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ABSTRACT

This study developed an autonomous multi-drone system for muskmelon crop
growth monitoring in a greenhouse. Through collaborative multi-drone operations, multi-
angle images were captured and three flight paths were designed. The UWB positioning
system was used to compare the accuracy of the UAV autonomous flight, and the
collected images were used for 3D reconstruction to analyze muskmelon plants. The
images were processed to extract key phenotypic data, focusing on plant height and
canopy span, and growth monitoring was performed by fitting growth curves and
comparing them with actual growth data. In terms of flight accuracy, the parallel flight
path had an error range of 7 to 12 cm, the closed-loop path had an error range of 5 to 9
cm, and the multi-altitude path had an error range of 4 to 11 cm, demonstrating stable
flight precision. We also compared the performance of multi-drone and single-drone
systems over the same coverage area. The multi-drone system reduced mission time by
73% and battery consumption by 5%. For 3D reconstruction, we compared three methods
collected along three different paths: Single-side, Merged, and Three-height. Evaluation
metrics showed that the Three-height method provided the best reconstruction quality
with PSNR of 0.37, SSIM of 9.48, and LPIPS of 0.65. For height measurement, the
Merged method achieved the lowest MAE of 6.6 cm, and for canopy span measurement,
the Single-side method achieved the lowest MAE of 5.8 cm. This study demonstrates the
potential of multi-UAV systems in greenhouse crop monitoring and proves the
effectiveness of different reconstruction methods and measurement strategies in

improving monitoring accuracy and efficiency.

Keywords: Multi-UAV system, Visual SLAM, 3D reconstruction, Gaussian Splatting,

Phenotyping analysis, Growth monitoring
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CHAPTER 1

Introduction

1.1 General Background Information

Agriculture has long been fundamental to human civilization, yet it now faces
unprecedented challenges due to climate change, resource scarcity, and labor shortages
(Singh & Singh, 2017). In response, the industry has entered the era of Agriculture 4.0,
which integrates advanced technologies such as the Internet of Things (IoT) and artificial
intelligence to increase productivity, improve resource allocation, and enable real-time

decision-making (Zhai et al., 2020).

As climate variability intensifies, many production systems have shifted from open
fields to controlled environments like greenhouses. These environments offer the
advantage of precise control over temperature, humidity, and lighting conditions, critical
for ensuring crop quality and stability. With the integration of sensors and automation
technologies, greenhouses have evolved into smart systems capable of real-time
monitoring and adaptive control (Huynh et al., 2023). These advancements are
particularly beneficial for cultivating high-value horticultural crops such as tomatoes,
strawberries, and muskmelon (Cucumis melo L.), which require delicate environmental
regulation. Previous studies have shown that greenhouse cultivation can significantly
improve muskmelon yield and quality (Pardossi et al., 2000). However, the management
of such high-value crops still depends heavily on accurate, timely, and non-invasive

monitoring, which presents new technical challenges even in smart greenhouses.
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Even within smart greenhouses, effectively monitoring crop health and growth
remains a significant challenge. For crops such as muskmelon that require frequent
phenotypic assessment, traditional manual inspection is both time-consuming and labor-
intensive, and often fails to provide the continuity and resolution necessary for precise
crop management. To address this issue, unmanned aerial vehicles (UAVs) have emerged
as a promising solution. UAV platforms support remote sensing, high-frequency
inspections, and automated data collection, offering new possibilities for large-scale
phenotyping and crop health monitoring. Aslan et al. (2022) noted that while UAV
applications are well-established in open-field agriculture, their deployment in
greenhouse environments remains limited due to constraints such as weak GPS signals
and restricted space. Nevertheless, the study highlighted the strong potential of UAV-
based monitoring in greenhouses and emphasized the need for solutions such as
simultaneous localization and mapping (SLAM) technologies to overcome the challenges

of indoor navigation.

While single-UAV systems offer promising solutions for crop monitoring in smart
greenhouses, they are inherently constrained by limited flight time, restricted spatial
coverage, and vulnerability to single-point failures. These limitations can hinder the
ability to perform consistent and large-scale monitoring tasks in complex greenhouse
environments. To address these challenges, recent research has increasingly turned to
multi-UAV systems, which enable cooperative operations among multiple drones to
improve system scalability and resilience. For example, Kim et al. (2019) demonstrated
that deploying multiple UAVs in a coordinated manner significantly improves spatial
coverage and reduces mission time during agricultural inspections. In a separate study,
Ju and Son (2018) proposed a distributed control strategy for cooperative UAVs and

showed that such systems enhance energy efficiency and robustness in field operations.
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These multi-UAV configurations are particularly well-suited for smart greenhouse
applications, where high-frequency, non-invasive monitoring is essential for capturing

detailed and dynamic crop traits across large areas.

Building upon the capabilities of cooperative multi-UAV systems in smart
greenhouse environments, recent advancements in computer vision and 3D
reconstruction have enabled more detailed and non-destructive approaches to plant
phenotyping. By capturing images from multiple and complementary viewpoints, UAV-
based systems can reconstruct accurate 3D models of plants, allowing for precise

estimation of morphological traits such as plant height, canopy width, and leaf area.

Li et al. (2022) demonstrated that multi-view image sequences can effectively
reconstruct 3D models of maize seedlings in field conditions, enabling high-resolution
measurement of key phenotypic parameters. Expanding on this approach, James et al.
(2025) developed a scalable UAV-based pipeline that integrates deep learning for
efficient 3D phenotyping of sorghum panicle in greenhouse environments. Their work
highlights the feasibility and robustness of applying UAV-based 3D reconstruction

technologies in controlled agricultural settings.

Despite these advancements, the application of such phenotyping pipelines in smart
greenhouses remains technically challenging due to factors like occlusion from dense
foliage, limited viewpoints caused by structural constraints, and the need for seamless
coordination among multiple UAVs. In this context, multi-UAV systems offer significant
advantages by enabling flexible and comprehensive data acquisition from multiple
perspectives, which can substantially improve the completeness and reliability of 3D

reconstructions.
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1.2 Research Objectives

This study aims to develop an autonomous multi-UAV system for in-greenhouse
crop monitoring, leveraging simultaneous localization and mapping (SLAM) to construct
maps and estimate UAV poses in GPS-denied environments. The proposed system
enables distributed autonomous navigation among multiple UAVs, thereby improving
navigation efficiency and scalability within the confined and structurally complex
greenhouse environment. By coordinating the UAV fleet for image acquisition from
multiple perspectives, the system facilitates 3D reconstruction of plants, which in turn
supports accurate phenotypic analysis and continuous growth monitoring. The specific

objectives of this research are as follows:

1. To develop an autonomous multi-UAV navigation system adapted for operation in
greenhouse environments using SLAM.

2. To reconstruct detailed 3D plant models from multi-view images captured by UAVs
inside the greenhouse.

3. To perform plant phenotypic analysis and monitor growth dynamics based on the

reconstructed 3D models.
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CHAPTER 2

Literature Review

The shift from traditional open-field agriculture to controlled environments such as
greenhouses has introduced new challenges for crop monitoring. Among high-value crops
cultivated in greenhouses, tomatoes, strawberries, and muskmelons require frequent,
accurate, and non-invasive monitoring to ensure optimal growth. While smart
greenhouses have adopted fixed sensor networks and automation systems, these solutions
often lack the spatial flexibility and adaptability needed for high-resolution, plant-level
monitoring across dynamic environments. To address these challenges, unmanned aerial
vehicles (UAVs) offer a promising alternative due to their mobility, scalability, and
ability to perform high-frequency data collection. Their deployment in greenhouses,
however, is not without challenges, particularly in navigation and coordination within
GPS-denied, space-constrained environments. The increasing complexity of crop
monitoring demands integrated solutions that combine UAV mobility with advanced

navigation, mapping, and data analysis capabilities.

2.1 UAYV Applications in Greenhouse Environments

The advancement of unmanned aerial vehicle (UAV) technology has become an
increasingly important tool in precision agriculture, particularly demonstrating strong
potential in greenhouse applications. As global food demand continues to rise, UAVs
contribute significantly to improving agricultural productivity, especially in

environmental monitoring and crop management. With high versatility and a wide range
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of sensing capabilities, UAVs can effectively replace traditional sensors. Their practical
applicability and cost-efficiency have gradually established them as essential tools for

greenhouse management (Aslan et al., 2022).

2.1.1 Development and Applications

In agriculture, UAVs equipped with various sensors, such as multispectral cameras
and thermal imagers, can efficiently collect imagery data and monitor the agricultural
environment. Studies have shown that these sensors not only capture high-resolution crop
images but also assess plant moisture and growth status, thereby enabling farmers to more
precisely monitor crop development, manage irrigation systems, and apply fertilizers
(Rejeb et al., 2022). In outdoor agricultural settings, UAVs have been extensively
employed to oversee large-scale crops, perform spraying, detect pests and diseases, and
estimate yields. As UAV technology has matured, its applications have gradually
extended into greenhouse environments. Within greenhouses, farmers can control
environmental conditions, and UAVs, through automated systems, can carry out three-
dimensional environmental monitoring and data collection, thus improving production

efficiency and reducing resource waste (Roldén et al., 2015).

The application of unmanned aerial vehicles in greenhouses is extensive, including
monitoring plant growth, detecting diseases, and managing temperature and humidity.
For example, UAV systems equipped with multispectral cameras and LiDAR (Light
Detection And Ranging) technology can accurately monitor plant health, enabling
farmers to detect disease or nutrient deficiencies promptly and apply pesticides or

fertilizers in a timely manner. In addition, by combining LiDAR technology with infrared
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imaging, it is possible to provide precise temperature distribution data under low-light or
night-time conditions, ensuring optimal growth conditions for plants in varying
environments (Gu et al., 2020). These technologies assist farmers in rapidly identifying
problem areas and making adjustments immediately, greatly reducing the risk of pests
and diseases and effectively minimizing both soil moisture evaporation and plant
transpiration stress. By integrating these approaches, greenhouse management becomes

more precise and efficient.

As technology continues to advance, the capabilities of drones have gradually
improved, and depending on the scale, greenhouse operations may require a large amount
of labor. Research indicates that through simultaneous localization and mapping (SLAM),
drones can navigate autonomously in greenhouses where GPS signals are limited, avoid
obstacles and complete tasks effectively. Krul et al. (2021) demonstrated that a small
drone with a monocular camera and ORB-SLAM can function reliably in greenhouse
corridors despite plant occlusion and low-texture floors, producing sparse point-cloud

maps that support real-time navigation and improve inspection efficiency.

Currently, UAV technology has emerged as a critical tool for greenhouse
management. Through the integration of multiple sensors and advanced navigation
technologies, UAVs can operate effectively under complex greenhouse conditions.
Nevertheless, despite ongoing technological advancements, numerous challenges remain

in the deployment of UAVs within greenhouses.
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2.1.2 Case Studies and Challenges

Utilizing UAVs within greenhouse environments presents numerous challenges, one
of which is the stability of communication systems. Pantos et al. (2023) reported that the
enclosed environment of greenhouses adversely affects UAV signal propagation, noting
that measurements taken near the roof and floor are especially prone to signal attenuation.
Structural components within greenhouses induce signal attenuation, compromising
reliable data transmission and real time video streaming, both of which are essential for
tasks requiring immediate feedback such as environmental monitoring and crop health
evaluation. These challenges highlight the need for continued technological innovation

in order to achieve optimal UAV performance in greenhouse operations.

In addition, when UAVs are used in greenhouses with low light or rapidly changing
lighting conditions, the sensitivity and accuracy of sensors can be adversely affected,
resulting in reduced data reliability. For example, infrared sensors or multispectral
cameras may not provide clear image data under insufficient lighting, which can
compromise the accuracy of plant health assessments or microclimate monitoring
(Bagagiolo et al., 2022). These challenges indicate that UAV deployment still requires
further improvement of sensing technologies to adapt to the variable conditions found in
greenhouses. The case studies demonstrate that although UAV applications in
greenhouses can enhance automation efficiency and reduce reliance on human labor,
technical limitations remain. For instance, UAV autonomy and sensor accuracy face
technical bottlenecks that must be addressed through technology development. To meet
these challenges, future research should focus on further improving UAV navigation
precision in order to enable effective operation in more complex and dynamic greenhouse

environments.
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2.2 Single-UAYV and Multi-UAYV Navigation

UAV technology plays a critical role in modern agriculture, particularly in
greenhouse environments. Through autonomous navigation, UAVs can enhance farm
management efficiency and reduce labor costs. The precise monitoring requirements in
greenhouses, such as temperature, humidity, and crop health, have driven continuous
advances in UAV technology. In this setting, UAV deployment not only reduces labor
demands but also improves operational accuracy and timeliness (Park et al., 2025). Both
single-UAV and multi-UAV systems demonstrate significant advantages in agricultural
automation. Single-UAV platforms are generally simple to operate and cost-effective,
making them well suited to tasks such as indoor greenhouse inspection or point-specific
monitoring (Khosiawan & Nielsen, 2016). In contrast, multi-UAV configurations exhibit
superior performance in collaborative missions by leveraging distributed control
frameworks that allow simultaneous multi-zone monitoring and data collection, thereby
offering greater efficiency and flexibility when managing large greenhouses or complex

tasks (Chung et al., 2018).

2.2.1 Single-UAYV Navigation Applications and Challenges

Single-UAV technology has been widely applied in agricultural monitoring,
logistics delivery, and search-and-rescue operations. In terms of autonomous navigation,
UAV navigation can be understood as the planning process that allows the aircraft to
safely and quickly reach a target location based on its current environmental and

positional information. To successfully complete a mission, a UAV must be aware of its
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own state, including its current position, flight speed, heading direction, as well as its

starting point and target location (Lu et al., 2018).

In greenhouse environments, a single UAV equipped with visible-light,
multispectral, and thermal-infrared sensors can independently perform tasks such as crop
monitoring and microclimate detection. According to Hunt Jr and and Daughtry (2018)
shown that by flying at different altitudes, a UAV can gather temperature, humidity, and
light intensity data and combine this information with multispectral imagery to assess
plant growth status. This approach helps analyze how environmental changes inside the

greenhouse affect crop development.

However, greenhouses often present severe obstructions and limited GPS signals.
Chang et al. (2023) review autonomous UAV navigation in GPS-denied environments
and note that these methods fall into map-based and mapless strategies. By using
techniques such as vision—inertial fusion and SLAM, UAVs can significantly improve
their localization and stability, ensuring they can navigate narrow, highly obstructed
passages or dense vegetation areas (Chang et al., 2023). In small-scale greenhouses,
single-UAV applications focus on regular patrols, such as inspecting plant health or
collecting light-intensity and humidity data. Because of their ease of operation and
flexibility, single UAVs offer an ideal low-cost solution for autonomous patrol missions.
Nevertheless, their main limitation is flight endurance, which makes it difficult to cover

larger areas.

2.2.2 Multi-UAYV Navigation Applications and Challenges

Multi-UAV systems enable multiple aircraft to cooperate on tasks that are either

impractical or inefficient for a single vehicle, such as large-area monitoring, synchronized
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data collection, or persistent coverage in dynamic environments. In greenhouse settings,
where rapid and accurate assessment of microclimate conditions and crop health over a
wide area is essential, coordinated UAV fleets can divide the workload to cover multiple
zones simultaneously.Vetrella et al. (2016) describe a navigation framework in which a
UAYV formation acts like a virtual sensor array. Each UAV exchanges differential GPS
data with its peers and combines this information with vision tracking to reduce magnetic
and inertial interference. As a result each UAV can use relative position information from
others, which improves accuracy and robustness when individual GPS signals are weak.
By using cooperative DGPS together with visual features matching the fleet maintains its
formation and keeps reliable state estimates for all UAVs, reducing accumulated

positioning errors.

Building on the concept of cooperative sensing, Trujillo et al. (2018) develop a
vision-based SLAM method for multi-UAV formations that follow a moving lead agent.
When the lead agent, whether it is another UAV, a ground vehicle, or a person, moves
unpredictably, follower UAV's must estimate both their own positions and the lead’s state.
The authors examine three configurations using nonlinear observability analysis, each
with different sensor setups. In the first configuration, one UAV (Quad 1) keeps the lead
in view with a monocular camera and combines camera-based landmark angles with
onboard inertial data. In the second configuration, if the lead is outside the camera’s field
of view, Quad 1 adds range measurements and altimeter readings to maintain its estimate.
In the third configuration, multiple chasing UAVs share visual and inertial data among
themselves. In all cases, a high-level control scheme adjusts the formation in real time
based on those estimates. Simulations show that this cooperative SLAM approach
produces stable position estimates for both the UAV swarm and the lead agent even when

GPS is unreliable, enabling reliable formation control and collision avoidance.
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Deploying multi-UAV systems in greenhouses still faces major challenges.
Greenhouse structures and dense foliage often block the view, making vision-based
measurements unreliable, and DGPS alone cannot prevent inertial drift. Maintaining
reliable communication between UAVs is difficult because metal frames and high
humidity interfere with signals. Unpredictable wind and thermal updrafts inside
greenhouses also demand control algorithms that can adjust flight paths on the fly. Finally,
small UAVs have limited battery life, so they must plan routes that balance area coverage
and energy use. Addressing these challenges requires adding lightweight LiDAR or ultra-
wideband radios for backup ranging, designing formations that can tolerate brief

communication losses, and creating mission plans that optimize both coverage and power.

