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Abstract

With the breakthrough development of Large Language Models (LLM), their im-
mense computational requirements have become a primary driver of the growth in energy
consumption and carbon emissions in global data centers. Unlike traditional batch pro-
cessing tasks, interactive LLM applications are not only energy- and compute-intensive
but must also meet user demands for low-latency Quality of Service (QoS), which presents
significant challenges for resource scheduling in cloud-native environments. Caching
mechanisms are widely adopted in the modern web, and with the rapid growth in LLM
applications, semantic caching has emerged as an effective technique for reducing latency
and costs. Different from traditional caching, which mostly requires exact matching, se-
mantic caching operates through the computation of distance and similarity in word em-
beddings. However, its actual impact on total system energy consumption, especially the
trade-offs under specific parameter settings, currently lacks in-depth empirical research in

academia.
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This study aims to quantify and analyze the impact of semantic caching on the en-

ergy consumption of LLM applications in a Kubernetes environment. ~-We constructed

an experimental platform consisting of an Ollama (Mistral-7B) inference service and the

GPTCache vector cache mechanism, integrated with Kepler (Kubernetes-based Efficient

Power Level Exporter) and NVIDIA DCGM (Data Center GPU Manager) monitoring

tools to achieve comprehensive measurement of CPU, DRAM, and GPU power consump-

tion. The core of the research involves a systematic evaluation of how a key parameter

of GPTCache, the similarity threshold, non-linearly affects the system’s cache hit rate,

response time, and overall energy consumption.

The experimental results demonstrate that the energy efficiency of semantic caching

is highly conditional on its parameter configuration. When the similarity threshold was

set to a lenient value (0.7), a high cache hit rate of 99.99% successfully circumvented the

high-energy GPU inference, reducing average system power from 155.88 W to 88.78 W (a

decrease of over 43%), which translates to a reduction in total energy consumption during

the experiment from 93,256 J to 52,487 J and drastically improved the average response

time from 30,294 ms to approximately 105 ms. However, as the threshold became stricter,

performance degraded, reaching an inflection point at a threshold of 0.85, where the to-

tal average power consumption (175.22 W) surpassed the baseline, and the total energy

vi doi:10.6342/NTU202504158
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consumption during the corresponding experimental period is also 11,604 J more than the

baseline group. When the threshold was set to 0.95, the cache hit rate plummeted t0:29.4%.

Concurrently, the system’s average response time reached 29,035 milliseconds, which was

only 4% lower than the baseline group’s 30,294 milliseconds. This led to the system not

only bearing the full cost of GPU inference but also incurring additional overhead from

query vectorization, ultimately increasing total energy consumption by more than 12% to

105,130 J, proving that improper cache configuration is more energy-intensive.

This research provides the first quantitative characterization of the energy efficiency

of semantic caching in LLM applications, empirically demonstrating that the appropri-

ate configuration of cache parameters is a prerequisite for achieving energy-saving goals

and avoiding negative effects. The findings of this study not only offer a preliminary

exploratory investigation into the energy consumption optimization of LLM applications

but also lay the groundwork for future research on scheduling LLM workloads on the Ku-

bernetes platform using metrics such as semantic similarity, response time, and energy

consumption.

Keywords: Semantic Vector Caching, Sustainable Artificial Intelligence, Large Lan-

guage Model Inference, Cloud Native Architecture, Energy Management
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Chapter 1 Introduction

1.1 Motivation

The Information and Communication Technology (ICT) sector has experienced ex-
ponential growth, becoming deeply integrated into the fabric of modern society. This
expansion, however, has been accompanied by a significant and growing environmental
footprint. Recent peer-reviewed estimates place the ICT sector’s contribution at 1.8-2.8%
of global greenhouse gas (GHG) emissions, a figure that could be as high as 2.1-3.9%
when accounting for the full supply chain [1]. A significant driver of this energy demand
environmental impact is the proliferation of large-scale data centers, which are necessary
to power cloud computing services. The global electricity consumption of these facili-
ties has grown by 20-40% annually in recent years, reaching up to 1.3% of total global

electricity demand by 2022 [2].

