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Abstract

This study presents a novel and efficient framework for panoptic segmentation, a
task aimed at accurately delineating all foreground and background categories in an image
while distinguishing individual instances within the same category. Current approaches
face persistent challenges, including imprecise boundary predictions and redundant pro-
posals resulting in duplicate predictions. Moreover, many state-of-the-art methods rely on
resource-intensive network architectures, making them less practical for real-world appli-
cations. Building on the architectures of YOLOvV7[25] and FastInst[ 7], this research intro-
duces three core advancements: (1) Tasks Integration, which unifies multi-task learning to
address boundary prediction inaccuracies inherent to traditional CNN-based methods; (2)
Segmentation-based Proposal Strategy, which effectively mitigates duplicate predictions
by addressing redundancy in Query-based architectures; and (3) Segmentation-based Intra
and Counterfactual Loss, which enhances feature consistency and discriminability while

suppressing the influence of misleading features. Experimental evaluations demonstrate
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that the proposed methodology achieves substantial improvements in prediction quality,

offering a robust and efficient solution for panoptic segmentation tasks.

Keywords: Panoptic Segmentation, Tasks Integration, Counterfactual Attention, Deep

Learning, Segmentation
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Chapter 2 Related Works
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4y

PHF TR AR FE R AR A AR A ER BB AN S
FELIPIEI LT NTIE > R LR F RS bAFL Y A
f1* - 3R 5% & 78R = 7% (Dense Prediction Tasks) ¥ o #73% 3Hen™ 2 § 4
¥5 0 P % % (Target Segmentation) it (7 &I o E 48 Kz » g 3 2 8 P £ F B ep
e ;}r"‘ﬁi BI25E B AP i end > &8 RHECR f{f‘?\alt”“%f {6 Y by H
PAHRwdd o do— 410§ 2R R T 3 FIe 0] Bt aE AR {1

FER RET B e B2 Fenbl o F5E A B PR S S dcengs| 1 o
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Chapter 3 Approach

EAF &Y o ALY 2 F A B EA A CNN-based 2 Query-based 7 1
PR TRl A e SRS R AR AP BN E RNz S @
3% Tasks Integration ~ Segmentation-based Proposal Strategy » 2 % Segmentation-based

Intra and Counterfactual Loss °

3.1 Fundamental Problems in Panoptic Segmentation

..

(a) Input Image (b) Foreground and background (c) A target is generated by multiple (d) Generated by our method
borders do not match queries

Figure 3.1: > $ 4 2] T 7% & 34> CNN-based 2 Query-based 2 T?—F‘*’"er T f 3E o
(a) o ddif > et - (B) m«mmw FEFRERG B L (0 BRI B LT
B e (d) Orde A enS jE & rl@;f(,‘giji TR % mr‘-_:vr'%ﬁ» 3

CNN-based 1 % = % 4] % H1 ¥ ¢ 42 #7 (backbone) #& 1} % b cha &
(Prediction Head) » & 4%t % F eniZ 7338 (7215 o Gl4o > @ * CNN 3] % m > F
BRI RE- BRI A B AR KRIFR RS E S UE - BFAAL LA KT

PIA B [3,10,15,30,31] #&a » igfaA wig* ad @AaL Rppw B 20 B

3 E S FEAERFPEZFESA D FELFER T % L R 3L o (4 L Figure
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3.1(b))

Query-based 1> j# P i€ iF queries ¥ tf % 4F fieh cross-attention A 4 o F &2 F
RS S % o B2 2 PR T ER query chae 4 oo d I E F T
Byt aw B 2P oipplss (16 @RRFEHE D query =8 ¢ ~ R T

Rl&FeRa F- Bt ader IHRBRAaH - P2 EEREEY RY
Rensgu pE 0 B 5 U35 B proposal g o e - e 12 0 B IR A 12 £ AR IE R DR o

(% 2 Figure 3.1(c))

Gyt R AL A4 Y - fAfL 5 Tasks Integration i vE > {1 #03) iy

NI BEFELE S AR ERTEREE o KA L ER I R EDRAE o

» % i $& ) e Segmentation-based Proposal Strategy 2 Segmentation-based Intra and
g p gy g

Counterfactual Loss #x 3l & 4§ 7 ip| R 48 -

3.2 Architecture

P5 Sec. 3.4 Sec. 3.3
- ? .
5 P4 $ e -g ............... :g .
% > —><C>—>§Fppl*—> L= —>Qppl—> g g—» Class
=) -/ L KO .2 8 ................ %0 ;5
g p3 - £ 3
m N "E E ............... — :
gﬁ > Fpix > g A > Fpix > 2 E Mask
(- 3 S o [ S o]
<
E Y =
Sec.3.5.1 IntraLoss % = IntraLoss
Counterfactual Counterfactual
Sec. 3.5.2 Head Head

Figure 3.2: » 7 3 en% B¢ fdc Bl #77n o P3~P4 2 PS5 eh= Bz B 5 YOLOVT
PAN i It 5 Fyy i 2 Proposal Feature » Fip 1 %\ Pixel Feature > Qppl U REE R
Segmentation-based Proposal Module j£_F),,; #*i¥ ! cfquery ° ® * % cross attention >
© B~ % feature concatenation °

