
doi:10.6342/NTU202503732

國立臺灣大學生物資源暨農學院生物機電工程學系 

碩士論文 

Department of Biomechatronics Engineering 

College of Bioresources and Agriculture 

National Taiwan University 

Master’s Thesis 

應用於溫室環境作物監測之自主導航無人機多機協同系統 

An Autonomous Multi-UAV Cooperative Navigation System 

for Crop Monitoring in Greenhouse Environments 

徐滋 

Tzu Hsu 

指導教授：林達德 博士 

Advisor: Ta-Te Lin, Ph.D. 

中華民國 114年 07月 

July 2025



doi:10.6342/NTU202503732i 

誌謝 

在大學畢業後準備來碩班就讀的我總是擔心自己有許多的不足之處，擔心自

己是否準備好也擔心自己是否能力足夠，在碩班這兩年我想先謝謝我的指導教授

林達德老師，由衷的感謝老師收我為學生，我在許多方面得到老師的教導，不管

是學術上的知識、研究上的嚴謹以及待人處世上，我都受益良多，謝謝老師總是

不厭其煩的給予研究上的指導讓我們突破自己的難關，老師就像是海上的燈塔不

讓我們在汪洋大海中迷失，謝謝老師的栽培加入老師的實驗室成為老師的研究生

是我最大的福氣。謝謝我的口試委員顏炳郎老師以及楊江益老師，在我的論文上

給予精闢的指導，提出許多寶貴的建議以及給予肯定。在 405 實驗室的日子是我

這一輩子很難忘的回憶，敬恆是我在研究上的前輩也是好夥伴，每當我遇到困難

時總是會在絕境施予援手，在需要於溫室進行實驗也給予我許多的協助和精神上

以及技術上的支持，感謝你一直以來的耐心與無私幫助，碩班能遇到你真的很幸

運也很快樂！在每天的日常中謝謝姵瑜和柏勳在一路上的互相扶持，每當遇到艱

難的時光總是會跟彼此信心喊話，謝謝你們的幫助與包容，謝謝庭瑄、冠辰、稚

晴、澔平給予許多協助與關心，跟你們相處總是很有趣，希望你們繼續堅持保持

開朗，謝謝 Bob 隋中彧在實驗室一起打拼的日子總是很有趣，謝謝黃天泂像個開

心果讓生活充滿樂趣，在碩班認識你們讓平凡的日子變得不平凡，謝謝學長晨宇、

易霖和喬尹在我們懵懵懂懂碩一時給予我們許多幫助與教導，謝謝軍諺把題目交

給了我在碩班初期幫助我進入狀況，謝謝桂芝辛苦地幫我們報帳還會在平時照顧

我們，謝謝我的男友在過程中不斷給我精神上的支持，最後謝謝我的家人，這兩

年讓你們擔心了，謝謝你們總是給我無限的關愛與支持，最後謝謝堅持下去沒有

放棄的自己。 



doi:10.6342/NTU202503732ii 

摘要 

本研究開發了一套自主多機無人機系統，旨在進行溫室中洋香瓜作物的生長

監測。透過多機無人機的協同作業，進行了多角度的影像拍攝，並設計了三種不

同的飛行路徑。利用 UWB 定位系統進行無人機自主飛行的精度比較，並利用收

集的影像進行三維重建，對洋香瓜植物進行分析。收集的影像經過處理後，用於

提取關鍵的植物表型數據，本研究主要分析了植株的高度和展幅，透過高度和展

幅進一步對植物的生長進行監測，通過擬合生長曲線，並將其與實際生長數據進

行比較。在無人機的飛行精度方面，平行飛行路徑的誤差範圍為 7至 12公分，閉

環飛行路徑為 5至 9公分，而多高度路徑的誤差範圍為 4至 11公分，顯示出穩定

的飛行精度。接著，我們進一步比較了在相同覆蓋面積下，多機系統與單機系統

的效能。結果顯示，多機系統能夠將任務時間縮短 73%，並將電池消耗降低 5%。

在作物三維重建方面，我們比較了三種軌跡所收集的三種不同的重建方法，分別

是單面、合併以及三個高度。根據評估重建結果的指標，使用 PSNR、SSIM 和

LPIPS三個指標進行比較，結果顯示三個高度方法在重建質量上表現最佳，PSNR

為 0.37，SSIM為 9.48，LPIPS為 0.65。在植物高度的測量上，合併方法達到了最

低的 MAE誤差為 6.6公分，而在展幅測量方面，單面方法則達到了最低的 MAE

誤差為 5.8 公分。本研究展示了多機無人機系統在溫室作物監測中的應用潛力，

還證明了不同重建方法和測量策略在提高農業監測精度和效率方面的有效性。 

關鍵詞: 多機無人機系統、Visual SLAM、三維重建、高斯潑濺、表型分析、生長

監測 
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ABSTRACT 

This study developed an autonomous multi-drone system for muskmelon crop 

growth monitoring in a greenhouse. Through collaborative multi-drone operations, multi-

angle images were captured and three flight paths were designed. The UWB positioning 

system was used to compare the accuracy of the UAV autonomous flight, and the 

collected images were used for 3D reconstruction to analyze muskmelon plants. The 

images were processed to extract key phenotypic data, focusing on plant height and 

canopy span, and growth monitoring was performed by fitting growth curves and 

comparing them with actual growth data. In terms of flight accuracy, the parallel flight 

path had an error range of 7 to 12 cm, the closed-loop path had an error range of 5 to 9 

cm, and the multi-altitude path had an error range of 4 to 11 cm, demonstrating stable 

flight precision. We also compared the performance of multi-drone and single-drone 

systems over the same coverage area. The multi-drone system reduced mission time by 

73% and battery consumption by 5%. For 3D reconstruction, we compared three methods 

collected along three different paths: Single-side, Merged, and Three-height. Evaluation 

metrics showed that the Three-height method provided the best reconstruction quality 

with PSNR of 0.37, SSIM of 9.48, and LPIPS of 0.65. For height measurement, the 

Merged method achieved the lowest MAE of 6.6 cm, and for canopy span measurement, 

the Single-side method achieved the lowest MAE of 5.8 cm. This study demonstrates the 

potential of multi-UAV systems in greenhouse crop monitoring and proves the 

effectiveness of different reconstruction methods and measurement strategies in 

improving monitoring accuracy and efficiency. 

Keywords: Multi-UAV system, Visual SLAM, 3D reconstruction, Gaussian Splatting, 

Phenotyping analysis, Growth monitoring 
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CHAPTER 1  

Introduction 

1.1  General Background Information 

Agriculture has long been fundamental to human civilization, yet it now faces 

unprecedented challenges due to climate change, resource scarcity, and labor shortages 

(Singh & Singh, 2017). In response, the industry has entered the era of Agriculture 4.0, 

which integrates advanced technologies such as the Internet of Things (IoT) and artificial 

intelligence to increase productivity, improve resource allocation, and enable real-time 

decision-making (Zhai et al., 2020). 

As climate variability intensifies, many production systems have shifted from open 

fields to controlled environments like greenhouses. These environments offer the 

advantage of precise control over temperature, humidity, and lighting conditions, critical 

for ensuring crop quality and stability. With the integration of sensors and automation 

technologies, greenhouses have evolved into smart systems capable of real-time 

monitoring and adaptive control (Huynh et al., 2023). These advancements are 

particularly beneficial for cultivating high-value horticultural crops such as tomatoes, 

strawberries, and muskmelon (Cucumis melo L.), which require delicate environmental 

regulation. Previous studies have shown that greenhouse cultivation can significantly 

improve muskmelon yield and quality (Pardossi et al., 2000). However, the management 

of such high-value crops still depends heavily on accurate, timely, and non-invasive 

monitoring, which presents new technical challenges even in smart greenhouses. 
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Even within smart greenhouses, effectively monitoring crop health and growth 

remains a significant challenge. For crops such as muskmelon that require frequent 

phenotypic assessment, traditional manual inspection is both time-consuming and labor-

intensive, and often fails to provide the continuity and resolution necessary for precise 

crop management. To address this issue, unmanned aerial vehicles (UAVs) have emerged 

as a promising solution. UAV platforms support remote sensing, high-frequency 

inspections, and automated data collection, offering new possibilities for large-scale 

phenotyping and crop health monitoring. Aslan et al. (2022) noted that while UAV 

applications are well-established in open-field agriculture, their deployment in 

greenhouse environments remains limited due to constraints such as weak GPS signals 

and restricted space. Nevertheless, the study highlighted the strong potential of UAV-

based monitoring in greenhouses and emphasized the need for solutions such as 

simultaneous localization and mapping (SLAM) technologies to overcome the challenges 

of indoor navigation. 

While single-UAV systems offer promising solutions for crop monitoring in smart 

greenhouses, they are inherently constrained by limited flight time, restricted spatial 

coverage, and vulnerability to single-point failures. These limitations can hinder the 

ability to perform consistent and large-scale monitoring tasks in complex greenhouse 

environments. To address these challenges, recent research has increasingly turned to 

multi-UAV systems, which enable cooperative operations among multiple drones to 

improve system scalability and resilience. For example, Kim et al. (2019) demonstrated 

that deploying multiple UAVs in a coordinated manner significantly improves spatial 

coverage and reduces mission time during agricultural inspections. In a separate study, 

Ju and Son (2018) proposed a distributed control strategy for cooperative UAVs and 

showed that such systems enhance energy efficiency and robustness in field operations. 



doi:10.6342/NTU202503732

 

3 

These multi-UAV configurations are particularly well-suited for smart greenhouse 

applications, where high-frequency, non-invasive monitoring is essential for capturing 

detailed and dynamic crop traits across large areas. 

Building upon the capabilities of cooperative multi-UAV systems in smart 

greenhouse environments, recent advancements in computer vision and 3D 

reconstruction have enabled more detailed and non-destructive approaches to plant 

phenotyping. By capturing images from multiple and complementary viewpoints, UAV-

based systems can reconstruct accurate 3D models of plants, allowing for precise 

estimation of morphological traits such as plant height, canopy width, and leaf area. 

Li et al. (2022) demonstrated that multi-view image sequences can effectively 

reconstruct 3D models of maize seedlings in field conditions, enabling high-resolution 

measurement of key phenotypic parameters. Expanding on this approach, James et al. 

(2025) developed a scalable UAV-based pipeline that integrates deep learning for 

efficient 3D phenotyping of sorghum panicle in greenhouse environments. Their work 

highlights the feasibility and robustness of applying UAV-based 3D reconstruction 

technologies in controlled agricultural settings. 

Despite these advancements, the application of such phenotyping pipelines in smart 

greenhouses remains technically challenging due to factors like occlusion from dense 

foliage, limited viewpoints caused by structural constraints, and the need for seamless 

coordination among multiple UAVs. In this context, multi-UAV systems offer significant 

advantages by enabling flexible and comprehensive data acquisition from multiple 

perspectives, which can substantially improve the completeness and reliability of 3D 

reconstructions. 
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1.2  Research Objectives 

This study aims to develop an autonomous multi-UAV system for in-greenhouse 

crop monitoring, leveraging simultaneous localization and mapping (SLAM) to construct 

maps and estimate UAV poses in GPS-denied environments. The proposed system 

enables distributed autonomous navigation among multiple UAVs, thereby improving 

navigation efficiency and scalability within the confined and structurally complex 

greenhouse environment. By coordinating the UAV fleet for image acquisition from 

multiple perspectives, the system facilitates 3D reconstruction of plants, which in turn 

supports accurate phenotypic analysis and continuous growth monitoring. The specific 

objectives of this research are as follows: 

1. To develop an autonomous multi-UAV navigation system adapted for operation in 

greenhouse environments using SLAM. 

2. To reconstruct detailed 3D plant models from multi-view images captured by UAVs 

inside the greenhouse. 

3. To perform plant phenotypic analysis and monitor growth dynamics based on the 

reconstructed 3D models. 
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CHAPTER 2  

Literature Review 

The shift from traditional open-field agriculture to controlled environments such as 

greenhouses has introduced new challenges for crop monitoring. Among high-value crops 

cultivated in greenhouses, tomatoes, strawberries, and muskmelons require frequent, 

accurate, and non-invasive monitoring to ensure optimal growth. While smart 

greenhouses have adopted fixed sensor networks and automation systems, these solutions 

often lack the spatial flexibility and adaptability needed for high-resolution, plant-level 

monitoring across dynamic environments. To address these challenges, unmanned aerial 

vehicles (UAVs) offer a promising alternative due to their mobility, scalability, and 

ability to perform high-frequency data collection. Their deployment in greenhouses, 

however, is not without challenges, particularly in navigation and coordination within 

GPS-denied, space-constrained environments. The increasing complexity of crop 

monitoring demands integrated solutions that combine UAV mobility with advanced 

navigation, mapping, and data analysis capabilities. 

 

2.1  UAV Applications in Greenhouse Environments 

The advancement of unmanned aerial vehicle (UAV) technology has become an 

increasingly important tool in precision agriculture, particularly demonstrating strong 

potential in greenhouse applications. As global food demand continues to rise, UAVs 

contribute significantly to improving agricultural productivity, especially in 

environmental monitoring and crop management. With high versatility and a wide range 
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of sensing capabilities, UAVs can effectively replace traditional sensors. Their practical 

applicability and cost-efficiency have gradually established them as essential tools for 

greenhouse management (Aslan et al., 2022). 

 

2.1.1 Development and Applications 

In agriculture, UAVs equipped with various sensors, such as multispectral cameras 

and thermal imagers, can efficiently collect imagery data and monitor the agricultural 

environment. Studies have shown that these sensors not only capture high-resolution crop 

images but also assess plant moisture and growth status, thereby enabling farmers to more 

precisely monitor crop development, manage irrigation systems, and apply fertilizers 

(Rejeb et al., 2022). In outdoor agricultural settings, UAVs have been extensively 

employed to oversee large-scale crops, perform spraying, detect pests and diseases, and 

estimate yields. As UAV technology has matured, its applications have gradually 

extended into greenhouse environments. Within greenhouses, farmers can control 

environmental conditions, and UAVs, through automated systems, can carry out three-

dimensional environmental monitoring and data collection, thus improving production 

efficiency and reducing resource waste (Roldán et al., 2015). 

The application of unmanned aerial vehicles in greenhouses is extensive, including 

monitoring plant growth, detecting diseases, and managing temperature and humidity. 

For example, UAV systems equipped with multispectral cameras and LiDAR (Light 

Detection And Ranging) technology can accurately monitor plant health, enabling 

farmers to detect disease or nutrient deficiencies promptly and apply pesticides or 

fertilizers in a timely manner. In addition, by combining LiDAR technology with infrared 
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imaging, it is possible to provide precise temperature distribution data under low-light or 

night-time conditions, ensuring optimal growth conditions for plants in varying 

environments (Gu et al., 2020). These technologies assist farmers in rapidly identifying 

problem areas and making adjustments immediately, greatly reducing the risk of pests 

and diseases and effectively minimizing both soil moisture evaporation and plant 

transpiration stress. By integrating these approaches, greenhouse management becomes 

more precise and efficient. 

As technology continues to advance, the capabilities of drones have gradually 

improved, and depending on the scale, greenhouse operations may require a large amount 

of labor. Research indicates that through simultaneous localization and mapping (SLAM), 

drones can navigate autonomously in greenhouses where GPS signals are limited, avoid 

obstacles and complete tasks effectively. Krul et al. (2021) demonstrated that a small 

drone with a monocular camera and ORB-SLAM can function reliably in greenhouse 

corridors despite plant occlusion and low-texture floors, producing sparse point-cloud 

maps that support real-time navigation and improve inspection efficiency. 

Currently, UAV technology has emerged as a critical tool for greenhouse 

management. Through the integration of multiple sensors and advanced navigation 

technologies, UAVs can operate effectively under complex greenhouse conditions. 