Within this landscape, the rise of Artificial Intelligence (Al) and Machine Learn-
ing (ML) has emerged as a particularly energy-intensive domain, driving a super-linear
growth in data volume, model complexity, and infrastructure capacity [3]. While the en-
ergy costs of model training have been extensively documented, the subsequent inference
phase—where trained models are deployed to serve user queries—is now understood to

constitute the majority of ML-related energy demand. Industry analyses estimate that in-
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ference accounts for 80-90% of ML cloud computing demand [2]. Other reports from
major technology companies place this figure between 60-70% of their total ML energy
use [4]. As Large Language Models (LLMs) are increasingly deployed in user-facing,
latency-sensitive applications that serve billions of queries daily, developing strategies to
mitigate the energy consumption of inference has become a critical challenge for sustain-

able software engineering.

In response to these energy concerns, the field of green software engineering has de-
veloped various strategies to create energy-efficient systems. While many strategies are
framed as creating “carbon-aware” systems, their effectiveness is fundamentally predi-
cated on managing energy consumption, as energy usage is a primary determinant of op-
erational carbon emissions. These approaches often involve spatial shifting, which relo-
cates computational workloads to data centers in geographical regions with cleaner energy
grids [5], and temporal shifting, which adjusts job execution times to coincide with pe-
riods of low carbon intensity through methods like suspend-resume or dynamic resource
scaling. For the specific domain of LLMs, research has focused on similar energy re-
duction techniques, such as routing inference requests to data centers with lower power
usage effectiveness [6] or using generation directives to produce more concise, and thus
less energy-intensive, responses [7]. Another prominent strategy is the use of semantic
caching, which aims to reduce the number of expensive, GPU-intensive calls to the LLM

by storing and reusing answers to semantically identical queries [&].
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1.2 Research Objectives

While strategies such as temporal and spatial workload shifting have shown promise
for reducing the environmental impact of delay-tolerant batch processes, these methods are
often unsuitable for latency-sensitive, interactive applications like the inference services
for LLMs. These applications require immediate responses to maintain Quality of Service
(QoS), making it imperative to find solutions that reduce energy consumption without
introducing prohibitive delays. To address this challenge, semantic caching has emerged
as a viable technique to reduce the operational cost and improve the responsiveness of
LLM services by storing and reusing the results of semantically similar queries, thereby

avoiding energy-intensive calls to the underlying model.

However, the direct impact of this technology on system-level energy consumption
remains under-quantified. The efficacy of a semantic cache, such as GPTCache [&], is
critically dependent on its configuration, particularly the similarity_threshold that
determines a cache hit. An improperly configured threshold risks introducing computa-
tional overhead that could negate or even reverse potential energy savings. Furthermore,
in this study, the term “’performance” is explicitly defined by response time (or latency).
The objective is to move beyond ambiguous terminology and analyze the specific trade-
offs between energy consumption and these precise performance indicators. To ensure the
academic rigor and clarity of our contributions, it is essential to strictly define the scope
of this research. This study’s experimental design is specifically tailored for single-turn,
domain-specific question-answering (Q&A) applications. This scenario is analogous
to practical use cases such as Frequently Asked Questions (FAQ) systems or specialized

Al agents for a narrow knowledge domain. We acknowledge that the caching mecha-
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nisms for more complex applications involving multi-turn dialogue, multi-modal data, or
cross-domain reasoning present challenges far beyond the scope of this work. By clearly
delineating this boundary, we aim to provide a focused and robust analysis whose findings

can serve as a reliable foundation for future, more complex investigations.

To bridge the identified research gaps, this study was structured with the following

research objectives:

* To establish an empirical energy consumption baseline for a standard, non-cached
LLM inference service to serve as a benchmark for quantifying the net energy sav-

ings or costs introduced by the semantic caching layer.

* To quantitatively measure and analyze how different similarity_threshold set-
tings in a semantic cache influence the total energy consumption of a LLM inference

service deployed in a cloud-native environment.