AFT G % % YOLOVT % f}& ¥. #- FastInst ! e77 Dual-path Transformer
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Decoder i & g iR] ~ £ » f gt §£ % Tasks Integration Transformer - # ¢ > Proposal
Feature #ixcs B B & £ p YOLOvV7 FPN-PAN ﬂ}%l 41 en4k i > Pixel Feature R 8. % £
YOLOvV7 * »t & 4 § | & 4] % % &0 prototype feature £2 & # 3% £ 4~ 2] % add jic
Z B - i% 1 Segmentation-based Proposal Module j%_Proposal Feature 7 B # $%i%
k engF e £ € (F L object queries © I — f £7 Pixel Feature i¥ 5 Tasks Integration

Transformer mﬁi%] PN =+

Global Prediction » Local Predictions ¥ Global Prediction 48 5 2 & 53 c73f Pl 2 % »
Local Predictions i% i§ ¥ Fastlnst 48 ¢ ¢ bipartite matching * ;' et /@ & % ¥ i

FEE o L EDnif L Solick 40T

'Cmain = )\C’lass X ‘Cclass + )\Mask X Emask + )\Dice X Edice + )\Semantic X Esemantic (31)

B o Loyfedy Aul A4 e HiEE o §f 24 T 4% ¢ 35 Segmentation-based
Proposal Strategy # Segmentation-based Intra and Counterfactual Loss » Segmentation-

based Proposal Module i * &ff £ e 7 40

__ \ Proposal Proposal Proposal Proposal Proposal Proposal
‘CPTOPOSGZ - /\C’lass ‘CCZass + /\Mask ‘CMask + )\Dice ‘CDice (32)

Segmentation-based Intra and Counterfactual Loss B & 77 % Lintragcounter factual ° S3E

4 St AT

/Ctotal = Emain + ‘cproposal + ‘Cintra&counterfactual (33)
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3.3 Tasks Integration

Lclass
4 Lsemantic
e —> Yiass € RNauery*Netass
. N XYHXyW
iasksflntegranon | Ysemantic € RNctassXYHXy
ransformer v
N, XYHXyW
**************** >®> > YMask € RVaquery*<yYixy
v
Lmask + Laice Ygox € RNqueryx4

» v 4 = 2 J [ I = > [
Figure 3.3: #i-3] e 5] 4R Nquery 5k o 2% 5 T Nquery B3R ORE S o 3F R A R D
TR B 5 A EA%Wf§4"”m§$ﬁ59“4%ﬁi+”ﬁ%
A% oy = g » ® % 4 cross attention » ® B & P ff o
Nguery -

0.99 05102 0 0

0.01] 0.2 | 0.5 0 0

0 0 0 0 0 0

0 0 0 0 0 0
Ngtass @ Nquery = r Neiass

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

(Yclass)T € RNClassx’vquery yMrmk € RNqueryxnyyW YSemantic = (yClass)T ° YMask € RNdassXnyyW

Figure3.4: £ %2 A B2 5P FAAF LA LREREEDT LR -

FHPEERNER RO A PSR BBV AR T L& R T
- H o FERZFHRET R ALEFVREF TRBE AL KR Fka N
e ERR R T o ARE T AL R o & ¢ Query-based » 2 EEILR 4 B
FIFEW F X B eaigpl RECA iz 2w WaF J 2 B > i
FPHEER 2P RSP GT R RFRLRE S DFRT > Mg A2 P A EHF

FRGEFSDRAER T REENL Pt I N ERRELIAP S T e

TS EAET 6 NI F IR % o
PR NAL AEEF AT R TR A L 0 R TR Bt
BANDEDR BWLFLHZI RS ﬁ;ﬁ_@f—,']ﬁtéﬂ ok aug e iEaEa RS L Lo

AREIFDIFRIGE ST AN A AT RES K o (% L Figure 3.3)

14 doi:10.6342/NTU202404744



TR A ERLD o AR TR IELEEe P F BH IR OBR 0 L E BT
2R LT n] c R - RN B X cRXIDW, d9 [Tg) L B

L%‘ :‘% YClass c RNQueT‘yXNclass 4['(7 YMask c RNquery XyHXyW |

B R o M| endy

P-=-1P

A AR B R oA B e B Py = 1 Nygee IR £ 5 B od § iy
Wl B E G Noery RIS > o REBRFE HIAFTEFAT RS HOBH
EHgU o d M Hm BT R OB IR AR R IR AN BT RAB
o d WFFRBEAVEHEG DRI F 5 FIEARLEP AR
B T Nyer, SHIERIES P B3R SF B 030 ¥ 58 % B Query

24

WA AAT R 2T ANFRAHER FIAPFELEFTFLAS BiG D
Fol 3% A7 A F OB SEF I FR OB E o J 0 E BIER
Hefe G0 %A BHOREZ H s> 344 LTI RE
FE LA AN ERAIFRIGE D TRE B LIS EZEN A K

