in a net negative lapse-rate feedback contribution in the Arctic. In 

summary, lapse-rate feedback emerges as the primary mechanism contributing to the 

asymmetry of Arctic Amplification, interacting with other feedbacks and atmospheric 

heat transport. This asymmetry stems from the stark differences in sea ice conditions 

under different CO2 forcing scenarios; the stronger and more positive lapse-rate feedback 

signature in cooling experiments contrasts with the negative upper lapse-rate feedback in 

warming experiments shaped by ice-free conditions. 
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Figure 12: Meridional distribution of (a) feedback parameter, (b) individual temperature 

contributions (calculated using radiative kernels), and (c) temperature contributions from 

feedback locking results for the entire column, lower, and upper lapse-rate feedbacks. 

 

 Finally, Figure 13 summarizes the distribution of AA strength across all CO2 

increase and reduction experiments. In the MEBM, the AA strength for the all-feedbacks-

active scenario is generally weaker than that of the GCM, though it still shows the 

asymmetry where the AA values in the three cooling experiments are generally greater 

than those in the seven warming experiments. When feedback locking is used to 

successively deactivate each feedback or surface heat flux, the most pronounced 

asymmetry is found in the lapse-rate feedback, especially in the upper lapse-rate feedback. 

The contribution of lower lapse-rate feedback to AA remains relatively consistent across 

different CO2 forcing levels. Albedo feedback is also an important contributor to AA, 
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though its asymmetry is less pronounced. The other feedbacks exhibit more uniform 

contributions overall. 

 

 

Figure 13: AAF for the GCM with all feedbacks active (full column) and scenarios where 

each individual feedback is active under CO2 forcing ranging from 0.125x to 8x. Crosses 

(×) indicate negative values, where the AAF decreases. 
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Chapter 4 Discussion 

 

We adopted the radiative kernel technique (Soden et al. 2008) to quantify the role of 

radiative feedbacks in contributing to cold and warm AA. However, the radiative kernel 

technique may be limited by state dependence. For example, a study using the MPIESM-

LR radiative kernel showed that the strength of albedo feedback weakened by 50% in the 

4xCO2 experiment compared to the control pre-industrial run (Block & Mauritsen 2013), 

indicating a significant state dependence of albedo feedback. Indeed, we observed that 

albedo feedback became less important under 2xCO2 and 0.5xCO2. Jonko et al. (2013) 

further used the radiative kernel technique to decompose the contributions of each 

feedback into changes in radiative fluxes and the influence of climate response on 

temperature changes, finding that variations in Planck and water vapor feedback were 

primarily driven by changes in radiative fluxes associated with shifts in climate states. 

We also noted a slight increase in the residuals averaged over the Arctic when CO2 

concentrations exceed five times the pre-industrial levels, reflecting larger changes in the 

polar mean when using the radiative kernel technique, as shown in Jonko et al. (2013). 

Therefore, further research is needed to validate the application of the radiative kernel 

technique in both warming and cooling states.  

According to Jansen (2017), changes in atmospheric CO2 concentrations 

significantly alter ocean circulation and stratification, thereby affecting the uptake and 

release of carbon by the oceans. However, these changes are not entirely symmetrical 

across different ocean regions. When CO2 increases, global warming shrink sea ice extent, 

weakening deep ocean stratification, particularly in the deep waters around Antarctica, 

making it easier for oceanic carbon to be released back into the atmosphere. In contrast, 
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when CO2 decreases, lower temperatures encourage sea ice growth and brine rejection, 

strengthening deep ocean stratification, which limits the release of carbon from the deep 

ocean. This asymmetry in ocean carbon dynamics implies that different ocean regions 

respond to CO2 changes in varying degrees of carbon uptake and release, potentially 

influencing long-term global carbon cycles and climate trends. Additionally, shifts in 

ocean heat distribution patterns also affect long-term climate. Fabiano et al. (2024) 

showed that the rate of warming in the Southern Ocean significantly increases over long 

timescales, with heating primarily concentrated in the South Atlantic and Indian Oceans 

under lower forcing scenarios, and expanding to the Pacific under higher forcing 

scenarios. This aligns with the findings of Rugenstein et al. (2016), who noted that heat 

uptake efficiency in the Southern Ocean is lower under higher forcing scenarios, leading 

to shifts in ocean heat distribution across different timescales. Consequently, the 

interpretation of long-term changes in lapse-rate feedbacks in this study must consider 

regional variations in ocean energy distribution to confirm the drivers of feedback 

mechanism changes over century timescales. 