* To evaluate the performance and power trade-offs associated with different thresh-
old configurations, specifically analyzing the relationship between cache hit rate,

average response time, and overall system power consumption.

1.3 Organization of Thesis

This thesis is organized into five chapters to systematically address the research prob-
lem. This first chapter provides an introduction to the research, establishing the motiva-
tion, defining the core research objectives, and outlining the structure of the document.
Chapter 2 presents a comprehensive literature review, discussing the core principles of

green software, the significance of cloud-native architectures, existing research on carbon-
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aware systems and LLM inference optimization, and the state of observability tools for en-
ergy monitoring. Subsequently, Chapter 3 details the methodology employed in this study,
describing the system architecture, experimental setup, the selection of the primary inde-
pendent variable, and the procedures for data collection and energy measurement. Chapter
4 then presents the empirical results and a thorough discussion of the findings, analyzing
the measured power consumption and performance metrics across different experimental
configurations to reveal the non-linear relationship between the cache’s similarity thresh-
old and system efficiency. Finally, Chapter 5 concludes the thesis by summarizing the
key findings, highlighting the study’s contributions to the field of sustainable software

engineering, and proposing promising avenues for future research.
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Chapter 2 Literature Review

This study focuses on evaluating and analyzing the energy consumption of a LLM
inference service within a cloud-native architecture. Consequently, this section will suc-
cinctly delineate the core concepts and key tenets of green software, along with elucidating
the significance of cloud-native architectures. Concurrently, it will review existing re-
search concerning software carbon emissions and current studies on energy consumption
optimization for LLM inference, and observability tools to monitor energy consumption

regarding research are also reviewed at the end of the section.

2.1 Green Software

Green Software is an emergent and interdisciplinary field focused on minimizing the
environmental impact of software by considering its entire life-cycle, from design and
development to deployment and eventual decommissioning. The Green Software Foun-
dation defines it as software that is responsible for emitting fewer greenhouse gases. This
is achieved by adhering to a core set of principles, primarily centered on carbon efficiency,
energy efficiency, and hardware efficiency [9]. Carbon efficiency involves running soft-
ware at times and in locations where the carbon intensity of the electrical grid is lowest,

a practice known as carbon awareness. Energy efficiency focuses on consuming the least
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amount of electricity possible to perform a given task. Hardware efficiency aims to min-
imize the embodied carbon, which is the carbon emitted during the manufacturing and
disposal of hardware, by extending the life of existing hardware and improving hardware

utilization.

These principles are put into practice through the application of Green Software pat-
terns [10], which are reusable, vendor-neutral solutions to common problems in software
engineering. Examples of such patterns include demand shaping, where application be-
havior is adjusted based on the availability of renewable energy, and energy-proportional
computing, which ensures that the energy consumed by a system is proportional to the
work it is performing. The concrete implementation of these patterns within a specific
technological context or vendor’s product is referred to as a Green Software practice.
These practices can range from optimizing algorithms and data structures to reduce CPU
cycles, to designing applications that can run effectively on older, less powerful hardware.
The overarching goal of these principles, patterns, and practices is to systematically reduce

the carbon footprint of software, contributing to broader sustainability goals.

2.2 Cloud Native Deployment

The significant computational and resource demands of LLMs pose substantial de-
ployment challenges that traditional infrastructures cannot adequately address [11]. In
response, cloud-native architecture has become the prevailing paradigm, leveraging prin-
ciples of containerization, microservices, and orchestration to build scalable and efficient
Al systems [12]. This approach decomposes complex applications into independent mi-
croservices, which are then packaged into lightweight containers to ensure consistent and

7 doi:10.6342/NTU202504158
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portable deployment across diverse environments [13]. This modularity allows for the
independent scaling of components like data processing and model inference, thereby en-

hancing system resilience [14].