B35 5 8 T gl o (B0 Figure 3.4) 38 44 B ifibl % 7 538 2250 4

0

YSemantic - (SOftmaXdim:I (YClass) )T : SOftmaXdim:O (YMask) S RNCZ&SS Xy HxaW (3 4)

vy BRI EIERIS R > T B E S F A LS % b ] HERED)
Pt fiz o

it e Nyyery ¥3E 7R3 % ¥ 4R 5 Local Predictions » # — i Query e93f Bl

SR AV A - BRESDF B AEF R OIs AR EFE o 51 Local

Predictions © 3 2 2 w 5 $ %8 » % § 384 P 5 1% 8 Local Predictions e/ % & &

@ = 51 Global Prediction - iz @ vA ¥ 5 B 4 ¥ ¥ - B Query A4 - BB >
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REF R T I FB Query A2 0 R A A € FEF R R S gk
BAB A STFRISE D R o d AR RNk R 0 B4 AR

EHAHFELIER T R E PR AR
A iR A2 ¢ > %% Local Predictions ¢ % % - #g W] & & i% i Categorical
Cross Entropy Loss £ » % 7% & :

‘Cclass (SOftmaXdimzl (YClass ) ) ) YGTClass ) (3 5)

He Yoro.. € RMxNeiass % fe 4t p et mEE MAiFzay gty
F B chlicE fr o » 2] % % P14 iF Binary Cross Entropy Loss v Dice Loss i {7

ER o ABBET AN AT

Lonask (sigmoid(Yazask)), Yor,,. ) (3.6)

Edice(Singid(YMask))7 YgTMask) (37)

B Y0, eRMOOW L p A BB % TR S 5 Lt/ E % o Global

Prediction & 5 @F L A P EEREH - 7 &7 4

__ \Semantic ol Semantic ¥
Lsemantic - )\Mask X ['mask: (YSemanti07 YGTSemantic ) +)\Dice X Edice (YSemantica YGTSemantic )
(3.8)
B Yo o, € RN OW g R 2 BT RS0 5oy LA E F o A

fo \fgmantic 2 = Binary Cross Entropy Loss fr Dice Loss 4§ € © i% i + it e 3¢
BLETIRE EIA T UK B ok m,ﬁ%ﬁ » WIEFAFTFT LA A ;}gj;ﬁ‘;}g ™ s %k o

i B e dehid B S A SRS -
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3.4 Segmentation-based Proposal Strategy

( . \
1 Segmentation-based Proposal Module l
1 |
1 1
Udpg XYHXyW | | ol | B Netass X YHX YW !
|| [ e e Letass .
I E Ol 3 v !
F ! : r . ] Nquery X dhid :
ppl ; gl Query Selection ] — Qppt
1 % :
1 1
F. . ! ' > [ .
pix : i i dpig X YHXyW 1 pix
o 2| 2| 8 ! '
1 !. = -g = 1 1
o TTTTTTT g 8 & 8 ;’s ----------------- > Loask + Ladice :
: dpg X YHXyW @ Nyery XYHXYW |
| I

(©) (d)

Figure 3.6: Segmentation-based Proposal Strategy %] 4 chfh> 5 %2 & B RE Y §
SR RO E o AR BRFUIREE AT 0 R Banin g 08 L
T BEENRBE R ORI I  B ARG P9 BRARR o

i & Query-based FH EAFFF RN R RS 2 AV WALERH e P - F
e fes £ 17 5 object queries ° 1 Fastlnst % ] » 82 7% # [A-guided queries ¥ %
Dual-path Transformer Decoder 4% i~ B 37 £ &t & fm $# L o fiH E & F L e
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2 gg o B A 0B proposal feature 7 BV iE B ot ) A J L T
RELS o FENLCERRTLIERFE S EREPS Bipe - PG o

HA<i¥ % object queries » % % 1% 2 £ AFIER o

F4tiz- B 3L 247 7 & 117 Segmentation-based Proposal Strategy ° 3% i 1%

v

i #73 <1 proposal segmentation 4 % #- proposal feature 3|~ 5 Nyyer, B = ¥

2

(Sh

BoABRBVIRL- BELIBBMATENEE RS 2T 5 YP €
RNoueryyH>aW (2 0, Figure 3.5) ¢ &% B RE P » # ¢ HLEFE 3 R FF LI
o B e ce £ 17 5 3% % & chproposal (4~ &L Figure 3.6) » iz — /A28 7 5 B
proposals 3p o fp — P {RinfE o FIZ X B RPN E5 - B L P E44
EPo HRORBHAEE FHOPHBIE RRERF REZRE DD R

Pl m SRS T EAFTRR DT A0t o T #iE ) ehproposal # & & T G

Qppr € RNavervXdnia > 5 i3 F 3¢ “73E % 2 proposal B 7 H3F T 7] 2 5% 4 7

Qupi(n) = Fypi(Locationy(n), Location,(n)) € R i (3.9)

Locationy,(n), Location,,(n) = argmax(YSinggiﬁ(n) o max (Y2 %)) € 72 (3.10)

(how) dim=0
B oneZN0, Nyuery) > M4 & n BRI o Fy € RIwiax7HW i 4 Proposal
Feature 2 fF » & B =% N4 - BBREHFe E dyg PIN L s £ eha R -
heZnN[0,vH) > w e ZN|[0,yW) » Locationy, % Location,, » % & % 3 B % fh %