Nevertheless, despite ongoing technological advancements, numerous challenges remain 

in the deployment of UAVs within greenhouses. 
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2.1.2 Case Studies and Challenges 

Utilizing UAVs within greenhouse environments presents numerous challenges, one 

of which is the stability of communication systems. Pantos et al. (2023) reported that the 

enclosed environment of greenhouses adversely affects UAV signal propagation, noting 

that measurements taken near the roof and floor are especially prone to signal attenuation. 

Structural components within greenhouses induce signal attenuation, compromising 

reliable data transmission and real time video streaming, both of which are essential for 

tasks requiring immediate feedback such as environmental monitoring and crop health 

evaluation. These challenges highlight the need for continued technological innovation 

in order to achieve optimal UAV performance in greenhouse operations. 

In addition, when UAVs are used in greenhouses with low light or rapidly changing 

lighting conditions, the sensitivity and accuracy of sensors can be adversely affected, 

resulting in reduced data reliability. For example, infrared sensors or multispectral 

cameras may not provide clear image data under insufficient lighting, which can 

compromise the accuracy of plant health assessments or microclimate monitoring 

(Bagagiolo et al., 2022). These challenges indicate that UAV deployment still requires 

further improvement of sensing technologies to adapt to the variable conditions found in 

greenhouses. The case studies demonstrate that although UAV applications in 

greenhouses can enhance automation efficiency and reduce reliance on human labor, 

technical limitations remain. For instance, UAV autonomy and sensor accuracy face 

technical bottlenecks that must be addressed through technology development. To meet 

these challenges, future research should focus on further improving UAV navigation 

precision in order to enable effective operation in more complex and dynamic greenhouse 

environments. 
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2.2  Single‐UAV and Multi‐UAV Navigation 

UAV technology plays a critical role in modern agriculture, particularly in 

greenhouse environments. Through autonomous navigation, UAVs can enhance farm 

management efficiency and reduce labor costs. The precise monitoring requirements in 

greenhouses, such as temperature, humidity, and crop health, have driven continuous 

advances in UAV technology. In this setting, UAV deployment not only reduces labor 

demands but also improves operational accuracy and timeliness (Park et al., 2025). Both 

single-UAV and multi-UAV systems demonstrate significant advantages in agricultural 

automation. Single-UAV platforms are generally simple to operate and cost-effective, 

making them well suited to tasks such as indoor greenhouse inspection or point-specific 

monitoring (Khosiawan &  Nielsen, 2016). In contrast, multi-UAV configurations exhibit 

superior performance in collaborative missions by leveraging distributed control 

frameworks that allow simultaneous multi-zone monitoring and data collection, thereby 

offering greater efficiency and flexibility when managing large greenhouses or complex 

tasks (Chung et al., 2018). 

 

2.2.1 Single‐UAV Navigation Applications and Challenges 

Single-UAV technology has been widely applied in agricultural monitoring, 

logistics delivery, and search-and-rescue operations. In terms of autonomous navigation, 

UAV navigation can be understood as the planning process that allows the aircraft to 

safely and quickly reach a target location based on its current environmental and 

positional information. To successfully complete a mission, a UAV must be aware of its 
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own state, including its current position, flight speed, heading direction, as well as its 

starting point and target location (Lu et al., 2018). 

In greenhouse environments, a single UAV equipped with visible-light, 

multispectral, and thermal-infrared sensors can independently perform tasks such as crop 

monitoring and microclimate detection. According to Hunt Jr and and Daughtry (2018) 

shown that by flying at different altitudes, a UAV can gather temperature, humidity, and 

light intensity data and combine this information with multispectral imagery to assess 

plant growth status. This approach helps analyze how environmental changes inside the 

greenhouse affect crop development. 

However, greenhouses often present severe obstructions and limited GPS signals. 

Chang et al. (2023) review autonomous UAV navigation in GPS-denied environments 

and note that these methods fall into map-based and mapless strategies. By using 

techniques such as vision–inertial fusion and SLAM, UAVs can significantly improve 

their localization and stability, ensuring they can navigate narrow, highly obstructed 

passages or dense vegetation areas (Chang et al., 2023). In small-scale greenhouses, 

single-UAV applications focus on regular patrols, such as inspecting plant health or 

collecting light-intensity and humidity data. Because of their ease of operation and 

flexibility, single UAVs offer an ideal low-cost solution for autonomous patrol missions. 

Nevertheless, their main limitation is flight endurance, which makes it difficult to cover 

larger areas. 

2.2.2 Multi‐UAV Navigation Applications and Challenges 

Multi-UAV systems enable multiple aircraft to cooperate on tasks that are either 

impractical or inefficient for a single vehicle, such as large-area monitoring, synchronized 
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data collection, or persistent coverage in dynamic environments. In greenhouse settings, 

where rapid and accurate assessment of microclimate conditions and crop health over a 

wide area is essential, coordinated UAV fleets can divide the workload to cover multiple 

zones simultaneously.Vetrella et al. (2016) describe a navigation framework in which a 

UAV formation acts like a virtual sensor array. Each UAV exchanges differential GPS 

data with its peers and combines this information with vision tracking to reduce magnetic 

and inertial interference. As a result each UAV can use relative position information from 

others, which improves accuracy and robustness when individual GPS signals are weak. 

By using cooperative DGPS together with visual features matching the fleet maintains its 

formation and keeps reliable state estimates for all UAVs, reducing accumulated 

positioning errors. 

Building on the concept of cooperative sensing, Trujillo et al. (2018) develop a 

vision-based SLAM method for multi-UAV formations that follow a moving lead agent. 

When the lead agent, whether it is another UAV, a ground vehicle, or a person, moves 

unpredictably, follower UAVs must estimate both their own positions and the lead’s state. 

The authors examine three configurations using nonlinear observability analysis, each 

with different sensor setups. In the first configuration, one UAV (Quad 1) keeps the lead 

in view with a monocular camera and combines camera-based landmark angles with 

onboard inertial data. In the second configuration, if the lead is outside the camera’s field 

of view, Quad 1 adds range measurements and altimeter readings to maintain its estimate. 

In the third configuration, multiple chasing UAVs share visual and inertial data among 

themselves. In all cases, a high-level control scheme adjusts the formation in real time 

based on those estimates. Simulations show that this cooperative SLAM approach 

produces stable position estimates for both the UAV swarm and the lead agent even when 

GPS is unreliable, enabling reliable formation control and collision avoidance. 
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Deploying multi-UAV systems in greenhouses still faces major challenges. 

Greenhouse structures and dense foliage often block the view, making vision-based 

measurements unreliable, and DGPS alone cannot prevent inertial drift. Maintaining 

reliable communication between UAVs is difficult because metal frames and high 

humidity interfere with signals. Unpredictable wind and thermal updrafts inside 

greenhouses also demand control algorithms that can adjust flight paths on the fly. Finally, 

small UAVs have limited battery life, so they must plan routes that balance area coverage 

and energy use. Addressing these challenges requires adding lightweight LiDAR or ultra-

wideband radios for backup ranging, designing formations that can tolerate brief 

communication losses, and creating mission plans that optimize both coverage and power. 

In summary, integrating differential GPS with vision based tracking and advanced 

visual SLAM architectures can greatly improve multi-UAV navigation in complex 

settings. Yet in greenhouse operations, further work is needed on sensing that resists 

occlusion, more robust communication strategies, and energy aware coordination 

algorithms to achieve fully autonomous, large scale aerial monitoring. Among various 

sensing technologies, vision-based navigation, with its passive, lightweight, and low-

power characteristics, serves as a crucial complement for UAV localization and guidance 

in greenhouse environments. 

 

2.2.3 Vision-based Navigation 

Vision-based navigation provides UAVs with the ability to interpret and respond to 

their surroundings using only camera input. By extracting distinctive visual features and 

constructing or updating maps in real time, this approach enables both single and multiple 
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UAVs to maintain accurate positioning and trajectory planning without relying on 

external signals. 

Early SLAM techniques were primarily based on geometric methods, using 

traditional tools from geometry and probability theory for localization and map 

construction. These approaches relied on a robot’s motion model and observation model 

to estimate both the robot’s position in space and the locations of environmental feature 

points, thereby building a 3D map. For example, EKF-SLAM (Extended Kalman Filter–

SLAM) is a typical geometry-based SLAM method that uses an extended Kalman filter 

to track and update the robot’s pose and the positions of feature points (Bailey et al., 

2006). However, as the number of observed points increases, its computational 

complexity grows quickly, creating a performance bottleneck (Li et al., 2018). 

Subsequently, SLAM methods began using image-based approaches. MonoSLAM 

was the first to use a single camera for both motion estimation and map building (Davison 

et al., 2007). This image-based SLAM relies on a continuous sequence of camera images 

and estimates the camera’s pose by extracting and tracking feature points. ORB-SLAM 

relies on ORB features (Oriented FAST and Rotated BRIEF) for localization and mapping, 

making it fast and efficient for real-time use (Mur-Artal et al., 2015). In contrast, LSD-

SLAM (Large-Scale Direct Monocular SLAM) skips discrete feature extraction and 

instead optimizes pixel intensities directly, producing a semi-dense depth map (Engel et 

al., 2014). This allows LSD-SLAM to keep tracking in areas with few clear corners or in 

low-texture scenes, but it requires more computation and can be slower in very large 

environments. Compared to ORB-SLAM’s sparse maps and lower processing demands, 

LSD-SLAM gives richer detail at the cost of speed. Overall, ORB-SLAM’s lower 
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computational requirements and consistently reliable tracking make it a more practical 

choice than LSD-SLAM for most real-time applications. 

Building on these developments in visual SLAM, subsequent frameworks expanded 

the capabilities of camera‐based localization and mapping by introducing new features 

and supporting a wider range of sensors and platforms. ORB-SLAM2 is a feature-based 

SLAM system for monocular, stereo, and RGB-D cameras. It offers reliable loop closure, 

map reuse, and relocalization, delivering high accuracy in various environments (Mur-

Artal & Tardós, 2017). ORB-SLAM3 builds on this by adding visual-inertial fusion and 

multi-map support. Its joint optimization of camera and IMU data improves tracking 

during fast motion or brief visual loss, and its Atlas module manages multiple submaps, 

making it more robust for large-scale mapping (Campos et al., 2021). 

While ORB-SLAM2 and ORB-SLAM3 emphasize highly optimized feature 

extraction and sensor fusion for accuracy, other frameworks emerged with a focus on 

flexibility and modularity. OpenVSLAM, for example, prioritizes support for diverse 

camera models and ease of integration into various development workflows. It uses ORB 

features but supports many camera types, such as fisheye cameras, omnidirectional 

cameras, and stereo setups (Sumikura et al., 2019). A lightweight map-fusion plugin 

allows easy switching between sparse, semi-dense or custom map formats without 

rebuilding the system. Because it does not rely on ROS, it can run more easily on 

embedded or resource-limited platforms. 

In summary, ORB-SLAM2 is praised for its reliable loop closure and relocalization 

capabilities, and ORB-SLAM3 builds on this foundation by incorporating visual-inertial 

fusion and multi-map management to enhance motion handling and enable large-scale 

revisits. Meanwhile, OpenVSLAM stands out for its support of diverse camera types, 
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modular map formats, and rapid development workflows. Together, these systems cater 

to a wide range of SLAM requirements, from achieving high-precision mapping to 

offering flexible deployment with unconventional camera setups. 

 

2.3  Multi-UAV Control and Communication  

Multi UAV control and communication architectures can be broadly categorized 

into centralized, distributed, and hybrid designs. Centralized architectures rely on a 

primary controller that issues commands and gathers data from each vehicle. This 

approach simplifies coordination but can create a single point of failure and may struggle 

with scalability. Distributed architectures share decision making among vehicles so that 

each unmanned aerial vehicle collaborates based on local information and peer 

communication. Such systems are more resilient and flexible but require robust 

algorithms to reach consensus and handle dynamic changes. Hybrid architectures 

combine elements of centralized and distributed designs by maintaining a global mission 

plan while allowing individual vehicles to operate autonomously within local constraints. 

Across all three strategies, effective communication and collaboration mechanisms are 

essential to exchange state information, coordinate tasks, and ensure overall system 

performance. 

2.3.1 Centralized Architecture 

In multi‐UAV collaborative control systems, a centralized control architecture is 

generally considered to provide higher task execution efficiency and decision‐making 

quality. A centralized control system manages the status and task allocation of the entire 
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UAV swarm through a cloud server or ground control station. Research by Loayza et al. 

(2017) points out that when centralized control is applied to collaborative UAV missions 

such as virtual seeding in precision agriculture, it can effectively govern each UAV’s 

movement and prevent collisions, thereby enhancing task stability and effectiveness. 

According to Jamshidpey et al. (2024), centralized control demonstrates better speed 

and efficiency in coverage tasks in multi UAV systems, especially when precise control 

and efficient task completion are required. However, a drawback of centralized control is 

its high dependence on a single control point, which leads to poor scalability and makes 

the system prone to collapse if the control point fails. In simulated tests this centralized 

control method showed significant advantages in task completion speed and coverage 

uniformity, but when applied on a large scale it is easily limited by communication 

bottlenecks and single point failures. 

Furthermore, Hu et al. (2018) compared centralized and distributed control and 

pointed out that although centralized control usually outperforms distributed control in 

decision quality, it faces a significant increase in delays as the swarm size grows. In 

centralized control all decisions and computations are concentrated on a cloud server. 

This enables the system to make decisions based on global data but also makes the system 

vulnerable to performance degradation due to communication delays or resource 

constraints. 

2.3.2 Distributed Architecture   

Compared to centralized control, distributed control architectures place greater 

emphasis on collaboration among individual UAVs and enable them to make decisions 

without reliance on a central control unit. According to Asaamoning et al. (2021) 
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distributed control can effectively address the challenges that UAV swarms face when 

performing autonomous missions in dynamic and uncertain environments. These control 

systems have self-organizing capabilities and do not depend on a single control point, 

thereby improving system scalability and fault tolerance. 

To further leverage the benefits of distributed architecture, Zhang et al. (2023) 

proposed a distributed cooperative search method called DCS-UC that incorporates ant 

colony optimization to handle unstable communications among UAVs. Their approach 

enables each UAV to adjust its search path based on local pheromone information and 

neighbor broadcasts, resulting in improved coverage efficiency and robustness when 

communication links are intermittent. Simulation results demonstrate that DCS-UC 

outperforms traditional approaches by achieving higher search success rates and reducing 

mission completion time under network instability. 

However, the disadvantage of distributed control is that each UAV can only make 

decisions based on its own information and cannot know the positions or battery levels 

of other UAVs, which may result in lower quality task allocation compared to centralized 

control. Although distributed control offers a significant advantage in decision latency, 

when complex missions are involved centralized control still provides superior decision 

making. 

2.3.3 Communication and Collaboration Mechanisms 

In cooperative control of UAV swarms, communication and collaboration constitute 

the core mechanisms for achieving collective objectives. UAV swarms exchange 

information through diverse communication architectures to ensure smooth execution of 

missions and coordinated operation among all vehicles. 
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Azzam et al. (2023) propose a multi-agent reinforcement learning framework based 

on centralized training and decentralized execution (CTDE). In this framework, all UAV 

behaviors are managed centrally during the training phase to ensure they acquire 

cooperative navigation capabilities. During the execution phase, decentralized control is 

employed so that each UAV can make decisions based on local sensing and peer-to-peer 

messages, thereby improving system flexibility and scalability. Communication stability 

is critical during cooperative flight. Zhang et al. (2023) address the problem of unstable 

communications under radio frequency interference by designing a dual-threshold 

detection algorithm. This algorithm monitors the collaborative process, prevents 

collisions, and maintains connectivity, thus enhancing the reliability of the UAV swarm 

in dynamic environments. To reduce communication latency while maintaining efficient 

collaboration, Chen et al. (2024) develop a rapid cooperation method for large-scale UAV 

swarms. Their method relies on local interactions and predictive mechanisms, allowing 

the swarm to reach consensus quickly even under constrained channel resources. This 

approach preserves collaboration efficiency when multiple UAV groups merge, 

enhancing the swarm’s adaptability in dynamic conditions. 