In summary, integrating differential GPS with vision based tracking and advanced
visual SLAM architectures can greatly improve multi-UAV navigation in complex
settings. Yet in greenhouse operations, further work is needed on sensing that resists
occlusion, more robust communication strategies, and energy aware coordination
algorithms to achieve fully autonomous, large scale aerial monitoring. Among various
sensing technologies, vision-based navigation, with its passive, lightweight, and low-
power characteristics, serves as a crucial complement for UAV localization and guidance

in greenhouse environments.

2.2.3 Vision-based Navigation

Vision-based navigation provides UAVs with the ability to interpret and respond to
their surroundings using only camera input. By extracting distinctive visual features and

constructing or updating maps in real time, this approach enables both single and multiple
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UAVs to maintain accurate positioning and trajectory planning without relying on

external signals.

Early SLAM techniques were primarily based on geometric methods, using
traditional tools from geometry and probability theory for localization and map
construction. These approaches relied on a robot’s motion model and observation model
to estimate both the robot’s position in space and the locations of environmental feature
points, thereby building a 3D map. For example, EKF-SLAM (Extended Kalman Filter—
SLAM) is a typical geometry-based SLAM method that uses an extended Kalman filter
to track and update the robot’s pose and the positions of feature points (Bailey et al.,
2006). However, as the number of observed points increases, its computational

complexity grows quickly, creating a performance bottleneck (Li et al., 2018).

Subsequently, SLAM methods began using image-based approaches. MonoSLAM
was the first to use a single camera for both motion estimation and map building (Davison
et al., 2007). This image-based SLAM relies on a continuous sequence of camera images
and estimates the camera’s pose by extracting and tracking feature points. ORB-SLAM
relies on ORB features (Oriented FAST and Rotated BRIEF) for localization and mapping,
making it fast and efficient for real-time use (Mur-Artal et al., 2015). In contrast, LSD-
SLAM (Large-Scale Direct Monocular SLAM) skips discrete feature extraction and
instead optimizes pixel intensities directly, producing a semi-dense depth map (Engel et
al., 2014). This allows LSD-SLAM to keep tracking in areas with few clear corners or in
low-texture scenes, but it requires more computation and can be slower in very large
environments. Compared to ORB-SLAM’s sparse maps and lower processing demands,

LSD-SLAM gives richer detail at the cost of speed. Overall, ORB-SLAM’s lower
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computational requirements and consistently reliable tracking make it a more practical

choice than LSD-SLAM for most real-time applications.

Building on these developments in visual SLAM, subsequent frameworks expanded
the capabilities of camera-based localization and mapping by introducing new features
and supporting a wider range of sensors and platforms. ORB-SLAM?2 is a feature-based
SLAM system for monocular, stereo, and RGB-D cameras. It offers reliable loop closure,
map reuse, and relocalization, delivering high accuracy in various environments (Mur-
Artal & Tardds, 2017). ORB-SLAM3 builds on this by adding visual-inertial fusion and
multi-map support. Its joint optimization of camera and IMU data improves tracking
during fast motion or brief visual loss, and its Atlas module manages multiple submaps,

making it more robust for large-scale mapping (Campos et al., 2021).

While ORB-SLAM2 and ORB-SLAMS3 emphasize highly optimized feature
extraction and sensor fusion for accuracy, other frameworks emerged with a focus on
flexibility and modularity. OpenVSLAM, for example, prioritizes support for diverse
camera models and ease of integration into various development workflows. It uses ORB
features but supports many camera types, such as fisheye cameras, omnidirectional
cameras, and stereo setups (Sumikura et al., 2019). A lightweight map-fusion plugin
allows easy switching between sparse, semi-dense or custom map formats without
rebuilding the system. Because it does not rely on ROS, it can run more easily on

embedded or resource-limited platforms.

In summary, ORB-SLAM?2 is praised for its reliable loop closure and relocalization
capabilities, and ORB-SLAM3 builds on this foundation by incorporating visual-inertial
fusion and multi-map management to enhance motion handling and enable large-scale

revisits. Meanwhile, OpenVSLAM stands out for its support of diverse camera types,
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modular map formats, and rapid development workflows. Together, these systems cater
to a wide range of SLAM requirements, from achieving high-precision mapping to

offering flexible deployment with unconventional camera setups.

2.3 Multi-UAY Control and Communication

Multi UAV control and communication architectures can be broadly categorized
into centralized, distributed, and hybrid designs. Centralized architectures rely on a
primary controller that issues commands and gathers data from each vehicle. This
approach simplifies coordination but can create a single point of failure and may struggle
with scalability. Distributed architectures share decision making among vehicles so that
each unmanned aerial vehicle collaborates based on local information and peer
communication. Such systems are more resilient and flexible but require robust
algorithms to reach consensus and handle dynamic changes. Hybrid architectures
combine elements of centralized and distributed designs by maintaining a global mission
plan while allowing individual vehicles to operate autonomously within local constraints.
Across all three strategies, effective communication and collaboration mechanisms are
essential to exchange state information, coordinate tasks, and ensure overall system

performance.

2.3.1 Centralized Architecture

In multi-UAV collaborative control systems, a centralized control architecture is
generally considered to provide higher task execution efficiency and decision-making

quality. A centralized control system manages the status and task allocation of the entire

15 d0i:10.6342/NTU202503732



UAYV swarm through a cloud server or ground control station. Research by Loayza et al.
(2017) points out that when centralized control is applied to collaborative UAV missions
such as virtual seeding in precision agriculture, it can effectively govern each UAV’s

movement and prevent collisions, thereby enhancing task stability and effectiveness.

According to Jamshidpey et al. (2024), centralized control demonstrates better speed
and efficiency in coverage tasks in multi UAV systems, especially when precise control
and efficient task completion are required. However, a drawback of centralized control is
its high dependence on a single control point, which leads to poor scalability and makes
the system prone to collapse if the control point fails. In simulated tests this centralized
control method showed significant advantages in task completion speed and coverage
uniformity, but when applied on a large scale it is easily limited by communication

bottlenecks and single point failures.

Furthermore, Hu et al. (2018) compared centralized and distributed control and
pointed out that although centralized control usually outperforms distributed control in
decision quality, it faces a significant increase in delays as the swarm size grows. In
centralized control all decisions and computations are concentrated on a cloud server.
This enables the system to make decisions based on global data but also makes the system
vulnerable to performance degradation due to communication delays or resource

constraints.

2.3.2 Distributed Architecture

Compared to centralized control, distributed control architectures place greater
emphasis on collaboration among individual UAVs and enable them to make decisions

without reliance on a central control unit. According to Asaamoning et al. (2021)
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distributed control can effectively address the challenges that UAV swarms face when
performing autonomous missions in dynamic and uncertain environments. These control
systems have self-organizing capabilities and do not depend on a single control point,

thereby improving system scalability and fault tolerance.

To further leverage the benefits of distributed architecture, Zhang et al. (2023)
proposed a distributed cooperative search method called DCS-UC that incorporates ant
colony optimization to handle unstable communications among UAVs. Their approach
enables each UAYV to adjust its search path based on local pheromone information and
neighbor broadcasts, resulting in improved coverage efficiency and robustness when
communication links are intermittent. Simulation results demonstrate that DCS-UC
outperforms traditional approaches by achieving higher search success rates and reducing

mission completion time under network instability.

However, the disadvantage of distributed control is that each UAV can only make
decisions based on its own information and cannot know the positions or battery levels
of other UAVs, which may result in lower quality task allocation compared to centralized
control. Although distributed control offers a significant advantage in decision latency,
when complex missions are involved centralized control still provides superior decision

making.

2.3.3 Communication and Collaboration Mechanisms

In cooperative control of UAV swarms, communication and collaboration constitute
the core mechanisms for achieving collective objectives. UAV swarms exchange
information through diverse communication architectures to ensure smooth execution of

missions and coordinated operation among all vehicles.
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Azzam et al. (2023) propose a multi-agent reinforcement learning framework based
on centralized training and decentralized execution (CTDE). In this framework, all UAV
behaviors are managed centrally during the training phase to ensure they acquire
cooperative navigation capabilities. During the execution phase, decentralized control is
employed so that each UAV can make decisions based on local sensing and peer-to-peer
messages, thereby improving system flexibility and scalability. Communication stability
is critical during cooperative flight. Zhang et al. (2023) address the problem of unstable
communications under radio frequency interference by designing a dual-threshold
detection algorithm. This algorithm monitors the collaborative process, prevents
collisions, and maintains connectivity, thus enhancing the reliability of the UAV swarm
in dynamic environments. To reduce communication latency while maintaining efficient
collaboration, Chen et al. (2024) develop a rapid cooperation method for large-scale UAV
swarms. Their method relies on local interactions and predictive mechanisms, allowing
the swarm to reach consensus quickly even under constrained channel resources. This
approach preserves collaboration efficiency when multiple UAV groups merge,

enhancing the swarm’s adaptability in dynamic conditions.

These research findings demonstrate that, in large-scale applications, careful design
and selection of communication mechanisms enable UAV swarms to maintain efficient

collaboration and successfully complete complex tasks in dynamic environments.

2.4 Plant Phenotyping

Plant phenotyping quantifies traits such as leaf morphology, leaf count, canopy
spread, height, biomass and color to reveal genetic and environmental interactions. By

utilizing noninvasive imaging, spectral measurements and other sensor-based techniques,

18 d0i:10.6342/NTU202503732



researchers can capture repeated measurements throughout development to identify
trends and detect stress or disease at early stages. These approaches inform precision
agriculture practices, such as irrigation, fertilization and pest management, and support
breeding programs by pinpointing superior genotypes. Ultimately, plant phenotyping
enables high-throughput, non-destructive evaluation of performance across diverse

environments.

2.4.1 Plant Phenotyping Techniques

Plant phenotyping aims to quantify plant morphological, physiological and
biochemical traits that develop because of interactions between genotype and
environment. Methods can be divided into invasive approaches that require destructive
sampling of tissues to measure traits such as biomass or root architecture and non-
invasive approaches that employ imaging, spectral or other sensor technologies to collect
continuous data without disturbing plant growth. While invasive methods deliver precise
measurements, they do not allow longitudinal monitoring of the same individual. In
contrast, non-invasive techniques combine RGB and multispectral imaging, LIDAR point
clouds, thermal imaging and other sensors to achieve high throughput repeated
measurements and capture growth and physiological dynamics over time and space

(Pieruschka & Schurr, 2019).

Non-invasive phenotyping uses a variety of imaging and sensor technologies to
monitor plants without causing damage. Visible-light cameras capture RGB images to
measure leaf area and canopy cover, and multispectral and hyperspectral sensors record

reflectance at different wavelengths to assess pigment composition, nutrient status and
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stress indicators. Thermal infrared cameras map canopy temperature to infer transpiration
rates and water stress, and chlorophyll fluorescence imaging evaluates photosynthetic
efficiency while also revealing early signs of abiotic stress. Three-dimensional
measurements rely on stereo vision and LiDAR scanners, which generate point clouds to
reconstruct plant structure and calculate height, volume and branching architecture.
Furthermore, tomographic methods such as magnetic resonance imaging, computed
tomography and positron emission tomography reveal internal features such as root
networks and vascular tissues at high resolution without excavation (Fiorani & Schurr,
2013). In greenhouse environments these sensors underpin systems like PlantEye and
FieldScanalyzer. PlantEye combines high-resolution three-dimensional scanning with
multispectral imaging to capture detailed morphological and physiological data and
FieldScanalyzer enables rapid multispectral imaging of large plant populations (Gao et
al., 2024). These non-invasive methods provide a comprehensive toolkit for high-

throughput trait measurement.

2.4.2 Two-Dimensional Image-Based Approaches

As high throughput imaging technologies become more widespread, methods for
plant phenotyping using two dimensional images have evolved from early traditional
image processing toward machine learning and deep learning techniques. According to
Chandra et al. (2020), the number of publications employing deep learning in the plant
phenotyping field has increased rapidly in recent years. Architectures based on
convolutional neural networks are especially common and have been successfully applied
to tasks such as leaf counting, species classification, and disease detection. This trend
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shows that deep learning methods provide higher accuracy and greater automation

compared to traditional machine learning approaches.

Early two-dimensional image-based phenotyping often relied on manually
engineered features such as color histograms, texture parameters, and shape descriptors.
For example, Zhao et al. (2016) extracted 36 root morphological traits in pea and used a
random forest and support vector machine approach to distinguish among 16 European
cultivars. Using only the five most informative traits yielded up to 86% accuracy and
outperformed models built on more extensive or random feature sets. By contrast,
Teshome et al. (2023) employed UAV-derived crop surface models (UAVH) from
multispectral imagery collected one to two weeks before harvest to predict sweet corn
height, biomass, and yield. A simple linear regression on UAVH achieved a concordance
index of 0.99, an R? of 0.99, and a mean absolute error of five centimeters for height
estimation. Nonlinear models such as random forest, support vector machine and k-
nearest neighbors predicted biomass with concordance values between 0.88 and 0.99,
demonstrating that machine learning applied to two-dimensional UAV imagery can reach
near-field measurement accuracy just weeks before harvest. These studies confirm the
feasibility and precision of combining two-dimensional imagery with machine learning
for plant phenotyping. However, machine learning methods depend heavily on manually
designed features, which become a performance bottleneck when faced with high-
dimensional, nonlinear images containing complex backgrounds. In contrast, deep
learning can automatically learn hierarchical representations from raw images, reducing
reliance on manual feature engineering and achieving superior predictive accuracy and

generalization in complex phenotyping scenarios.
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Deep learning’s automatic feature learning further enhances accuracy and
automation in phenotyping. Ampatzidis and Partel (2019) used a UAV equipped with a
multispectral camera to capture citrus orchard images. They applied the YOLOvV3 model
to achieve plant detection accuracy of 99.8 percent with precision of 99.9% and recall of
99.7%. They also estimated canopy area with accuracy of 85.5% and identified tree gaps
with accuracy of 94.2 %. Williams et al. (2024) proposed a zero-shot leaf segmentation
method based on the Segment Anything Model (SAM) that operates without annotated
data. In potato leaf segmentation their method achieved average precision of 60.3% and
average recall of 63.2%, while a fine-tuned Mask R-CNN model achieved precision of
74.7% and recall of 78.7%. This demonstrates that deep learning methods are feasible
when data are limited. These studies show that deep learning automatically extracts
multilevel features from two-dimensional images and providing higher generalization in

complex scenarios.

2.4.3 Three-Dimensional Point Cloud-Based Approaches

Two-dimensional image-based plant phenotyping techniques can extract
information about organs such as leaves and stems from single or multiple 2D images,
but they remain heavily affected by occlusions, lighting conditions, and limited
viewpoints, often failing to fully reconstruct the plant’s three-dimensional structure. To
overcome these limitations, researchers have gradually shifted their attention to three-
dimensional point cloud data, aiming to use depth information to rebuild a more realistic
representation of plant morphology and thereby improve the accuracy and robustness of
segmentation and phenotypic feature extraction.
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Common methods for obtaining three-dimensional point clouds include laser
scanning, photogrammetry, and depth cameras. Laser scanning can directly produce high-
precision, high-density point clouds, but the equipment is costly and operation is complex.
In contrast, photogrammetry uses Structure-from-Motion to estimate camera parameters
and then applies Multi-View Stereo to generate dense point clouds. By capturing multiple
overlapping images with a standard camera or drone, one can automatically reconstruct a
three-dimensional model. Tools such as COLMAP perform camera calibration, sparse
reconstruction, and dense reconstruction (Schonberger & Frahm, 2016), while GLOMAP
further optimizes distributed computing and deep feature matching efficiency (Pan et al.,
2024). In addition, RGB-D cameras and stereo cameras can capture depth information in
real time. Although their range and accuracy in low-texture regions are limited, they offer
a distinct advantage in capturing depth for close-range or dynamic scenes (Wang et al.,

2020).

Utilizing these point cloud acquisition methods, subsequent algorithms are able to
perform precise segmentation and reconstruction of plant structures within three-
dimensional space. Shi et al. (2019) first captured plant images simultaneously from
multiple cameras at different angles and then applied a convolutional neural network to
each two-dimensional image for pixel-wise semantic and instance segmentation to
identify parts such as stems and leaves. They subsequently used Structure-from-Motion
(SftM) and Multi-View Stereo (MVS) techniques to reconstruct a dense point cloud,
projecting the 2D segmentation results back into three-dimensional space to complete the
final 3D point cloud segmentation. In their results, the precision for pixel-wise stem
segmentation using only 2D images was approximately 0.77, whereas it increased to
around 0.97 when analyzed with 3D point clouds. For leaf segmentation, the 2D method

achieved a precision of roughly 0.93 to 0.95, while the 3D approach reached 1.00,
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demonstrating that 3D point clouds significantly improve segmentation accuracy.
Building on Shi et al.’s demonstration that 3D point clouds outperform 2D-only methods
under controlled conditions, Li et al. (2022) proposed a stem-leaf point cloud dataset and
applied a 3D Edge-Preserving Sampling (3DEPS) strategy to preprocess the input point
clouds. They then designed PlantNet, a dual-function network that performs both stem-
leaf semantic segmentation and individual leaf instance segmentation by using a Local
Feature Extraction Operation (LFEO) module based on dynamic graph convolutions and
a Semantic-Instance Feature Fusion Module (FFM). When tested on tobacco, tomato, and
sorghum point clouds, PlantNet achieved an average precision of 92.49% and an
intersection-over-union (IoU) of 85.86% in semantic segmentation tasks. In instance
segmentation, PlantNet achieved a mean precision (mPrec) of 83.30% and a mean
coverage (mCov) of 78.62%. These results highlight PlantNet’s effectiveness in single-
plant or controlled-environment point clouds, where manually annotated samples ensure

high-fidelity training data.