. _ . P ! e
FhinE o o & 57 element-wise product o Y, 2" € RNetass XYW 4k 2 Proposal

il
iy
|
<

Feature 7 ¥ ¥ & B =% en&a $830R] > ¥ & 7 5:

Proposal ) Proposal Nejgss XyHX~yW
YClass - SOftmaXdlmZO (wClass ’ Fppl) eR (311)

P l oy D P l vt 2 v [N PR
Wcziffsosa c R Netass Xdnid E '.aﬁ i rﬂ%}ﬁi o Yclzzzosa 123} 5 27 Fastlnst 7}9 fe ma" K )

18 doi:10.6342/NTU202404744



7 A PE chproposal B FEH S P AR B KRPE Dz P ER

5 AHRIIP R o & FE ¥ % e ¥ ¢0 Matching Cost 40 2 5% & 51

Proposal __ \ Proposal Proposal Proposal Proposal Proposal
COStClass - )\Class X ’CClass (YClass ’YGTClaSs) + )\Location X ‘CLocation (312)

i % i Categorical Cross Entropy Loss & > & 7 & :

Proposal Proposal
‘CClass (YClass ’ YGTCZass ) (3 : 13)

LEroPose () 4o £EToPosel s vy % Categorical Cross Entropy Loss 4 Location Cost »

Location

sy B e A A2 2l 4K : v R v P l
proposal = % =% 4 © §& 0 B¥ > Location Cost 3 0> & 2 B| 3 1o A b™™ 2

P l — . . v )an
A ooboee’ % 57 Categorical Cross Entropy Loss 2 Location Loss e & -

Proposal Segments 4 % Pi% i Supervised # Unsupervised = &> ;% i& (73750 >

Proposal .. ) Lok T N R T S [ ,
YSegments e Pen FEF 47% YgTMaSk ﬁ“i%:‘f'] EFIR Pl R Bd FE & ';%- B E; B
ARAERAA RS BB TR K EPRTARES LR T E o 2
I FE ¥ % fie ¥t Matching Cost % 71 40T ¢

Proposal __ \ Proposal Proposal Proposal v Proposal Proposal Proposal ¥
COStMask - )\Mask ><‘CMask (YSegments7 GTrrask )+)‘Dice X‘CDice (YSegments7 GT]\/Iask)

(3.14)
Abroposal g, \Proposal )\ v % 4 Binary Cross Entropy Loss 4 Dice Loss sh € o fic 4
| £3F iR] % $ 12 4p e £ Binary Cross Entropy Loss v Dice Loss & {7 £ 7B » 4 &

T

ETN

Proposal Proposal v
EMask (YSegments7 YGTMask> (315)

Proposal Proposal ¥
‘CDice (YSegments ) YrGTMaS,C ) (3 1 6)

AAFEH D TR R B SEFE B Liloss @ 25 @ HETR
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Algorithm 1 Segmentation-based Proposal Strategy ® Query Selection 7772 4% o

Input: Fy € Réwiax7 W B e RdniaxyHxaW

Output: Qpp € RNower*dnid
1: proposal_segmentations_probs < Softmax gim—o(Conv(Fy)) € RNVaeyx7H>W
2: proposal_segmentations <— Onehoty;,,—o(proposal_segmentations _probs)
3: proposal_class_probs < Softmaxgi;,—o(Conv(Fyy)) € RNVausxvHxaW
4: proposal_class_onehot <— Onehotgy;,,—o(proposal_class_probs)
5: confidence_score < Sumg;,—o(proposal_class_probs x proposal_class_onehot)
6: for query_indexr = 0t0 Nyyery - 1 do
7. confidence_scorequery index <
proposal_segmentations[query index,:,:] x con fidence_score € R¥>*7H*7W
8:  loc_h,loc_w < Max_location(con fidence_scoreqery indes)

9:  feature_vectoryery index < Expand_dimgin—o(Fypl:, loc_h,loc_w]) € R*dnid

10:  if Qpp1 1s None then

11: Qppi < feature_vectoryyery indea

12:  else

13: Qpp < Concatyim—o(Qppl, feature_vector yery indes)
14:  endif

15: end for

16: return (pp
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3.5 Segmentation-based Intra and Counterfactual Loss

(a) Input Image (b) Proposal Segmentations (c¢) Proposal Segmentation pr- (d) Ground Truth
predicted by the model tra-  edicted by the model trained
ined without Segmentation-  with Segmentation-based Int-
based Intra and Counterfac- ra and Counterfactual Loss
tual Loss

Figure 3.7: * #25 # ¢ * Segmentation-based Intra and Counterfactual Loss 3" R -3
11 Proposal Segmentation 7 p|.% %

% Proposal Fg L » /e 8 A B S FH R B R FERDEF L £~ B8 - b
4o b - F & ¢ > A Y 3 0T Segmentation-based Proposal Strategy 0 i i &
P AR ER > REEF b REEEEA RSN o Re o Wik RS
PR 0§ - PR (Target Segmentation) P FR4FfcE B~ & 7 b P R4 ez
BAREC P A2 ERNSFT i 773 LE - 4o Figure 3.7(b) #77 » ¥ - p &
AT HETE S BB WA EAFTRRIOR 'R o Aok AR R R R IERIEE