These research findings demonstrate that, in large-scale applications, careful design 

and selection of communication mechanisms enable UAV swarms to maintain efficient 

collaboration and successfully complete complex tasks in dynamic environments. 

2.4  Plant Phenotyping 

Plant phenotyping quantifies traits such as leaf morphology, leaf count, canopy 

spread, height, biomass and color to reveal genetic and environmental interactions. By 

utilizing noninvasive imaging, spectral measurements and other sensor-based techniques, 
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researchers can capture repeated measurements throughout development to identify 

trends and detect stress or disease at early stages. These approaches inform precision 

agriculture practices, such as irrigation, fertilization and pest management, and support 

breeding programs by pinpointing superior genotypes. Ultimately, plant phenotyping 

enables high-throughput, non-destructive evaluation of performance across diverse 

environments. 

 

2.4.1 Plant Phenotyping Techniques 

Plant phenotyping aims to quantify plant morphological, physiological and 

biochemical traits that develop because of interactions between genotype and 

environment. Methods can be divided into invasive approaches that require destructive 

sampling of tissues to measure traits such as biomass or root architecture and non-

invasive approaches that employ imaging, spectral or other sensor technologies to collect 

continuous data without disturbing plant growth. While invasive methods deliver precise 

measurements, they do not allow longitudinal monitoring of the same individual. In 

contrast, non-invasive techniques combine RGB and multispectral imaging, LiDAR point 

clouds, thermal imaging and other sensors to achieve high throughput repeated 

measurements and capture growth and physiological dynamics over time and space 

(Pieruschka & Schurr, 2019).  

Non‐invasive phenotyping uses a variety of imaging and sensor technologies to 

monitor plants without causing damage. Visible‐light cameras capture RGB images to 

measure leaf area and canopy cover, and multispectral and hyperspectral sensors record 

reflectance at different wavelengths to assess pigment composition, nutrient status and 
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stress indicators. Thermal infrared cameras map canopy temperature to infer transpiration 

rates and water stress, and chlorophyll fluorescence imaging evaluates photosynthetic 

efficiency while also revealing early signs of abiotic stress. Three‐dimensional 

measurements rely on stereo vision and LiDAR scanners, which generate point clouds to 

reconstruct plant structure and calculate height, volume and branching architecture. 

Furthermore, tomographic methods such as magnetic resonance imaging, computed 

tomography and positron emission tomography reveal internal features such as root 

networks and vascular tissues at high resolution without excavation (Fiorani & Schurr, 

2013). In greenhouse environments these sensors underpin systems like PlantEye and 

FieldScanalyzer. PlantEye combines high‐resolution three‐dimensional scanning with 

multispectral imaging to capture detailed morphological and physiological data and 

FieldScanalyzer enables rapid multispectral imaging of large plant populations (Gao et 

al., 2024). These non‐invasive methods provide a comprehensive toolkit for high‐

throughput trait measurement. 

2.4.2 Two-Dimensional Image-Based Approaches  

As high throughput imaging technologies become more widespread, methods for 

plant phenotyping using two dimensional images have evolved from early traditional 

image processing toward machine learning and deep learning techniques. According to 

Chandra et al. (2020), the number of publications employing deep learning in the plant 

phenotyping field has increased rapidly in recent years. Architectures based on 

convolutional neural networks are especially common and have been successfully applied 

to tasks such as leaf counting, species classification, and disease detection. This trend 
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shows that deep learning methods provide higher accuracy and greater automation 

compared to traditional machine learning approaches. 

Early two-dimensional image-based phenotyping often relied on manually 

engineered features such as color histograms, texture parameters, and shape descriptors. 

For example, Zhao et al. (2016) extracted 36 root morphological traits in pea and used a 

random forest and support vector machine approach to distinguish among 16 European 

cultivars. Using only the five most informative traits yielded up to 86% accuracy and 

outperformed models built on more extensive or random feature sets. By contrast, 

Teshome et al. (2023) employed UAV-derived crop surface models (UAVH) from 

multispectral imagery collected one to two weeks before harvest to predict sweet corn 

height, biomass, and yield. A simple linear regression on UAVH achieved a concordance 

index of 0.99, an R² of 0.99, and a mean absolute error of five centimeters for height 

estimation. Nonlinear models such as random forest, support vector machine and k-

nearest neighbors predicted biomass with concordance values between 0.88 and 0.99, 

demonstrating that machine learning applied to two-dimensional UAV imagery can reach 

near-field measurement accuracy just weeks before harvest. These studies confirm the 

feasibility and precision of combining two-dimensional imagery with machine learning 

for plant phenotyping. However, machine learning methods depend heavily on manually 

designed features, which become a performance bottleneck when faced with high-

dimensional, nonlinear images containing complex backgrounds. In contrast, deep 

learning can automatically learn hierarchical representations from raw images, reducing 

reliance on manual feature engineering and achieving superior predictive accuracy and 

generalization in complex phenotyping scenarios. 
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Deep learning’s automatic feature learning further enhances accuracy and 

automation in phenotyping. Ampatzidis and Partel (2019) used a UAV equipped with a 

multispectral camera to capture citrus orchard images. They applied the YOLOv3 model 

to achieve plant detection accuracy of 99.8 percent with precision of 99.9% and recall of 

99.7%. They also estimated canopy area with accuracy of 85.5% and identified tree gaps 

with accuracy of 94.2 %. Williams et al. (2024) proposed a zero-shot leaf segmentation 

method based on the Segment Anything Model (SAM) that operates without annotated 

data. In potato leaf segmentation their method achieved average precision of 60.3% and 

average recall of 63.2%, while a fine-tuned Mask R-CNN model achieved precision of 

74.7% and recall of 78.7%. This demonstrates that deep learning methods are feasible 

when data are limited. These studies show that deep learning automatically extracts 

multilevel features from two-dimensional images and providing higher generalization in 

complex scenarios. 

 

2.4.3 Three-Dimensional Point Cloud-Based Approaches   

Two‐dimensional image‐based plant phenotyping techniques can extract 

information about organs such as leaves and stems from single or multiple 2D images, 

but they remain heavily affected by occlusions, lighting conditions, and limited 

viewpoints, often failing to fully reconstruct the plant’s three‐dimensional structure. To 

overcome these limitations, researchers have gradually shifted their attention to three‐

dimensional point cloud data, aiming to use depth information to rebuild a more realistic 

representation of plant morphology and thereby improve the accuracy and robustness of 

segmentation and phenotypic feature extraction. 
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Common methods for obtaining three‐dimensional point clouds include laser 

scanning, photogrammetry, and depth cameras. Laser scanning can directly produce high‐

precision, high‐density point clouds, but the equipment is costly and operation is complex. 

In contrast, photogrammetry uses Structure‐from‐Motion to estimate camera parameters 

and then applies Multi‐View Stereo to generate dense point clouds. By capturing multiple 

overlapping images with a standard camera or drone, one can automatically reconstruct a 

three‐dimensional model. Tools such as COLMAP perform camera calibration, sparse 

reconstruction, and dense reconstruction (Schönberger & Frahm, 2016), while GLOMAP 

further optimizes distributed computing and deep feature matching efficiency (Pan et al., 

2024). In addition, RGB‐D cameras and stereo cameras can capture depth information in 

real time. Although their range and accuracy in low‐texture regions are limited, they offer 

a distinct advantage in capturing depth for close‐range or dynamic scenes (Wang et al., 

2020). 

Utilizing these point cloud acquisition methods, subsequent algorithms are able to 

perform precise segmentation and reconstruction of plant structures within three‐

dimensional space. Shi et al. (2019) first captured plant images simultaneously from 

multiple cameras at different angles and then applied a convolutional neural network to 

each two‐dimensional image for pixel‐wise semantic and instance segmentation to 

identify parts such as stems and leaves. They subsequently used Structure‐from‐Motion 

(SfM) and Multi‐View Stereo (MVS) techniques to reconstruct a dense point cloud, 

projecting the 2D segmentation results back into three‐dimensional space to complete the 

final 3D point cloud segmentation. In their results, the precision for pixel‐wise stem 

segmentation using only 2D images was approximately 0.77, whereas it increased to 

around 0.97 when analyzed with 3D point clouds. For leaf segmentation, the 2D method 

achieved a precision of roughly 0.93 to 0.95, while the 3D approach reached 1.00, 
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demonstrating that 3D point clouds significantly improve segmentation accuracy. 

Building on Shi et al.’s demonstration that 3D point clouds outperform 2D-only methods 

under controlled conditions, Li et al. (2022) proposed a stem-leaf point cloud dataset and 

applied a 3D Edge-Preserving Sampling (3DEPS) strategy to preprocess the input point 

clouds. They then designed PlantNet, a dual-function network that performs both stem-

leaf semantic segmentation and individual leaf instance segmentation by using a Local 

Feature Extraction Operation (LFEO) module based on dynamic graph convolutions and 

a Semantic-Instance Feature Fusion Module (FFM). When tested on tobacco, tomato, and 

sorghum point clouds, PlantNet achieved an average precision of 92.49% and an 

intersection-over-union (IoU) of 85.86% in semantic segmentation tasks. In instance 

segmentation, PlantNet achieved a mean precision (mPrec) of 83.30% and a mean 

coverage (mCov) of 78.62%. These results highlight PlantNet’s effectiveness in single-

plant or controlled-environment point clouds, where manually annotated samples ensure 

high-fidelity training data. 

 In contrast, Zarei et al. (2024) addressed the challenge of large-scale, highly 

overlapping outdoor field conditions by introducing a digital-twin approach to generate a 

synthetic sorghum field point cloud dataset. They trained PlantSegNet, a graph 

convolution network designed for instance segmentation in complex field scenarios. On 

real sorghum point cloud data, PlantSegNet achieved an mCov of 0.53 and an AP of 0.69, 

outperforming TreePartNet, which was trained on the same synthetic and real data. While 

PlantNet attains higher precision and IoU under controlled conditions, PlantSegNet’s use 

of large-scale synthetic training makes it more robust to field-scale occlusions and leaf 

overlaps, demonstrating superior accuracy when segmenting geometrically similar plant 

organs in outdoor environments. 
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CHAPTER 3  

Materials and Methods 

3.1  Architecture of Autonomous Multi-UAV System 

3.1.1 UAV and Edge Computing Hardware Architecture 

The hardware architecture consists of a centralized ground control station and 

multiple distributed edge nodes, each composed of a computing unit, a wireless 

communication module, and a drone platform, as illustrated in Fig. 3-1.  

 

Fig. 3-1. Hardware architecture of the multi-UAV system 

The ground control station is an MSI Katana 15 B13V laptop, featuring a 13th-

generation Intel Core i7 processor, an NVIDIA GeForce RTX 4060 Laptop GPU, 16 GB 

of DDR5 RAM, and a 1 TB PCIe SSD. It runs Ubuntu 22.04 with ROS 2 Humble, and 
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handles central mission planning, data management, and orchestration of all ROS 2 nodes. 

For connectivity with the edge nodes, the station is linked via Gigabit Ethernet to a D-

Link DGS-108 8-port unmanaged switch, providing a 1 Gbps-per-port LAN backbone 

with high stability and low latency. 

We employ the AAEON BOXER-8621AI embedded computer as our edge node 

platform. The specifications are shown in Table 3-1 NVIDIA Jetson Orin Nano Super 

Mode provides the computation performance needed for UAV cruising. The six-core Arm 

Cortex-A78AE CPU together with 4 GB of LPDDR5 memory supports image 

transmission and autonomous navigation algorithms. A 128 GB M.2 2242 SSD ensures 

that flight data can be recorded quickly and reliably. With dimensions of just 10.5 cm × 

9 cm × 5.2 cm, the device is compact while retaining powerful performance. It is therefore 

ideal as an edge node for multi-UAV operations. Its extended operating temperature range 

guarantees stable performance even in the high temperatures of a greenhouse 

environment. 

Table 3-1. AAEON BOXER-8621AI Edge Node Specifications 

Category Specification 

AI Accelerator NVIDIA®  Jetson Orin Nano™ with Super Mode 

CPU 6-core Arm®  Cortex® -A78AE ARMv8.2 64-bit CPU 

System Memory 4GB LPDDR5 

Storage Device 128GB M.2 2242 B+M Key SSD 

Dimension 10.5 cm × 9 cm × 5.2 cm 

Gross Weight 1.1kg 

Operating 

Temperature 
-15°C ~ 60°C 
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To connect the embedded computer to our UAV, we use the TP-Link TL-WN722N 

adapter, which supports 802.11n wireless communication at speeds up to 150 Mbps and 

is equipped with a detachable 4 dBi antenna to maintain a dedicated 2.4 GHz point-to-

point link with the UAV. 

In this study, we selected the DJI Tello as our UAV platform. The detailed 

specifications are shown in Table 3-2. The Tello is an affordable commercial drone, 

retailing on DJI’s official website at USD $99 including one battery. It is equipped with 

an HD 720p 30 fps RGB camera. The UAV weighs only 80g and its compact dimensions 

make it well suited for flight in narrow greenhouse aisles. 

Table 3-2. DJI Tello Specifications 

Category Specification 

Weight 80g 

Dimensions 9.8 cm × 9.25 cm × 4.1 cm 

Video Quality HD 720 p @ 30 fps 

Max Flight Distance 100 m 

Max Speed 8 m/s 

Max Flight Time 13 min 

Max Flight Height  30 m  

Field of View 82.6° 

 

To obtain higher-quality video and images, each DJI Tello is equipped with a 

RunCam Thumb Pro W camera, as illustrated in Fig. 3-2. According to the official DJI 

documentation, the maximum payload capacity of the Tello is 20 g. To meet this weight 

limitation, the outer casing of the RunCam Thumb Pro W camera was removed, and a 
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lightweight lithium battery along with a voltage boost module was integrated. This 

configuration allows stable power supply to the camera while keeping the total added 

weight within the allowable limit. The camera captures 4K RGB footage at 30 fps with a 

155° field of view and records video in synchronization with the UAV’s flight operations. 

  

Fig. 3-2. DJI Tello Equipped with a RunCam Thumb Pro W Camera for Enhanced Imaging 

 
Table 3-3. RunCam Thumb Pro W Specifications 

Category Specification 

Weight 16g 

Dimensions 5.4 cm × 2.55 cm × 2.1 cm 

Resolution 4K@30fps\2.7K@60fps\1440P@60fps\1080P@120fps\1080P@60fps 

Field of View 155° 
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3.1.2 Software Architecture 

The UAV ground station runs Ubuntu 22.04 LTS with the corresponding Robot 

Operating System 2 (ROS 2) Humble release. ROS 2 is the next-generation open-source 

robotics framework built on the Data Distribution Service (DDS) middleware, providing 

a native distributed architecture and quality-of-service controls that allow modules to 

exchange data reliably, flexibly and in real time. Compared with ROS 1, it offers 

significant enhancements in security and real-time performance and supports a wide 

range of operating systems and embedded platforms while retaining familiar packages for 

perception, motion control, navigation and task planning. Its modular design and cross-

language support for C++ and Python simplify system integration and debugging and 

have established ROS 2 as a leading choice for both robotics research and industrial 

applications.  

Fig. 3-3 illustrates the overall software architecture for multi-UAV operations. The 

Tello Driver can use the Tello SDK to send commands for takeoff, landing and manual 

flight operations and can also publish topics to collect the UAV’s RGB video, odometry 

and IMU data. During a navigation mission each UAV first transmits real-time H.264 

compressed video to the ground station over Wi-Fi. Within the ROS 2 framework the 

Tello Driver decompresses each frame and forwards it to Stella VSLAM to obtain 

localization data. To enable autonomous flights a map must be created first. Once the 

map is generated it is transferred via Secure Copy Protocol (SCP) to each embedded 

computer. Using the received map each UAV defines its waypoint positions in Stella 

VSLAM and establishes its waypoint mission. Finally the multi-UAV autonomous flight 

is executed. Each UAV computes the error between its current position and the target 

waypoint based on the Stella VSLAM output. A PID controller then calculates the 
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velocities required to reach each waypoint. Those velocity commands are sent back to the 

Tello Driver to control the UAV’s motion. Through this process the multi-UAV 

autonomous navigation is completed. 