In contrast, Zarei et al. (2024) addressed the challenge of large-scale, highly
overlapping outdoor field conditions by introducing a digital-twin approach to generate a
synthetic sorghum field point cloud dataset. They trained PlantSegNet, a graph
convolution network designed for instance segmentation in complex field scenarios. On
real sorghum point cloud data, PlantSegNet achieved an mCov of 0.53 and an AP of 0.69,
outperforming TreePartNet, which was trained on the same synthetic and real data. While
PlantNet attains higher precision and IoU under controlled conditions, PlantSegNet’s use
of large-scale synthetic training makes it more robust to field-scale occlusions and leaf
overlaps, demonstrating superior accuracy when segmenting geometrically similar plant

organs in outdoor environments.
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CHAPTER 3

Materials and Methods

3.1 Architecture of Autonomous Multi-UAYV System

3.1.1 UAV and Edge Computing Hardware Architecture

The hardware architecture consists of a centralized ground control station and
multiple distributed edge nodes, each composed of a computing unit, a wireless

communication module, and a drone platform, as illustrated in Fig. 3-1.
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Fig. 3-1. Hardware architecture of the multi-UAV system

The ground control station is an MSI Katana 15 B13V laptop, featuring a 13th-
generation Intel Core 17 processor, an NVIDIA GeForce RTX 4060 Laptop GPU, 16 GB

of DDRS RAM, and a 1 TB PCle SSD. It runs Ubuntu 22.04 with ROS 2 Humble, and
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handles central mission planning, data management, and orchestration of all ROS 2 nodes.
For connectivity with the edge nodes, the station is linked via Gigabit Ethernet to a D-
Link DGS-108 8-port unmanaged switch, providing a 1 Gbps-per-port LAN backbone

with high stability and low latency.

We employ the AAEON BOXER-8621AI1 embedded computer as our edge node
platform. The specifications are shown in Table 3-1 NVIDIA Jetson Orin Nano Super
Mode provides the computation performance needed for UAV cruising. The six-core Arm
Cortex-A78AE CPU together with 4 GB of LPDDRS5 memory supports image
transmission and autonomous navigation algorithms. A 128 GB M.2 2242 SSD ensures
that flight data can be recorded quickly and reliably. With dimensions of just 10.5 cm X
9 cm x 5.2 cm, the device is compact while retaining powerful performance. It is therefore
ideal as an edge node for multi-UAV operations. Its extended operating temperature range
guarantees stable performance even in the high temperatures of a greenhouse

environment.

Table 3-1. AAEON BOXER-8621AI Edge Node Specifications

Category Specification
Al Accelerator NVIDIA® Jetson Orin Nano™ with Super Mode
CPU 6-core Arm® Cortex®-A78AE ARMvS.2 64-bit CPU
System Memory 4GB LPDDRS5
Storage Device 128GB M.2 2242 B+M Key SSD
Dimension 10.5cm x 9 cm x 5.2 cm
Gross Weight 1.1kg
e,
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To connect the embedded computer to our UAV, we use the TP-Link TL-WN722N
adapter, which supports 802.11n wireless communication at speeds up to 150 Mbps and
is equipped with a detachable 4 dBi antenna to maintain a dedicated 2.4 GHz point-to-

point link with the UAV.

In this study, we selected the DJI Tello as our UAV platform. The detailed
specifications are shown in Table 3-2. The Tello is an affordable commercial drone,
retailing on DJI’s official website at USD $99 including one battery. It is equipped with
an HD 720p 30 fps RGB camera. The UAV weighs only 80g and its compact dimensions

make it well suited for flight in narrow greenhouse aisles.

Table 3-2. DJI Tello Specifications

Category Specification
Weight 80g
Dimensions 9.8cm x9.25cm x 4.1 cm
Video Quality HD 720 p @ 30 fps
Max Flight Distance 100 m
Max Speed 8 m/s
Max Flight Time 13 min
Max Flight Height 30 m
Field of View 82.6°

To obtain higher-quality video and images, each DJI Tello is equipped with a
RunCam Thumb Pro W camera, as illustrated in Fig. 3-2. According to the official DJI
documentation, the maximum payload capacity of the Tello is 20 g. To meet this weight

limitation, the outer casing of the RunCam Thumb Pro W camera was removed, and a
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lightweight lithium battery along with a voltage boost module was integrated. This

configuration allows stable power supply to the camera while keeping the total added

weight within the allowable limit. The camera captures 4K RGB footage at 30 fps with a

155¢° field of view and records video in synchronization with the UAV’s flight operations.

Fig. 3-2. DJI Tello Equipped with a RunCam Thumb Pro W Camera for Enhanced Imaging

Table 3-3. RunCam Thumb Pro W Specifications

Category Specification
Weight 16g
Dimensions 54cmx255cmx2.1cm
Resolution 4K @301ps\2.7K@60fps\1440P@60fps\1080P@ 120fps\1080P@601ps
Field of View 155°
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3.1.2 Software Architecture

The UAV ground station runs Ubuntu 22.04 LTS with the corresponding Robot
Operating System 2 (ROS 2) Humble release. ROS 2 is the next-generation open-source
robotics framework built on the Data Distribution Service (DDS) middleware, providing
a native distributed architecture and quality-of-service controls that allow modules to
exchange data reliably, flexibly and in real time. Compared with ROS 1, it offers
significant enhancements in security and real-time performance and supports a wide
range of operating systems and embedded platforms while retaining familiar packages for
perception, motion control, navigation and task planning. Its modular design and cross-
language support for C++ and Python simplify system integration and debugging and
have established ROS 2 as a leading choice for both robotics research and industrial

applications.

Fig. 3-3 illustrates the overall software architecture for multi-UAV operations. The
Tello Driver can use the Tello SDK to send commands for takeoff, landing and manual
flight operations and can also publish topics to collect the UAV’s RGB video, odometry
and IMU data. During a navigation mission each UAV first transmits real-time H.264
compressed video to the ground station over Wi-Fi. Within the ROS 2 framework the
Tello Driver decompresses each frame and forwards it to Stella VSLAM to obtain
localization data. To enable autonomous flights a map must be created first. Once the
map is generated it is transferred via Secure Copy Protocol (SCP) to each embedded
computer. Using the received map each UAV defines its waypoint positions in Stella
VSLAM and establishes its waypoint mission. Finally the multi-UAV autonomous flight
is executed. Each UAV computes the error between its current position and the target

waypoint based on the Stella VSLAM output. A PID controller then calculates the
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velocities required to reach each waypoint. Those velocity commands are sent back to the
Tello Driver to control the UAV’s motion. Through this process the multi-UAV

autonomous navigation is completed.
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Fig. 3-3. Overview of the software architecture of multi-UAV system

3.1.3 Multi-UAYV Communication Architecture

The multi-UAV communication architecture consists of a host computer, computing
nodes and UAV units as shown in Fig. 3-4. The ground control station acts as the central
command node. It orchestrates mission coordination, aggregates data from distributed
edge computing units and makes high-level decisions. All devices in the system
communicate over a dedicated local area network using a Gigabit Ethernet switch and
each node has a static IP address to ensure consistent and deterministic network
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addressing. Each edge computing node has its own unique static IP address. These nodes
perform intensive computational tasks in a Docker container, such as real-time visual
SLAM processing, PID based control and waypoint mission management. This
containerization simplifies deployment, ensures consistency across nodes and streamlines
updates and maintenance. In operation, each embedded computer communicates
wirelessly with its assigned DJI Tello UAV using a dedicated point-to-point 2.4 GHz
channel. This setup delivers low latency and high reliability for continuous video
streaming and real-time flight command feedback. The overall architecture leverages
ROS 2’s DDS based middleware. We configured namespaces for each UAV avoid
conflicts and quality of service policies ensure robust message exchange between

distributed nodes and the host system.
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Fig. 3-4. Multi-UAV communication Architecture

3.2 Autonomous Multi-UAYV Flight in Greenhouse

3.2.1 Experimental Setup in Greenhouse

Experiments for this study were conducted in the Intelligent Energy-saving
Greenhouse at the National Taiwan University Agricultural Experiment Station. The
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greenhouse measures 30.15 m in length and 8.15 m in width and contains twelve sets of
angle steel frames. Each frame measures 5.4 m in length, 0.75 m in width and 2.1 m in
height. Our experiments took place in the rear section of the greenhouse, which is outlined
by the red box in Fig. 3-5(a). The greenhouse is planted with muskmelon of the Summer
No. 2 Japanese Arus variety, as shown in Fig. 3-5(b). Each steel frame supports five plants
and yields up to sixty fruits per quarter. Fig. 3-5(c) presents a photograph of the site,
where the aisle width is 1.16 m, providing a suitable environment for UAV flight

experiments.

e e W

(b) (©

Fig. 3-5. Experimental area in the experimental greenhouse: (a) schematic layout
highlighting the rear test section; (b) Summer No. 2 Japanese Arus muskmelon;(c) on-

site view of the 1.16 m-wide aisle used for UAV flights.
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3.2.2 Visual SLAM for Localization and Mapping

In this study we use Stella VSLAM, which is a branch created from OpenVSLAM
(Sumikura et al., 2019) to continue its development. This VSLAM framework supports
monocular, stereo and RGBD camera types and, like ORB-SLAM (Mur-Artal et al., 2015)
and ProSLAM (Schlegel et al., 2018), employs an indirect SLAM algorithm with sparse
features. Its core architecture builds upon ORB-SLAM and ORB-SLAM?2 and the entire
codebase has been redesigned to improve scalability, readability and performance.
Enhancements include map storage and loading capabilities and a modular system design

that encapsulates several functions into independent components.

Each UAV performs intrinsic and distortion calibration of its monocular camera
using the ROS 2 camera_calibration package’s cameracalibrator tool before using Stella
VSLAM, and we then add the resulting parameters to Stella VSLAM’s configuration file.
Each UAYV streams its calibrated monocular RGB video to its onboard SLAM module,
which performs visual odometry and map generation in real time. Stella VSLAM
automatically selects keyframes, triangulates sparse landmarks and carries out local
bundle adjustment to refine both pose and structure estimates. After loop closures are
detected using a bag-of-words model, the system performs global pose graph
optimization to ensure mapping consistency over time. The resulting keyframe map is
lightweight, reusable and well suited for multi-UAV localization. Once the map is
generated, the ground station distributes the map files to each UAV via the Secure Copy
Protocol (SCP). During autonomous flight, the onboard Stella VSLAM module loads the
prebuilt map and matches live RGB descriptors against the stored landmarks to achieve
real-time pose estimation in all six degrees of freedom, including translation along the x,

y and z axes and rotation in roll, pitch and yaw.
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3.2.3 PID Controller for Waypoint Navigation

To execute precise flight paths, the system leverages UAV position and yaw error
data derived from Stella VSLAM as inputs to a cascade PID controller. This controller
operates separate proportional-integral-derivative (PID) loops for translation and rotation,
generating the velocity and yaw-rate commands transmitted to the flight controller. This
control architecture was pioneered by Bouabdallah et al. (2004) in their influential work
comparing PID and LQ control techniques on an indoor micro-quadrotor. Their research
demonstrated that despite the theoretical advantages of optimal control methods, a well-

tuned PID controller could achieve centimeter-level waypoint tracking precision.

In our implementation, continuous closed-loop feedback is maintained between the
UAV's pose, which is estimated through Stella VSLAM, and the current waypoint,
effectively minimizing position and heading errors. Like Bouabdallah's approach, we
adapt their fundamental control structure to support our autonomous navigation. Control
commands are unified into geometry msgs/Twist messages before transmission to the
UAV's flight controller. A key advantage of this control strategy lies in the real-time
tunability of PID gains and constraints, enabling adaptation to dynamic environmental
conditions and external disturbances. Once each target position is reached and its
prescribed dwell time completed, the mission autonomously proceeds through the

sequence of waypoints.

3.2.4 UWB-based Ground Truth and SLAM Error Evaluation

In order to evaluate UAV localization accuracy via Stella VSLAM, we used ultra-
wideband (UWB) technology for ground truth measurements. UWB devices transmit

information using extremely short pulse sequences that last less than one nanosecond and
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create a signal bandwidth exceeding 500 MHz. This wide bandwidth gives UWB signals
high temporal resolution and greatly reduces the effects of non-line-of-sight conditions
on measurements (Zafari et al., 2019). As a result, UWB systems can accurately measure
Time of Flight (ToF) and enable precise navigation and positioning based on time-of-

flight ranging (Zhang et al., 2025).

In this study we used the Nooploop LinkTrack UWB ranging and positioning system
as our experimental ground truth. Furthermore, according to the official Nooploop
LinkTrack documentation, the system achieves typical one- and two-dimensional
positioning accuracy of £10 cm and three-dimensional accuracy of £30 cm, supports
update rates up to 200 Hz with end-to-end latency as low as 5 ms, accommodates up to
120 anchors and 200 tags, and provides a data transmission bandwidth of up to 3 Mbps.
The combination of high accuracy and high update rate makes it well suited for UAV
flight ground truth. In this study we used five LinkTrack P-A as shown in Fig. 3-6(a).
Four of these units served as UWB anchor nodes and one functioned as the UWB ground
station. Each UAV was equipped with an LTP-AS2 as its UWB tag, as illustrated in Fig.

3-6(b). The actual installation of the UWB tag on the DJI Tello is shown in Fig. 3-6(c).

(@) (b) (c)

Fig. 3-6. Nooploop LinkTrack UWB ranging and positioning system: (a) LinkTrack P-A;

(b) LTP-AS2; (c) DJI Tello UAV equipped with a UWB system tag.
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Prior to multilateration, we removed statistical outliers using an interquartile-range
filter with a multiplier k tuned for each tag and then applied a zero-phase Gaussian
smoothing filter to suppress residual high-frequency noise and multipath artifacts.
Filtered ranges were converted to Cartesian positions via a least-squares multilateration
algorithm, producing a time-series of UWB-derived poses. Both the UWB and SLAM
trajectories were then aligned by estimating a single rigid body transform from the take-
off segment to remove constant offset and synchronized at common timestamps. Let
Psram,i be the UAV position estimated by Stella VSLAM at time i and pyyp; the
ground-truth position from UWB at the same instant. At each matched time point ¢; , the

instantaneous localization error e; is computed using Equation 3-1:

e; =l Pspam,i — Pows,i I (3-1)

We aggregated these values into root-mean-square error (RMSE), mean absolute
error (MAE), standard deviation (Std Dev), maximum and minimum error, and median
error. By also plotting the error time series and its empirical cumulative distribution, we
captured temporal drift, transient spikes during aggressive maneuvers, and the proportion
of samples within specified accuracy bounds, which provides a comprehensive evaluation

of Visual SLAM based flight control under dynamic conditions.

3.2.5 Visual SLAM Map Optimization

This experiment investigates how mapping the same closed-loop trajectory with a
handheld UAV using different numbers of passes affects map quality. Only the number

of loops performed during the handheld scan varies between trials.
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We first acquired imagery of the environment with a handheld UAV carrying a
monocular camera, following the rectangular circuit shown in Fig. 3-7. We complete one
loop, two loops, and three loops at roughly the same speed and altitude. Stella VSLAM
then processes these image sequences using local bundle adjustment to generate an initial

sparse point-cloud map for each loop count.

After the map is built, the UAV performs a single loop flight, matching its live
monocular images to the preconstructed map to estimate pose and refine it through local
bundle adjustment. Meanwhile, an ultra-wideband (UWB) localization system records
the UAV’s true trajectory with centimeter-level accuracy to serve as ground truth for error

analysis.

Finally, the maps created with one, two, and three passes are compared in terms of
feature count, keyframe count, and pose error between the VSLAM estimate and the
UWRB reference trajectory. This comparison reveals the effect of the number of handheld

loops on Visual SLAM map optimization.

&

UAV

Fig. 3-7. Mapping trajectories used for Visual SLAM map optimization in a greenhouse

environment
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3.3 Multi-UAYV Cooperative Path Planning and
Analysis

3.3.1 Cooperative Path Planning Design

In this study, we designed three distinct cooperative multi-UAV flight trajectories to
capture high-resolution, multi-perspective imagery of muskmelon plants within a
greenhouse environment. Our primary objective was to leverage multiple UAVs
simultaneously to capture comprehensive visual data for Structure from Motion (SfM)
reconstruction, as diverse viewing angles significantly enhance feature correspondence
and depth estimation in SfM algorithms. These cooperative approaches explore how

different flight patterns affect 3D model quality and completeness.

Fig. 3-8 illustrates three different cooperative multi-UAV flight trajectories. Fig.
3-8(a) shows the parallel-aisle flight pattern, where three UAVs navigate simultaneously
along adjacent crop aisles, each equipped with a RunCam Thumb Pro W camera oriented
laterally to record the side surfaces of the plants. This configuration maximizes
greenhouse coverage efficiency while maintaining consistent imaging distances. Fig.
3-8(b) shows the closed-loop flight trajectory, in which UAVs circle around each planting
row to capture both front and rear views of the plants. Capturing imagery from both sides
significantly improves surface completeness, reduces occlusions, and enhances feature
correspondence, ultimately leading to more accurate and robust 3D reconstruction results.
By providing comprehensive dual-side information for each plant, we retain only the
images containing both front and back views of the plants and discard the remaining
images that do not capture the target plants. Fig. 3-8(c) presents the multi-altitude flight,

which employs a height-staggered arrangement where UAVs maintain distinct altitude
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levels. This vertical distribution strategy effectively overcomes the blind spots inherent
in single-plane imaging and ensures comprehensive coverage of taller specimens from
multiple vertical perspectives. The integration of horizontal and vertical diversity in
camera positions provides more robust geometric information for the SfM algorithm,

resulting in more detailed plant models with improved accuracy in vertical structures.
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Fig. 3-8. Three cooperative multi-UAV flight trajectories used for greenhouse imaging:

(a) parallel-aisle flight, (b) closed-loop flight, and (c¢) multi-altitude flight.