We employed the classic separation of lapse-rate and water vapor feedbacks, 

allowing for a more direct comparison with traditional feedback analyses that also adopt 

this separation. However, it is important that the quantification of feedback contributions 

depends on how feedbacks and contributions are defined, which should be considered 

when comparing studies. A recent study by Russotto & Biasutti (2020), which also 

employed the feedback locking method, investigated how feedbacks contribute to Arctic 

amplification in a set of idealized slab ocean aquaplanet GCM simulations that excluded 

sea ice. Similar to our findings, they observed a positive contribution of water vapor 

feedback to Arctic amplification. However, their simulations lacked albedo feedback, 

which is a major positive feedback in the Arctic and interacts significantly with water 
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vapor feedback in our results—though quantifying this interaction is challenging. Another 

point worth noting is that both feedback locking and traditional feedback analysis 

typically assume a linear relationship between feedbacks and warming, where surface 

temperature changes are approximately proportional to the feedbacks. Under this 

assumption, the vertical temperature changes in the atmosphere are generally attributed 

to lapse-rate feedback. Henry & Merlis (2019) found that when linearizing the Stefan-

Boltzmann law, Planck feedback is expected to weaken Arctic amplification due to the 

nonlinear nature of the law altering the vertical warming structure. Specifically, the 

enhanced lapse-rate feedback partially diminishes the impact of the weakening Planck 

feedback, leading to a strong AA. 

One limitation of the feedback locking analysis to consider is that the results depend 

on the degree of simplification in the complex energy exchange processes within the 

model and on the assumption of state-dependent feedback parameters. In GCMs, these 

parameters may evolve with changing climate conditions. As such, the temperature 

changes in the MEBM feedback locking simulations are expected to differ from those in 

comprehensive GCM feedback locking simulations, where GCMs represent more 

processes and effectively have feedback parameters calculated interactively. In contrast, 

in the MEBM simulations presented here, each feedback parameter remains fixed when 

other feedbacks are locked. Although this is anticipated to be a source of inaccuracy, 

previous studies have shown that treating feedback patterns as time-invariant provides a 

relatively accurate approximation for climates ranging from pre-industrial to 2xCO2 

conditions (Dai et al. 2020). 
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Chapter 5 Conclusion 

 

In this study, we utilized a series of abrupt CO2 experiments using a state-of-the-art 

fully coupled climate model to compare the phenomena and mechanisms behind cold and 

warm AA. Our findings show that when CO2 concentrations decrease, AA intensifies 

more than it does under CO2 increases, indicating a pronounced asymmetry. Feedback 

analysis reveals that enhanced lapse-rate feedbacks plays key role in driving cold AA, 

which interact with sea ice reduction, turbulent heat flux, and SAT. This asymmetry aligns 

with the research framework summarized in Figure 14, where both feedback 

decomposition and feedback locking approaches highlight the importance of lapse-rate 

feedback and its interplay with atmospheric heat transport and sea ice distribution. While 

the global surface temperature may respond differently to increases or decreases in CO2, 

the Arctic demonstrates a distinct set of underlying mechanisms that shape its asymmetric 

response. Further research is needed to better understand the feedback processes and 

radiative forcings contributing to Arctic asymmetry, as these may fundamentally depend 

on the nonlinear dynamics of the Arctic climate response (Sumata et al. 2023). 
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Figure 14: Research framework exploring whether the intensity and mechanisms of AA 

are symmetric. 