 

Fig. 3-3. Overview of the software architecture of multi-UAV system 

3.1.3 Multi-UAV Communication Architecture 

The multi-UAV communication architecture consists of a host computer, computing 

nodes and UAV units as shown in Fig. 3-4. The ground control station acts as the central 

command node. It orchestrates mission coordination, aggregates data from distributed 

edge computing units and makes high-level decisions. All devices in the system 

communicate over a dedicated local area network using a Gigabit Ethernet switch and 

each node has a static IP address to ensure consistent and deterministic network 
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addressing. Each edge computing node has its own unique static IP address. These nodes 

perform intensive computational tasks in a Docker container, such as real-time visual 

SLAM processing, PID based control and waypoint mission management. This 

containerization simplifies deployment, ensures consistency across nodes and streamlines 

updates and maintenance. In operation, each embedded computer communicates 

wirelessly with its assigned DJI Tello UAV using a dedicated point-to-point 2.4 GHz 

channel. This setup delivers low latency and high reliability for continuous video 

streaming and real-time flight command feedback. The overall architecture leverages 

ROS 2’s DDS based middleware. We configured namespaces for each UAV avoid 

conflicts and quality of service policies ensure robust message exchange between 

distributed nodes and the host system. 

 

Fig. 3-4. Multi-UAV communication Architecture 

3.2  Autonomous Multi-UAV Flight in Greenhouse 

3.2.1 Experimental Setup in Greenhouse 

Experiments for this study were conducted in the Intelligent Energy-saving 

Greenhouse at the National Taiwan University Agricultural Experiment Station. The 
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greenhouse measures 30.15 m in length and 8.15 m in width and contains twelve sets of 

angle steel frames. Each frame measures 5.4 m in length, 0.75 m in width and 2.1 m in 

height. Our experiments took place in the rear section of the greenhouse, which is outlined 

by the red box in Fig. 3-5(a). The greenhouse is planted with muskmelon of the Summer 

No. 2 Japanese Arus variety, as shown in Fig. 3-5(b). Each steel frame supports five plants 

and yields up to sixty fruits per quarter. Fig. 3-5(c) presents a photograph of the site, 

where the aisle width is 1.16 m, providing a suitable environment for UAV flight 

experiments. 

 

(a) 

  

(b) (c) 

Fig. 3-5. Experimental area in the experimental greenhouse: (a) schematic layout 

highlighting the rear test section; (b) Summer No. 2 Japanese Arus muskmelon;(c) on-

site view of the 1.16 m-wide aisle used for UAV flights. 
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3.2.2 Visual SLAM for Localization and Mapping 

In this study we use Stella VSLAM, which is a branch created from OpenVSLAM 

(Sumikura et al., 2019) to continue its development. This VSLAM framework supports 

monocular, stereo and RGBD camera types and, like ORB-SLAM (Mur-Artal et al., 2015) 

and ProSLAM (Schlegel et al., 2018), employs an indirect SLAM algorithm with sparse 

features. Its core architecture builds upon ORB-SLAM and ORB-SLAM2 and the entire 

codebase has been redesigned to improve scalability, readability and performance. 

Enhancements include map storage and loading capabilities and a modular system design 

that encapsulates several functions into independent components.  

Each UAV performs intrinsic and distortion calibration of its monocular camera 

using the ROS 2 camera_calibration package’s cameracalibrator tool before using Stella 

VSLAM, and we then add the resulting parameters to Stella VSLAM’s configuration file. 

Each UAV streams its calibrated monocular RGB video to its onboard SLAM module, 

which performs visual odometry and map generation in real time. Stella VSLAM 

automatically selects keyframes, triangulates sparse landmarks and carries out local 

bundle adjustment to refine both pose and structure estimates. After loop closures are 

detected using a bag-of-words model, the system performs global pose graph 

optimization to ensure mapping consistency over time. The resulting keyframe map is 

lightweight, reusable and well suited for multi-UAV localization. Once the map is 

generated, the ground station distributes the map files to each UAV via the Secure Copy 

Protocol (SCP). During autonomous flight, the onboard Stella VSLAM module loads the 

prebuilt map and matches live RGB descriptors against the stored landmarks to achieve 

real-time pose estimation in all six degrees of freedom, including translation along the x, 

y and z axes and rotation in roll, pitch and yaw.  
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3.2.3 PID Controller for Waypoint Navigation 

To execute precise flight paths, the system leverages UAV position and yaw error 

data derived from Stella VSLAM as inputs to a cascade PID controller. This controller 

operates separate proportional-integral-derivative (PID) loops for translation and rotation, 

generating the velocity and yaw-rate commands transmitted to the flight controller. This 

control architecture was pioneered by Bouabdallah et al. (2004) in their influential work 

comparing PID and LQ control techniques on an indoor micro-quadrotor. Their research 

demonstrated that despite the theoretical advantages of optimal control methods, a well-

tuned PID controller could achieve centimeter-level waypoint tracking precision. 

In our implementation, continuous closed-loop feedback is maintained between the 

UAV's pose, which is estimated through Stella VSLAM, and the current waypoint, 

effectively minimizing position and heading errors. Like Bouabdallah's approach, we 

adapt their fundamental control structure to support our autonomous navigation. Control 

commands are unified into geometry_msgs/Twist messages before transmission to the 

UAV's flight controller. A key advantage of this control strategy lies in the real-time 

tunability of PID gains and constraints, enabling adaptation to dynamic environmental 

conditions and external disturbances. Once each target position is reached and its 

prescribed dwell time completed, the mission autonomously proceeds through the 

sequence of waypoints. 

3.2.4 UWB-based Ground Truth and SLAM Error Evaluation 

In order to evaluate UAV localization accuracy via Stella VSLAM, we used ultra-

wideband (UWB) technology for ground truth measurements. UWB devices transmit 

information using extremely short pulse sequences that last less than one nanosecond and 
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create a signal bandwidth exceeding 500 MHz. This wide bandwidth gives UWB signals 

high temporal resolution and greatly reduces the effects of non-line-of-sight conditions 

on measurements (Zafari et al., 2019). As a result, UWB systems can accurately measure 

Time of Flight (ToF) and enable precise navigation and positioning based on time-of-

flight ranging (Zhang et al., 2025). 

In this study we used the Nooploop LinkTrack UWB ranging and positioning system 

as our experimental ground truth. Furthermore, according to the official Nooploop 

LinkTrack documentation, the system achieves typical one- and two-dimensional 

positioning accuracy of ±10 cm and three-dimensional accuracy of ±30 cm, supports 

update rates up to 200 Hz with end-to-end latency as low as 5 ms, accommodates up to 

120 anchors and 200 tags, and provides a data transmission bandwidth of up to 3 Mbps. 

The combination of high accuracy and high update rate makes it well suited for UAV 

flight ground truth. In this study we used five LinkTrack P-A as shown in Fig. 3-6(a). 

Four of these units served as UWB anchor nodes and one functioned as the UWB ground 

station. Each UAV was equipped with an LTP-AS2 as its UWB tag, as illustrated in Fig. 

3-6(b). The actual installation of the UWB tag on the DJI Tello is shown in Fig. 3-6(c). 

 

Fig. 3-6. Nooploop LinkTrack UWB ranging and positioning system: (a) LinkTrack P-A; 

(b) LTP-AS2; (c) DJI Tello UAV equipped with a UWB system tag. 
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Prior to multilateration, we removed statistical outliers using an interquartile-range 

filter with a multiplier k tuned for each tag and then applied a zero-phase Gaussian 

smoothing filter to suppress residual high-frequency noise and multipath artifacts. 

Filtered ranges were converted to Cartesian positions via a least-squares multilateration 

algorithm, producing a time-series of UWB-derived poses. Both the UWB and SLAM 

trajectories were then aligned by estimating a single rigid body transform from the take-

off segment to remove constant offset and synchronized at common timestamps.  Let 

𝑝𝑆𝐿𝐴𝑀,𝑖  be the UAV position estimated by Stella VSLAM at time ⅈ  and 𝑝𝑈𝑊𝐵,𝑖  the 

ground-truth position from UWB at the same instant. At each matched time point 𝑡𝑖 , the 

instantaneous localization error ei is computed using Equation 3-1: 

 

 𝑒𝑖 =∥ 𝑝𝑆𝐿𝐴𝑀,𝑖 − 𝑝𝑈𝑊𝐵,𝑖 ∥ (3-1) 

 

We aggregated these values into root-mean-square error (RMSE), mean absolute 

error (MAE), standard deviation (Std Dev), maximum and minimum error, and median 

error. By also plotting the error time series and its empirical cumulative distribution, we 

captured temporal drift, transient spikes during aggressive maneuvers, and the proportion 

of samples within specified accuracy bounds, which provides a comprehensive evaluation 

of Visual SLAM based flight control under dynamic conditions. 

3.2.5 Visual SLAM Map Optimization 

This experiment investigates how mapping the same closed-loop trajectory with a 

handheld UAV using different numbers of passes affects map quality. Only the number 

of loops performed during the handheld scan varies between trials. 
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We first acquired imagery of the environment with a handheld UAV carrying a 

monocular camera, following the rectangular circuit shown in Fig. 3-7. We complete one 

loop, two loops, and three loops at roughly the same speed and altitude. Stella VSLAM 

then processes these image sequences using local bundle adjustment to generate an initial 

sparse point-cloud map for each loop count. 

After the map is built, the UAV performs a single loop flight, matching its live 

monocular images to the preconstructed map to estimate pose and refine it through local 

bundle adjustment. Meanwhile, an ultra-wideband (UWB) localization system records 

the UAV’s true trajectory with centimeter-level accuracy to serve as ground truth for error 

analysis. 

Finally, the maps created with one, two, and three passes are compared in terms of 

feature count, keyframe count, and pose error between the VSLAM estimate and the 

UWB reference trajectory. This comparison reveals the effect of the number of handheld 

loops on Visual SLAM map optimization. 

 

Fig. 3-7. Mapping trajectories used for Visual SLAM map optimization in a greenhouse 

environment 
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3.3  Multi-UAV Cooperative Path Planning and 

Analysis 

3.3.1 Cooperative Path Planning Design 

In this study, we designed three distinct cooperative multi-UAV flight trajectories to 

capture high-resolution, multi-perspective imagery of muskmelon plants within a 

greenhouse environment. Our primary objective was to leverage multiple UAVs 

simultaneously to capture comprehensive visual data for Structure from Motion (SfM) 

reconstruction, as diverse viewing angles significantly enhance feature correspondence 

and depth estimation in SfM algorithms. These cooperative approaches explore how 

different flight patterns affect 3D model quality and completeness. 

Fig. 3-8 illustrates three different cooperative multi-UAV flight trajectories. Fig. 

3-8(a) shows the parallel-aisle flight pattern, where three UAVs navigate simultaneously 

along adjacent crop aisles, each equipped with a RunCam Thumb Pro W camera oriented 

laterally to record the side surfaces of the plants. This configuration maximizes 

greenhouse coverage efficiency while maintaining consistent imaging distances. Fig. 

3-8(b) shows the closed-loop flight trajectory, in which UAVs circle around each planting 

row to capture both front and rear views of the plants. Capturing imagery from both sides 

significantly improves surface completeness, reduces occlusions, and enhances feature 

correspondence, ultimately leading to more accurate and robust 3D reconstruction results. 

By providing comprehensive dual-side information for each plant, we retain only the 

images containing both front and back views of the plants and discard the remaining 

images that do not capture the target plants. Fig. 3-8(c) presents the multi-altitude flight, 

which employs a height-staggered arrangement where UAVs maintain distinct altitude 
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levels. This vertical distribution strategy effectively overcomes the blind spots inherent 

in single-plane imaging and ensures comprehensive coverage of taller specimens from 

multiple vertical perspectives. The integration of horizontal and vertical diversity in 

camera positions provides more robust geometric information for the SfM algorithm, 

resulting in more detailed plant models with improved accuracy in vertical structures. 

 

Fig. 3-8. Three cooperative multi‑UAV flight trajectories used for greenhouse imaging: 

(a) parallel-aisle flight, (b) closed‑loop flight, and (c) multi‑altitude flight. 

The combination of these cooperative UAV configurations demonstrates how 

strategic deployment of multi-UAV collaborative approaches can enhance the quality and 

completeness of plant phenotyping data beyond what could be achieved with single-UAV 

methods. 

 

3.3.2 Comparison Between Single and Multi-UAV Flights 

To evaluate the advantages of collaborative UAV systems in greenhouse 

phenotyping, it is essential to compare their performance against that of traditional single-

   

(a) (b) (c) 
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UAV operations. Such a comparison helps reveal differences in coverage efficiency, 

flight time, and other performance evaluation metrics under identical task requirements. 

As shown in Fig. 3-9(a), the single-UAV configuration involves one UAV following 

an S-shaped path to sequentially traverse the entire greenhouse area, covering all three 

crop rows and completing the mission independently. This approach reflects the 

conventional method commonly used in agricultural remote sensing, where a single UAV 

is responsible for surveying the entire field. Although this results in longer flight durations, 

the mission planning process is relatively straightforward. In contrast, as shown in Fig. 

3-9(b), the three crop rows are divided into separate paths assigned to individual UAVs. 

This collaborative strategy significantly reduces the total mission time and enhances 

overall operational efficiency, demonstrating the advantages of multi-UAV deployment. 

 

Fig. 3-9. Comparison of flight path designs: (a) Single-UAV approach with sequential 

field coverage and (b) Multi-UAV distributed approach with parallel field coverage 

To quantitatively compare the performance of single- and multi-UAV configurations, 

we defined three key evaluation metrics. Flight Time Efficiency (FTE) is defined as the 

total duration from takeoff to landing for a single mission; for the multi-UAV system, it 

  

(a) (b) 
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is defined as the maximum individual flight time among the three UAVs. Area Coverage 

Rate (ACR) quantifies the field area surveyed per unit time, expressed in m²/min. The 

total surveyed area is estimated by assuming each image captures a fixed 8.5 m × 4.1 m 

ground footprint and multiplying this area by the number of valid frames. Battery 

Consumption is evaluated using the total battery percentage consumed across all UAVs. 

In the multi-UAV system, this value is computed as the sum of battery usage from each 

drone. The derived energy efficiency is defined as the surveyed area per total battery 

percentage used (m²·%⁻¹). These metrics provide a consistent and comparable basis for 

evaluating operational performance across different deployment scenarios. 

 

3.4  3D Reconstruction Methods of Plants 

3.4.1 Structure from Motion 

For 3D reconstruction of muskmelon plants, we employed Structure-from-Motion 

(SfM) techniques to process the multi-perspective imagery collected by our cooperative 

UAV system. Structure from Motion (SfM) is a vision-based 3D reconstruction technique 

that recovers both the relative camera poses and the three-dimensional structure of a scene 

from a collection of two-dimensional images captured from different viewpoints. Rather 

than relying on external positioning systems, SfM infers spatial information purely from 

image correspondences and geometric constraints, which makes it especially suitable for 

environments such as greenhouses where GPS signals are unavailable. The typical SfM 

pipeline consists of several key stages. It begins with feature detection and descriptor 

computation using methods such as SIFT or ORB. Corresponding features are then 

matched across image pairs to estimate the relative camera poses. Triangulation is used 
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to convert these matched points into 3D coordinates, resulting in a sparse point cloud. 

The reconstruction is further refined through bundle adjustment, which jointly optimizes 

camera parameters and 3D point positions. In the final stage, a dense reconstruction 

process is applied to generate a more complete and detailed 3D model of the scene. SfM 

is well suited for plant phenotyping and morphological modeling due to its ability to 

automatically integrate large volumes of multi-angle imagery without requiring 

specialized hardware. In this study, we adopted SfM as the core method for 3D 

reconstruction using imagery captured by our cooperative UAV system.  