Orchestration platforms such as Kubernetes are essential for managing these con-
tainerized services at scale, providing automated deployment, lifecycle management, and
declarative resource control [ 1 5]. A primary benefit of this architecture for LLM inference
is its inherent elasticity. Governed by an orchestrator, cloud-native systems can employ
auto-scaling to dynamically adjust the number of service instances in response to real-time
workload fluctuations [ 1 |, 14]. This ensures resources are provisioned only when needed,
which is fundamental to minimizing financial costs and energy consumption from over-

provisioning [ 11, 13].

Furthermore, the cloud-native environment facilitates fine-grained resource config-
uration, which is critical for optimization. Efficiently deploying an inference service re-
quires navigating a vast configuration space, including CPU cores, GPU memory, and run-
time parameters like batch size. Studies show that an optimal configuration can yield over
a tenfold increase in performance and significantly improve resource utilization, directly
impacting costs and energy use [16]. The convergence of these capabilities is paving the
way for an ”Al-native” paradigm, where a deeper integration between ML runtimes and
cloud systems enables advanced optimizations. Techniques such as multi-tenancy, which
allows multiple tasks to share common infrastructure, can dramatically improve resource
usage and throughput, further solidifying the cloud-native approach as a cornerstone for

efficient and sustainable Al deployment [11].
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2.3 Carbon Awareness Large Language Model Inference

The escalating computational demand of Generative Artificial Intelligence (GenAl)
has brought significant environmental concerns to the forefront, particularly regarding
the carbon emissions associated with the inference phase of Large Language Models
(LLMs). While model training is an energy-intensive, one-time cost, the operational infer-
ence phase, which serves billions of user requests, is poised to become the predominant
and continuous source of carbon emissions [0, 7]. Consequently, a substantial body of
research has emerged to develop strategies that mitigate the carbon footprint of LLM in-
ference services without compromising performance or the quality of generation. These
strategies can be broadly categorized into direct carbon reduction techniques and perfor-

mance optimizations through semantic caching.

2.3.1 Direct Carbon Reduction Strategies

Direct strategies for carbon reduction in LLM inference aim to modulate the execu-
tion of queries based on real-time environmental factors or by altering the generation pro-
cess itself. One prominent approach is the geographical shifting of computational work-
loads. Chien et al. [60] propose a workload model for ChatGPT-like services and demon-
strate that intelligently directing inference requests to data centers in regions with lower
power grid carbon intensity can yield substantial emission reductions. Their CarbonMin
algorithm, which routes requests to the greenest available locations, was shown to reduce
carbon emissions by 35% under current conditions and up to 56% in a projected 2035
scenario, all while maintaining the quality of service (QoS) for user-facing applications.
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An alternative, application-level strategy involves manipulating the LLM’s gener-
ative process. Li et al. [7] introduce SPROUT, a framework that utilizes ”generation
directives” to guide the autoregressive process toward greater carbon efficiency. By in-
structing the model to provide more concise responses, SPROUT reduces the number of
generated tokens—a metric that exhibits a strong linear correlation with carbon emissions.
This approach circumvents the need to downsize the model, thereby preserving its con-
textual understanding capabilities while achieving a carbon reduction of over 40%. The
framework employs a directive optimizer and an offline quality evaluator to balance sus-

tainability with high-quality outcomes.

2.3.2 Semantic Caching for Cost and Carbon Reduction

Another principal strategy to mitigate the computational and carbon cost of LLM
inference is caching. By storing and reusing the results of previous queries, caching sys-
tems can significantly reduce the number of expensive calls to the LLM, thereby saving
energy, reducing latency, and lowering operational costs. However, traditional key-value
caching mechanisms are inadequate for LLM applications due to the unstructured and se-
mantically variant nature of user queries. For instance, a query for *What is the distance
between New York and Los Angeles?’ is semantically identical to "How far is LA from
NYC?’, yet would be treated as distinct by a traditional cache. This challenge necessitates
the use of semantic caching, a concept explored in early web systems where query match-
ing was used to avoid redundant access to data sources [17]. In the context of modern
LLMs, this is achieved by transforming queries into high-dimensional vector embeddings

and identifying cached entries through similarity searches in a vector space.
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An open-source implementation that has become a foundational tool in this domain