 

In quantifying the physical mechanisms behind high-latitude lapse-rate feedback, we 

distinguished the effects of local sea ice processes from those of remote atmospheric 

energy transport, showing a clear spatial link between lapse-rate feedback and sea ice 

retreat. By analyzing sea ice distribution changes, the connection between positive lapse-

rate feedback over the Arctic Ocean and reduced sea ice became clearer, consistent with 

the feedback and heat transport decomposition highlighted in the framework. Additionally, 

century-scale coupled simulations demonstrate that the response timescales differ for 

warming and cooling scenarios, with surface warming responses occurring on decadal 

scales, while surface cooling responses emerge over centuries. We also identified lapse-

rate feedback as the most significant source of asymmetry, a finding supported by 

feedback locking analysis that reveals significant and nonlinear interactions between 

atmospheric heat transport and feedbacks. Furthermore, the ocean’s long-term adjustment, 

influenced by vertical mixing and deep-ocean heat transfer, indirectly affects the climate 
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system’s response timescale. 

The weakening of warm AA is primarily attributed to the changing relationship 

between lapse-rate feedback and other feedbacks, particularly as upper-level lapse-rate 

feedback transitions from positive to negative under increased CO2. In summary, this 

study explored the roles of various feedback mechanisms in cold and warm AA through 

both traditional feedback analysis and feedback locking methods, emphasizing how the 

interplay between sea ice changes, atmospheric heat transport, and lapse-rate feedback 

leads to asymmetric Arctic responses. Our results suggest that considering both CO2 

increases and decreases offers a richer perspective on AA’s underlying mechanisms and 

can inform climate policy and future carbon management strategies. Moreover, our 

findings indicate that aerosol-induced cooling could also produce conditions leading to 

cold AA. While the geographic distribution and temporal evolution of aerosol radiative 

forcing differ from those of CO2 forcing, previous studies have suggested that the cooling 

effects induced by aerosol loading could lead to the occurrence of cold AA (Feichter et al. 

2004, Ming & Ramaswamy 2009, Jiang et al. 2020, England et al. 2021). 
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APPENDIX 

 

Global warming is characterized by an increase in SAT, with an accelerated rise 

particularly evident in the latter half of the 20th century (Eyring et al. 2021). However, 

changes in SAT can be influenced by various factors. The first source of variability comes 

from external forcings, such as increases in greenhouse gas concentrations, variations in 

anthropogenic and natural biomass burning aerosols, ozone depletion, solar fluctuations, 

volcanic eruptions, and land-use changes. This externally driven variation is referred to 

as forced variability. The second source of variability arises from internal processes 

within the atmosphere, oceans, cryosphere, land, and biosphere, along with their 

interactions (Cassou et al. 2018). This type of variability is known as internal variability, 

manifesting fluctuations inherent to the climate system that can emerge even without the 

effect of external forcings. 

While forced variability has largely driven the large-scale and long-term trends in 

SAT over the 1900–2020 period (Deser et al. 2012, Kay et al. 2015), the specific 

contributions of internal and forced variability remain complex and not fully understood. 

In particular, internal variability plays a key role on shorter timescales and smaller spatial 

scales. For instance, the leading mode of internal variability in global SAT is the El Niño 

Southern Oscillation (ENSO), marked by significant temperature anomalies in the 

equatorial Pacific and widespread teleconnections, with a periodicity of 2 to 7 years 

(Wang & Picaut 2004, Wang et al. 2017). Other important modes of internal variability 

include Interdecadal Pacific Variability (Newman et al. 2016) and Atlantic Multidecadal 

Variability (Zhang et al. 2019), which influence climate patterns over decadal to 

multidecadal scales. The slowed warming observed during 2002–2012, often termed the 
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global warming hiatus, has been linked to Interdecadal Pacific Variability (Kosaka & Xie 

2013, Meehl et al. 2013, England et al. 2014) and reduced heat uptake by the Atlantic and 

Southern oceans (Chen & Tung 2014, 2018). Additionally, internal variability may 

include centennial to multi-centennial fluctuations, potentially influencing trends 

observed from 1900 to 2015 (Bonnet et al. 2021, Fan et al. 2023) 