COLMAP is a widely used Structure-from-Motion and Multi-View Stereo (MVS) 

framework that follows an incremental reconstruction strategy. It begins by selecting an 

initial image pair and gradually incorporates additional images into the model, repeatedly 

performing feature matching, triangulation, and bundle adjustment throughout the 

process (Schönberger & Frahm, 2016). This approach is effective for small to medium-

sized image sets with sufficient overlap and sequential capture order, and has been 

extensively applied in aerial and terrestrial 3D reconstruction tasks. 

While COLMAP represents a widely adopted SfM implementation, we adopted 

GLOMAP (Pan et al., 2024)  for our reconstruction pipeline because it offers higher 

global consistency and better robustness under multi-UAV scenarios with large inter-

viewpoint baselines and near-parallel trajectories, which are common in greenhouse 

environments. GLOMAP's one-step global optimization framework avoids the drift and 

model fragmentation issues typically observed in incremental pipelines and is particularly 

effective when combining image sets captured simultaneously from multiple viewpoints. 

As illustrated in Fig. 3-10 the GLOMAP pipeline consists of three main stages: 

correspondence search, global estimation, and output reconstruction. Unlike traditional 
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global SfM methods that separate translation averaging and triangulation, GLOMAP 

performs a single global positioning step that jointly optimizes both camera poses and 3D 

structure, thereby improving robustness and convergence. 

To execute the GLOMAP pipeline, we utilized a containerized workflow based on 

the jinwj1996/glomap Docker image (https://hub.docker.com/r/jinwj1996/glomap). The 

reconstruction process included feature extraction, image matching, global mapping, and 

model conversion stages. Feature extraction was performed using SIFT with GPU 

acceleration, and the camera model was set to SIMPLE_PINHOLE. Matching was 

conducted using COLMAP’s sequential matcher with an overlap of 4 on single‐sided 

image sets, whereas for merged and three‐height image acquisitions we applied the 

exhaustive matcher. Mapping was executed through the glomap mapper command to 

generate the sparse reconstruction. The final model was converted into both TXT and 

PLY formats using the COLMAP model converter module. 

3.4.2 Gaussian Splatting  

In order to obtain a dense, photo-consistent volumetric model from the sparse point 

cloud and camera poses produced by our GLOMAP pipeline, we turn to 3D Gaussian 

 

Fig. 3-10. Pipeline of the GLOMAP system. (Pan et al., 2024) 

 

https://hub.docker.com/r/jinwj1996/glomap
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Splatting. Unlike mesh based multi view stereo, Gaussian Splatting represents the scene 

as millions of tiny anisotropic Gaussians whose means, covariances, colors and opacities 

are jointly optimized so that rasterized splats match the input images. This approach 

yields extremely fast novel-view rendering while naturally capturing fine geometry such 

as thin leaves and stems. The unstructured cloud of Gaussians that results from vanilla 

optimization does not immediately yield an editable surface mesh because the Gaussians 

tend to be arbitrarily positioned and overlapping. 

To bridge this gap, we adopt the Gaussian Splatting method SuGaR, proposed by 

Guédon and Lepetit (2023). SuGaR introduces a regularization term during optimization 

that enforces each Gaussian to lie nearly tangent to the true surface and to adopt a flat 

shape aligned with local normals. Concretely, SuGaR derives a signed distance function 

from the Gaussian-induced density and compares it to an ideal signed distance function 

in which level sets correspond exactly to the underlying surface. By minimizing their 

discrepancy, SuGaR encourages Gaussians to align and distribute evenly across the scene 

surface. Once this alignment is achieved, SuGaR extracts the mesh via Poisson 

reconstruction on a chosen density level set, producing a high-quality watertight triangle 

mesh within minutes. Optionally, SuGaR performs a brief joint refinement that binds new 

Gaussians to the mesh triangles, further enhancing photometric fidelity and enabling 

standard mesh editing and animation workflows. In our implementation, we initialize the 

Gaussians from the GLOMAP sparse points and camera parameters and then run 

SuGaR’s surface alignment and mesh extraction stages to produce a dense, editable model 

ideally suited for downstream phenotyping and morphological analysis. 

We selected density-normalization-consistency as our regularization method 

because preliminary experiments showed it best preserved fine surface detail. We set the 

number of refinement iterations to 15 000 to ensure convergence and enabled the high-
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poly preset to capture thin leaves and stems. All other parameters were left at their 

defaults since they already produced visually faithful results. In our study, all 

optimization iterations are executed on an NVIDIA RTX A6000 GPU with 48 GB of 

VRAM, ensuring stable convergence. The method efficiently learns an explicit 3D 

representation that allows real-time rendering of novel views. The SuGaR optimization 

settings used in our experiments are summarized in Table 3-4. 

 

Table 3-4. SuGaR Optimization Training Parameters 

Parameter Value 

Regularization method density-normalization consistency 

Refinement iterations 15000 

Gaussians per triangle 1 

Surface iso-level 0.3 

Output mesh vertices 1000000 

High-poly preset enabled 

Export OBJ enabled 

Export PLY enabled 

Optimizer Adam 

Learning rate 1×10⁻³ 
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3.4.3 Evaluation Metrics 

To quantitatively assess the fidelity of our 3D reconstruction and novel‐view 

rendering, we employ three complementary image‐based metrics: peak signal‐to‐noise 

ratio (PSNR), structural similarity index (SSIM) and learned perceptual image patch 

similarity (LPIPS). The PSNR between a rendered image 𝐼𝑟  and its ground-truth 

counterpart  𝐼𝑔, where L  is the maximum possible pixel value and MSE(𝐼𝑟 , 𝐼𝑔)  is 

computed as the average squared difference between corresponding pixels in the rendered 

and ground-truth images, is defined as Equation 3-2: 

 

PSNR(𝐼𝑟 , 𝐼𝑔) = 10 log10 (
𝐿2

MSE(𝐼𝑟 , 𝐼𝑔)
) (3-2) 

 

The structural similarity index between a rendered image 𝐼𝑟  and its ground-truth 

counterpart 𝐼𝑔 , where 𝜇𝑟  and 𝜇𝑔  are local means, 𝜎𝑟
2  and 𝜎𝑔

2 are local variances, 𝜎𝑟𝑔  is 

the local covariance, and 𝐶1, 𝐶2 are stabilizing constants, is defined as Equation 3-3: 

 

SSIM(𝐼𝑟 , 𝐼𝑔) =
(2𝜇𝑟𝜇𝑔 + 𝐶1)(2𝜎𝑟𝑔 + 𝐶2)

(𝜇𝑟
2 + 𝜇𝑔

2 + 𝐶1)(𝜎𝑟
2 + 𝜎𝑔

2 + 𝐶2)
 (3-3) 
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We adopt Learned Perceptual Image Patch Similarity (LPIPS) as our third evaluation 

metric to capture perceptual differences that go beyond pixel-wise error. LPIPS operates 

by passing both the rendered image 𝐼𝑟 and the ground-truth image 𝐼𝑔 through a pretrained 

convolutional network and extracting intermediate feature maps at several layers. At each 

selected layer 𝑙, the feature maps ϕ𝑙(𝐼𝑟) and  𝜙𝑙(𝐼𝑔) are first spatially normalized and 

then compared via an 𝑙2 distance computed channel-wise. These distances are weighted 

by learned per-channel scaling factors 𝑤𝑙, and the final LPIPS score is obtained by 

averaging the weighted distances across all spatial locations and summing over layers. 

Zhang et al. (2018) demonstrated that this learned, deep-feature based measure aligns 

closely with human judgments of image similarity, making LPIPS a powerful 

complement to PSNR and SSIM for assessing novel-view rendering quality. 

In our study, we evaluate the reconstruction results obtained from three different 

flight trajectories using the PSNR, SSIM, and LPIPS metrics. 

 

3.5  Phenotyping for Muskmelon Plant 

3.5.1 Extraction of the Single Plant 

To measure each plant’s height and canopy spread more precisely, we need to 

segment the Gaussian splatting reconstruction, which represents an entire row of plants, 

into individual plant point clouds for subsequent phenotypic analysis. In Fig. 3-11 shows 

the whole workflow of extraction of single plant. 

In this study, we first leverage the Segment Anything Model 2 (SAM 2) with the 

base model checkpoint to generate 2D masks of the target plant in each RGB image. By 
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specifying a rectangular bounding box around the plant region, SAM 2 produces one 

binary mask per view, which serve as soft annotations indicating where the plant appears 

in the scene. These masks encode, in image space, the rough silhouette of the individual 

plant and greatly reduce reliance on manual point-cloud cleaning. Next we map each two 

dimensional mask into the three dimensional scene using the camera intrinsics and 

extrinsics obtained from COLMAP. For each mask pixel we trace a ray from the camera 

center and define a pyramidal viewing volume that extends through the reconstruction. 

By gathering all such volumes we obtain a set of frusta that cover every masked region. 

This frustum-based masking step then retains only those points that lie inside at least one 

frustum and removes the rest of the point cloud, effectively carving out the plant of 

interest and discarding points belonging to neighboring vegetation or background 

structures (Qi et al., 2017). 

 

Fig. 3-11. Extraction of the Single Plant workflow 

3.5.2 Plant Height and Canopy Span Measurement 

In this section we present the detailed steps of our algorithm for extracting plant 

height and canopy width from a reconstructed three-dimensional point cloud. Fig. 3-12 

illustrates the complete processing pipeline. 
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Fig. 3-12. Plant Height and Canopy Span Measurement Pipeline 

The single-plant point cloud is first loaded into the Open3D framework, where the 

original COLMAP Y and Z axes are swapped and the depth axis is inverted to align the 

global Z direction with the plant’s vertical orientation. The cloud is then translated so that 

its centroid coincides with the origin. To generate cross sections, two orthonormal basis 

vectors are defined on the plane perpendicular to the Z axis, and each 3D point is projected 

onto this plane while preserving its Z coordinate, resulting in two-dimensional 

coordinates for each elevation level. A two-dimensional kernel density estimator with a 

bandwidth of 0.15 is applied on a 200 × 200 grid in the projected plane. The highest 

density peak nearest the origin is found and used to establish the stem center. 

For canopy span measurement, the convex hull of the projected cross section is first 

computed. The maximum span is obtained as the largest distance between any two hull 

vertices. A virtual line is then rotated through the hull while anchored at the stem center 

to identify the shortest chord passing through the center, representing the minimum 

central span. The area enclosed by the convex hull is subsequently calculated, and the 

diameter of an equivalent circle is derived from this area as the average span, providing 

a global width estimate that balances local indentations and protrusions. 
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To measure height, we compute radial distances from each projected point to the 

stem center and define the stem radius as the 20th percentile of these distances. We then 

filter points within this radius, determine the minimum and maximum Z values, and 

calculate their difference as the plant height. Finally, all span and height values are scaled 

by 1000 to convert meters to millimeters for phenotypic analysis. 

Using the above method, estimated plant height and canopy span can be obtained. 

In our validation experiments, the span ground truth is defined as the manually measured 

maximum canopy width, which is the distance between the two most distant leaf tips on 

the plant. To compare these estimates with real-world measurements, the COLMAP 

lengths must be converted to true scale. We use the measurement tools in CloudCompare 

to determine distances within the COLMAP point cloud and then apply a scale factor 

based on real‐world reference lengths. The tool interface is shown in Fig. 3-13. 

 

Fig. 3-13. Measurement of distances on a COLMAP point cloud using CloudCompare 
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3.5.3 Muskmelon Growth Monitoring 

Throughout the cultivation cycle, we sampled the same set of plants at regular 

intervals to monitor muskmelon growth. The experiment was conducted in a controlled 

greenhouse environment with 15 muskmelon plants arranged in three rows of five plants 

each. Data collection spanned from April 9 to May 11, 2025, with measurements taken at 

2-day intervals. At each sampling point, our cooperative UAV system captured multi-

angle images within the greenhouse, and we extracted individual plant height and canopy 

span measurements from the 3D point cloud reconstructions. 

Prior to growth curve fitting, the extracted plant height and canopy span 

measurements from 3D point cloud data underwent quality control preprocessing, 

including outlier detection and removal. Identified outliers were replaced using linear 

interpolation to maintain temporal continuity, ensuring accurate modeling. We then 

organized each plant’s height and canopy span data into a table indexed by sampling date 

and plant identifier. For each plant, we fitted its height and span trajectories with 

nonlinear growth models, including the Gompertz function (Gompertz, 1825), by 

minimizing the sum of squared residuals. Model performance was assessed using the 

coefficient of determination (R²) and the root mean square error (RMSE). R² indicates the 

proportion of variance in the data explained by the model, while RMSE reflects the 

average magnitude of the residuals. A high R² and low RMSE indicate a good fit of the 

growth model to the data. 

Under controlled greenhouse conditions, this integrated approach provides high‐

resolution monitoring of muskmelon development by combining UAV‐based imaging, 

three‐dimensional reconstruction, and quantitative growth modeling. 
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CHAPTER 4  

Results and Discussion 

4.1  Evaluation of Multi-UAV Communication 

Performance 

The performance of the UAV communication system was evaluated by analyzing 

packet transmission rates and stability during greenhouse operations. Network traffic was 

captured using pcap files and analyzed to assess communication reliability, which is 

critical for ensuring consistent control commands and real-time data acquisition in 

precision agriculture applications. 

To evaluate the communication reliability between the edge computing node and 

each UAV, packet transmission rates were analyzed over a 4-5-minute operation in the 

greenhouse. Packet capture (pcap) files were collected and processed using a custom 

analysis pipeline, with rates computed in 1-second bins. Each UAV communicated via a 

dedicated 2.4 GHz Wi-Fi channel. Fig. 4-1 presents the histogram distributions of the 

packet rates for all three UAVs. UAV 1 demonstrated the most stable performance, with 

a median rate of 101 pps and 99.66% of values falling within the 95-105 pps range. UAV 

2 had a slightly higher median and more variability, with 98.31% of values within the 95-

110 pps range. UAV 3 also had a median of 103 pps but showed the greatest variability, 

with only 88.09% of values falling within the broader 85-120 pps range. 
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(a) (b) (c) 

Fig. 4-1. Histogram distributions of packet rates (pps) for three UAVs operating in 

greenhouse environment: (a) UAV 1 (median = 101 pps), (b) UAV 2 (median = 103 pps), 

and (c) UAV 3 (median = 103 pps). 

The broader spread observed for UAV 3 is likely attributable to its location near 

greenhouse walls and glass windows. These structural elements can reflect or attenuate 

2.4 GHz Wi-Fi signals and thereby cause unstable transmission. Despite these challenges, 

all three UAVs maintained consistent median packet rates, which underscores the 

robustness of the communication architecture. The system’s wireless configuration uses 

detachable 4 dBi antennas to support reliable transmission under the difficult radio 

frequency conditions of a greenhouse. In such an environment, metallic frames, water-

rich crops and electronic devices introduce multipath effects that complicate signal 

propagation. Occasional reductions in packet rate occurred when values fell below 95 

percent of the median. These reductions were infrequent, affecting UAV 3 at a rate of 

16.61 %, UAV 2 at 1.69 %and UAV 1 at just 0.34 %. 

These results demonstrate that UAV 1 and UAV 2 benefited from favorable 

placements within the greenhouse, while UAV 3's location introduced more variability. 

Overall, the architecture successfully ensured stable communication for multi-UAV 

coordination, even under complex environmental interference. 
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4.2  Multi-UAV Trajectory and Mapping Accuracy 

4.2.1 Visual SLAM Map Building Result 

For a visual navigation system, the map is critical, we present the results of the map-

building process for three different flight scenarios using Visual SLAM. Each method 

involves loop closure to ensure that the entire path is accurately mapped. 