is GPTCache. It employs embedding algorithms to convert queries into vectors and uses a

vector store to conduct similarity searches. When a new query’s embedding is sufficiently

close to a cached embedding (based on a similarity threshold), the corresponding response

is served directly from the cache, leading to significant improvements in response speed

and cost savings [¢]. Figure 2.1 displays the system architecture of GPTCache.
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Under the design of GPTCache, two conditions exist. In the event of a cache miss,

user requests are forwarded to the LLM for inference. Following this, the original question

is inserted into the vector database, and the LLM-generated answer is stored in the scalar

database, as depicted in Figure 2.2. Conversely, upon a cache hit, indicating semantic

similarity between the user’s query and a previous question, the corresponding answer is

directly retrieved from the scalar database and returned to the user, as depicted in Figure

2.3.
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While foundational, basic semantic caching has its limitations. Researchers have

identified that a simple similarity search is often insufficient, leading to the develop-

ment of more sophisticated, semantics-oriented caching architectures. Li et al. propose

SCALM, a framework that moves beyond simple query matching to perform hierarchical

semantic clustering on query data. By identifying frequently visited ”semantic patterns,”

SCALM can rank queries based on their potential for cost savings and make more intelli-

gent caching and eviction decisions. This approach yielded a relative increase of 63% in

cache hit ratio and a 77% improvement in token savings compared to baseline GPTCache
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implementations [ | 8]. Further refining this, Mohandoss notes that many user queries are
not context-free and depend on factors like user identity, location, or role. His proposed
context-based semantic caching design introduces a ’Context Hashkey” alongside the se-
mantic vector, ensuring that cached responses are not only semantically similar but also
contextually appropriate for the user, thereby preventing incorrect cache hits for person-

alized or location-sensitive queries [19].

The optimization of these systems can be further enhanced by integrating caching
with other strategies. Zhu et al. [20] investigate the joint optimization of caching and
model multiplexing. Their framework introduces a model multiplexer that, in the event
of a cache miss, decides whether to route the query to a smaller, less expensive model or
a larger, more powerful one based on estimated costs. By combining a Least Expected
Cost (LEC) caching policy with this model selection mechanism, their system achieves a
more holistic optimization of the cost-performance trade-off, demonstrating up to a 4.3x

reduction in FLOPs on real-world datasets.

Above literature presents a clear trajectory from direct carbon reduction techniques
to increasingly sophisticated semantic caching systems. These systems have evolved from
basic vector similarity lookups to architectures that incorporate semantic pattern analysis,
user context, and joint optimization with model selection. While these studies establish
the efficacy of various carbon and cost reduction techniques, a detailed analysis of how the
similarity threshold within a semantic cache directly influences the energy consumption
and carbon footprint of the inference service, particularly within a cloud-native deploy-
ment, remains less explored. This thesis aims to address this gap by quantifying the energy
impact of varying this critical hyperparameter, providing a new dimension to the under-

standing of sustainable GenAl operations.
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2.4 Observability

In cloud-native systems, standard observability stacks featuring Prometheus and Grafana
excel at monitoring general resource metrics but lack native capabilities for energy con-
sumption analysis [21]. Accurately attributing power draw to individual containerized
workloads is a significant challenge. While hardware-based power meters provide a high-
precision ground truth, their cost, scalability issues, and inability to offer process-level
granularity make them impractical for fine-grained analysis in production environments
[21, 22]. Consequently, research and industry have focused on software-based power me-

ters that estimate energy usage.

These software tools primarily leverage hardware interfaces such as Intel’s Running
Average Power Limit (RAPL) for CPU and DRAM domains, and NVIDIA’s Management
Library (NVML) for GPUs [22]. Open-source solutions built for containerized environ-
ments exemplify the state-of-the-art. Kepler (Kubernetes-based Efficient Power Level Ex-
porter), a Kubernetes-native exporter, uses the extended Berkeley Packet Filter (¢eBPF) to
efficiently collect hardware performance counters, applying regression models to estimate
power at the pod level [23]. In contrast, tools like Scaphandre employ a simpler, usage-
based model that correlates a process’s CPU time with the node’s total RAPL-reported

energy.