Distinguishing between forced and internal variability is crucial in detection and 

attribution studies, as it enables us to separate the climate response to radiative forcing 

changes and gain a clearer understanding of internal climate variability. However, 

instrumental records are available only from 1850 onwards with only one realization, and 

the relatively short duration of these observations complicates efforts to accurately 

characterize internal variability. Methods for identifying both types of variability include 

approaches that consider linear trends (Swart et al. 2015, Vincent et al. 2015), quadratic 

trends (Enfield & Cid-Serrano 2010), global-mean values (Trenberth & Shea 2006) and 

a linear regression (Ting et al. 2009) as estimates of forced variability. Nonetheless, these 

methods may not capture the full temporal evolution of temperature accurately, 

particularly struggling to account for abrupt cooling events following large volcanic 

eruptions (Schmidt et al. 2018). To remedy this issue, a family of methods based on linear 

inverse modeling (Penland & Matrosova 1994, 2006) and empirical orthogonal functions 

(EOFs, Ting et al. 2009) has been utilized to separate the internal variability modes and 

investigate its relation to other climate components, such as the Atlantic meridional 

overturning circulation (e.g., Frankignoul et al. 2017). 

An alternative approach to separate internal variability from forced variability is to 

conduct climate model simulations with large ensemble members, each with different 

initial conditions (Deser et al. 2020). This methodology has been employed to overcome 

the limitations of sparse observational data. Previous studies have estimated forced 
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variability using the ensemble mean, which is assumed to effectively reduce the variance 

associated with internal variability by a factor equal to the number of ensemble members 

(Harzallah & Sadourny 1995, Hawkins & Sutton 2009, Ting et al. 2009, Solomon et al. 

2011, Deser et al. 2014, Frankcombe et al. 2015). Consequently, many modeling centers 

have conducted extensive ensemble simulations, often with more than 10 ensemble 

members (Jeffrey et al. 2013, Rodgers et al. 2015, Deser et al. 2020). Some results of 

these simulations are archived as single-model initial-condition large ensembles (SMILEs; 

Deser et al. 2020), providing a valuable dataset for developing methods to distinguish 

between forced and internal variability. Additionally, using members of a large ensemble 

as surrogate observations allows for direct comparison of individual results with the 

ensemble mean. 

The Community Earth System Model 2 (CESM2) Single Forcing Large Ensemble 

Project (https://www.cesm.ucar.edu/working-groups/climate/simulations/cesm2single-

forcing-le) was developed to explore the roles of both forced and internal variability. This 

project includes four sets of simulations, each with more than 10 members, driven by 

individual climate forcing agents: greenhouse gases (GHG), anthropogenic aerosols 

(AER), biomass burning aerosols (BMB), and a combination of other factors (EE), 

including volcanic eruptions, solar irradiance variations, ozone, and landuse changes. 

Alongside the all-forcing simulations from the CESM2 Large Ensemble Project 

(https://www.cesm.ucar.edu/community-projects/lens2), this dataset allows for detailed 

analysis and quantification of the contributions of different forcings to climate change 

and variability. 

Recent studies have been widely attempted to exploit artificial intelligence 

techniques to study the forced and internal variability using large ensemble simulations 

(e.g., Bône et al. 2023, Ham et al. 2023). For example, Bône et al. (2024) trained a U-Net 
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model with CMIP5/6 simulations to filter out the internal variability signal in surface air 

temperature, leaving forced variability. In contrast, Sweeney et al. (2023), using CMIP6 

and CESM2 large ensemble, trained a neural network to single out a unique temperature 

trend pattern driven by internal variability. These studies motive us to apply similar deep 

learning approach to large-ensemble simulations. In this study we use the simulation sets 

of CESM2 single forcing large ensemble to train a convolution neural network to separate 

the forced variability from internal variability for each single forcing runs. 

We begin by examining the annual-mean SAT anomalies and variability from the 

CESM2 single-forcing large ensemble. Figure 1a shows the mean SAT anomalies from 

2020 to 2050 for all-forcing simulations (herein referred to as ALL). Typical global 

warming spatial patterns emerge, including amplified warming in the Arctic, stronger 

warming over land compared to oceans, reduced warming in the North Atlantic (also 

known as the ’Atlantic warming hole’), and El Niño-like warming in the eastern tropical 

Pacific. The variability, quantified by the standard deviation of SAT anomalies, is highest 

in the Arctic, particularly in the Barents-Kara Seas (Figure 1b). This is largely due to 

significant sea-ice retreat and the related sea ice-albedo feedback, which contribute to 

substantial year-to-year variation. Other regions with notable variability include the North 

Pacific and the eastern tropical Pacific. 
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Figure 1: Temperature anomaly and internal variability, defined as the standard deviation 

across 15 ensemble members, are examined for the period 2020 to 2050 in CESM2. The 

panels show different forcing scenarios: (a, b) all forcings combined, (c, d) greenhouse 

gas (GHG) forcing, (e, f) aerosol (AER) forcing, (g, h) biomass burning (BMB) forcing, 

and (i, j) everything else (EE) forcings. 