In Fig. 4-2 shows the map for parallel-aisle flight, generated 229 keyframes and 

11,141 landmarks. This approach uses parallel paths to capture keyframes at significant 

points during the flight. These keyframes represent crucial moments in the visual input, 

helping to maintain a consistent map as the drone progresses. The landmarks, which are 

distinctive points identified throughout the environment, provide spatial references and 

enable tracking across frames. The combination of keyframes and landmarks is vital for 

ensuring an accurate representation of the environment and minimizing any drift in the 

drone's path. Fig. 4-3 presents the map for closed-loop flight, resulting in 331 keyframes 

and 17,557 landmarks. This approach incorporates loop closure, a process that corrects 

errors in the path accumulated over time. When the drone revisits previously explored 

areas, loop closure ensures the map remains globally consistent by aligning overlapping 

segments. This method requires more keyframes and landmarks due to the additional data 

needed for accurate map stitching and path correction, providing a more reliable and 

robust reconstruction. As shown in Fig. 4-4, the map for multi-altitude flight generated 

129 keyframes and 5,888 landmarks. This approach involves varying the drone's flight 

height during the mission. As the drone moves through different altitudes, it captures 

keyframes and landmarks that help create a reliable map across vertical layers of the 

environment. Although fewer keyframes and landmarks were generated compared to the 
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other methods, they still contribute to the overall map, highlighting the adaptability of the 

SLAM system to different flight conditions. 

 

 

Fig. 4-2. Map Built Using Visual SLAM for Parallel-aisle Flight 

 

Fig. 4-3. Map Built Using Visual SLAM for Closed‑loop Flight 
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Fig. 4-4. Map Built Using Visual SLAM for Multi‑altitude Flight 

Keyframes and landmarks play a crucial role in the effectiveness of Stella VSLAM. 

Keyframes are selected to maintain the map's consistency, while landmarks provide 

spatial references necessary for localization. The number and quality of these components 

directly impact the accuracy of the generated map and the stability of the drone's 

trajectory throughout its journey. 

 

4.2.2 Visual SLAM Map Optimization Result 

Fig. 4-5 presents the sparse point cloud maps generated by Stella VSLAM after one, 

two and three handheld loops around the same rectangular circuit. In these renderings, 

blue points denote features that the system deems stable across multiple keyframes. After 

a single loop the stable features are concentrated mainly at the corners and along the 

nearest walls, resulting in modest overall coverage. With two loops the blue regions 

expand noticeably along the entire circuit, reflecting additional observations that 
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reinforce feature persistence. The third loop yields the richest distribution of stable 

features, with walls, corners and mid-section surfaces all densely populated in blue. 

We extracted the number of keyframes and landmarks for each mapping trial. The 

one-loop run produced 120 keyframes and 6175 landmarks. The two-loop experiment 

increased the keyframes to 189 and recorded 6057 landmarks. Only the three-loop pass 

drove both metrics upward, reaching 259 keyframes and 9849 landmarks. This trend in 

landmark count highlights that map quality cannot be judged by landmark quantity alone, 

since the second loop reduces weak or spurious features and trades landmark count for 

greater feature stability. The third loop delivers the highest combination of keyframe 

redundancy and landmark richness, while also emphasizing that map optimization must 

balance landmark abundance with feature reliability rather than pursue maximum point 

count. 

 

Fig. 4-5. Stella VSLAM map results: (a) one loop, (b) two loops, and (c) three loops 

In order to further evaluate how the number of mapping loops affects optimization, 

we use UWB as ground truth to compare the accuracy of the SLAM trajectories. In Table 

4-1 shows error metrics improve markedly from one loop to two loops. The RMSE 
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decreases from 14 cm m to 8.5 cm and the MAE from 11.5 cm to 7 cm. Adding a third 

loop reverses these gains, with RMSE rising to 11.1 cm and MAE to 9.2 cm. These results 

indicate that two loops deliver the best trade-off between additional observations and 

error reduction. The extra pass strengthens stable feature matches and loop closures 

without accumulating excessive drift or adding redundant low quality points. By contrast, 

a third loop yields diminishing returns because the longer mapping time allows small pose 

errors to compound, spurious correspondences to appear and computational load to grow. 

All of these factors combine to reduce net accuracy relative to the two loop case. 

 

Table 4-1. Error metrics for trajectories from different map building loops 

Loop 
RMSE 

(cm) 

MAE 

(cm) 

Std Dev 

(cm) 

Max 

Error 

(cm) 

Min 

Error 

(cm) 

Median 

Error 

(cm) 

1 14.0 11.5 8.0 48.3 0.1 9.9 

2 8.5 7.0 4.7 22.6 0.1 6.0 

3 11.1 9.2 6.3 34.9 0.1 7.8 

 

We used UWB as the ground truth trajectory and compared it with the trajectory 

estimated by Stella VSLAM to further analyze the flight error of each mapping loop. We 

then presented the distribution of trajectory errors following one, two, and three handheld 

mapping loops. 

In Fig. 4-6(a), which corresponds to a single loop, the MAE is approximately 11.5 

cm. Red and yellow error points cluster at the circuit corners and along one side of the 
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longitudinal segments, indicating that a single pass lacks sufficient viewpoint overlap and 

suffers from pronounced local drift. Green error points appear intermittently along the 

entire path, while blue stable features remain sparse. This pattern reflects how a single 

observation can miss many features.  

Fig. 4-6(b) shows the result after two loops, with the MAE reduced to about 7 cm. 

Error points between 2.2 cm and 7 cm dominate, red and yellow points nearly disappear, 

and blue stable features increase and spread more uniformly, especially around the 

corners. These changes demonstrate that the second loop provides critical redundant 

observations that reinforce multi-view feature matches and loop closures, sharply 

reducing local drift and improving global consistency. 

In Fig. 4-6(c) the MAE rises slightly to 9.2 cm. Although blue stable features still 

cover much of the path and green error points remain common, new red and yellow points 

appear at mid-section and corner locations. This behavior shows that the third loop, while 

adding feature redundancy, also introduces additional computational load and drift risk. 

In some areas those extra observations generate incorrect correspondences or small pose 

errors that offset the benefits seen with two loops. These three plots confirm that two 

loops achieve the most concentrated error distribution, the highest ratio of stable features, 

and the lowest MAE. The maximum error decreased from 48.3 cm with one loop to 22.6 

cm with two loops, then rose to 34.9 cm with three loops. Standard deviation followed a 

similar trend. Stable features peaked at 55 % with two loops. Overall, two loops reduced 

MAE by 39 %, while a third loop increased it by 31 %, showing diminishing returns. A 

single loop suffers from insufficient overlap, and a third loop yields only marginal gains 

with the potential for degraded accuracy, making two loops the ideal strategy for high-

precision map optimization. 
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Fig. 4-6. Trajectory comparison of different loop map building, showing UWB 

positioning (solid lines) versus SLAM-based localization (dashed lines) with error 

magnitude indicated by color: (a) one loop, (b) two loops, (c) three loops. 
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4.2.3 Parallel-aisle Flight Evaluation 

Based on the path planning presented in Fig. 3-8, we tested each path three times, 

using UWB as the ground truth and comparing it with the positions estimated by Stella 

VSLAM to evaluate flight accuracy. 

Each UAV executed the parallel aisle trajectory in three independent trials. For each 

run, we computed the root mean square error, MAE, standard deviation, maximum error, 

minimum error and median error by comparing the positions estimated by Stella VSLAM 

against UWB ground truth. The full set of results appears in Table 4-2, and all values are 

expressed in centimeters. UAV 1 yielded RMSE values of 10.5 cm, 12.7 cm and 11.8 cm 

across the first, second and third trials, and in the second trial it recorded its largest 

maximum deviation of 61.8 cm alongside its smallest error of 1 cm and its highest 

standard deviation of  9.9 cm. UAV 2 demonstrated the greatest consistency, achieving 

RMSEs of 7.4 m, 8.4 m and 8.8 cm in successive trials with maximum errors below 32.2 

m, standard deviations never exceeding 5.2 cm and median errors remaining under 6.5 

cm in every run. UAV 3 recorded RMSEs of 11.3 cm, 14.1 cm and 10.7 cm for trials one 

through three, with its highest single-trial deviation of 41.7 cm in the second trial, 

minimum errors of 0.1 cm to 0.3 cm in both the second and third trials and a peak standard 

deviation of 7.6 cm in the second run. 

Overall, these findings indicate that the centrally located UAV 2 achieved superior 

SLAM based tracking fidelity. In contrast, flights by UAVs 1 and 3 along the greenhouse 

edges were more susceptible to multipath reflections and boundary effects and thus 

exhibited larger positional deviations. 
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Table 4-2. Error metrics comparison across three UAVs for parallel-aisle trajectories 

UAV ID Trial ID 
RMSE 

(cm) 

MAE 

(cm) 

Std Dev 

(cm) 

Max 

Error 

(cm) 

Min 

Error 

(cm) 

Median 

Error 

(cm) 

1 

1 

10.5 9.2 5.0 23.9 1.2 9.2 

2 7.4 6.2 3.9 15.1 0.2 5.9 

3 11.3 10.0 5.0 23.6 0.7 9.5 

1 

2 

12.7 7.9 9.9 61.8 0.1 5.2 

2 8.4 7.1 4.5 24.1 0.1 6.5 

3 14.1 12.0 7.6 41.7 0.3 11.5 

1 

3 

11.8 9.2 7.4 42.3 0.1 7.9 

2 8.8 7.2 5.2 32.2 0.2 6.5 

3 10.7 8.7 6.2 23.5 0.2 7.3 

Based on Fig. 4-7, all three trials exhibit a consistent spatial error pattern. The central 

UAV’s trajectory remains mostly blue and green, indicating low, uniform errors. In 

contrast, the two edge UAVs show yellow and red bands during takeoff and later stages, 

marking localized deviations. These high-error regions occur near greenhouse walls, 

where visual features are sparse and reflections stronger. Even with loop closure, edge 

trajectories retain these error pockets, while the middle UAV maintains stable accuracy. 

This repeated pattern highlights the importance of symmetric, feature-rich observations 

for SLAM accuracy and the vulnerability of edge flights to boundary effects. 
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Fig. 4-7. Trajectory comparison of parallel-aisle flights with three UAVs, showing UWB 

positioning (solid lines) versus SLAM-based localization (dashed lines) with error 

magnitude indicated by color: (a) Trial 1, (b) Trial 2, (c) Trial 3. 
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4.2.4 Closed‑loop Flight Evaluation 

Table 4-3 offers a comparative view of error metrics for three UAVs following 

closed-loop trajectories. UAV 1 exhibited a root mean square error between 6.3 and 8.6 

cm and a mean absolute error below 6.9 cm. The standard deviation ranged from 3.8 to 

5.2 cm and the median error remained between 4.3 and 6.0 cm, demonstrating 

consistently stable localization performance across all trials. UAV 2 recorded a root mean 

square error ranging from 7.8 to 10.9 cm and a mean absolute error from 6.2 to 8.8 cm. 

Its standard deviation rose to 6.5 cm in the second trial, and the maximum error reached 

37.1 cm. The median error fell between 5.0 and 7.4 cm, indicating moderate consistency 

with occasional higher deviations. UAV 3 showed a root mean square error between 8.4 

and 10.6 cm and a mean absolute error from 6.8 to 8.0 cm. The standard deviation peaked 

at 6.9 cm in the final trial, and the maximum error reached 55.5 cm, the highest among 

all UAVs. The median error varied from 5.9 to 6.1 cm, suggesting relatively stable central 

tendency despite larger outliers. 

From a comparative perspective, UAV 1 consistently achieved the lowest errors and 

narrowest variability, suggesting better overall stability. UAV 2 exhibited moderate 

errors with occasional spikes, while UAV 3 showed the highest variability and maximum 

errors, particularly in the third trial. This pattern indicates that UAVs operating near 

greenhouse boundaries or under less feature-rich conditions may be more prone to larger 

deviations, highlighting the influence of environmental factors and positional asymmetry 

on SLAM localization accuracy. 

These observations highlight that the first UAV maintained the most stable 

performance under closed loop conditions while the third UAV experienced the greatest 

variability and highest single trial deviation. 
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Table 4-3. Error metrics comparison across three UAVs for closed-loop trajectories 

UAV ID Trial ID 
RMSE 

(cm) 

MAE 

(cm) 

Std Dev 

(cm) 

Max 

Error 

(cm) 

Min 

Error 

(cm) 

Median 

Error 

(cm) 

1 

1 

6.3 5.1 3.8 19.7 0.1 4.3 

2 7.8 6.3 4.7 24.2 0.1 5.0 

3 8.4 6.8 4.8 26.7 0.1 5.9 

1 

2 

7.7 6.2 4.6 23.6 0.1 5.2 

2 10.9 8.8 6.5 37.1 0.1 7.4 

3 9.4 7.6 5.6 29.5 0.1 6.5 

1 

3 

8.6 6.9 5.2 36.8 0.1 6.0 

2 8.9 7.3 5.1 27.1 0.1 6.4 

3 10.6 8.0 6.9 55.5 0.1 6.1 

Based on Fig. 4-8, all three closed-loop trials exhibit a stable spatial error pattern. 

UAV 2’s path is predominantly blue and light green, indicating tightly constrained 

deviation from UWB ground truth. In contrast, the edge UAVs consistently show yellow 

and red patches along outbound and return paths, reflecting localized error spikes caused 

by sparse landmarks and reflective surfaces. These high-error regions persist and 

intensify across trials, while UAV 2 maintains its narrow low-error band. The consistent 

color map for UAV 2 highlights the advantage of balanced, feature-rich observations, 

whereas persistent yellow and red patches for edge UAVs emphasize boundary effects 

and landmark scarcity despite loop closure optimization. 
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Fig. 4-8. Trajectory comparison of closed-loop flights with three UAVs, showing UWB 

positioning (solid lines) versus SLAM-based localization (dashed lines) with error 

magnitude indicated by color: (a) Trial 1, (b) Trial 2, (c) Trial 3. 
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4.2.5 Multi‑altitude Flight Evaluation 

In Table 4-4 presents a comparative analysis of error metrics for three UAVs 

following multi altitude trajectories over three trials. The UAV 1 showed root mean 

square error values of 12.1 cm in the first trial and then improved to 9.6 cm and 10.4 cm 

in the second and third trials respectively. Its mean absolute error likewise dropped from 

10 cm to 7.4 cm before rising slightly to 8.7 cm. The standard deviation contracted from 

6.7 cm to 5.6 cm by the third run. These trends indicate that the first UAV achieved its 

best consistency during the second trial but experienced modest variations thereafter. The 

second UAV began with a root mean square error of 7.8 cm which increased to 13.4 cm 

in the second trial and then receded to 9.2 cm in the third trial. Its mean absolute error 

followed a similar pattern rising from 6.3 cm to 11.2 cm before improving to 7.6 cm. The 

standard deviation peaked at 7.4 cm in the second trial and then declined to 5.2 cm. These 

fluctuations suggest that the UAV 2 encountered greater challenges in maintaining stable 

localization when altitude changes were more pronounced. The UAV 3 recorded root 

mean square error values of 13.1, 5.1 cm and 11.8 cm across trials one two and three 

respectively. Its mean absolute error fell from 11.4 cm to 4.1 cm before rising again to 

10.4 cm. The standard deviation reached a minimum of 2.8 cm in the second trial and 

then increased back to 5.6 cm. These results show that the third UAV achieved its best 

accuracy in the second trial when altitude variations were moderate but saw its 

performance degrade when altitude transitions became more extreme. 

UAV 1 maintained stable performance with slight improvements in the second trial. 