However, the current landscape of energy observability is defined by several critical
limitations. The most significant is the documented discrepancy between tools; due to dif-
fering estimation algorithms, various software meters produce divergent power consump-
tion figures even when analyzing the same workload with the same underlying RAPL data

[21, 22]. Furthermore, there is a fundamental trade-off between measurement accuracy
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and system overhead, as higher sampling frequencies that capture more detailed power
profiles also induce greater CPU load. A final, major constraint is platform compatibility,
with many prominent tools, including Kepler and Scaphandre, lacking robust support for
ARM architectures. This complex and varied state of energy monitoring underscores the
need for empirical research to carefully quantify the power consumption of novel work-

loads like LLM inference, using a consistent and well-understood measurement method-

ology.
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Chapter 3 Methodology

This chapter details the methodological foundation of the research, outlining the sys-
tematic approach employed to investigate the energy consumption and performance trade-
offs of semantic caching for LLM inference services. It begins by defining the specific
research problem within the context of sustainable software engineering. Subsequently,
it describes the system architecture, experimental design, and the selection of the primary
independent variable. Finally, it specifies the procedures for conducting the experiments
and the precise methods for measuring and calculating energy consumption, ensuring the

study’s validity and replicability.

3.1 Statement of Problem

The increasing computational demand of LLMs has positioned them as a significant
driver of energy consumption in data centers. While much of the research in GreenOps
and sustainable software engineering has focused on reducing the carbon footprint of non-
real-time workloads, such as batch processing or model training, through temporal or spa-
tial shifting, these strategies are often unsuitable for latency-sensitive, interactive LLM
inference tasks. These applications demand immediate responses to maintain Quality of
Service (QoS), yet each inference request contributes to the software’s overall energy con-
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sumption.To address this challenge, semantic caching has emerged as a promising tech-
nique. As demonstrated by projects like GPTCache, placing a semantic cache between
the user and the LLM can effectively reduce the frequency of expensive LLM API calls,
thereby lowering operational costs and improving response times. However, the direct
impact of this technology on system-level energy consumption has not been sufficiently
quantified or evaluated. The effectiveness of a semantic cache is critically dependent on
its configuration, particularly the similarity threshold, which governs its hit-or-miss be-
havior. An improperly tuned cache could introduce computational overhead that negates

any potential energy savings or even increases total consumption.

Therefore, to address this research gap, this study aims to systematically investigate
the energy-performance trade-off inherent in semantic caching. The primary objective
is to quantitatively measure how tuning the similarity_threshold influences the to-
tal energy consumption, while analyzing the corresponding effects on cache hit rate and
response time. This involves establishing an empirical energy consumption baseline for
a standard, non-cached deployment, which serves as a crucial benchmark to accurately
quantify the net energy savings or additional costs introduced by the caching layer under

different configurations.

To accomplish these objectives, this research will undertake a series of well-defined

research tasks:

1. Design and construct a cloud-native experimental platform on Kubernetes, integrat-

ing an Ollama inference service with the GPTCache semantic caching layer.

2. Implement a comprehensive energy measurement framework by deploying Kepler
and NVIDIA DCGM (Data Center GPU Manager) exporters to capture CPU, DRAM,
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and GPU power consumption at the pod level. Prometheus and Grafana are also de-

ployed to store monitoring data and visualize it.

3. Generate a realistic and repeatable workload using the Quora Question Pairs (QQP)

dataset and the ko6 load testing tool to simulate cache hit and miss scenarios.

4. Conduct systematic experiments by manipulating the similarity_threshold as
the key independent variable and comparing the results against a non-cached base-

line.

5. Collect and analyze the resulting data on cache hit rate, response time, and power
consumption to quantify the trade-offs and identify the conditions under which the

cache provides a net energy benefit or becomes a parasitic overhead.

3.2 System and Experiment Design

To empirically investigate the research questions, a comprehensive experiment was
designed, encompassing a specific system architecture, a representative dataset for work-
load generation, and a robust framework for energy measurement. All infrastructure com-

ponents were defined using Terraform to ensure the experiment’s replicability.