B ehap A 4 0k A 2 B NI enA B Bl § B BB TERET -

YL P o

F T8

TR AL R A L B AR AL 3 5 2
B F Ly 89 (Contrastive Learning) e97 5% o 4 > i% i Intra Loss i ¢
BB A b ie s B9 (L hedp iz o @ o 2 RAE el hi & > RI{I™ Inter Loss
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AT AR Y Yt o XA > F 5 Inter Loss srdF it € B A - BjP
BB MR AP gs g > F & 2 Eik5] ~ Inter Loss & @ 7 % AL
HIFRES 2 I B 2 g e e AT ¢ AP K 3 o0 Segmentation-based Intra
and Counterfactual Loss i&— H F ' > VB - P Fohp 0 40— R >
TEEEEFOWFIMR AP D R FNLI R REBRRBEL LG ENE
shF e o it e Figure 3.7(c) #77¢ » 8 — P 1% & proposal [# B2 5 59 = # AL 2] ¥7 5

NS LR TIRECY T I L

v — 2
Eintra&counterfactual(Fpi:pa Fcounterfactual; YGTMask) - /\intra X Eintr(L(Fpi:v; YGTMaSk)

v
+>\counterfactual X Ecounterfactual (Fpixv Fcounterfactual; YGTMask)

(3.17)

" T - Segmentation-based Intra and Counterfactual Loss 4 5 Segmentation-based
Intra Loss §= Segmentation-based Counterfactual Loss = # 38 » » 2383177 3\,
‘fr’ )\counterfactual Al & 'g ‘;’f”fﬁé‘_ o iR K I—’I‘J_q_ mj&"L W Bies 3L G F% ‘:}"g‘:

SRR B

3.5.1 Segmentation-based Intra Loss

Segmentation-based Intra Loss 573k 25 P ehE fx ik e — P £ % & N ehifcd ik
Lhr- R4 Slca A A LRI {3 E BIERRE > APH I ZREBP I
A e B AR P B fo) cngEdgE > A MR - PR N

- Fefh o oGRS A BIEALY - PR B E 5 B RS %

EMA T M EHE BB R PR A B PEOE R RS GH S

R TS B e £ B2 E v

ek

2 B RS BRI S AN A o 44 &
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BD T H AT
yH—-1~yW -1

LoteaFie Vi) = i o O 1Fpalhot) = Pl B18)

h=0 w=0

'/tlT F’ ’ szz e RdhidX’YHX’YW Tj; %\’ ],g‘_/% *3_'?{{2 FE"& ° Fmean e RdhidXPyHXFYW 3‘2;2 35 YgTIMask
HADE o BB & Spean € RV Ia L w A P B B Y nf - ping o
LB o EaeEe B SEEETE T AT Lo

Focan = (Smean)T . YgTMask € RéniaxvH>xyW (3.19)

—/5- Tl} ?Fiﬁ“Eﬁi:atﬁ_fé”E‘_ Smean(m) ERdhld , E@ll": 2}}‘\“‘%"_;%;:

yH—-1~W -1
Smean(m) Z Z GTI\Jask(m h w) X Fplx(h w) Rdhid (320)
a/rea he0 w—=0
yH-1~yW—-1
Sarea(m) = D D Vr,om (how) €ZO[LAH x W] (321)
h=0 w=0

;d? ¢ Sarea(m) fli %\ :): m fﬁ; El *%L‘?V&ém'/g\% ﬁii ’ ‘33@&'1 it Eintra('; ) ¥ w’»

- PHEREPN OEe B { AT MBEE P INE - R o

3.5.2 Segmentation-based Counterfactual Loss

Segmentation-based Counterfactual Loss 793k 3+ F e E 3 4 7 b P 2 & 4 jic
L RM O REPERBEZL G ER Lk EA 0 APPYE B REBD

T RMR LR TP B AR BRI s Y

3%
)
A
_%—1‘
Ry
D2
Tk
~m
IR
:: >
N
o
&
£

MSEF TR TR EAT A ) R
PRI R AT R &P "7 5 EN e Tt > BB T K%
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PP ERZEFAFRSME O BRI R RARENA 4 o A ST A T AT

Y _ 1%
Ecounterfactual(Fpixa Fcounterfactuah YGTMa,Sk) - £mask (w@ : (Fpm - Fcounterfactual)a YGTMask)

_'_Edice (w@ : (Fpm - Fcounterfactual)a YgTMask)

(3.22)

He we € R Nauery Xdhia EA % 1 E’f"éﬁﬁi , 5“3‘#’1&3‘; BT Nquery B A %‘J LB o
dhi HxyW

Fcounterfactual € Reaax7 =Xy —@ GTM ok #-F i ’F_'fy{? % g‘ g Scounterfactual S

RM*dit g @ow G A HHz B> %2 B2 ehd - Bl A 230 ThP RaF

T9 e BEEEIET A7 L

— T Y d id X Hx~W
Fcounterfactual — (Scounte’/‘factual) ' YVGTMGS,C € Ra=7 7 (323)