The combination of these cooperative UAV configurations demonstrates how
strategic deployment of multi-UAV collaborative approaches can enhance the quality and

completeness of plant phenotyping data beyond what could be achieved with single-UAV

methods.

3.3.2 Comparison Between Single and Multi-UAYV Flights

To evaluate the advantages of collaborative UAV systems in greenhouse

phenotyping, it is essential to compare their performance against that of traditional single-
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UAYV operations. Such a comparison helps reveal differences in coverage efficiency,

flight time, and other performance evaluation metrics under identical task requirements.

As shown in Fig. 3-9(a), the single-UAV configuration involves one UAV following
an S-shaped path to sequentially traverse the entire greenhouse area, covering all three
crop rows and completing the mission independently. This approach reflects the
conventional method commonly used in agricultural remote sensing, where a single UAV
is responsible for surveying the entire field. Although this results in longer flight durations,
the mission planning process is relatively straightforward. In contrast, as shown in Fig.
3-9(b), the three crop rows are divided into separate paths assigned to individual UAVs.
This collaborative strategy significantly reduces the total mission time and enhances

overall operational efficiency, demonstrating the advantages of multi-UAV deployment.
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Fig. 3-9. Comparison of flight path designs: (a) Single-UAV approach with sequential

field coverage and (b) Multi-UAYV distributed approach with parallel field coverage

To quantitatively compare the performance of single- and multi-UAV configurations,
we defined three key evaluation metrics. Flight Time Efficiency (FTE) is defined as the

total duration from takeoff to landing for a single mission; for the multi-UAV system, it
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is defined as the maximum individual flight time among the three UAVs. Area Coverage
Rate (ACR) quantifies the field area surveyed per unit time, expressed in m*min. The
total surveyed area is estimated by assuming each image captures a fixed 8.5 m x 4.1 m
ground footprint and multiplying this area by the number of valid frames. Battery
Consumption is evaluated using the total battery percentage consumed across all UAVs.
In the multi-UAV system, this value is computed as the sum of battery usage from each
drone. The derived energy efficiency is defined as the surveyed area per total battery
percentage used (m?-%'). These metrics provide a consistent and comparable basis for

evaluating operational performance across different deployment scenarios.

3.4 3D Reconstruction Methods of Plants

3.4.1 Structure from Motion

For 3D reconstruction of muskmelon plants, we employed Structure-from-Motion
(SfM) techniques to process the multi-perspective imagery collected by our cooperative
UAYV system. Structure from Motion (SfM) is a vision-based 3D reconstruction technique
that recovers both the relative camera poses and the three-dimensional structure of a scene
from a collection of two-dimensional images captured from different viewpoints. Rather
than relying on external positioning systems, SfM infers spatial information purely from
image correspondences and geometric constraints, which makes it especially suitable for
environments such as greenhouses where GPS signals are unavailable. The typical StM
pipeline consists of several key stages. It begins with feature detection and descriptor
computation using methods such as SIFT or ORB. Corresponding features are then

matched across image pairs to estimate the relative camera poses. Triangulation is used
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to convert these matched points into 3D coordinates, resulting in a sparse point cloud.
The reconstruction is further refined through bundle adjustment, which jointly optimizes
camera parameters and 3D point positions. In the final stage, a dense reconstruction
process is applied to generate a more complete and detailed 3D model of the scene. STM
is well suited for plant phenotyping and morphological modeling due to its ability to
automatically integrate large volumes of multi-angle imagery without requiring
specialized hardware. In this study, we adopted SfM as the core method for 3D

reconstruction using imagery captured by our cooperative UAV system.

COLMAP is a widely used Structure-from-Motion and Multi-View Stereo (MVS)
framework that follows an incremental reconstruction strategy. It begins by selecting an
initial image pair and gradually incorporates additional images into the model, repeatedly
performing feature matching, triangulation, and bundle adjustment throughout the
process (Schonberger & Frahm, 2016). This approach is effective for small to medium-
sized image sets with sufficient overlap and sequential capture order, and has been

extensively applied in aerial and terrestrial 3D reconstruction tasks.

While COLMAP represents a widely adopted SfM implementation, we adopted
GLOMAP (Pan et al., 2024) for our reconstruction pipeline because it offers higher
global consistency and better robustness under multi-UAV scenarios with large inter-
viewpoint baselines and near-parallel trajectories, which are common in greenhouse
environments. GLOMAP's one-step global optimization framework avoids the drift and
model fragmentation issues typically observed in incremental pipelines and is particularly

effective when combining image sets captured simultaneously from multiple viewpoints.

As illustrated in Fig. 3-10 the GLOMAP pipeline consists of three main stages:

correspondence search, global estimation, and output reconstruction. Unlike traditional
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global SfM methods that separate translation averaging and triangulation, GLOMAP
performs a single global positioning step that jointly optimizes both camera poses and 3D

structure, thereby improving robustness and convergence.

Images Correspondence Search Global Estimation Output Reconstruction

Feature Extraction Rotation Averaging

‘ ( Global Positioning ) -

Two-View Estimation l

Feature Matching
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View Graph Calibration l g

Relative Pose Decomposition Structure Refinement ‘

Fig. 3-10. Pipeline of the GLOMAP system. (Pan et al., 2024)

To execute the GLOMAP pipeline, we utilized a containerized workflow based on
the jinwj1996/glomap Docker image (https://hub.docker.com/r/jinwj1996/glomap). The
reconstruction process included feature extraction, image matching, global mapping, and
model conversion stages. Feature extraction was performed using SIFT with GPU
acceleration, and the camera model was set to SIMPLE PINHOLE. Matching was
conducted using COLMAP’s sequential matcher with an overlap of 4 on single-sided
image sets, whereas for merged and three-height image acquisitions we applied the
exhaustive matcher. Mapping was executed through the glomap mapper command to
generate the sparse reconstruction. The final model was converted into both TXT and

PLY formats using the COLMAP model converter module.

3.4.2 Gaussian Splatting

In order to obtain a dense, photo-consistent volumetric model from the sparse point

cloud and camera poses produced by our GLOMAP pipeline, we turn to 3D Gaussian
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Splatting. Unlike mesh based multi view stereo, Gaussian Splatting represents the scene
as millions of tiny anisotropic Gaussians whose means, covariances, colors and opacities
are jointly optimized so that rasterized splats match the input images. This approach
yields extremely fast novel-view rendering while naturally capturing fine geometry such
as thin leaves and stems. The unstructured cloud of Gaussians that results from vanilla
optimization does not immediately yield an editable surface mesh because the Gaussians

tend to be arbitrarily positioned and overlapping.

To bridge this gap, we adopt the Gaussian Splatting method SuGaR, proposed by
Guédon and Lepetit (2023). SuGaR introduces a regularization term during optimization
that enforces each Gaussian to lie nearly tangent to the true surface and to adopt a flat
shape aligned with local normals. Concretely, SuGaR derives a signed distance function
from the Gaussian-induced density and compares it to an ideal signed distance function
in which level sets correspond exactly to the underlying surface. By minimizing their
discrepancy, SuGaR encourages Gaussians to align and distribute evenly across the scene
surface. Once this alignment is achieved, SuGaR extracts the mesh via Poisson
reconstruction on a chosen density level set, producing a high-quality watertight triangle
mesh within minutes. Optionally, SuGaR performs a brief joint refinement that binds new
Gaussians to the mesh triangles, further enhancing photometric fidelity and enabling
standard mesh editing and animation workflows. In our implementation, we initialize the
Gaussians from the GLOMAP sparse points and camera parameters and then run
SuGaR’s surface alignment and mesh extraction stages to produce a dense, editable model

ideally suited for downstream phenotyping and morphological analysis.

We selected density-normalization-consistency as our regularization method
because preliminary experiments showed it best preserved fine surface detail. We set the
number of refinement iterations to 15 000 to ensure convergence and enabled the high-
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poly preset to capture thin leaves and stems. All other parameters were left at their
defaults since they already produced visually faithful results. In. our study, all
optimization iterations are executed on an NVIDIA RTX A6000 GPU with 48 GB of
VRAM, ensuring stable convergence. The method efficiently learns an explicit 3D
representation that allows real-time rendering of novel views. The SuGaR optimization

settings used in our experiments are summarized in Table 3-4.

Table 3-4. SuGaR Optimization Training Parameters

Parameter Value
Regularization method density-normalization consistency
Refinement iterations 15000
Gaussians per triangle 1
Surface iso-level 0.3
Output mesh vertices 1000000
High-poly preset enabled
Export OBJ enabled
Export PLY enabled
Optimizer Adam
Learning rate 1x1072
45

d0i:10.6342/NTU202503732



3.4.3 Evaluation Metrics

To quantitatively assess the fidelity of our 3D reconstruction and novel-view
rendering, we employ three complementary image-based metrics: peak signal-to-noise
ratio (PSNR), structural similarity index (SSIM) and learned perceptual image patch
similarity (LPIPS). The PSNR between a rendered image I. and its ground-truth
counterpart I, where L is the maximum possible pixel value and MSE(Ir,I ) is
computed as the average squared difference between corresponding pixels in the rendered

and ground-truth images, is defined as Equation 3-2:

L2
PSNR(IT,I ) =10 10g10 <m) (3-2)
rig

The structural similarity index between a rendered image I, and its ground-truth
counterpart I, where u, and p, are local means, 02 and aj are local variances, gy is

the local covariance, and C;, C, are stabilizing constants, is defined as Equation 3-3:

L) = (Curpg + €1) (20,4 + C3)
(w2 +p +C)(0? + 02+ C,)

SSIM(1,, (3-3)
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We adopt Learned Perceptual Image Patch Similarity (LPIPS) as our third evaluation
metric to capture perceptual differences that go beyond pixel-wise error. LPIPS operates
by passing both the rendered image - and the ground-truth image I, through a pretrained
convolutional network and extracting intermediate feature maps at several layers. At each
selected layer [, the feature maps ¢;(I,.) and qbl(lg) are first spatially normalized and
then compared via an [, distance computed channel-wise. These distances are weighted
by learned per-channel scaling factors w;, and the final LPIPS score is obtained by
averaging the weighted distances across all spatial locations and summing over layers.
Zhang et al. (2018) demonstrated that this learned, deep-feature based measure aligns
closely with human judgments of image similarity, making LPIPS a powerful

complement to PSNR and SSIM for assessing novel-view rendering quality.

In our study, we evaluate the reconstruction results obtained from three different

flight trajectories using the PSNR, SSIM, and LPIPS metrics.

3.5 Phenotyping for Muskmelon Plant

3.5.1 Extraction of the Single Plant

To measure each plant’s height and canopy spread more precisely, we need to
segment the Gaussian splatting reconstruction, which represents an entire row of plants,
into individual plant point clouds for subsequent phenotypic analysis. In Fig. 3-11 shows

the whole workflow of extraction of single plant.

In this study, we first leverage the Segment Anything Model 2 (SAM 2) with the

base model checkpoint to generate 2D masks of the target plant in each RGB image. By
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specifying a rectangular bounding box around the plant region, SAM 2 produces one
binary mask per view, which serve as soft annotations indicating where the plant appears
in the scene. These masks encode, in image space, the rough silhouette of the individual
plant and greatly reduce reliance on manual point-cloud cleaning. Next we map each two
dimensional mask into the three dimensional scene using the camera intrinsics and
extrinsics obtained from COLMAP. For each mask pixel we trace a ray from the camera
center and define a pyramidal viewing volume that extends through the reconstruction.
By gathering all such volumes we obtain a set of frusta that cover every masked region.
This frustum-based masking step then retains only those points that lie inside at least one
frustum and removes the rest of the point cloud, effectively carving out the plant of
interest and discarding points belonging to neighboring vegetation or background

structures (Qi et al., 2017).

SAM 2 Plant Segment
for mask generation

Frustum
Maskmg

Fig. 3-11. Extraction of the Single Plant workflow

Gaussian Splatting Result

Extract Single Plant

3.5.2 Plant Height and Canopy Span Measurement

In this section we present the detailed steps of our algorithm for extracting plant
height and canopy width from a reconstructed three-dimensional point cloud. Fig. 3-12

illustrates the complete processing pipeline.
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Plant Height
Measurement
(Cylinder filter + Az)

Export Results
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Fig. 3-12. Plant Height and Canopy Span Measurement Pipeline

The single-plant point cloud is first loaded into the Open3D framework, where the
original COLMAP Y and Z axes are swapped and the depth axis is inverted to align the
global Z direction with the plant’s vertical orientation. The cloud is then translated so that
its centroid coincides with the origin. To generate cross sections, two orthonormal basis
vectors are defined on the plane perpendicular to the Z axis, and each 3D point is projected
onto this plane while preserving its Z coordinate, resulting in two-dimensional
coordinates for each elevation level. A two-dimensional kernel density estimator with a
bandwidth of 0.15 is applied on a 200 % 200 grid in the projected plane. The highest

density peak nearest the origin is found and used to establish the stem center.

For canopy span measurement, the convex hull of the projected cross section is first
computed. The maximum span is obtained as the largest distance between any two hull
vertices. A virtual line is then rotated through the hull while anchored at the stem center
to identify the shortest chord passing through the center, representing the minimum
central span. The area enclosed by the convex hull is subsequently calculated, and the
diameter of an equivalent circle is derived from this area as the average span, providing

a global width estimate that balances local indentations and protrusions.
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To measure height, we compute radial distances from each projected point to the
stem center and define the stem radius as the 20th percentile of these distances. We then
filter points within this radius, determine the minimum and maximum Z values, and
calculate their difference as the plant height. Finally, all span and height values are scaled

by 1000 to convert meters to millimeters for phenotypic analysis.

Using the above method, estimated plant height and canopy span can be obtained.
In our validation experiments, the span ground truth is defined as the manually measured
maximum canopy width, which is the distance between the two most distant leaf tips on
the plant. To compare these estimates with real-world measurements, the COLMAP
lengths must be converted to true scale. We use the measurement tools in CloudCompare
to determine distances within the COLMAP point cloud and then apply a scale factor

based on real-world reference lengths. The tool interface is shown in Fig. 3-13.

“[Distence: 15.077058

| B vssests R 1sosa | s
g PN 14972425 PNEM 1773162 | - g
| osasoa BB vesssso | v

Fig. 3-13. Measurement of distances on a COLMAP point cloud using CloudCompare
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3.5.3 Muskmelon Growth Monitoring

Throughout the cultivation cycle, we sampled the same set of plants at regular
intervals to monitor muskmelon growth. The experiment was conducted in a controlled
greenhouse environment with 15 muskmelon plants arranged in three rows of five plants
each. Data collection spanned from April 9 to May 11, 2025, with measurements taken at
2-day intervals. At each sampling point, our cooperative UAV system captured multi-
angle images within the greenhouse, and we extracted individual plant height and canopy

span measurements from the 3D point cloud reconstructions.

Prior to growth curve fitting, the extracted plant height and canopy span
measurements from 3D point cloud data underwent quality control preprocessing,
including outlier detection and removal. Identified outliers were replaced using linear
interpolation to maintain temporal continuity, ensuring accurate modeling. We then
organized each plant’s height and canopy span data into a table indexed by sampling date
and plant identifier. For each plant, we fitted its height and span trajectories with
nonlinear growth models, including the Gompertz function (Gompertz, 1825), by
minimizing the sum of squared residuals. Model performance was assessed using the
coefficient of determination (R?) and the root mean square error (RMSE). R? indicates the
proportion of variance in the data explained by the model, while RMSE reflects the
average magnitude of the residuals. A high R? and low RMSE indicate a good fit of the

growth model to the data.

Under controlled greenhouse conditions, this integrated approach provides high-
resolution monitoring of muskmelon development by combining UAV-based imaging,

three-dimensional reconstruction, and quantitative growth modeling.
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CHAPTER 4

Results and Discussion

4.1 Evaluation of Multi-UAYV Communication

Performance

The performance of the UAV communication system was evaluated by analyzing
packet transmission rates and stability during greenhouse operations. Network traffic was
captured using pcap files and analyzed to assess communication reliability, which is
critical for ensuring consistent control commands and real-time data acquisition in

precision agriculture applications.

To evaluate the communication reliability between the edge computing node and
each UAV, packet transmission rates were analyzed over a 4-5-minute operation in the
greenhouse. Packet capture (pcap) files were collected and processed using a custom
analysis pipeline, with rates computed in 1-second bins. Each UAV communicated via a
dedicated 2.4 GHz Wi-Fi channel. Fig. 4-1 presents the histogram distributions of the
packet rates for all three UAVs. UAV 1 demonstrated the most stable performance, with
a median rate of 101 pps and 99.66% of values falling within the 95-105 pps range. UAV
2 had a slightly higher median and more variability, with 98.31% of values within the 95-
110 pps range. UAV 3 also had a median of 103 pps but showed the greatest variability,

with only 88.09% of values falling within the broader 85-120 pps range.
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Histogram of Packet Rate (pps) for UAV 1 Histogram of Packet Rate (pps) for UAV 2 Histogram of Packet Rate (pps) for UAV 3
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Fig. 4-1. Histogram distributions of packet rates (pps) for three UAVs operating in
greenhouse environment: (a) UAV 1 (median =101 pps), (b) UAV 2 (median = 103 pps),

and (c) UAV 3 (median = 103 pps).