UAV 2 showed larger fluctuations, struggling during greater altitude changes. UAV 3 

achieved its best accuracy in the second trial but degraded with more extreme altitude 

variations. Moderate altitude transitions generally resulted in more stable localization. 
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Table 4-4. Error metrics comparison across three UAVs for multi-altitude trajectories 

UAV ID Trial ID 
RMSE 

(cm) 

MAE 

(cm) 

Std Dev 

(cm) 

Max 

Error 

(cm) 

Min 

Error 

(cm) 

Median 

Error 

(cm) 

1 

1 

12.1 10.0 6.7 24.7 0.4 9.7 

2 7.8 6.3 4.6 21.8 0.1 5.8 

3 13.1 11.4 6.4 30.1 0.1 10.7 

1 

2 

9.6 7.4 6.1 31.5 0.1 5.7 

2 13.4 11.2 7.4 33.6 0.1 10.1 

3 5.1 4.1 2.8 13.2 0.1 4.0 

1 

3 

10.4 8.7 5.6 25.8 0.3 7.6 

2 9.2 7.6 5.2 18.7 0.1 6.8 

3 11.8 10.4 5.6 26.6 0.1 9.7 

Based on Fig. 4-9, the multi-altitude flight trials reveal localized error clusters 

despite each UAV maintaining a fixed altitude. Red and yellow segments appear 

intermittently along portions of the trajectories, particularly during the early and middle 

stages of flight, before returning to stable green and blue regions. These deviations are 

likely caused by insufficient visual features and unstable repeated feature matching at 

different altitudes. Additionally, airflow disturbances inside the greenhouse may 

introduce UAV vibrations, further amplifying SLAM errors. Overall, while altitude 

control remains stable, these factors contribute to noticeable vertical localization 

inaccuracies. 
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Fig. 4-9. Trajectory comparison of multi-altitude flights with three UAVs, showing UWB 

positioning (solid lines) versus SLAM-based localization (dashed lines) with error 

magnitude indicated by color: (a) Trial 1, (b) Trial 2, (c) Trial 3. 
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4.2.6 Multi-UAV Flight-Path Performance Comparison 

Table 4-5 provides a detailed comparison of mean absolute error (mAE), mission 

duration, and area coverage rate (ACR) for the three coordinated flight strategies: 

Parallel-aisle, Closed-loop, and Multi-altitude. Among them, the Closed-loop strategy 

achieves the lowest overall mAE, with UAV 1 reaching as low as 6.1 cm, demonstrating 

the highest localization precision. However, this accuracy comes at the cost of efficiency, 

as the mission requires the longest completion time (average 4.1 minutes) and results in 

a moderate ACR of 17.0 m²/min. 

In contrast, the Parallel-aisle strategy offers the most balanced performance. It 

maintains relatively low errors across UAVs, with a minimum mAE of 6.8 cm for UAV 

2 and an average coverage rate of 21.5 m²/min, the highest among all strategies. Mission 

time is significantly shorter at 1.6 minutes, indicating superior operational efficiency 

while still providing acceptable accuracy. The Multi-altitude strategy prioritizes speed, 

completing the mission in just 1.1 minutes. However, its overall precision is moderate, 

with mAE values ranging from 8.4 to 8.7 cm, and it achieves the lowest ACR of 10.8 

m²/min. The variability in errors, particularly for UAV 3 with a standard deviation of 4.0 

cm, suggests less stable localization performance under rapid altitude adjustments. 

Overall, when measurement accuracy is the primary goal, the Closed-loop approach 

is recommended due to its superior precision. For applications requiring both precision 

and high coverage efficiency, the Parallel-aisle strategy offers the most advantageous 

trade-off. Meanwhile, the Multi-altitude approach is best suited for time-sensitive 

missions where reduced coverage and moderate accuracy are acceptable. These findings 

highlight the trade-offs between accuracy, efficiency, and coverage, providing guidance 

for selecting optimal flight strategies under varying operational priorities. 
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Table 4-5. Statistical Summary and Comparison of Flight Paths  

Flight Path 
UAV 

ID 

Mean MAE 

(cm) 

Std Dev 

(cm) 

mAE 

(cm) 

Mean 

Mission 

time (min) 

ACR 

(m²/min) 

Parallel-aisle 

1 8.8 0.8 8.8±0.8 

1.6 21.5 2 6.8 0.6 6.8±0.6 

3 10.2 1.7 10.2±1.7 

Closed-Loop 

1 6.1 0.9 6.1±0.9 

4.1 17.0 2 7.5 1.3 7.5±1.3 

3 7.5 0.6 7.5±0.6 

Multi‑altitude 

1 8.7 1.3 8.7±1.3 

1.1 10.8 2 8.4 2.5 8.4±2.5 

3 8.6 4.0 8.6±4.0 

 

4.3  Evaluation of Multi-UAV Cooperative  

Building on the flight path design defined in the Fig. 3-9, we executed both single-

UAV and cooperative multi-UAV missions to quantitatively compare the two 

deployment strategies in terms of area coverage efficiency and energy utilization. 

As summarized in Table 4-6, the cooperative multi-UAV system completed the full-

coverage mission over a 4.1 m × 8.5 m survey area in just 1.25 minutes, representing a 
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73.2 % reduction compared to the 4.67 min required by a single UAV. Parallel operation 

increased the area coverage rate to 27.88 m²/min, which is 3.73 times higher than the 7.47 

m²/min achieved by the single-UAV flight, thereby substantially accelerating the overall 

survey process. 

 

Table 4-6. Performance metrics for single-UAV vs. cooperative multi-UAV missions 

over field 

Metric single-UAV multi-UAV 

Flight Time Efficiency (FTE, min) 4.67 1.25 

Area Coverage Rate (ACR, m² / min) 7.47 27.88 

Total Battery Consumption (%) 42 40 

Energy Efficiency (m² / % battery) 0.83 0.87 

 

With respect to energy consumption, the cooperative multi-UAV deployment 

consumed a total of 40% battery across all UAVs, slightly less than the 42% used by the 

single-UAV system. Despite involving three separate agents, the parallel operation 

maintained comparable overall energy usage while still improving efficiency. 

Specifically, the energy efficiency reached 0.87 m² per percent battery, slightly higher 

than the 0.83 m² / % battery attained by the single-UAV mission. 

Overall, these findings demonstrate that, under identical path planning and hardware 

conditions, distributed multi-UAV cooperation not only markedly reduces mission 
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duration and increases coverage throughput, but also greatly enhances energy utilization, 

thereby outperforming the conventional single-UAV approach across all key performance 

metrics. 

 

4.4  3D Reconstruction Analysis for Plant 

4.4.1 Sparse 3D Reconstruction with GLOMAP 

The GLOMAP reconstruction process produced a sparse point cloud that accurately 

captures the structural layout of muskmelon plants, including their spatial arrangement, 

stem architecture, and leaf distribution, as shown in Fig. 4-10. Despite the relatively low 

density, this point cloud provides essential initialization for Gaussian Splatting, 

preserving the spatial relationships among plants and distinguishing them clearly from 

the surrounding infrastructure.  

 

Fig. 4-10. Sparse point cloud reconstruction of muskmelon plants generated by GLOMAP. 
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According to our flight trajectories we divided the acquired images into three 

categories. The single-side category contains single-view images, the merged category 

contains two-view images of each plant and the three-height category contains single-

view images captured at three different altitudes. Image acquisition for the Single-Side 

and merged datasets took place between April 8 and May 11, 2025, while the three-height 

dataset was collected from April 21 to May 11, 2025. During reconstruction some datasets 

failed to yield complete point clouds. We believe this was caused by insufficient image 

overlap, occlusions from dense foliage or inconsistent lighting. Out of 102 reconstruction 

attempts in the single-side category 85 succeeded. In the merged category 43 of 102 

attempts succeeded and in the three-height category 38 of 63 attempts succeeded. The 

lower success rates in the merged and three-height sets may be due to the greater difficulty 

of matching features across multiple views and the challenges of maintaining consistent 

imaging conditions at different altitudes. We will use the successfully reconstructed point 

clouds for Gaussian Splatting. 

 

4.4.2 Evaluation of Gaussian splatting for 3D plant 

reconstruction 

In this section, we present the results of our 3D reconstruction using Gaussian 

Splatting based on the GLOMAP output. We analyzed a total of 85 Single-Side 

reconstructions, 43 Merged reconstructions, and 38 Three-Height reconstructions to 

compare the effectiveness of different capture methodologies. Table 4-7 summarizes the 

detailed characteristics of these reconstruction datasets, including acquisition periods, 
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total attempts, and successful reconstructions. For each flight video, the average image 

overlap was 60%, ensuring sufficient feature matching for reliable reconstruction. 

 

Table 4-7. Detailed Characteristics of 3D Reconstruction Datasets 

Scene Category 
Acquisition 

Period 
Total Attempts 

Successful 

Reconstructions 

Single-Side 
Apr 9 – May 

11, 2025 
102 85 

Merged 
Apr 9 – May 

11, 2025 
102 43 

Three-Height 
Apr 21 – May 

11, 2025 
63 38 

 

To provide a direct visual comparison between the reconstructed models and the real 

plants, Fig. 4-11 illustrates the Single-Side reconstruction. In this figure, (a) shows the 

reconstructed plant, (b) and (c) display detailed views of the upper and lower leaves, and 

(d) presents the corresponding original plant image. This figure highlights that the upper 

leaf structure reconstructed by the Single-Side method appears blurry and lacks detailed 

definition compared to the real plant.  

Fig. 4-12 depicts the Merged reconstruction. Similar to the Single-Side figure, (a) 

presents the reconstructed plant, (b) and (c) show upper and lower leaf details, and (d) is 

the original plant image. The Merged method introduces noticeable noise and 

misalignment artifacts, resulting in a less clean reconstruction compared to the original 

plant. 



doi:10.6342/NTU202503732

 

76 

 

Fig. 4-11. Single-Side reconstruction compared with the original plant image: (a) 

reconstructed plant, (b) upper leaf detail, (c) lower leaf detail, and (d) corresponding 

original plant image. 

 

Fig. 4-12. Merged reconstruction compared with the original plant image: (a) 

reconstructed plant, (b) upper leaf detail, (c) lower leaf detail, and (d) corresponding 

original plant image. 

Fig. 4-13 shows the Three-Height reconstruction. As with the other figures, (a) 

displays the reconstructed plant, (b) and (c) highlight detailed views of the leaves, and (d) 
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is the original image. This method achieves better clarity and leaf definition, particularly 

in the upper plant regions, offering a reconstruction more faithful to the real plant. 

 

 

Fig. 4-13. Three-Height reconstruction compared with the original plant image: (a) 

reconstructed plant, (b) upper leaf detail, (c) lower leaf detail, and (d) corresponding 

original plant image. 

 

Fig. 4-14 shows the reconstruction results of the same row of plants using three 

different capture methodologies. For consistent comparison, we removed the background 

from all reconstructions. Each methodology is presented with three components: the 

camera arrangement diagram on the left side, the complete plant reconstruction in the 

center, and detailed views of upper and lower leaves from a selected plant on the right 

side. 

In the Single-Side reconstruction shown in Fig. 4-14(a), we observe that the upper 

portions of the plants appear blurry with less defined leaf structures. This limitation is 
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particularly evident in the upper leaf detail shown in the top right image, where the leaf 

lacks clear definition and shows reduced detail fidelity. The Merged method shown in 

Fig. 4-14(b) exhibits significantly more noise compared to the other techniques. This 

noise is likely due to the challenges in accurately aligning and merging images captured 

from two different sides of the plants. The misalignment creates artifacts during point 

cloud generation, resulting in the scattered noise patterns visible throughout the 

reconstruction. The Three-height reconstruction method shown in Fig. 4-14(c) effectively 

addresses these limitations by capturing images at different heights. By incorporating 

multiple vertical perspectives, this method successfully reconstructs the upper portions 

of the plants with much greater clarity. The improvement is clearly visible when 

comparing the upper leaf details across all three methods. The Three-Height method 

provides significantly better leaf definition and structural integrity in the upper regions of 

the plants. The lower portions of the plants, as shown in the bottom right images of each 

row, show relatively consistent quality across all three methods, indicating that the 

primary differences in reconstruction quality are most pronounced in the upper regions 

of the plants. This suggests that the Three-Height method offers a more complete and 

accurate reconstruction by addressing the limitations of single-perspective captures, 

particularly for taller plants with complex canopy structures. 

Further examination supports these observations. The Single-Side method lacks 

multi-view coverage, resulting in sparse upper-canopy points, incomplete geometry, and 

less reliable trait measurements. The Merged method introduces spatial misalignments 

that cause artifacts and fragmented leaf structures, limiting analysis accuracy. The Three-

Height method overcomes these issues by improving vertical feature detection, enabling 

more complete 3D reconstructions that enhance trait measurement accuracy. 
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Fig. 4-14. Comparison of three different plant capture methodologies: (a) Single-Side, (b) 

Merged, and (c) Three-Height. 

Despite the increased noise observed in Fig. 4-14, the Merged method demonstrates 

superior performance in capturing the complete plant structure. As shown in Fig. 4-15(b), 

the Merged approach successfully reconstructs back-side information of the plant that is 

not available in the other methods. This is a significant advantage over Single-Side in Fig. 

4-15(a) and Three-height in Fig. 4-15(c) approaches, which primarily capture information 

from only one viewing angle, resulting in incomplete data about the back surfaces of the 

plants. For reference, Fig. 4-15(d) presents the original backside photo of the plant, 

enabling a direct visual comparison between the reconstructed models and the true plant 

morphology. This back-side representation is particularly valuable for comprehensive 

plant phenotyping and structural analysis, as it reveals features that would otherwise be 

completely missing in single-angle captures. The ability to reconstruct both front and 

back surfaces provides a more complete morphological dataset for plant assessment. 
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Fig. 4-15. Comparison of plant reconstructions from different angles. (a) Single-Side 

reconstruction showing backside view. (b) Merged reconstruction showing backside view. 

(c) Three-Height reconstruction showing backside view. (d) Original photo showing 

backside view of the plant. 

After evaluating the performance of different reconstruction methods, we further 

present the reconstructed models of a plant across its growth stages. Fig. 4-16 shows the 

dense three-dimensional models of a single plant at five successive stages from seedling 

to maturity. Data collected on and after April 21 were processed using the three-height 

reconstruction method to capture comprehensive multi-view structural information while 

earlier time points were handled with the more stable single-side workflow. The series 

illustrates that plant height increases continuously over time as the small form seen during 

the seedling stage develops into the tall structure of the mature plant. At the same time 

leaf number and canopy spread exhibit significant expansion evolving from sparse young 

leaves into a dense arrangement. Moreover outlines of the main stem and lateral branches 

become increasingly distinct with branch nodes and stem thickness variations accurately 

captured at each stage. This set of models demonstrates that the multi-UAV system 

combined with the GLOMAP and SuGaR reconstruction pipeline can reliably capture 
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detailed plant morphology throughout the entire growth cycle and provides a clear visual 

basis for subsequent quantitative measurements of plant height and canopy spread. 

 

 

Fig. 4-16. Three-Dimensional Reconstruction Models of Muskmelon Plants at Multiple 

Growth Stages 

 

To complement our visual comparison of the Single-Side, Three-Height, and 

Merged reconstruction methods, we conducted a quantitative evaluation using three 

standard image quality metrics: Structural Similarity Index (SSIM), Peak Signal-to-Noise 

Ratio (PSNR), and Learned Perceptual Image Patch Similarity (LPIPS). Fig. 4-17 

presents the average values of these metrics across the three reconstruction categories, 

allowing for an objective assessment of structural fidelity, noise resilience, and perceptual 
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similarity. The results highlight noticeable differences in reconstruction quality, 

particularly in how each method preserves fine details and overall image consistency. 

 

 

Fig. 4-17. Average SSIM, PSNR, and LPIPS values across different reconstruction 

methods: Merged, Single-side, and Three-Height scenes. 