FER A T2 F e A Counterfactual Attention Learning[21] ¥ 4%
THELZEWPEEIF AT Y > BT RPRRROFTF Hkr B
Scounterfactual( ) Rd}”d L%& ] ’/x— T 3 ﬁ*ﬁfﬂiﬁs#ﬁ end op =T 2 ZELJEF

Moo qp it o N ERETE 0 o N e

Scounterfactual (m) = Smean<CFIndex<m)) € Rdhid (324)
CFIndex(m) = argmin(||Smean(m) — Smean(j)|]2) € Z N[0, M) (3.25)
J

He >meZN[0,M) &% mBPERE - jcZN[O,M)E j#m > fFi&

m fﬁ; f *%‘?Fii\'l e ﬁj‘ﬁ fs 2 *%‘Tg?iﬁ\ ° é@ﬁ’"‘l [ ‘Ccounterfactual('a'a') i %’E’,E H-%

2

TR bR A B (R FEN o SRR A 5 G p ik 3 IR AR SRS

§ ek T g
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Chapter 4 Experiments

SO BRBATR D FE g oocl s AT A COCO TR B [18] i 7 7
- kR B FTEH BN D EEFE I o P AL BE AR
i# (Tasks Integration - Segmentation-based Proposal Strategy 2 % Segmentation-based

Intra and Counterfactual Loss) e fe#= 3 o & (6 » B E IR HA 25 % & R 4o B

4.1 Implementation Details and Evaluation Protocols

COCO T img " B h e o 2w » &% k=R 2B A8 ~FLA
B~ F BA B~ P 2RI B P 3L (Caption) % 3 EAAF B E R ETRE -
ST 5 SONT RS R QTR B S BT PR R

SE
St

he
F_&

DRABEBOEIITRY N EFFLEEEL RN 535
TR EE - AVHEMRT 0 AP La 4]t 5 COCO Training set & {7 #2472 3
i E T REGD T2 BAp o ARG AR Y FE BN e N IRGBIFE

WACI O M B AT H BB B L 2R A HE R SIT R R

SORBRTFGAFTIRDZE AL N T g %Y Y COCO
Validation set :& {73 > & 2 RER > F L2 235 jﬂ g 7 4 47 0 ¢ 45 Panoptic
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Quality (PQ) ~ Segmentation Quality (SQ) = Recognition Quality (RQ) = # # » PQ &_
SQfrRQ k- SQEM T AH B R EA L mE R ARERR - 7 RQRIFE
PRy 2 A BT fEds e 27 L 2R 2En F 8P F iRk > NTR %

B[R PQuAr PQu kAT R4 B R E B BB G PQT BB

PQ = SQ x RQ (4.1)
B Z(p,g)eTP IoU(p, 9)

SQ = TP (4.2)

RQ = TPl (4.3)

TP+ 3|FP| + 5|FN]|

He spRATERES g AT EELR -

A F2 7t anchor-free %K & e YOLOVT7 [25] shiA # 2 (79 % » 7/ A &
ﬁ 78 YOLOV7 ek 3+ » & & 8 i Nvidia V100 GPU 13 5 ™ i& {7 60 i Epoch =
PR o 11T B #-batch size K 5 56 0 151 AdamW[20] it B &7 & * ImageNet
pretrained model P T TR HCA] > PR E 2% * YOLOVT ¢ 1 Flat Cosine
Learning Rate Scheduler # j5 23 B8 ¥ & » 42408 ¥ F 5 3x 1071 % =89 Fp)
B 3x 10700 gt ek BYISGEAR Y o TR A 2 B it [ S S 640 x 640 -

T L f%ﬂis?J B R s (7 80 x 80) A& 4 proposal ™ 2 & HE % o

4.2 Results and Comparisons

SO ERY 2ok e f N 2 AR AR ERY i o NPEF
TSR DR R BILG hA S B0 it o 4% 4o Table 4197 o
FELE T AT KN FEE B g 22 4 COCO Validation set e iy £

Poo AP BERBERORET o hdg E AR B iy~ ] S B
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Table 4.1: A F 4 > 2 H s fph 2 ghernt o H @ > Dee. & 8 * i
Decoder Layer # & ° Pre. i* % #_% & * 7 ImageNet pretrained model i& {7 2" 3% >
T }l i‘%ﬁ,?] » B2 1§ & ehproposal ey B o