3.2.1 System Architecture

The experiment was conducted on the Google Kubernetes Engine (GKE) [24], a fully
managed Kubernetes service provided by Google Cloud. While Kubernetes is open-source
and can be installed and managed by anyone, it can be complex to set up and maintain a
production-ready Kubernetes cluster. GKE simplifies the process and lets us utilize the
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functionalities of Kubernetes without having to build and maintain all by ourselves, which
is suitable for our research. On GKE, a single-node cluster was provisioned, equipped with
an NVIDIA T4 GPU to handle the computational demands of LLM inference. The core

of the application stack consists of three main components:

* LLM Inference Service: Ollama was used to serve a 4-bit quantized version of the
Mistral-7B model, providing a powerful yet resource-efficient open-source LLM

for inference tasks.

* Semantic Cache Layer: GPTCache was integrated as the semantic caching layer

within FastAPI framework to provide publicly accessible HTTP service.

* Vector and Scalar Database: pgvector was adopted as vector store for similarity
searches in this system due to its compatibility with GPTCache. Also, PostgreSQL

was utilized to store scalar data that returned to users once cache is hit.

The selection of the above tools primarily addresses the initial requirements for build-
ing LLM inference services on cloud-native platforms, alongside considerations for ex-
perimental costs. Two primary experimental groups were established to facilitate a com-
parative analysis, and Figures 3.1 and 3.2 illustrate the infrastructure configurations for

the two distinct experimental groups, respectively:

* Baseline Group: This configuration represents a standard LLM deployment with-

out a caching layer. All user prompts are sent directly to the inference service.

* Benchmark Group: This configuration includes the GPTCache semantic cache.
All incoming prompts are first processed by GPTCache. Only in the event of a
cache miss is the request forwarded to Ollama.
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3.2.2 Dataset and Workload Generation

To ensure the experiment’s results are consistent and comparable with existing re-
search, this study utilizes the QQP dataset. The QQP dataset has been human-annotated
to indicate whether the two questions in a pair are semantically duplicate (is_duplicate =
1) or not (is_duplicate = 0). This structure perfectly models the operating conditions of a
semantic cache, allowing for the scientific simulation of cache hit and cache miss scenar-
10s. In this research, 30,141 questions in a pair are selected, and all of them are labeled as

semantically duplicate, as Figure 3.3 shows.

: "What are some ways to hack a Facebook account?",
: "How can we hack fb?"

Figure 3.3: Example in QQP Dataset

Workload generation was managed by k6, a modern, scriptable load-testing tool. To
simulate realistic user traffic, the k6 scripts were designed to gradually increase the num-
ber of virtual users (VUs) over a 10-minute experimental run. The maximum number of
concurrent VUs was predetermined through a series of preliminary stress tests to iden-
tify the system’s stable load capacity without causing out-of-memory (OOM) errors or
excessive latency, a necessary step to ensure that the experiment measures a system under
pressure but not one that is failing.
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3.2.3 Energy Measurement Framework

A multi-tool approach was required to achieve comprehensive and granular energy

measurement within the virtualized GKE environment.

» Kepler was deployed to estimate pod-level energy consumption. As public cloud
VMs do not expose low-level hardware interfaces like Running Average Power
Limit (RAPL), Kepler utilizes eBPF to collect kernel-level statistics and applies
machine learning models to estimate the power draw of CPU and DRAM for each

pod.

* NVIDIA DCGM Exporter was deployed to specifically measure the power con-
sumption of the NVIDIA T4 GPU. Kepler has technical limitations in directly mea-
suring GPU power, making the DCGM exporter an essential component for captur-
ing the energy consumed by the most power-intensive part of the LLM inference

workload.

» Prometheus was used as the central time-series database to scrape and store all met-

rics exposed by Kepler and the DCGM exporter.