The broader spread observed for UAV 3 is likely attributable to its location near
greenhouse walls and glass windows. These structural elements can reflect or attenuate
2.4 GHz Wi-Fi signals and thereby cause unstable transmission. Despite these challenges,
all three UAVs maintained consistent median packet rates, which underscores the
robustness of the communication architecture. The system’s wireless configuration uses
detachable 4 dBi antennas to support reliable transmission under the difficult radio
frequency conditions of a greenhouse. In such an environment, metallic frames, water-
rich crops and electronic devices introduce multipath effects that complicate signal
propagation. Occasional reductions in packet rate occurred when values fell below 95
percent of the median. These reductions were infrequent, affecting UAV 3 at a rate of

16.61 %, UAV 2 at 1.69 %and UAV 1 at just 0.34 %.

These results demonstrate that UAV 1 and UAV 2 benefited from favorable
placements within the greenhouse, while UAV 3's location introduced more variability.
Overall, the architecture successfully ensured stable communication for multi-UAV

coordination, even under complex environmental interference.
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4.2 Multi-UAYV Trajectory and Mapping Accuracy

4.2.1 Visual SLAM Map Building Result

For a visual navigation system, the map is critical, we present the results of the map-
building process for three different flight scenarios using Visual SLAM. Each method

involves loop closure to ensure that the entire path is accurately mapped.

In Fig. 4-2 shows the map for parallel-aisle flight, generated 229 keyframes and
11,141 landmarks. This approach uses parallel paths to capture keyframes at significant
points during the flight. These keyframes represent crucial moments in the visual input,
helping to maintain a consistent map as the drone progresses. The landmarks, which are
distinctive points identified throughout the environment, provide spatial references and
enable tracking across frames. The combination of keyframes and landmarks is vital for
ensuring an accurate representation of the environment and minimizing any drift in the
drone's path. Fig. 4-3 presents the map for closed-loop flight, resulting in 331 keyframes
and 17,557 landmarks. This approach incorporates loop closure, a process that corrects
errors in the path accumulated over time. When the drone revisits previously explored
areas, loop closure ensures the map remains globally consistent by aligning overlapping
segments. This method requires more keyframes and landmarks due to the additional data
needed for accurate map stitching and path correction, providing a more reliable and
robust reconstruction. As shown in Fig. 4-4, the map for multi-altitude flight generated
129 keyframes and 5,888 landmarks. This approach involves varying the drone's flight
height during the mission. As the drone moves through different altitudes, it captures
keyframes and landmarks that help create a reliable map across vertical layers of the

environment. Although fewer keyframes and landmarks were generated compared to the
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other methods, they still contribute to the overall map, highlighting the adaptability of the

SLAM system to different flight conditions.

Fig. 4-2. Map Built Using Visual SLAM for Parallel-aisle Flight

Fig. 4-3. Map Built Using Visual SLAM for Closed-loop Flight

>3 d0i:10.6342/NTU202503732



Fig. 4-4. Map Built Using Visual SLAM for Multi-altitude Flight

Keyframes and landmarks play a crucial role in the effectiveness of Stella VSLAM.
Keyframes are selected to maintain the map's consistency, while landmarks provide
spatial references necessary for localization. The number and quality of these components
directly impact the accuracy of the generated map and the stability of the drone's

trajectory throughout its journey.

4.2.2 Visual SLAM Map Optimization Result

Fig. 4-5 presents the sparse point cloud maps generated by Stella VSLAM after one,
two and three handheld loops around the same rectangular circuit. In these renderings,
blue points denote features that the system deems stable across multiple keyframes. After
a single loop the stable features are concentrated mainly at the corners and along the
nearest walls, resulting in modest overall coverage. With two loops the blue regions

expand noticeably along the entire circuit, reflecting additional observations that
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reinforce feature persistence. The third loop yields the richest distribution of stable

features, with walls, corners and mid-section surfaces all densely populated in blue.

We extracted the number of keyframes and landmarks for each mapping trial. The
one-loop run produced 120 keyframes and 6175 landmarks. The two-loop experiment
increased the keyframes to 189 and recorded 6057 landmarks. Only the three-loop pass
drove both metrics upward, reaching 259 keyframes and 9849 landmarks. This trend in
landmark count highlights that map quality cannot be judged by landmark quantity alone,
since the second loop reduces weak or spurious features and trades landmark count for
greater feature stability. The third loop delivers the highest combination of keyframe
redundancy and landmark richness, while also emphasizing that map optimization must

balance landmark abundance with feature reliability rather than pursue maximum point

count.

(a) (b) (©)

Fig. 4-5. Stella VSLAM map results: (a) one loop, (b) two loops, and (c) three loops

In order to further evaluate how the number of mapping loops affects optimization,
we use UWB as ground truth to compare the accuracy of the SLAM trajectories. In Table

4-1 shows error metrics improve markedly from one loop to two loops. The RMSE
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decreases from 14 cm m to 8.5 cm and the MAE from 11.5 cm to 7 cm. Adding a third
loop reverses these gains, with RMSE rising to 11.1 cm and MAE to 9.2 cm. These results
indicate that two loops deliver the best trade-off between additional observations and
error reduction. The extra pass strengthens stable feature matches and loop closures
without accumulating excessive drift or adding redundant low quality points. By contrast,
a third loop yields diminishing returns because the longer mapping time allows small pose
errors to compound, spurious correspondences to appear and computational load to grow.

All of these factors combine to reduce net accuracy relative to the two loop case.

Table 4-1. Error metrics for trajectories from different map building loops

RMSE  MAE  StdDev V& Min — Median
Loop (cm) (cm) (cm) Error Error Error
(cm) (cm) (cm)
1 14.0 11.5 8.0 48.3 0.1 9.9
2 8.5 7.0 4.7 22.6 0.1 6.0
3 11.1 9.2 6.3 349 0.1 7.8

We used UWB as the ground truth trajectory and compared it with the trajectory
estimated by Stella VSLAM to further analyze the flight error of each mapping loop. We
then presented the distribution of trajectory errors following one, two, and three handheld

mapping loops.

In Fig. 4-6(a), which corresponds to a single loop, the MAE is approximately 11.5

cm. Red and yellow error points cluster at the circuit corners and along one side of the
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longitudinal segments, indicating that a single pass lacks sufficient viewpoint overlap and
suffers from pronounced local drift. Green error points appear intermittently along the
entire path, while blue stable features remain sparse. This pattern reflects how a single

observation can miss many features.

Fig. 4-6(b) shows the result after two loops, with the MAE reduced to about 7 cm.
Error points between 2.2 cm and 7 cm dominate, red and yellow points nearly disappear,
and blue stable features increase and spread more uniformly, especially around the
corners. These changes demonstrate that the second loop provides critical redundant
observations that reinforce multi-view feature matches and loop closures, sharply

reducing local drift and improving global consistency.

In Fig. 4-6(c) the MAE rises slightly to 9.2 cm. Although blue stable features still
cover much of the path and green error points remain common, new red and yellow points
appear at mid-section and corner locations. This behavior shows that the third loop, while
adding feature redundancy, also introduces additional computational load and drift risk.
In some areas those extra observations generate incorrect correspondences or small pose
errors that offset the benefits seen with two loops. These three plots confirm that two
loops achieve the most concentrated error distribution, the highest ratio of stable features,
and the lowest MAE. The maximum error decreased from 48.3 cm with one loop to 22.6
cm with two loops, then rose to 34.9 cm with three loops. Standard deviation followed a
similar trend. Stable features peaked at 55 % with two loops. Overall, two loops reduced
MAE by 39 %, while a third loop increased it by 31 %, showing diminishing returns. A
single loop suffers from insufficient overlap, and a third loop yields only marginal gains
with the potential for degraded accuracy, making two loops the ideal strategy for high-
precision map optimization.

>9 d0i:10.6342/NTU202503732



(a ) e 0.0-3.5 cm
800 3 35-11.5em
115-19.5cm
19.5-48.3cm
—— UWB UAV
600 - = SLAM UAV
400
E
2
>
200
0
200
-400 -200 0 200 400 600 800 1000 1200
X (cm)
(b) — 0.0-2.2 cm
800+ 2.2-T.0cm
7.0-11.8cm
11.8-22.6 cm
—— UWB UAV
600 -~ SLAM UAV
= 400+
£
&
>
200
0
~2001
-400 -200 0 200 400 600 8OO 1000 1200
X (cm)
(C) s 0.0-2.9 cm
800 2.9-9.2¢cm
9.2-155cm
155-34.9 cm
—— UWB UAV
800 ~ = SLAM UAV
400+
E
g
>
200
[
200 UAV: 9.2 cm
—400 —-200 0 200 400 600 800 1000 1200
X (cm)

Fig. 4-6. Trajectory comparison of different loop map building, showing UWB
positioning (solid lines) versus SLAM-based localization (dashed lines) with error

magnitude indicated by color: (a) one loop, (b) two loops, (c) three loops.
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4.2.3 Parallel-aisle Flight Evaluation

Based on the path planning presented in Fig. 3-8, we tested each path three times,
using UWB as the ground truth and comparing it with the positions estimated by Stella

VSLAM to evaluate flight accuracy.

Each UAYV executed the parallel aisle trajectory in three independent trials. For each
run, we computed the root mean square error, MAE, standard deviation, maximum error,
minimum error and median error by comparing the positions estimated by Stella VSLAM
against UWB ground truth. The full set of results appears in Table 4-2, and all values are
expressed in centimeters. UAV 1 yielded RMSE values of 10.5 cm, 12.7 cm and 11.8 cm
across the first, second and third trials, and in the second trial it recorded its largest
maximum deviation of 61.8 cm alongside its smallest error of 1 cm and its highest
standard deviation of 9.9 cm. UAV 2 demonstrated the greatest consistency, achieving
RMSEs of 7.4 m, 8.4 m and 8.8 ¢cm in successive trials with maximum errors below 32.2
m, standard deviations never exceeding 5.2 cm and median errors remaining under 6.5
cm in every run. UAV 3 recorded RMSEs of 11.3 cm, 14.1 cm and 10.7 cm for trials one
through three, with its highest single-trial deviation of 41.7 cm in the second trial,
minimum errors of 0.1 cm to 0.3 cm in both the second and third trials and a peak standard

deviation of 7.6 cm in the second run.

Overall, these findings indicate that the centrally located UAV 2 achieved superior
SLAM based tracking fidelity. In contrast, flights by UAVs 1 and 3 along the greenhouse
edges were more susceptible to multipath reflections and boundary effects and thus

exhibited larger positional deviations.
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Table 4-2. Error metrics comparison across three UAVs for parallel-aisle trajectories

UAVID Trial ID R(E/IrS)E %ﬁ St(‘ig)ev glrfé(r év[rrlgr I\%i(riéarn
(cm) (cm) (cm)
1 10.5 9.2 5.0 23.9 12 9.2
2 1 7.4 6.2 3.9 15.1 0.2 5.9
3 113 10.0 5.0 23.6 0.7 9.5
1 12.7 7.9 9.9 61.8 0.1 5.2
2 2 8.4 7.1 45 24.1 0.1 6.5
3 14.1 12.0 7.6 417 0.3 1.5
1 11.8 9.2 7.4 423 0.1 7.9
2 3 8.8 7.2 5.2 322 0.2 6.5
3 10.7 8.7 6.2 235 0.2 73

Based on Fig. 4-7, all three trials exhibit a consistent spatial error pattern. The central

UAV’s trajectory remains mostly blue and green, indicating low, uniform errors. In

contrast, the two edge UAVs show yellow and red bands during takeoff and later stages,

marking localized deviations. These high-error regions occur near greenhouse walls,

where visual features are sparse and reflections stronger. Even with loop closure, edge

trajectories retain these error pockets, while the middle UAV maintains stable accuracy.

This repeated pattern highlights the importance of symmetric, feature-rich observations

for SLAM accuracy and the vulnerability of edge flights to boundary effects.

62

d0i:10.6342/NTU202503732



(a)

800

600

4001

Y (cm)

200

=200

(b)

800 9

600

400

Y (cm)

2001

=200

600

Y (cm)

200

-200

= 0.0-3.2 cm
3.2-80cm
8.0-129cm
w—12.9-23.9 cm
— UWB UAV 1
= = SLAM UAV 1
—— UWB UAV 2
SLAM UAV 2
—— UWB UAV 3
— ~ SLAM UAV 3

UAV 1: 9.2 cm)|
UAV 2: 6.3 cm)|
UAV 3: 10.1 cm)|

—400

-200

200

400 600 80O 1000 1200
X (cm)

0.2-8.0cm
8.0-16.2cm
mees 16.2-61.8 cm
— UWE UAV 1
— = SLAM UAV 1
—— UWB UAV 2
SLAM LAV 2
—— UWB UAV 3
~ ~ SLAM UAV 3

m|
UAV 3:11.9 cm)

=200

400 600 800 1000 1200

SLAM UAV 3

UAV 1:9.3 cm
UAV 2: 7.2 cm
UAV 3: 8.7 cm)

-400

=200

200

400 600 a00 1000 1200

Fig. 4-7. Trajectory comparison of parallel-aisle flights with three UAVs, showing UWB

positioning (solid lines) versus SLAM-based localization (dashed lines) with error

magnitude indicated by color: (a) Trial 1, (b) Trial 2, (c) Trial 3.
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4.2.4 Closed-loop Flight Evaluation

Table 4-3 offers a comparative view of error metrics for three UAVs following
closed-loop trajectories. UAV 1 exhibited a root mean square error between 6.3 and 8.6
cm and a mean absolute error below 6.9 cm. The standard deviation ranged from 3.8 to
5.2 cm and the median error remained between 4.3 and 6.0 cm, demonstrating
consistently stable localization performance across all trials. UAV 2 recorded a root mean
square error ranging from 7.8 to 10.9 cm and a mean absolute error from 6.2 to 8.8 cm.
Its standard deviation rose to 6.5 c¢m in the second trial, and the maximum error reached
37.1 cm. The median error fell between 5.0 and 7.4 cm, indicating moderate consistency
with occasional higher deviations. UAV 3 showed a root mean square error between 8.4
and 10.6 cm and a mean absolute error from 6.8 to 8.0 cm. The standard deviation peaked
at 6.9 cm in the final trial, and the maximum error reached 55.5 cm, the highest among
all UAVs. The median error varied from 5.9 to 6.1 cm, suggesting relatively stable central

tendency despite larger outliers.

From a comparative perspective, UAV 1 consistently achieved the lowest errors and
narrowest variability, suggesting better overall stability. UAV 2 exhibited moderate
errors with occasional spikes, while UAV 3 showed the highest variability and maximum
errors, particularly in the third trial. This pattern indicates that UAVs operating near
greenhouse boundaries or under less feature-rich conditions may be more prone to larger
deviations, highlighting the influence of environmental factors and positional asymmetry

on SLAM localization accuracy.

These observations highlight that the first UAV maintained the most stable
performance under closed loop conditions while the third UAV experienced the greatest
variability and highest single trial deviation.

64 d0i:10.6342/NTU202503732



Table 4-3. Error metrics comparison across three UAVs for closed-loop trajectories

UAVID Trial ID R(E/IrS)E %ﬁ St(‘ig)ev glrfé(r év[rrlgr I\%i(riéarn
(cm) (cm) (cm)
1 6.3 5.1 3.8 19.7 0.1 43
2 1 7.8 6.3 4.7 242 0.1 5.0
3 8.4 6.8 48 26.7 0.1 5.9
1 7.7 6.2 4.6 23.6 0.1 5.2
2 2 10.9 8.8 6.5 37.1 0.1 7.4
3 9.4 7.6 5.6 29.5 0.1 6.5
1 8.6 6.9 5.2 36.8 0.1 6.0
2 3 8.9 7.3 5.1 27.1 0.1 6.4
3 10.6 8.0 6.9 55.5 0.1 6.1

Based on Fig. 4-8, all three closed-loop trials exhibit a stable spatial error pattern.