[ Backbone [ Input Size [ Dec. [ Pre. [ PQt [ PQint T PQstt ] Parms.
CNN-based
PanopticFPN [10] ResNet-50 640 or 800 - O 39.0 459 28.7 -
AUNet [15] ResNet-50 600 - O 39.6 49.1 252 -
UPSNet [31] ResNet-50 8001333 - O 42.5 48.5 33.4 -
Auto-Panoptic [30] ResNet-50 - - (0] 44.8 51.4 35.0 -
Panoptic-DeepLab [3] Xception-71 1025 - (6] 41.2 449 35.7 -
Query-based
DETR [2] ResNet-101 (480~800, <1333) 6 O 45.1 50.5 37.0 61.8M
Panoptic SegFormer [16] ResNet-50 (480~800, <1333) 6 (6] 49.6 54.4 42.4 51.0M
Panoptic SegFormer [16] Swin-L (480~800, <1333) 6 (6] 55.8 61.7 46.9 221.4M
MaskDINO [14] ResNet-50 1024 - - 53.0 59.1 43.9 52.0M
MaskDINO [14] Swin-L 1024 - - 58.3 65.1 48.0 223.0M
MaX-DeepLab [27] MaX-S 1025 1 X 48.4 53.0 41.5 61.9M
MaX-DeepLab [27] MaX-L 1025 3 X S1.1 57.0 422 451.0M
Cmt-deeplab [32] Axial-R50 1281 6 O 53.0 57.7 459 94.9M
Cmt-deeplab [32] Axial-R104-RFN 1281 6 O 55.3 61.0 46.6 270.0M
kMaX-DeepLab [33] ResNet-50 1281 6 (6] 53.0 58.3 44.9 57.0M
kMaX-DeepLab [33] ConvNeXt-L 1281 6 (0] 57.9 64.0 48.6 232.0M
Ours ELAN 640 1 X 45.1 493 38.7 50.8M
Ours ELAN 960 1 X 46.2 51.1 38.7 50.8M
Ourst ELAN 640 1 X 46.3 51.2 39.0 52.1M

Table 4.2: 1* 57§ & Jen= i 2 i g Bk o M F X A HCAD RO g o

All Things Stuff

Algorithm PQI[SQIRQT| PQin1[SQin[RQunl| PQst1]SQst 1|RQs: T |Parms. [FLOPs| FPS
A: YOLOv7 37.8|78.1/45.4| 45.8 83.5 53.5 259 | 699 | 33.1 |46.0M|175.9G|(120.20
B: A + Fastinst 12.049.0(17.3| 19.6 67.2 28.2 0.6 21.5 1.0 |47.7M [145.5G|100.61
C: B + Tasks Integration 40.8759(51.1| 46.3 77.3 58.1 324 | 73.7 | 40.7 |47.7M [145.5G|113.08
D: C + Segmentation-based Proposal| 44.4 |79.2 | 54.8 | 47.9 79.9 59.2 39.1 78.1 48.1 |50.8M |153.3G| 20.26
E: D + Intra Loss 4491(79.0]155.3| 49.1 79.6 60.6 38.6 | 782 | 47.4 |50.8M [153.3G|20.27
F: E + Counterfactual Loss 45.1|79.4|55.6| 49.3 79.6 60.8 38.7 | 79.1 | 47.6 |50.8M [153.3G| 20.26

77 Decoder layer #c > ® 7 i #f ImageNet pretrained model {5/ ™ » & AB{F 1 2
4% ¢h4 I o ¥2 CNN-based ##-7%] 4~ PanopticFPN [10] ~ AUNet [15] ~ UPSNet [31] »
Auto-Panoptic [30] 2 Panoptic-DeepLab [3] & = ;2 4pt » A& 3 &7 ikig ~ F]5g "
RECA| T o i dp e & mﬁiﬂ Fljt ) TAZARGGE S 2 A oo p
f2 3t Query-based = £ » T3 dEE P fEfrd o Decoder & #c PR
PR AR i o PR ARRIEE A 2 2026 FPS s RiE T BT 2

TR 3 R T

7

21N

A
%7\

el

FF o oTable 420 #07 #1323 Z HE R P e A=
8 7 I 1 Algorithm » # ¢ Algorithm A i% % baseline » Algorithm B I Algorithm

F Rl i% # 4 » 7 Fastlnst [7] 7 Dual-path Transformer Decoder ~ Tasks Integration
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Strategy ~ Segmentation-based Proposal Strategy > 2 %2 Segmentation-based Intra and

Counterfactual Loss °

B o Algorithm A # * 7 YOLOV7 [25] P48 H » T FF ¢34 0 - B3R
R EFRens Lo gt ?H#M%l:':ﬂ%s FEARAAEZLAELL  #8lE2
B e B s BFE RIS % o Algorithm B 51 » 7 Fastlnst 77 Dual-path Transformer
Decoder » #-7¢ Hf# # % Query-based 8 Ff ] 4 £ » 1/ f2;4 CNN-based ¥ =734
A is B ER 2R & R 4L (% L Figure 4.1(a)) » 8 @ > Fastlnst j&_proposal
ZRE?PEHtopk BRI FL query rd L W& HTA DB ERI BB
s ehproposal 3y w - B % @ AP $ LR o 2 R 0% F proposal & F A E
#FoBRLNED S EAIER A F B A I AR iR (4 L Figure 4.1(b)) °
Algorithm C & * 7 & I ehiZ 3 £ Lo > B8 B R g 28 EH )
query > @ ERFApH AP WL T FIHELEE A G A I HEH o 1
Figure 4.1(c) fv Table 4.2(C) > 3% = i# 3 »xix & 1 4r Figure4.1(a) * # R K 7
& chf* 38 0 11 2 4e Figure 4.1(b) » 74k query i = B £AFIE R & & F & 2 AL 1P
eIl % o Algorithm D & - 4 31 » Segmentation-based Proposal Strategy > % i % 4
Zw Y EF B B > A& B proposal segmentation ¥ ¥ iE I — i proposal > ¥ %
% 1 proposal i & & * query 1R & o j¥_Figure 4.1(d) {= Table 4.2(D) ¥ M L%
Pl @SB RE A2 proposal W i G ¢ A R E RN RE > ¥ RIF
AW AW PR F LT FEIER] o B8 0 Algorithm E i i Segmentation-based