 

The GHG simulation exhibits similar mean warming and variability patterns 

(Figures 1c and d) compared to the ALL simulation, although with an overall greater 
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magnitude. In contrast, the AER simulation results in global cooling patterns (Figure 1e) 

that are opposite in sign to the GHG simulation. Notably, regions of strong cooling in the 

AER simulations do not align precisely with regions of strong warming in the GHG 

simulation. For example, the largest cooling is not observed in the Arctic, but rather in 

the North America. While the mean SAT anomalies are smaller in the Arctic, the 

variability remains high (Figure 1f). The mean SAT anomalies in the BMB and EE 

simulations are much weaker (Figures 1g and 1i); however, substantial variability persists 

in the Arctic (Figures 1h and 1j), indicating the amplified effect of the strong sea-ice 

albedo feedback. 

We then examine the time series of global-mean and Arctic-mean SAT anomalies 

over the 1850–2050 period. The GHG forcing drives global and Arctic warming, 

beginning in the early 1900s and accelerating after the 1950s (red lines in Figures 2a and 

2c). In contrast, the AER forcing induces sustained global and Arctic cooling from the 

1950s, leveling off around 2010 (blue lines in Figures 2a and 2c). The other two forcing 

agents cause comparatively smaller variations in global and Arctic SAT (yellow and green 

lines in Figures 2a and 2c). In the EE simulation, notable features are still evident, such 

as the SAT drop in the early 1990s due to the Pinatubo volcanic eruption. The sum of all 

single-forcing time series closely resembles the ALL simulation (gray lines in Figures 2a 

and 2c), indicating a high degree of additivity for Arctic and global SAT. 
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Figure 2: (a) Global and (c) Arctic annual mean surface air temperature anomalies in 

CESM2, referenced to the 1850–1899 period. The data are processed using the ensemble 

mean to highlight the forced signal, serving as the target air temperature reference for 

CNN-based predictions of the forced signal. The CNN-generated forced signal is depicted 

in (b) global and (d) Arctic annual mean anomalies. 

 

We use a convolutional neural network (CNN) to carry out the training task and 

present its architecture in Figure 3. The input to the network is a single time step of a 

global SAT map with a spatial resolution of 96x144. The CNN architecture consists of 

two sequential combinations of convolutional layers with ReLU activation and max-

pooling operations, followed by three fully connected layers. The output layer consists of 

10 values, representing the global and Arctic averages for each of the five different forcing 

types (ALL, AER, BMB, EE, GHG) for the input SAT map at the specified time step. 

This network architecture effectively captures and transforms spatial patterns in SAT data, 

enabling the model to predict the corresponding global and Arctic averages under 

different forcing scenarios. 
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Figure 3: A schematic of the CNN architecture, where the input consists of monthly mean 

global temperature maps. The architecture includes two convolutional layers and two 

maximum pooling layers, followed by three fully connected layers that produce 10 output 

values. These outputs correspond to the global and Arctic mean responses to all, GHG, 

AER, BMB, and EE forcings, respectively. 

 

The CNN model effectively generates the forced component for each forcing agent 

using a single member that was not involved in the training process (Figures 2b and 2d). 

The CNN predictions capture the key characteristics of GHG-induced warming, AER-

induced cooling, and the smaller SAT variations associated with BMB and EE. Notably, 

the CNN-predicted SAT time series also replicate the specific SAT declines in the early 

1990s resulting from the Pinatubo volcanic eruption in the ALL and EE simulations. One 

discrepancy is that the CNN-generated global SAT time series tend to appear smoother 

than the true forced time series, especially for the EE and BMB simulations, which exhibit 

weaker variability. However, this discrepancy is less pronounced in the Arctic SAT time 

series. 
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Figure 4: Correlation coefficients between the annual data of the (a) global and (b) Arctic 

targets from CESM2 and the corresponding CNN-generated results. Panels (c) and (d) 

show the root-mean-square error (RMSE) for the global and Arctic regions. Error bars 

represent the standard deviation across 15 ensemble members, with thinner bars 

indicating the results after detrending. 