UAV 2’s path is predominantly blue and light green, indicating tightly constrained

deviation from UWB ground truth. In contrast, the edge UAVs consistently show yellow

and red patches along outbound and return paths, reflecting localized error spikes caused

by sparse landmarks and reflective surfaces. These high-error regions persist and

intensify across trials, while UAV 2 maintains its narrow low-error band. The consistent

color map for UAV 2 highlights the advantage of balanced, feature-rich observations,

whereas persistent yellow and red patches for edge UAVs emphasize boundary effects

and landmark scarcity despite loop closure optimization.
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Fig. 4-8. Trajectory comparison of closed-loop flights with three UAVs, showing UWB
positioning (solid lines) versus SLAM-based localization (dashed lines) with error

magnitude indicated by color: (a) Trial 1, (b) Trial 2, (¢) Trial 3.
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4.2.5 Multi-altitude Flight Evaluation

In Table 4-4 presents a comparative analysis of error metrics for three UAVs
following multi altitude trajectories over three trials. The UAV 1 showed root mean
square error values of 12.1 cm in the first trial and then improved to 9.6 cm and 10.4 cm
in the second and third trials respectively. Its mean absolute error likewise dropped from
10 cm to 7.4 cm before rising slightly to 8.7 cm. The standard deviation contracted from
6.7 cm to 5.6 cm by the third run. These trends indicate that the first UAV achieved its
best consistency during the second trial but experienced modest variations thereafter. The
second UAV began with a root mean square error of 7.8 cm which increased to 13.4 cm
in the second trial and then receded to 9.2 cm in the third trial. Its mean absolute error
followed a similar pattern rising from 6.3 cm to 11.2 cm before improving to 7.6 cm. The
standard deviation peaked at 7.4 cm in the second trial and then declined to 5.2 cm. These
fluctuations suggest that the UAV 2 encountered greater challenges in maintaining stable
localization when altitude changes were more pronounced. The UAV 3 recorded root
mean square error values of 13.1, 5.1 cm and 11.8 cm across trials one two and three
respectively. Its mean absolute error fell from 11.4 cm to 4.1 cm before rising again to
10.4 cm. The standard deviation reached a minimum of 2.8 cm in the second trial and
then increased back to 5.6 cm. These results show that the third UAV achieved its best
accuracy in the second trial when altitude variations were moderate but saw its

performance degrade when altitude transitions became more extreme.

UAV 1 maintained stable performance with slight improvements in the second trial.
UAV 2 showed larger fluctuations, struggling during greater altitude changes. UAV 3
achieved its best accuracy in the second trial but degraded with more extreme altitude

variations. Moderate altitude transitions generally resulted in more stable localization.
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Table 4-4. Error metrics comparison across three UAVs for multi-altitude trajectories

UAVID Trial ID R(E/IrS)E %ﬁ? St(‘ig)ev glrfé(r év[rrlgr I\%i(riéarn
(cm) (cm) (cm)
1 12.1 10.0 6.7 247 0.4 9.7
2 1 7.8 6.3 4.6 218 0.1 5.8
3 13.1 11.4 6.4 30.1 0.1 10.7
1 9.6 7.4 6.1 315 0.1 5.7
2 2 13.4 1.2 7.4 33.6 0.1 10.1
3 5.1 4.1 2.8 13.2 0.1 4.0
1 10.4 8.7 5.6 25.8 0.3 7.6
2 3 9.2 7.6 5.2 18.7 0.1 6.8
3 11.8 10.4 5.6 26.6 0.1 9.7

Based on Fig. 4-9, the multi-altitude flight trials reveal localized error clusters

despite each UAV maintaining a fixed altitude. Red and yellow segments appear

intermittently along portions of the trajectories, particularly during the early and middle

stages of flight, before returning to stable green and blue regions. These deviations are

likely caused by insufficient visual features and unstable repeated feature matching at

different altitudes. Additionally, airflow disturbances inside the greenhouse may

introduce UAV vibrations, further amplifying SLAM errors. Overall, while altitude

control remains stable, these factors contribute to noticeable vertical localization

inaccuracies.
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Fig. 4-9. Trajectory comparison of multi-altitude flights with three UAVs, showing UWB
positioning (solid lines) versus SLAM-based localization (dashed lines) with error

magnitude indicated by color: (a) Trial 1, (b) Trial 2, (c) Trial 3.
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4.2.6 Multi-UAYV Flight-Path Performance Comparison

Table 4-5 provides a detailed comparison of mean absolute error (mAE), mission
duration, and area coverage rate (ACR) for the three coordinated flight strategies:
Parallel-aisle, Closed-loop, and Multi-altitude. Among them, the Closed-loop strategy
achieves the lowest overall mAE, with UAV 1 reaching as low as 6.1 cm, demonstrating
the highest localization precision. However, this accuracy comes at the cost of efficiency,
as the mission requires the longest completion time (average 4.1 minutes) and results in

a moderate ACR of 17.0 m*/min.

In contrast, the Parallel-aisle strategy offers the most balanced performance. It
maintains relatively low errors across UAVs, with a minimum mAE of 6.8 cm for UAV
2 and an average coverage rate of 21.5 m?*/min, the highest among all strategies. Mission
time is significantly shorter at 1.6 minutes, indicating superior operational efficiency
while still providing acceptable accuracy. The Multi-altitude strategy prioritizes speed,
completing the mission in just 1.1 minutes. However, its overall precision is moderate,
with mAE values ranging from 8.4 to 8.7 cm, and it achieves the lowest ACR of 10.8
m?/min. The variability in errors, particularly for UAV 3 with a standard deviation of 4.0

cm, suggests less stable localization performance under rapid altitude adjustments.

Overall, when measurement accuracy is the primary goal, the Closed-loop approach
1s recommended due to its superior precision. For applications requiring both precision
and high coverage efficiency, the Parallel-aisle strategy offers the most advantageous
trade-off. Meanwhile, the Multi-altitude approach is best suited for time-sensitive
missions where reduced coverage and moderate accuracy are acceptable. These findings
highlight the trade-offs between accuracy, efficiency, and coverage, providing guidance
for selecting optimal flight strategies under varying operational priorities.
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Table 4-5. Statistical Summary and Comparison of Flight Paths

Flight Path ) Me?grxAE St(‘in?fv r(‘lﬁll;j o (n?/fn%n)
time (min)

1 8.8 0.8 8.8+0.8

Parallel-aisle 2 6.8 0.6 6.8+0.6 1.6 21.5
3 10.2 1.7 10.2+1.7
1 6.1 0.9 6.1+0.9

Closed-Loop 2 7.5 1.3 7.5€1.3 4.1 17.0
3 7.5 0.6 7.5+0.6
1 8.7 1.3 8.7£1.3

Multi-altitude 2 8.4 2.5 8.4£2.5 1.1 10.8
3 8.6 4.0 8.6+4.0

4.3 Evaluation of Multi-UAYV Cooperative

Building on the flight path design defined in the Fig. 3-9, we executed both single-
UAV and cooperative multi-UAV missions to quantitatively compare the two

deployment strategies in terms of area coverage efficiency and energy utilization.

As summarized in Table 4-6, the cooperative multi-UAV system completed the full-

coverage mission over a 4.1 m x 8.5 m survey area in just 1.25 minutes, representing a
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73.2 % reduction compared to the 4.67 min required by a single UAV. Parallel operation
increased the area coverage rate to 27.88 m?/min, which is 3.73 times higher than the 7.47
m?/min achieved by the single-UAV flight, thereby substantially accelerating the overall

survey process.

Table 4-6. Performance metrics for single-UAV vs. cooperative multi-UAV missions

over field
Metric single-UAV multi-UAV
Flight Time Efficiency (FTE, min) 4.67 1.25
Area Coverage Rate (ACR, m? / min) 7.47 27.88
Total Battery Consumption (%) 42 40
Energy Efficiency (m?/ % battery) 0.83 0.87

With respect to energy consumption, the cooperative multi-UAV deployment
consumed a total of 40% battery across all UAVs, slightly less than the 42% used by the
single-UAV system. Despite involving three separate agents, the parallel operation
maintained comparable overall energy usage while still improving -efficiency.
Specifically, the energy efficiency reached 0.87 m? per percent battery, slightly higher

than the 0.83 m? / % battery attained by the single-UAV mission.

Overall, these findings demonstrate that, under identical path planning and hardware

conditions, distributed multi-UAV cooperation not only markedly reduces mission
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duration and increases coverage throughput, but also greatly enhances energy utilization,
thereby outperforming the conventional single-UAV approach across all key performance

metrics.

4.4 3D Reconstruction Analysis for Plant

4.4.1 Sparse 3D Reconstruction with GLOMAP

The GLOMAP reconstruction process produced a sparse point cloud that accurately
captures the structural layout of muskmelon plants, including their spatial arrangement,
stem architecture, and leaf distribution, as shown in Fig. 4-10. Despite the relatively low
density, this point cloud provides essential initialization for Gaussian Splatting,
preserving the spatial relationships among plants and distinguishing them clearly from

the surrounding infrastructure.

Fig. 4-10. Sparse point cloud reconstruction of muskmelon plants generated by GLOMAP.
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According to our flight trajectories we divided the acquired images into three
categories. The single-side category contains single-view images, the merged category
contains two-view images of each plant and the three-height category contains single-
view images captured at three different altitudes. Image acquisition for the Single-Side
and merged datasets took place between April 8 and May 11, 2025, while the three-height
dataset was collected from April 21 to May 11, 2025. During reconstruction some datasets
failed to yield complete point clouds. We believe this was caused by insufficient image
overlap, occlusions from dense foliage or inconsistent lighting. Out of 102 reconstruction
attempts in the single-side category 85 succeeded. In the merged category 43 of 102
attempts succeeded and in the three-height category 38 of 63 attempts succeeded. The
lower success rates in the merged and three-height sets may be due to the greater difficulty
of matching features across multiple views and the challenges of maintaining consistent
imaging conditions at different altitudes. We will use the successfully reconstructed point

clouds for Gaussian Splatting.

4.4.2 Evaluation of Gaussian splatting for 3D plant

reconstruction

In this section, we present the results of our 3D reconstruction using Gaussian
Splatting based on the GLOMAP output. We analyzed a total of 85 Single-Side
reconstructions, 43 Merged reconstructions, and 38 Three-Height reconstructions to
compare the effectiveness of different capture methodologies. Table 4-7 summarizes the

detailed characteristics of these reconstruction datasets, including acquisition periods,
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total attempts, and successful reconstructions. For each flight video, the average image

overlap was 60%, ensuring sufficient feature matching for reliable reconstruction.

Table 4-7. Detailed Characteristics of 3D Reconstruction Datasets

Scene Category Acg:riis;‘;ion Total Attempts Recszggsziriscftlﬂ)ns
Single-Side Alirl?z‘olzvgay 102 85
Merged Afirl?z_olz\?y 102 43
Three-Height Aplr 12, 12621\5/Iay 63 38

To provide a direct visual comparison between the reconstructed models and the real
plants, Fig. 4-11 illustrates the Single-Side reconstruction. In this figure, (a) shows the
reconstructed plant, (b) and (c) display detailed views of the upper and lower leaves, and
(d) presents the corresponding original plant image. This figure highlights that the upper
leaf structure reconstructed by the Single-Side method appears blurry and lacks detailed

definition compared to the real plant.

Fig. 4-12 depicts the Merged reconstruction. Similar to the Single-Side figure, (a)
presents the reconstructed plant, (b) and (c) show upper and lower leaf details, and (d) is
the original plant image. The Merged method introduces noticeable noise and
misalignment artifacts, resulting in a less clean reconstruction compared to the original
plant.
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(@) ()

Fig. 4-11. Single-Side reconstruction compared with the original plant image: (a)

reconstructed plant, (b) upper leaf detail, (c) lower leaf detail, and (d) corresponding

(d)

Fig. 4-12. Merged reconstruction compared with the original plant image: (a)

original plant image.

(@) ()

reconstructed plant, (b) upper leaf detail, (c) lower leaf detail, and (d) corresponding

original plant image.

Fig. 4-13 shows the Three-Height reconstruction. As with the other figures, (a)

displays the reconstructed plant, (b) and (c) highlight detailed views of the leaves, and (d)
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is the original image. This method achieves better clarity and leaf definition, particularly

in the upper plant regions, offering a reconstruction more faithful to the real plant.

(a) (c) (d)

Fig. 4-13. Three-Height reconstruction compared with the original plant image: (a)
reconstructed plant, (b) upper leaf detail, (c) lower leaf detail, and (d) corresponding

original plant image.

Fig. 4-14 shows the reconstruction results of the same row of plants using three
different capture methodologies. For consistent comparison, we removed the background
from all reconstructions. Each methodology is presented with three components: the
camera arrangement diagram on the left side, the complete plant reconstruction in the
center, and detailed views of upper and lower leaves from a selected plant on the right

side.
In the Single-Side reconstruction shown in Fig. 4-14(a), we observe that the upper
portions of the plants appear blurry with less defined leaf structures. This limitation is
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particularly evident in the upper leaf detail shown in the top right image, where the leaf
lacks clear definition and shows reduced detail fidelity. The Merged method shown in
Fig. 4-14(b) exhibits significantly more noise compared to the other techniques. This
noise is likely due to the challenges in accurately aligning and merging images captured
from two different sides of the plants. The misalignment creates artifacts during point
cloud generation, resulting in the scattered noise patterns visible throughout the
reconstruction. The Three-height reconstruction method shown in Fig. 4-14(c) effectively
addresses these limitations by capturing images at different heights. By incorporating
multiple vertical perspectives, this method successfully reconstructs the upper portions
of the plants with much greater clarity. The improvement is clearly visible when
comparing the upper leaf details across all three methods. The Three-Height method
provides significantly better leaf definition and structural integrity in the upper regions of
the plants. The lower portions of the plants, as shown in the bottom right images of each
row, show relatively consistent quality across all three methods, indicating that the
primary differences in reconstruction quality are most pronounced in the upper regions
of the plants. This suggests that the Three-Height method offers a more complete and
accurate reconstruction by addressing the limitations of single-perspective captures,

particularly for taller plants with complex canopy structures.

Further examination supports these observations. The Single-Side method lacks
multi-view coverage, resulting in sparse upper-canopy points, incomplete geometry, and
less reliable trait measurements. The Merged method introduces spatial misalignments
that cause artifacts and fragmented leaf structures, limiting analysis accuracy. The Three-
Height method overcomes these issues by improving vertical feature detection, enabling

more complete 3D reconstructions that enhance trait measurement accuracy.
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Fig. 4-14. Comparison of three different plant capture methodologies: (a) Single-Side, (b)

Merged, and (c) Three-Height.

Despite the increased noise observed in Fig. 4-14, the Merged method demonstrates
superior performance in capturing the complete plant structure. As shown in Fig. 4-15(b),
the Merged approach successfully reconstructs back-side information of the plant that is
not available in the other methods. This is a significant advantage over Single-Side in Fig.
4-15(a) and Three-height in Fig. 4-15(c) approaches, which primarily capture information
from only one viewing angle, resulting in incomplete data about the back surfaces of the
plants. For reference, Fig. 4-15(d) presents the original backside photo of the plant,
enabling a direct visual comparison between the reconstructed models and the true plant
morphology. This back-side representation is particularly valuable for comprehensive
plant phenotyping and structural analysis, as it reveals features that would otherwise be
completely missing in single-angle captures. The ability to reconstruct both front and

back surfaces provides a more complete morphological dataset for plant assessment.
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Fig. 4-15. Comparison of plant reconstructions from different angles. (a) Single-Side
reconstruction showing backside view. (b) Merged reconstruction showing backside view.
(c) Three-Height reconstruction showing backside view. (d) Original photo showing

backside view of the plant.

After evaluating the performance of different reconstruction methods, we further
present the reconstructed models of a plant across its growth stages. Fig. 4-16 shows the
dense three-dimensional models of a single plant at five successive stages from seedling
to maturity. Data collected on and after April 21 were processed using the three-height
reconstruction method to capture comprehensive multi-view structural information while
earlier time points were handled with the more stable single-side workflow. The series
illustrates that plant height increases continuously over time as the small form seen during
the seedling stage develops into the tall structure of the mature plant. At the same time
leaf number and canopy spread exhibit significant expansion evolving from sparse young
leaves into a dense arrangement. Moreover outlines of the main stem and lateral branches
become increasingly distinct with branch nodes and stem thickness variations accurately
captured at each stage. This set of models demonstrates that the multi-UAV system

combined with the GLOMAP and SuGaR reconstruction pipeline can reliably capture
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detailed plant morphology throughout the entire growth cycle and provides a clear visual

basis for subsequent quantitative measurements of plant height and canopy spread.

04/08 04/13 04/18 04/24 04/28 05/04

Fig. 4-16. Three-Dimensional Reconstruction Models of Muskmelon Plants at Multiple

Growth Stages

To complement our visual comparison of the Single-Side, Three-Height, and
Merged reconstruction methods, we conducted a quantitative evaluation using three
standard image quality metrics: Structural Similarity Index (SSIM), Peak Signal-to-Noise
Ratio (PSNR), and Learned Perceptual Image Patch Similarity (LPIPS). Fig. 4-17
presents the average values of these metrics across the three reconstruction categories,

allowing for an objective assessment of structural fidelity, noise resilience, and perceptual

81 d0i:10.6342/NTU202503732



similarity. The results highlight noticeable differences in reconstruction quality,

particularly in how each method preserves fine details and overall image consistency.

m SSIM
W PSNR
u LPIPS

Metric Value
w

Single-Side Merged Three-Height

Scene Category

Fig. 4-17. Average SSIM, PSNR, and LPIPS values across different reconstruction

methods: Merged, Single-side, and Three-Height scenes.

As shown in Table 4-8, the Single-side method, with the largest sample size, offers
moderate performance and balanced visual quality, though with some limitations in
capturing upper canopy details. The Merged method yields the lowest PSNR and SSIM
due to alignment noise, but maintains a comparable LPIPS, highlighting its perceptual
similarity and unique ability to reconstruct back-side structures. LPIPS values across all
methods remain consistent between 0.64 and 0.65, suggesting comparable perceptual
quality despite variations in structural fidelity. While Three-Height excels in vertical
detail with low noise, and Merged captures full structural geometry, Single-side offers

reliable performance with robust sampling.
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Table 4-8. Image Quality Metrics for Different Reconstruction Methods

Scene Category PSNR 1 SSIM 1 LPIPS |
Single-Side 0.25 8.41 0.64
Merged 0.24 8.21 0.65
Three-Height 0.37 9.48 0.65

4.5 Phenotyping Result of Muskmelon

4.5.1 Plant Measurement Analysis

Using the plant reconstruction results, we further employed the reconstructed point
clouds to estimate each plant’s height and canopy span. For each of the three
reconstruction methods, we computed the estimated height and span and calculated their

errors relative to the ground-truth measurements.