Intra Loss 3 i* 7 2 &

w

[T P - R RS ABETH GO E o A
Figure 4.1(c) ~ (d) » » &% % D I pF «0k® 48 (4 & Figure 4.1(e)) » Algorithm F R
1 * Segmentation-based Counterfactual Loss > i#_i¢ 7 ¢ 4~ & % 3 & 4 & #F 5| {4

P BERA A BB SET (%1 Figure 4.1() -

gtk > 4 4t Tasks Integration f= Segmentation-based Intra and Counterfactual
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(a) Result of Algo. A (b) Result of Algo. B

(e) Result of Algo. E (f) Result of Algo. F

Figure 4.1: FEALF L W AT H e 2 o

Loss » 2% 3 ¢ 2k 3- 7 & i g F & - Table 4.3* #2 7 7= Tasks Integration i
¢ Z % # * Bounding Box Loss ¥+t e 58 o d 20 iz 51 A L 3

PRERPERFHEOER TS AERFERMEARRT > SRS RE R
SR LARRUE K § B AR o % > i@ % B SQ- A@ » Tasks Integration
Transformeréi@lilﬁéﬁg?] NSk ab | tREVALAPEFBOER I &
B2 ey REARY SRy LG Eay L B T4 N iEa
BPmZ R > VRS ERFAAI NG > & MNP ERPIF > ERRQTE -
RHpFHREE > 2 THER PR G L R HCA 01 & Eas > X FN R

2R

% Table 4.47 > AP 7 7 F - 4% 3% 1 o9 Segmentation-based Intra and
Counterfactual Loss e/} e 2k o A Bjbb 7 A * 44 Sfic~ @ * Wyr £ 9
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AR B2 2R P L Sk o BILGF TR ILA S SR

VLA LR A e A - TRA HIHAPER LR TR TR

y

F FACHCAAT R o AR T o TR s 2 EHE B AL R LA

TR A At SR OERT  BERA T A Bk B (50 Table

440) - B B F A o SR NP BRI E BRBOEEF AL HE

G R R L HMFELROIBEREA S TIN5 B LS A B A
{

P 37 Sl

B s > Table 4.5/ fie 7 @ * % /| &h 51 B 4% 2 I % < 9 proposal #
R MR R o s mﬁ;f] B2 e\ #+ e proposal $F iy B E HIE RS
55 o o

Table 4.3: +* #3 #& % 7 Bounding Box Loss 2 i} f ¥ B e 4 5 & & #03]- f?
RS -

All Things Stuff
Algorithm PRI | SQT | RRQT | PQerl | SQul | RQOul | PQstl | SQst? | RQst?
G: C+Box Loss 38.7 76.1 48.7 43.4 71.5 54.8 31.6 74.0 39.6
C: B + Tasks Integration 40.8 75.9 51.1 46.3 77.3 58.1 324 73.7 40.7

Table 4.4: +* #.5 # & * "Segmentation-based Intra and Counterfactual Loss” % i¢ * i&
AF FRAL PR & RWF S AR DR

All Things Stuff
Algorithm PQTISQTIRQTIPQthT|SQithT|RQ:thT|PQstT|SQstT|RQstT|Parms.| FLOPs| FPS
C: B + Tasks Integration 40.8759|51.1| 463 | 773 | 58.1 | 32.4 | 73.7 | 40.7 |47.7M [145.5G[113.08
H: C + Original CF Branch 415|774 |51.8| 46.8 | 78.8 | 584 | 33.6 | 754 | 41.7 |53.9M |144.1G [106.00
I: C + Intra & Counterfactual Loss |43.0 |78.4|53.3| 46.5 | 79.0 | 57.8 | 37.6 | 77.5 | 46.5 |47.7M|143.9 G|109.66
F: I + Segmentation-based Proposal| 45.1 | 79.4 | 55.6 | 49.3 | 79.6 | 60.8 | 38.7 | 79.1 | 47.6 |50.8M |153.3G| 20.26

Table 4.5: “ &% & 3% lg\mﬁﬁj <t 23 e proposal # iy B2 ) R & o
Algorithm: F All Things Stuff
Input Size | Scale | PQ1T | SQ1T | RQT | PQtr1 | SQint | RQint | PQstT | SQstT | RQstT | Parms. | FLOPs | FPS
640 1/8 | 45.1 | 79.4 | 55.6 | 49.3 79.6 60.8 38.7 79.1 47.6 | 50.8M | 153.3G | 20.26
960 1/8 | 46.2 | 80.3 | 56.4 51.1 80.8 62.4 38.7 79.6 475 50.8M | 345.0G | 11.29
640 1/4 | 463 | 80.7 | 56.3 | 51.2 81.2 62.0 39.0 79.9 479 | 52.1IM | 254.3G | 9.34
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(a) Images (b) Merged Results (c) Predictions (d) Ground Truth

Figure 4.2: £ 2 F 7 /N> 2 24 o L5 E R4-BI P BT H -
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