 

To further evaluate the CNN’s performance, we calculate the temporal correlation 

coefficient and the RMSE between the CNN-predicted time series and the true time series 

for the 1850–2050 period. With the exception of the BMB case, the correlation 

coefficients are relatively high for both global-mean and Arctic-mean SATs (Figures 4a 

and 4b), indicating that the CNN effectively captures the temporal variability of the forced 

SAT responses. The lower correlation coefficient for the BMB case may stem from the 

smoother time series predicted by the CNN, as previously discussed, which significantly 

reduces the year-to-year variation in SATs associated with BMB forcing. While the 

correlation coefficient provides insight into how well the CNN model can predict 

temporal variability, the RMSE highlights potential mean bias between the CNN-
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predicted and true time series. We observe that the RMSE for the ALL case, in both global 

and Arctic time series, is higher than the RMSEs for each individual forcing (Figures 4c 

and 4d). This finding suggests that although the CNN captures year-to-year variability 

well for the ALL case, it may mis-estimate the mean state. Due to the amplified Arctic 

SAT response resulting from Arctic amplification, the RMSE for the Arctic time series is 

greater than for the global one. To further examine this long-term trend effect, we also 

remove the linear trend for each case and repeat the correlation coefficient and RMSE 

calculations, yielding similar results (thin bars in Figure 4). 

 

 

Figure 5: Occlusion sensitivity using CESM2 dataset. 

 

We next aim to improve the interpretability of the CNN by conducting an occlusion 

analysis (Zeiler 2014, Ham et al. 2023). The heatmap generated from this analysis 

highlights regions with high values, both positive and negative (Figure 5). A prominent 

area is the Arctic, where significant values appear in the Arctic Ocean, contributing 

positively to the CNN’s learning across most regions in the northern high-latitudes. This 

pattern aligns well with the AA phenomenon. However, focusing on the AA hotspot, 

specifically the Barents-Kara Seas with the highest amplification (Zhong et al. 2018, 
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Chen et al. 2021, Kumar et al. 2021), we observe that the heatmap values are not 

exceptionally high in this area. This suggests that the CNN may not fully capture this 

prominent feature to distinctly separate the forced Arctic and global SAT signals. Notably, 

a negative value is present across the Fram Strait, which may be linked to the 

climatological ocean currents and sea-ice transport out of the Arctic domain. 

In land areas, regions such as North America and northeastern Siberia and Asia show 

large negative values. The combination of these negative values and the positive values 

over the Arctic might reflect the so-called Arctic warm-continental cold SAT pattern 

associated with AA (e.g., Cohen et al. 2014, Kug et al. 2015) or internal variability 

(Francis & Skific 2015, Vavrus 2018). Interestingly, values over land are generally larger 

than those over the oceans, resonating with the dominant global warming spatial feature 

where land warms more than the ocean (Joshi et al. 2008, Boer 2011, Byrne & O’Gorman 

2013). Additionally, large values are observed in Antarctica, with positive values in 

eastern Antarctica and negative values in western Antarctica. This may represent a zonal 

wavenumber-1 pattern, possibly related to the variability in large-scale atmospheric 

circulation in the Southern Hemisphere. 
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Figure 6: Occlusion sensitivity using CESM2 dataset for (a, b) ALL forcing and single 

forcing (c, e, g, i) global and (d, f, h, j) Arctic average. 

 

The occlusion analysis also enables us to focus on a single output, allowing us to 

create heatmaps attributed to one specific forcing agent. For each individual forcing, we 

observe a spatial distribution similar to that shown in Figure 6. One notable feature that 

stands out from the ALL heatmap is the overall negative values in the Northern 

Hemisphere and positive values in the Southern Hemisphere. This pattern reflects the 

inter-hemispheric gradient, a unique spatial response to global warming that has been 
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widely discussed in previous studies (Chiang & Friedman 2012, Ma et al. 2012, Vallis et 

al. 2015). The result suggests that the CNN has learned this feature, aiding in the removal 

of internal variability and the distinction of forced responses. 