 

As shown in Table 4-8, the Single-side method, with the largest sample size, offers 

moderate performance and balanced visual quality, though with some limitations in 

capturing upper canopy details. The Merged method yields the lowest PSNR and SSIM 

due to alignment noise, but maintains a comparable LPIPS, highlighting its perceptual 

similarity and unique ability to reconstruct back-side structures. LPIPS values across all 

methods remain consistent between 0.64 and 0.65, suggesting comparable perceptual 

quality despite variations in structural fidelity. While Three-Height excels in vertical 

detail with low noise, and Merged captures full structural geometry, Single-side offers 

reliable performance with robust sampling. 
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Table 4-8. Image Quality Metrics for Different Reconstruction Methods 

Scene Category PSNR↑ SSIM↑ LPIPS↓ 

Single-Side 0.25 8.41 0.64 

Merged 0.24 8.21 0.65 

Three-Height 0.37 9.48 0.65 

 

4.5  Phenotyping Result of Muskmelon 

4.5.1 Plant Measurement Analysis 

Using the plant reconstruction results, we further employed the reconstructed point 

clouds to estimate each plant’s height and canopy span. For each of the three 

reconstruction methods, we computed the estimated height and span and calculated their 

errors relative to the ground-truth measurements. 

In Table 4-9 showing the plant measurements of the height and canopy span, which 

evaluated by comparing each method’s estimated height and canopy span to the 

corresponding ground-truth values. The Single-side reconstruction exhibits a height MAE 

of 7.3 cm and a span MAE of 5.8 cm. The Merged method exhibits a height MAE of 6.6 

cm and a span MAE of 7.3 cm. RMSE values from both methods range from 9.9 cm to 

10.3 cm, indicating close agreement with the true dimensions. By contrast, the Three-

Height approach shows substantially larger deviations and greater variability. Height 

estimates remain under 8% for all methods. Span error for Three-Height reaches 17.4%, 

while Single-side and Merged record 10.8% and 13.4%, respectively. These findings 
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indicate that the Single-side and Merged techniques provide more consistent and reliable 

phenotypic measurements than the Three-Height strategy. 

 

Table 4-9. Key Phenotyping Metrics by Reconstruction Method 

Reconstruction 

Method 

Height 

MAE 

(cm) 

Height 

RMSE 

(cm) 

Height 

MAPE 

(%) 

Span 

MAE 

(cm) 

Span 

RMSE 

(cm) 

Span 

MAPE 

(%) 

Single-side 7.3 9.9 6.5 5.8 9.2 10.8 

Merged 6.6 10.3 5.9 7.3 10.7 13.4 

Three-Height 11.4 15.2 7.3 10.7 14.8 17.4 

 

We further analyze the results through scatter plots and error distributions. In Fig. 

4-18(a), the height scatter plot shows that calculated values closely follow the ground-

truth line with only minor deviations. The corresponding error histogram in Fig. 4-18(c) 

is tightly clustered between 0 and 10 centimeters and shows a slight tail toward negative 

values. This indicates that the Single-side approach produces consistently accurate height 

estimates with only occasional underestimation.  

Fig. 4-18(b) presents the span scatter, which displays a similarly tight pattern, and 

Fig. 4-18(d) shows its error distribution centered near 0 cm with most errors below 10 

cm. These results demonstrate that Single-side reconstruction yields a compact and 

reliable error distribution.   
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Fig. 4-18. Plant Height and Span Measurement Errors for Single-Side Reconstruction: (a) 

scatter plot of calculated height versus ground-truth height, (b) scatter plot of calculated 

span versus ground-truth span, (c)error distribution of calculated height, and (d) error 

distribution of calculated span 

 

Fig. 4-19 illustrates the Merged method. In Fig. 4-19(a), the height scatter remains 

well aligned with the identity line but with slightly greater spread than Single-side, 

especially at higher values. The height error histogram in Fig. 4-19(c) shows that most 

errors are concentrated between -15 to 20 centimeters, with a very small number of 

samples exhibiting errors below -80 cm. In Fig. 4-19(b) the span scatter exhibits broader 

dispersion, and Fig. 4-19(d) shows its error distribution extending further into higher 

positive values than in the height case. These patterns suggest that the Merged technique 
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tends to mildly overestimate both height and span and exhibits greater variability when 

integrating multiple viewpoints.  

 

Fig. 4-19. Plant Height and Span Measurement Errors for Merged Reconstruction: (a) 

scatter plot of calculated height versus ground-truth height, (b) scatter plot of calculated 

span versus ground-truth span, (c) error distribution of calculated height, and (d) error 

distribution of calculated span 

 

Fig. 4-20 illustrates the Three-Height method. In Fig. 4-20(a), the height scatter plot 

displays substantial scatter around the identity line and notable outliers at the upper range. 

The height error histogram which shows in  Fig. 4-20(c) covers a wide band from -60 to 

25 centimeters indicating large and uneven deviation. In Fig. 4-20(b) presents the span 
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scatter likewise shows wide variability and in Fig. 4-20(d) shows the span error histogram 

extends from -20 to 60 centimeters. These wide and irregular distributions reveal that 

Three-Height reconstruction often introduces alignment noise that leads to large and 

unpredictable measurement errors. 

 

Fig. 4-20. Plant Height and Span Measurement Errors for Three-Height Reconstruction: 

(a) scatter plot of calculated height versus ground-truth height, (b) scatter plot of 

calculated span versus ground-truth span, (c)error distribution of calculated height, and 

(d) error distribution of calculated span 

Comprehensive error analysis shows that the Single-Side reconstruction produces 

the smallest and most concentrated deviations in height and canopy span measurements 

and delivers the best performance. The Merged method yields slightly larger errors but 
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still outperforms the Three-Height strategy. The Three-Height approach exhibits the most 

scattered and largest errors and is not recommended for applications requiring stable 

measurements. 

4.5.2 Muskmelon Growth Monitoring Analysis 

Based on our previous analysis of reconstruction errors in plant height and canopy 

span measurements, we used the Single-Side method to monitor growth. We measured 

height and span for each of fifteen plants, plotted individual growth curves, and calculated 

R² and RMSE against the ground-truth values. 

Table 4-10 shows the height and span results for each plant using the Single-Side 

reconstruction. Height tracking was very reliable. The R2 values ranged from 0.92 to 0.99 

for all fifteen plants. The RMSE values did not exceed 15 centimeters. Row C had the 

best height performance with an average R2 of 0.99 and an average RMSE of 5.9 

centimeters. Row B followed with an average R2 of 0.97 and an average RMSE of 7.9 

centimeters. Row A showed the largest variation with an average R2 of 0.95 and an 

average RMSE of 10.4 centimeters. Within that row Plant A5 had the lowest R2 at 0.92 

and the highest RMSE at 14.5 centimeters. Span estimation proved more challenging. 

The R2 value fell between 0.77 and 0.98. The RMSE values ranged from 1.8 to 5.9 

centimeters. The weakest span estimates occurred for Plant C2 with an R2 of 0.77 and an 

RMSE of 5.9 centimeters. Plant A2 had an R squared of 0.84 and an RMSE of 5.2 

centimeters. On average Row B led all rows for span accuracy with an average R2 of 0.90 

and an average RMSE of 3.3 centimeters. Row A followed with an average R2 of 0.90 

and an average RMSE of 4.1 centimeters. Row C had an average R2 of 0.88 and an 

average RMSE of 4.2 centimeters. 
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Table 4-10. Individual Plant Growth Monitoring Metrics 

Row Plant ID Height R2 
Height 

RMSE (cm) 
Span R2

 
Span RMSE 

(cm) 

A 

1 0.99 5.1 0.95 2.8 

2 0.94 12.8 0.84 5.2 

3 0.94 12.6 0.94 3.5 

4 0.98 6.8 0.95 3.2 

5 0.92 14.5 0.80 5.8 

B 

1 0.98 7.2 0.79 4.7 

2 0.99 6.2 0.97 1.9 

3 0.95 10.5 0.98 1.8 

4 0.98 6.5 0.85 4.0 

5 0.97 9.2 0.92 4.1 

C 

1 0.99 5.9 0.95 2.5 

2 0.99 6.0 0.77 5.9 

3 0.99 4.2 0.81 5.3 

4 0.99 6.1 0.95 3.2 

5 0.98 7.2 0.91 4.1 
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To evaluate the Single-Side reconstruction method across all specimens we 

generated growth curves for height and span over time for each plant. The fifteen plants 

are organized into three rows labeled A, B and C. 

Fig. 4-21 shows the height and span growth curves for the five plants in row A 

measured in centimeters. All five entered a rapid growth phase beginning around April 

13 and lasting until April 27. Thereafter the rate of height increase slowed as each plant 

neared its maximum. Plant 1 grew from 20 centimeters on April 9 to 174 cm by May 11. 

Plants 2 and 3 reached 172 cm. Plant 4 peaked at 167 cm after a slightly delayed surge, 

and Plant 5, despite greater variability in midseason measurements, converged near 171 

cm. Canopy span expanded more slowly. Over the first two weeks the five plants’ spans 

increased from approximately 30 cm to about 55 cm before leveling off. Then entered a 

saturation phase after April 25. Plants 1 and 5 achieved the widest canopies at 68 cm. 

Plant 4 reached 67 cm. Plants 2 and 3 followed a nearly identical trajectory. These curves 

confirm a shared growth rhythm with individual variation in the timing of rapid height 

gain and in final canopy breadth. Height growth peaked before canopy expansion 

plateaued, reflecting a transition from vertical shoot extension to lateral leaf expansion as 

the plants matured.  

Fig. 4-22 presents the height and span growth curves for the five plants in Row B. 

The stages mirror those seen in Row A. From about April 13 until April 27 they entered 

a rapid growth period before the rate of height gain slowed as they neared their mature 

size. Plant 1 grew from around 20 cm on April 9 to about 168 cm by May 11. Plant 2 

reached a similar final height of 173 cm but showed slightly greater day‐to‐day variability 

in the mid-season measurements. Plant 3 peaked at 166 cm and exhibited the greatest 

scatter in its data points during the exponential phase. Plant 4 followed closely behind at 

172 cm, and Plant 5 rose to 171 cm with the steadiest trend line of the group. Canopy 
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span in Row B expanded more gradually. During the first two weeks span increased from 

approximately 35 cm to about 52 cm. After April 25 the rate of canopy expansion slowed 

as leaves began to reach maximum size. Plants 1 and 3 both achieved final spans of about 

65 cm, while Plant 2 extended slightly further to 67 cm. Plant 4 produced the smallest 

canopy at 64 cm and Plant 5 reached the greatest final span of 67 cm. These curves 

illustrate that although all five specimens share a common growth schedule, they vary in 

the timing and magnitude of both vertical and lateral development. 

The five plants in Row C follow the same pattern seen in Rows A and B. In Fig. 

4-23 presents the height and span growth curves for the five plants in Row C. They enter 

a rapid growth period from about April 13 to April 27, and then their height increase 

slows as they near maturity. Plant 1 grows from around 20 cm to one 174 cm. Plant 2 

reaches 173 cm. Plant 3 rises to173 cm with slightly more scatter in its mid-season 

measurements. Plant 4 attains 173 and Plant 5 peaks at 172 cm. These final heights are 

broadly comparable to those in Rows A and B, with Row C showing marginally higher 

maxima and similar timing of the inflection point. Canopy span in Row C also expands 

more gradually. During the first two weeks it increases from approximately 30 cm to 

around 53 cm. After April 25 the rate of lateral expansion tapers off. Plant 1 finishes with 

a span of about 66 cm s. Plant 2 ends at 65 cm, Plant 3 at 70 cm. Plant 4’s canopy reaches 

64 cm and Plant 5 at 70 cm. These span values fall within the range observed in the other 

two rows. Overall, Row C’s growth curves closely mirror the rhythm and amplitude of 

Rows A and B, confirming a consistent growth pattern across all fifteen plants with only 

minor variation in final size. Across all fifteen plants in Rows A, B, and C, the growth 

curves reveal a consistent pattern of rapid vertical growth from mid-April to late April, 

followed by a slowdown in height increase and gradual canopy expansion with only 

minor variations in timing and final size. 
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Fig. 4-21. Growth curves of height and span for Row A plants. Panels (a) to (e) 

correspond respectively to Plant A1 through Plant A5 
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Fig. 4-22. Growth curves of height and span for Row B plants. Panels (a) to (e) correspond 

respectively to Plant B1 through Plant B5 
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Fig. 4-23. Growth curves of height and span for Row C plants. Panels (a) to (e) correspond 

respectively to Plant C1 through Plant C5 
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Fig. 4-24 presents the average height curve for all fifteen plants. The plants enter a 

steady growth phase that accelerates in mid-April before tapering off by early May. The 

measured height curve remains consistently above the ground truth curve and the gap 

widens slightly over time. Fig. 4-24 shows the average span rising from about 30 cm to 

58 cm by late April and then moving into a slower saturation phase. The measured span 

curve lies above the ground truth and the difference between the mean and minimum span 

curves illustrates the variation among individual plants. Overall, the fifteen plants exhibit 

a uniform growth rhythm with a predictable bias in both height and span measurements. 

 

Fig. 4-24. Average growth curves for all fifteen plants: (a) Average height over time 

shown for ground truth and measured values, (b) Average canopy span over time showing 

ground truth, measured span, mean span, and minimum span curves 
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CHAPTER 5  

Conclusions and Suggestions 

5.1 Conclusions 

This research developed the first autonomous multi-UAV cooperative navigation 

system for greenhouse crop monitoring. Compared with conventional single-UAV 

solutions, this system demonstrates significant advancements in navigation accuracy, 

mission efficiency, and 3D phenotyping capability, establishing a scalable framework for 

precision agriculture in GPS-denied environments. 

 

Multi-UAV autonomous navigation system 

1. Developed a stable multi-UAV system with reliable communication and 

autonomous navigation using visual SLAM. 

2. Proposed a loop-optimized mapping strategy that reduced mean absolute 

localization error by 39% compared to single-loop mapping, establishing a best 

practice for high-precision map generation. 

3. Designed and evaluated three cooperative flight paths with UWB-based ground 

truth, providing quantitative guidelines for balancing accuracy and efficiency 

in collaborative missions. The parallel-aisle path shows an error range of 7 to 

12 cm, the closed-loop path 5 to 9 cm, and the multi-altitude path 4 to 11 cm. 

4. Multi-UAV deployment outperforms single UAV, reducing mission time by 

73% and battery usage by 5% while maintaining localization accuracy across 

all flight paths. 
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3D reconstruction of plant 

1. Established a multi-view UAV imaging pipeline with Gaussian Splatting-based 

3D reconstruction, achieving high-fidelity plant morphology models with PSNR 

up to 0.37, SSIM of 9.48, and LPIPS of 0.65. 

2. Single-Side offers stable results, Merged captures both sides, and Three-Height 

performs best for tall plants. 

3. Three-Height method achieves highest quality with PSNR 0.37, SSIM 9.48, and 

LPIPS 0.65. 

Comparison of Plant Height and Canopy Span Across Three Reconstruction 

Methods 

1. Estimated traits using point clouds from three reconstruction methods. 

2. Single-Side method achieved the lowest height RMSE of 9.9 cm and the lowest 

span RMSE of 9.2 cm, demonstrating the most consistent measurement accuracy 

overall. 

Per-Plant Measurements of Height and Canopy Span 

1. Monitor growth for each plant and compare predicted and actual growth curves. 

2. Calculate the R² and RMSE for 15 plants. Monitor growth for each plant and 

compare predicted and actual growth curves. 

Plant height and canopy growth monitoring 

1. Successfully monitored muskmelon growth dynamics using UAV-based 3D 

reconstruction 
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2. Height increased rapidly in mid-April and stabilized in May, showing reliable 

growth measurement. 

3. Canopy span grew slower, plateaued after late April, and showed higher 

variability. 

5.2 Suggestions 

1. Future work should integrate visual-inertial SLAM and deep-learning-based 

feature tracking to improve robustness under challenging lighting and dense 

foliage conditions. 

2. In designing autonomous navigation for multi-UAV systems, future 

improvements could involve capturing images from closer distances and 

adopting more flexible imaging strategies. For instance, flight paths could be 

specifically planned to focus on capturing images of individual plants. 

3. In terms of reconstruction, merged reconstruction tends to have a higher failure 

rate, particularly due to greater alignment difficulties. Future work could focus 

on increasing image overlap and experimenting with parameter adjustments in 

the structure from motion process to improve reconstruction success. 
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