In Table 4-9 showing the plant measurements of the height and canopy span, which
evaluated by comparing each method’s estimated height and canopy span to the
corresponding ground-truth values. The Single-side reconstruction exhibits a height MAE
of 7.3 cm and a span MAE of 5.8 cm. The Merged method exhibits a height MAE of 6.6
cm and a span MAE of 7.3 cm. RMSE values from both methods range from 9.9 cm to
10.3 cm, indicating close agreement with the true dimensions. By contrast, the Three-
Height approach shows substantially larger deviations and greater variability. Height
estimates remain under 8% for all methods. Span error for Three-Height reaches 17.4%,

while Single-side and Merged record 10.8% and 13.4%, respectively. These findings
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indicate that the Single-side and Merged techniques provide more consistent and reliable

phenotypic measurements than the Three-Height strategy.

Table 4-9. Key Phenotyping Metrics by Reconstruction Method

Height  Height Height Span Span Span

Recf\’/}’:tt}‘:;‘&ﬁon MAE RMSE MAPE MAE RMSE MAPE
(cm) (cm) (%) (cm) (cm) (%)

Single-side 73 9.9 6.5 5.8 9.2 10.8
Merged 6.6 10.3 5.9 73 10.7 134
Three-Height 11.4 15.2 7.3 10.7 14.8 17.4

We further analyze the results through scatter plots and error distributions. In Fig.
4-18(a), the height scatter plot shows that calculated values closely follow the ground-
truth line with only minor deviations. The corresponding error histogram in Fig. 4-18(c)
is tightly clustered between 0 and 10 centimeters and shows a slight tail toward negative
values. This indicates that the Single-side approach produces consistently accurate height

estimates with only occasional underestimation.

Fig. 4-18(b) presents the span scatter, which displays a similarly tight pattern, and
Fig. 4-18(d) shows its error distribution centered near 0 cm with most errors below 10
cm. These results demonstrate that Single-side reconstruction yields a compact and

reliable error distribution.
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Fig. 4-18. Plant Height and Span Measurement Errors for Single-Side Reconstruction: (a)
scatter plot of calculated height versus ground-truth height, (b) scatter plot of calculated
span versus ground-truth span, (c)error distribution of calculated height, and (d) error

distribution of calculated span

Fig. 4-19 illustrates the Merged method. In Fig. 4-19(a), the height scatter remains
well aligned with the identity line but with slightly greater spread than Single-side,
especially at higher values. The height error histogram in Fig. 4-19(c) shows that most
errors are concentrated between -15 to 20 centimeters, with a very small number of
samples exhibiting errors below -80 cm. In Fig. 4-19(b) the span scatter exhibits broader
dispersion, and Fig. 4-19(d) shows its error distribution extending further into higher

positive values than in the height case. These patterns suggest that the Merged technique
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tends to mildly overestimate both height and span and exhibits greater variability when

integrating multiple viewpoints.
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Fig. 4-19. Plant Height and Span Measurement Errors for Merged Reconstruction: (a)

scatter plot of calculated height versus ground-truth height, (b) scatter plot of calculated

span versus ground-truth span, (c) error distribution of calculated height, and (d) error

distribution of calculated span

Fig. 4-20 illustrates the Three-Height method. In Fig. 4-20(a), the height scatter plot

displays substantial scatter around the identity line and notable outliers at the upper range.

The height error histogram which shows in Fig. 4-20(c) covers a wide band from -60 to

25 centimeters indicating large and uneven deviation. In Fig. 4-20(b) presents the span
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scatter likewise shows wide variability and in Fig. 4-20(d) shows the span error histogram

extends from -20 to 60 centimeters. These wide and irregular distributions reveal that

Three-Height reconstruction often introduces alignment noise that leads to large and

unpredictable measurement errors.
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Fig. 4-20. Plant Height and Span Measurement Errors for Three-Height Reconstruction:

(a) scatter plot of calculated height versus ground-truth height, (b) scatter plot of

calculated span versus ground-truth span, (c)error distribution of calculated height, and

(d) error distribution of calculated span

Comprehensive error analysis shows that the Single-Side reconstruction produces

the smallest and most concentrated deviations in height and canopy span measurements

and delivers the best performance. The Merged method yields slightly larger errors but
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still outperforms the Three-Height strategy. The Three-Height approach exhibits the most
scattered and largest errors and is not recommended for applications requiring stable

measurements.

4.5.2 Muskmelon Growth Monitoring Analysis

Based on our previous analysis of reconstruction errors in plant height and canopy
span measurements, we used the Single-Side method to monitor growth. We measured
height and span for each of fifteen plants, plotted individual growth curves, and calculated

R? and RMSE against the ground-truth values.

Table 4-10 shows the height and span results for each plant using the Single-Side
reconstruction. Height tracking was very reliable. The R? values ranged from 0.92 to 0.99
for all fifteen plants. The RMSE values did not exceed 15 centimeters. Row C had the
best height performance with an average R? of 0.99 and an average RMSE of 5.9
centimeters. Row B followed with an average R? of 0.97 and an average RMSE of 7.9
centimeters. Row A showed the largest variation with an average R* of 0.95 and an
average RMSE of 10.4 centimeters. Within that row Plant A5 had the lowest R? at 0.92
and the highest RMSE at 14.5 centimeters. Span estimation proved more challenging.
The R? value fell between 0.77 and 0.98. The RMSE values ranged from 1.8 to 5.9
centimeters. The weakest span estimates occurred for Plant C2 with an R? of 0.77 and an
RMSE of 5.9 centimeters. Plant A2 had an R squared of 0.84 and an RMSE of 5.2
centimeters. On average Row B led all rows for span accuracy with an average R? of 0.90
and an average RMSE of 3.3 centimeters. Row A followed with an average R? of 0.90
and an average RMSE of 4.1 centimeters. Row C had an average R? of 0.88 and an

average RMSE of 4.2 centimeters.
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Table 4-10. Individual Plant Growth Monitoring Metrics

Row PlantID  Height R? Rﬁ;ég?sm) Span R Spar(lcf;l;“E
1 0.99 5.1 0.95 2.8
2 0.94 12.8 0.84 5.2
A 3 0.94 12.6 0.94 3.5
4 0.98 6.8 0.95 3.2
5 0.92 14.5 0.80 5.8
1 0.98 7.2 0.79 4.7
2 0.99 6.2 0.97 1.9
B 3 0.95 10.5 0.98 1.8
4 0.98 6.5 0.85 4.0
5 0.97 9.2 0.92 4.1
1 0.99 5.9 0.95 2.5
2 0.99 6.0 0.77 5.9
C 3 0.99 42 0.81 5.3
4 0.99 6.1 0.95 3.2

5 0.98 7.2 0.91 4.1

89 d0i:10.6342/NTU202503732



To evaluate the Single-Side reconstruction method across all specimens we
generated growth curves for height and span over time for each plant. The fifteen plants

are organized into three rows labeled A, B and C.

Fig. 4-21 shows the height and span growth curves for the five plants in row A
measured in centimeters. All five entered a rapid growth phase beginning around April
13 and lasting until April 27. Thereafter the rate of height increase slowed as each plant
neared its maximum. Plant 1 grew from 20 centimeters on April 9 to 174 cm by May 11.
Plants 2 and 3 reached 172 cm. Plant 4 peaked at 167 cm after a slightly delayed surge,
and Plant 5, despite greater variability in midseason measurements, converged near 171
cm. Canopy span expanded more slowly. Over the first two weeks the five plants’ spans
increased from approximately 30 cm to about 55 cm before leveling off. Then entered a
saturation phase after April 25. Plants 1 and 5 achieved the widest canopies at 68 cm.
Plant 4 reached 67 cm. Plants 2 and 3 followed a nearly identical trajectory. These curves
confirm a shared growth rhythm with individual variation in the timing of rapid height
gain and in final canopy breadth. Height growth peaked before canopy expansion
plateaued, reflecting a transition from vertical shoot extension to lateral leaf expansion as

the plants matured.

Fig. 4-22 presents the height and span growth curves for the five plants in Row B.
The stages mirror those seen in Row A. From about April 13 until April 27 they entered
a rapid growth period before the rate of height gain slowed as they neared their mature
size. Plant 1 grew from around 20 cm on April 9 to about 168 cm by May 11. Plant 2
reached a similar final height of 173 cm but showed slightly greater day-to-day variability
in the mid-season measurements. Plant 3 peaked at 166 cm and exhibited the greatest
scatter in its data points during the exponential phase. Plant 4 followed closely behind at
172 cm, and Plant 5 rose to 171 cm with the steadiest trend line of the group. Canopy
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span in Row B expanded more gradually. During the first two weeks span increased from
approximately 35 cm to about 52 cm. After April 25 the rate of canopy expansion slowed
as leaves began to reach maximum size. Plants 1 and 3 both achieved final spans of about
65 cm, while Plant 2 extended slightly further to 67 cm. Plant 4 produced the smallest
canopy at 64 cm and Plant 5 reached the greatest final span of 67 cm. These curves
illustrate that although all five specimens share a common growth schedule, they vary in

the timing and magnitude of both vertical and lateral development.

The five plants in Row C follow the same pattern seen in Rows A and B. In Fig.
4-23 presents the height and span growth curves for the five plants in Row C. They enter
a rapid growth period from about April 13 to April 27, and then their height increase
slows as they near maturity. Plant 1 grows from around 20 cm to one 174 cm. Plant 2
reaches 173 cm. Plant 3 rises tol173 cm with slightly more scatter in its mid-season
measurements. Plant 4 attains 173 and Plant 5 peaks at 172 cm. These final heights are
broadly comparable to those in Rows A and B, with Row C showing marginally higher
maxima and similar timing of the inflection point. Canopy span in Row C also expands
more gradually. During the first two weeks it increases from approximately 30 cm to
around 53 cm. After April 25 the rate of lateral expansion tapers off. Plant 1 finishes with
a span of about 66 cm s. Plant 2 ends at 65 cm, Plant 3 at 70 cm. Plant 4’s canopy reaches
64 cm and Plant 5 at 70 cm. These span values fall within the range observed in the other
two rows. Overall, Row C’s growth curves closely mirror the rhythm and amplitude of
Rows A and B, confirming a consistent growth pattern across all fifteen plants with only
minor variation in final size. Across all fifteen plants in Rows A, B, and C, the growth
curves reveal a consistent pattern of rapid vertical growth from mid-April to late April,
followed by a slowdown in height increase and gradual canopy expansion with only

minor variations in timing and final size.
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Fig. 4-21. Growth curves of height and span for Row A plants. Panels (a) to (e)

correspond respectively to Plant A1 through Plant A5
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Fig. 4-22. Growth curves of height and span for Row B plants. Panels (a) to (e) correspond

respectively to Plant B1 through Plant B5
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Fig. 4-23. Growth curves of height and span for Row C plants. Panels (a) to (e) correspond

respectively to Plant C1 through Plant C5
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Fig. 4-24 presents the average height curve for all fifteen plants. The plants enter a

steady growth phase that accelerates in mid-April before tapering off by early May. The

measured height curve remains consistently above the ground truth curve and the gap

widens slightly over time. Fig. 4-24 shows the average span rising from about 30 cm to

58 cm by late April and then moving into a slower saturation phase. The measured span

curve lies above the ground truth and the difference between the mean and minimum span

curves illustrates the variation among individual plants. Overall, the fifteen plants exhibit

a uniform growth rhythm with a predictable bias in both height and span measurements.
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Fig. 4-24. Average growth curves for all fifteen plants: (a) Average height over time

shown for ground truth and measured values, (b) Average canopy span over time showing

ground truth, measured span, mean span, and minimum span curves
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CHAPTER §

Conclusions and Suggestions

5.1 Conclusions

This research developed the first autonomous multi-UAV cooperative navigation
system for greenhouse crop monitoring. Compared with conventional single-UAV
solutions, this system demonstrates significant advancements in navigation accuracy,
mission efficiency, and 3D phenotyping capability, establishing a scalable framework for

precision agriculture in GPS-denied environments.

Multi-UAV autonomous navigation system

1. Developed a stable multi-UAV system with reliable communication and
autonomous navigation using visual SLAM.

2. Proposed a loop-optimized mapping strategy that reduced mean absolute
localization error by 39% compared to single-loop mapping, establishing a best
practice for high-precision map generation.

3. Designed and evaluated three cooperative flight paths with UWB-based ground
truth, providing quantitative guidelines for balancing accuracy and efficiency
in collaborative missions. The parallel-aisle path shows an error range of 7 to
12 cm, the closed-loop path 5 to 9 cm, and the multi-altitude path 4 to 11 cm.

4.  Multi-UAV deployment outperforms single UAV, reducing mission time by
73% and battery usage by 5% while maintaining localization accuracy across

all flight paths.
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3D reconstruction of plant

1. Established a multi-view UAV imaging pipeline with Gaussian Splatting-based
3D reconstruction, achieving high-fidelity plant morphology models with PSNR
up to 0.37, SSIM of 9.48, and LPIPS of 0.65.

2. Single-Side offers stable results, Merged captures both sides, and Three-Height
performs best for tall plants.

3. Three-Height method achieves highest quality with PSNR 0.37, SSIM 9.48, and

LPIPS 0.65.

Comparison of Plant Height and Canopy Span Across Three Reconstruction

Methods

1. Estimated traits using point clouds from three reconstruction methods.
2. Single-Side method achieved the lowest height RMSE of 9.9 cm and the lowest
span RMSE o0f 9.2 cm, demonstrating the most consistent measurement accuracy

overall.

Per-Plant Measurements of Height and Canopy Span

1. Monitor growth for each plant and compare predicted and actual growth curves.
2. Calculate the R? and RMSE for 15 plants. Monitor growth for each plant and

compare predicted and actual growth curves.

Plant height and canopy growth monitoring

1. Successfully monitored muskmelon growth dynamics using UAV-based 3D

reconstruction
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2. Height increased rapidly in mid-April and stabilized in May, showing reliable
growth measurement.
3. Canopy span grew slower, plateaued after late April, and showed higher

variability.

5.2 Suggestions

1. Future work should integrate visual-inertial SLAM and deep-learning-based
feature tracking to improve robustness under challenging lighting and dense
foliage conditions.

2. In designing autonomous navigation for multi-UAV systems, future
improvements could involve capturing images from closer distances and
adopting more flexible imaging strategies. For instance, flight paths could be
specifically planned to focus on capturing images of individual plants.

3. Interms of reconstruction, merged reconstruction tends to have a higher failure
rate, particularly due to greater alignment difficulties. Future work could focus
on increasing image overlap and experimenting with parameter adjustments in

the structure from motion process to improve reconstruction success.

98 d0i:10.6342/NTU202503732



References

Ampatzidis, Y., & Partel, V. (2019). UAV-based high throughput phenotyping in citrus
utilizing multispectral imaging and artificial intelligence. Remote Sensing, 11(4).

https://doi.org/10.3390/rs11040410

Asaamoning, G., Mendes, P., Rosdrio, D., & Cerqueira, E. (2021). Drone swarms as
networked control systems by integration of networking and computing. Sensors,

21(8). https://doi.org/10.3390/s21082642

Aslan, M. F., Durdu, A., Sabanci, K., Ropelewska, E., & Giltekin, S. S. (2022). A
comprehensive survey of the recent studies with UAV for precision agriculture in
open fields and greenhouses. Applied  Sciences, 12(3), 1047.

https://www.mdpi.com/2076-3417/12/3/1047

Azzam, R., Boiko, ., & Zweiri, Y. (2023). Swarm cooperative navigation using
centralized training and decentralized execution. Drones, 7(3).

https://doi.org/10.3390/drones7030193

Bagagiolo, G., Matranga, G., Cavallo, E., & Pampuro, N. (2022). Greenhouse Robots:
ultimate solutions to improve automation in protected cropping systems—A

review. Sustainability, 14(11). https://doi.org/10.3390/su14116436

Bailey, T., Nieto, J., Guivant, J., Stevens, M., & Nebot, E. (2006, 9-15 Oct. 2006).
Consistency of the EKF-SLAM algorithm. 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems,

https://doi.org/10.1109/IR0OS.2006.281644

Bouabdallah, S., Noth, A., & Siegwart, R. (2004, 28 Sept.-2 Oct. 2004). PID vs LQ

control techniques applied to an indoor micro quadrotor. 2004 IEEE/RSJ

9 d0i:10.6342/NTU202503732


https://doi.org/10.3390/rs11040410
https://doi.org/10.3390/s21082642
https://www.mdpi.com/2076-3417/12/3/1047
https://doi.org/10.3390/drones7030193
https://doi.org/10.3390/su14116436
https://doi.org/10.1109/IROS.2006.281644

International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.