The CNN training exercise is based on CESM2 single-forcing simulations with large 

ensembles. A relevant question that follows is whether this trained CNN can be applied 

to simulations from other climate models with single forcings. If so, it would suggest that 

the trained CNN model is generalizable to other simulated datasets. To test this, we use 

data from the Detection and Attribution Model Intercomparison Project (DAMIP, 

https://damip.lbl.gov/) under CMIP6. We select four models that provide more than 10 

ensemble members for both GHG and AER simulations. It is noted that the four models 

from DAMIP did not offer BMB and EE simulations. The results are presented in Figures 

7 and 8. 

 

 

Figure 7: Panels (a), (c), (i), and (k) show the global SAT for the four models, CanESM5, 

CNRM-CM6-1, MIROC6, and IPSL-CM6A-LR, respectively. Panels (b), (d), (j), and (l) 
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display the CNN-generated global SAT for the respective models. Panels (e), (g), (m), 

and (o) present the Arctic SAT for each of these models, while panels (f), (h), (n), and (p) 

represent the CNN-generated Arctic SAT. 

 

 

Figure 8: Panels (a) and (b) display the correlation coefficients between the annual data 

of the global and Arctic targets from CanESM5 and the corresponding CNN-generated 

results. Panels (e) and (f) show the root-mean-square error (RMSE) for the global and 

Arctic regions, respectively. The same structure is used for other models: panels (c), (d), 

(g), and (h) for CNRM-CM6-1; panels (i), (j), (m), and (n) for MIROC6; and panels (k), 

(l), (o), and (p) for IPSL-CM6A-LR. Error bars indicate the standard deviation across 

ensemble members, with thinner bars showing results after detrending. 
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Finally, and perhaps most intriguingly, we apply the trained CNN to observational 

data to estimate the forced response for each of the four forcing agents. We use SAT data 

from the Hadley Centre (referred to as HadCRUT) because due to the higher accuracy of 

reanalysis data in reflecting actual atmospheric conditions, which helps to better 

understand and evaluate the biases present in our network model. The output global SAT 

time series for ALL forcings exhibits similar decadal variations to the HadCRUT time 

series before 1970 (Figure 9a). A warming trend becomes apparent after around 1975; 

however, the CESM2 SAT time series for ALL forcing overall shows smaller values than 

the HadCRUT SAT series. Notably, the CO2 contribution dominates, as the CO2 and ALL 

time series are closely aligned, which differs from the CESM2 results, while the BMB 

and EE contributions remain minimal. Unexpectedly, the AER time series does not exhibit 

the cooling trend seen in the CESM2 AER time series. Instead, the HadCRUT AER time 

series shows a relatively flat trajectory, suggesting that the CNN may not effectively 

distinguish the AER-forced signal within the observational global SAT data. For the 

Arctic, the estimated forced time series show similar evolution to the HadCRUT with 

ALL and CO2 stronger in amplitude (Figure 9b). This seems not reasonable as the Arctic 

SAT response tends to amplified the global SAT one. 
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Figure 9: The annual mean data from HadCRUT are represented by a pink line. Other 

colors indicate the CNN-generated forcing decomposition results, with thin lines 

depicting the direct outputs and thick lines illustrating the smoothed results obtained using 

a five-year moving average. 

 

This limitation is evident in the temporal correlation and RMSE results (Figure 9). 

The correlation coefficients are generally lower than in previous cases, with values for 

the AER and BMB cases falling below 0.2 (Figures 10a and b). In some instances, 

opposite signs appear, such as for the BMB global SAT and AER Arctic SAT. Additionally, 

the RMSE values are larger (Figures 10c and d). These results suggest that the CNN 

model, trained on CESM2 simulations, may not generalize effectively to observational 

records. We will explore possible reasons for this in future studies. 
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Figure 10: Correlation coefficients between the annual data of the (a) global and (b) 

Arctic targets from CESM2 and CNN-generated HadCRUT results. Panels (c) and (d) 

show the RMSE for the global and Arctic regions. Error bars represent the standard 

deviation across 15 ensemble members, with thinner bars indicating the results after 

detrending. 
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