No.04CH37566), https://doi.org/10.1109/IROS.2004.1389776

Campos, C., Elvira, R., Rodriguez, J. J. G., Montiel, J. M. M., & Tardés, J. D. (2021).
ORB-SLAM3: An accurate open-source library for visual, visual-inertial, and
multimap SLAM. [EEE Transactions on Robotics, 37(6), 1874-1890.

https://doi.org/10.1109/TR0O.2021.3075644

Chandra, A. L., Vikas Desali, S., Guo, W., & Balasubramanian, V. N. (2020). Computer
vision with deep learning for plant phenotyping in agriculture: A survey. arXiv e-

prints, arXiv:2006.11391. https://doi.org/10.48550/arXiv.2006.11391

Chang, Y., Cheng, Y., Manzoor, U., & Murray, J. (2023). A review of UAV autonomous
navigation in GPS-denied environments. Robotics and Autonomous Systems, 170,

104533. https://doi.org/10.1016/j.robot.2023.104533

Chen, W., Zhu, J., Liu, J., & Guo, H. (2024). A fast coordination approach for large-scale
drone swarm. Journal of Network and Computer Applications, 221, 103769.

https://doi.org/10.1016/j.jnca.2023.103769

Chung, S. J., Paranjape, A. A., Dames, P., Shen, S., & Kumar, V. (2018). A Survey on
aerial swarm robotics. [EEE Transactions on Robotics, 34(4), 837-855.

https://doi.org/10.1109/TR0O.2018.2857475

Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O. (2007). MonoSLAM: Real-time
single camera SLAM. [EEE Transactions on Pattern Analysis and Machine

Intelligence, 29(6), 1052-1067. https://doi.org/10.1109/TPAMI.2007.1049

Engel, J., Schops, T., & Cremers, D. (2014). LSD-SLAM: Large-scale direct monocular
SLAM.Lecture Notes in Computer Science ECCV 2014, Cham.

https://doi.org/10.1007/978-3-319-10605-2_54

100

d0i:10.6342/NTU202503732


https://doi.org/10.1109/IROS.2004.1389776
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.48550/arXiv.2006.11391
https://doi.org/10.1016/j.robot.2023.104533
https://doi.org/10.1016/j.jnca.2023.103769
https://doi.org/10.1109/TRO.2018.2857475
https://doi.org/10.1109/TPAMI.2007.1049
https://doi.org/10.1007/978-3-319-10605-2_54

Fiorani, F., & Schurr, U. (2013). Future scenarios for plant phenotyping. Annual review

of plant biology, 64. https://doi.org/10.1146/annurev-arplant-050312-120137

Gao, T., Sheng, W., Zhang, Z., Li, H., & Zhang, M. (2024). Greenhouse phenotyping
measurement techniques and systems: A review. In Y. Yun, W. Sheng, & Z.
Zhang (Eds.), Advanced Sensing and Robotics Technologies in Smart Agriculture

(pp. 43-59). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-

6441-9 3

Gompertz, B. (1825). XXIV. On the nature of the function expressive of the law of human
mortality, and on a new mode of determining the value of life contingencies. In a
letter to Francis Baily, Esq. FRS &c. Philosophical transactions of the Royal

Society of London(115), 513-583. https://doi.org/10.1098/rspl.1815.0271

Gu, Y., Jin, X, Xiang, R., Wang, Q., Wang, C., & Yang, S. (2020). UAV-based integrated
multispectral-LIDAR imaging system and data processing. Science China

Technological Sciences, 63(7), 1293-1301. https://doi.org/10.1007/s11431-019-

1571-0

Guédon, A., & Lepetit, V. (2023). SuGaR: Surface-aligned gaussian splatting for efficient
3D mesh reconstruction and high-quality mesh rendering. arXiv e-prints,

arXiv:2311.12775. https://doi.org/10.48550/arXiv.2311.12775

Hu, J., Bruno, A., Zagieboylo, D., Zhao, M., Ritchken, B., Jackson, B., Chae, J. Y., Mertil,
F., Espinosa, M., & Delimitrou, C. (2018). To centralize or not to centralize: A

tale of swarm coordination. arXiv  e-prints, arXiv:1805.01786.

https://doi.org/10.48550/arXiv.1805.01786

Hunt Jr, E. R., & Daughtry, C. S. T. (2018). What good are unmanned aircraft systems

for agricultural remote sensing and precision agriculture? International Journal

101 d0i:10.6342/NTU202503732


https://doi.org/10.1146/annurev-arplant-050312-120137
https://doi.org/10.1007/978-981-97-6441-9_3
https://doi.org/10.1007/978-981-97-6441-9_3
https://doi.org/10.1098/rspl.1815.0271
https://doi.org/10.1007/s11431-019-1571-0
https://doi.org/10.1007/s11431-019-1571-0
https://doi.org/10.48550/arXiv.2311.12775
https://doi.org/10.48550/arXiv.1805.01786

of Remote Sensing, 39(15-16), 5345-5376.

https://doi.org/10.1080/01431161.2017.1410300

Huynh, H. X., Tran, L. N., & Duong-Trung, N. (2023). Smart greenhouse construction
and irrigation control system for optimal Brassica Juncea development. PLOS

ONE, 18(10), €0292971. https://doi.org/10.1371/journal.pone.0292971

James, C., Chandra, S. S., & Chapman, S. C. (2025). A scalable and efficient UAV-based
pipeline and deep learning framework for phenotyping sorghum panicle
morphology  from  point  clouds.  Plant  Phenomics, 100050.

https://doi.org/10.1016/j.plaphe.2025.100050

Jamshidpey, A., Wahby, M., Allwright, M., Zhu, W., Dorigo, M., & Heinrich, M. K.
(2024). Centralization vs. decentralization in multi-robot sweep coverage with
ground robots and UAVs. arXiv  e-prints,  arXiv:2408.06553.

https://doi.org/10.48550/arXiv.2408.06553

Ju, C., & Son, H. I. (2018). Multiple UAV systems for agricultural applications: Control,
implementation, and evaluation. Electronics, 7(9), 162.

https://www.mdpi.com/2079-9292/7/9/162

Khosiawan, Y., & Nielsen, I. (2016). A system of UAV application in indoor
environment.  Production &  Manufacturing Research, 4(1), 2-22.

https://doi.org/10.1080/21693277.2016.1195304

Kim, J., Kim, S., Ju, C., & Son, H. 1. (2019). Unmanned Aerial Vehicles in agriculture:
A review of perspective of platform, control, and applications. /EEE Access, 7,

105100-105115. https://doi.org/10.1109/ACCESS.2019.2932119

Krul, S., Pantos, C., Frangulea, M., & Valente, J. (2021). Visual SLAM for indoor
livestock and farming using a small drone with a monocular camera: A feasibility

study. Drones, 5(2). https://doi.org/10.3390/drones5020041

102 d0i:10.6342/NTU202503732


https://doi.org/10.1080/01431161.2017.1410300
https://doi.org/10.1371/journal.pone.0292971
https://doi.org/10.1016/j.plaphe.2025.100050
https://doi.org/10.48550/arXiv.2408.06553
https://www.mdpi.com/2079-9292/7/9/162
https://doi.org/10.1080/21693277.2016.1195304
https://doi.org/10.1109/ACCESS.2019.2932119
https://doi.org/10.3390/drones5020041

Li, D., Shi, G, Li, J., Chen, Y., Zhang, S., Xiang, S., & Jin, S. (2022). PlantNet: A dual-
function point cloud segmentation network for multiple plant species. ISPRS

Journal of Photogrammetry and Remote Sensing, 184, 243-263.

https://doi.org/10.1016/j.1sprsjprs.2022.01.007

Li, R., Wang, S., & Gu, D. (2018). Ongoing evolution of Visual SLAM from geometry
to deep learning: challenges and opportunities. Cognitive Computation, 10(6),

875-889. https://doi.org/10.1007/s12559-018-9591-8

Li, Y., Liu, J., Zhang, B., Wang, Y., Yao, J., Zhang, X., Fan, B., Li, X., Hai, Y., & Fan,
X. (2022). Three-dimensional reconstruction and phenotype measurement of
maize seedlings based on multi-view image sequences. Frontiers in plant science,

13,974339. https://doi.org/10.3389/fpls.2022.974339

Loayza, K., Lucas, P., & Peldez, E. (2017, October 16-20). A centralized control of
movements using a collision avoidance algorithm for a swarm of autonomous
agents. 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), Salinas,

Ecuador. https://doi.org/10.1109/ETCM.2017.8247496

Lu, Y., Zhucun, X., Gui-Song, X., & Zhang, L. (2018). A survey on vision-based UAV
navigation. Geo-spatial Information Science, 21(1), 21-32.

https://doi.org/10.1080/10095020.2017.1420509

Mur-Artal, R., Montiel, J. M. M., & Tardos, J. D. (2015). ORB-SLAM: A versatile and
accurate monocular SLAM system. /IEEE Transactions on Robotics, 31(5), 1147-

1163. https://doi.org/10.1109/TRO.2015.2463671

Mur-Artal, R., & Tardoés, J. D. (2017). ORB-SLAM2: An open-source SLAM system for
monocular, stereo, and RGB-D cameras. /IEEE Transactions on Robotics, 33(5),

1255-1262. https://doi.org/10.1109/TRO.2017.2705103

103 d0i:10.6342/NTU202503732


https://doi.org/10.1016/j.isprsjprs.2022.01.007
https://doi.org/10.1007/s12559-018-9591-8
https://doi.org/https:/doi.org/10.3389/fpls.2022.974339
https://doi.org/10.1109/ETCM.2017.8247496
https://doi.org/10.1080/10095020.2017.1420509
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/TRO.2017.2705103

Pan, L., Barath, D., Pollefeys, M., & Schonberger, J. L. (2024). Global structure-from-
motion revisited. arXiv e-prints, arXiv:2407.20219.

https://doi.org/10.48550/arXiv.2407.20219

Pantos, C., Hildmann, H., & Valente, J. (2023). Experimental connectivity analysis for

drones in greenhouses. Drones, 7(1). https://doi.org/10.3390/drones7010024

Pardossi, A., Paola, G., Fernando, M., Marinone, A. F., Carla, M., Giovanni, S., &
Vernieri, P. (2000). The influence of growing season on fruit yield and quality of
greenhouse melon (Cucumis melo L.) grown in nutrient film technique in a

Mediterranean climate. The Journal of Horticultural Science and Biotechnology,

75(4), 488-493. https://doi.org/10.1080/14620316.2000.11511274

Park, T., Lee, J., Oh, H., Yun, W.-]J., & Lee, K.-W. (2025). Optimizing indoor farm
monitoring efficiency using UAV: yield estimation in a GNSS-denied cherry
tomato greenhouse. arXiv preprint arXiv:2505.00995.

https://doi.org/10.48550/arXiv.2505.00995

Pieruschka, R., & Schurr, U. (2019). Plant phenotyping: past, present, and future. Plant

Phenomics, 2019, 7507131. https://doi.org/10.34133/2019/7507131

Qi, C. R., Liu, W., Wu, C., Su, H., & Guibas, L. J. (2017). Frustum PointNets for 3D
object detection from RGB-D data. arXiv e-prints, arXiv:1711.08488.

https://doi.org/10.48550/arXiv.1711.08488

Rejeb, A., Abdollahi, A., Rejeb, K., & Treiblmaier, H. (2022). Drones in agriculture: A
review and bibliometric analysis. Computers and Electronics in Agriculture, 198,

107017. https://doi.org/10.1016/j.compag.2022.107017

Roldan, J. J., Joossen, G., Sanz, D., Del Cerro, J., & Barrientos, A. (2015). Mini-UAV
based sensory system for measuring environmental variables in greenhouses.

Sensors, 15(2), 3334-3350. https://doi.org/10.3390/s150203334

104 d0i:10.6342/NTU202503732


https://doi.org/10.48550/arXiv.2407.20219
https://doi.org/10.3390/drones7010024
https://doi.org/10.1080/14620316.2000.11511274
https://doi.org/10.48550/arXiv.2505.00995
https://doi.org/https:/doi.org/10.34133/2019/7507131
https://doi.org/10.48550/arXiv.1711.08488
https://doi.org/10.1016/j.compag.2022.107017
https://doi.org/10.3390/s150203334

Schlegel, D., Colosi, M., & Grisetti, G. (2018, 21-25 May 2018). ProSLAM: Graph
SLAM from a Programmer's Perspective. 2018 IEEE International Conference on

Robotics and Automation (ICRA), https://doi.org/10.1109/ICRA.2018.8461180

Schonberger, J. L., & Frahm, J. M. (2016, 27-30 June 2016). Structure-from-Motion
revisited. 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), https://doi.org/10.1109/CVPR.2016.445

Shi, W., van de Zedde, R., Jiang, H., & Kootstra, G. (2019). Plant-part segmentation using
deep learning and multi-view vision. Biosystems Engineering, 187, 81-95.

https://doi.org/10.1016/.biosystemseng.2019.08.014

Singh, R., & Singh, G. S. (2017). Traditional agriculture: a climate-smart approach for
sustainable food production. Energy, Ecology and Environment, 2(5), 296-316.

https://doi.org/10.1007/s40974-017-0074-7

Sumikura, S., Shibuya, M., & Sakurada, K. (2019). OpenVSLAM: A versatile visual
SLAM framework proceedings of the 27th ACM International Conference on

Multimedia, Nice, France. https://doi.org/10.1145/3343031.3350539

Teshome, F. T., Bayabil, H. K., Hoogenboom, G., Schaffer, B., Singh, A., & Ampatzidis,
Y. (2023). Unmanned aerial vehicle (UAV) imaging and machine learning

applications for plant phenotyping. Computers and Electronics in Agriculture,

212, 108064. https://doi.org/10.1016/j.compag.2023.108064

Trujillo, J.-C., Munguia, R., Guerra, E., & Grau, A. (2018). Visual-based SLAM
configurations for cooperative multi-UAV systems with a lead agent: An
observability-based approach. Sensors, 18(12).

https://doi.org/10.3390/s18124243

105 d0i:10.6342/NTU202503732


https://doi.org/10.1109/ICRA.2018.8461180
https://doi.org/10.1109/CVPR.2016.445
https://doi.org/https:/doi.org/10.1016/j.biosystemseng.2019.08.014
https://doi.org/10.1007/s40974-017-0074-7
https://doi.org/10.1145/3343031.3350539
https://doi.org/10.1016/j.compag.2023.108064
https://doi.org/10.3390/s18124243

Vetrella, A. R., Fasano, G., Accardo, D., & Moccia, A. (2016). Differential GNSS and
vision-based tracking to improve navigation performance in cooperative multi-

UAYV systems. Sensors, 16(12). https://doi.org/10.3390/s16122164

Wang, Q., Tan, Y., & Mei, Z. (2020). Computational methods of acquisition and
processing of 3D point cloud data for construction applications. Archives of
Computational Methods in Engineering, 27(2), 479-499.

https://doi.org/10.1007/s11831-019-09320-4

Williams, D., Macfarlane, F., & Britten, A. (2024). Leaf only SAM: A segment anything

pipeline for zero-shot automated leaf segmentation. Smart Agricultural

Technology, 8, 100515. https://doi.org/10.1016/j.atech.2024.100515
Zafari, F., Gkelias, A., & Leung, K. K. (2019). A survey of indoor localization systems
and technologies. [EEE Communications Surveys & Tutorials, 21(3), 2568-2599.

https://doi.org/10.1109/COMST.2019.2911558

Zarei, A., Li, B, Schnable, J. C., Lyons, E., Pauli, D., Barnard, K., & Benes, B. (2024).
PlantSegNet: 3D point cloud instance segmentation of nearby plant organs with
identical semantics. Computers and Electronics in Agriculture, 221, 108922.

https://doi.org/10.1016/j.compag.2024.108922

Zhai, Z., Martinez, J. F., Beltran, V., & Martinez, N. L. (2020). Decision support systems
for agriculture 4.0: Survey and challenges. Computers and Electronics in

Agriculture, 170, 105256. https://doi.org/10.1016/j.compag.2020.105256

Zhang, C., Tang, C., Wang, H., Lian, B., & Zhang, L. (2025). Data set for UWB
cooperative navigation and positioning of UAV cluster. Scientific Data, 12(1),

486. https://doi.org/10.1038/s41597-025-04808-0

106 d0i:10.6342/NTU202503732


https://doi.org/10.3390/s16122164
https://doi.org/10.1007/s11831-019-09320-4
https://doi.org/https:/doi.org/10.1016/j.atech.2024.100515
https://doi.org/10.1109/COMST.2019.2911558
https://doi.org/10.1016/j.compag.2024.108922
https://doi.org/https:/doi.org/10.1016/j.compag.2020.105256
https://doi.org/10.1038/s41597-025-04808-0

Zhang, H., Ma, H., Mersha, B. W., Zhang, X., & Jin, Y. (2023). Distributed cooperative
search method for multi-UAV with unstable communications. Applied Soft

Computing, 148, 110592. https://doi.org/10.1016/j.as0¢.2023.110592

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., & Wang, O. (2018). The unreasonable
effectiveness of deep features as a perceptual metric. arXiv e-prints,

arXiv:1801.03924. https://doi.org/10.48550/arXiv.1801.03924

Zhang, X., Bai, Y., & He, K. (2023). On countermeasures against cooperative fly of UAV

swarms. Drones, 7(3). https://doi.org/10.3390/drones7030172

Zhao, J., Bodner, G., & Rewald, B. (2016). Phenotyping: Using machine learning for
improved pairwise genotype classification based on root traits [Original Research].

Frontiers in plant science, Volume 7 - 2016.

https://doi.org/10.3389/1pls.2016.01864

107 d0i:10.6342/NTU202503732


https://doi.org/10.1016/j.asoc.2023.110592
https://doi.org/10.48550/arXiv.1801.03924
https://doi.org/10.3390/drones7030172
https://doi.org/10.3389/fpls.2016.01864