3.3 [Experiment Variable

The primary independent variable investigated in this study is the similarity_threshold
within the GPTCache configuration. This parameter is a floating-point value that dictates
the minimum semantic similarity score required between an incoming user query and a
cached query for a cache hit to occur.
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This variable was chosen because it represents the core trade-off in a semantic caching
system . A low threshold (e.g., 0.7) is more lenient, increasing the probability of a cache
hit. This has the potential to maximize energy savings by avoiding GPU-intensive infer-
ence but carries the risk of returning a semantically different, or "false positive,” answer,
potentially degrading response quality. Conversely, a high threshold (e.g., 0.95) is stricter,
ensuring that only highly similar queries result in a hit, thus preserving response accuracy.
However, this may significantly lower the cache hit rate, diminishing the cache’s overall
benefit and potentially transforming it into a parasitic overhead that increases total energy

consumption.

The range of values for this experiment—0.7, 0.75, 0.8, 0.85, 0.9, and 0.95—was
selected to systematically analyze this trade-off . The starting point of 0.7 was informed by
the original GPTCache paper, which identified it as a balanced value in their experiments.
The subsequent values were chosen to provide a linear progression from a lenient to a very
strict setting, enabling a detailed analysis of the parameter’s non-linear impact on system

energy consumption and the identification of a potential “benefit inversion point” .

3.4 Experiments and Measurement

To ensure the scientific rigor of the findings, a strict and repeatable experimental

protocol was followed.

3.4.1 Procedure

Each experimental configuration—including the baseline and each similarity_threshold

value in the benchmark group—was executed five times to account for performance vari-
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ability and ensure statistical significance . To maintain the independence of each trial, all
Kubernetes resources (deployments, services, etc.) were systematically destroyed and re-
deployed after every run. This “clean slate” approach prevents confounding factors such

as cache state persistence or resource fragmentation from influencing subsequent results.

3.4.2 Data Collection and Measurement

The final energy consumption data was calculated with precision to ensure accuracy.

The following process was used for each experimental run:

* Precise Timing: The exact start and end timestamps for each 10-minute load test

were programmatically recorded in k6.

» Average Power Calculation: After each run, Prometheus range queries using the
avg_over_time() function were executed . This provided the average power con-
sumption in Watts (W) for the CPU/DRAM (from Kepler) and the GPU (from

DCGM) over the precise duration of the experiment.

+ Total Power Aggregation: The total average power of the system was calculated
by summing the average power values of all relevant components (the FastAPI/

GPTCache pod, the Ollama pod, the pgvector/PostgreSQL pod).

This method of converting average power over a known duration into total energy
provides the ultimate metric for comparing the overall energy cost of each experimen-
tal configuration . The final results were visualized using Grafana dashboards for initial

analysis and later exported for statistical testing.
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Chapter 4 Results and Discussion

This chapter presents the empirical results of the experiments conducted to evaluate
the energy consumption and performance characteristics of an LLM inference service inte-
grated with a semantic cache. The data, collected following the methodology described in
Chapter 3, is systematically analyzed to reveal the impact of the similarity_threshold
on system behavior. The chapter begins by detailing the measured power and latency
metrics, followed by an in-depth discussion that interprets these findings across different

threshold ranges, and concludes with a summary of the key outcomes.

4.1 Results

The experiments yielded distinct and quantifiable differences in power consumption
and response time between the Baseline group (no cache) and the Benchmark group (with
GPTCache enabled at various similarity_threshold settings). The key performance
indicators are summarized in Table 4.1 and Figure 4.1, with all data representing the av-

erage of five independent runs, as specified in the experimental protocol.

The baseline configuration, which sends all requests directly to the Ollama inference
service , established a total average power consumption of 155.877 W and an average

response time of approximately 30,294 ms. Over the 10-minute duration of the experi-
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Table 4.1: Relation between Cache Hit Rate and Power Consumption

Metric Similarity Threshold Baseline
0.7 0.75 0.8 0.85 0.9 0.95 No Cache
Cache Hit Rate 99.99% | 99.99% | 99.30% | 87.30% 54.90% 29.40% N/A
Avg. Response Time 105.395 | 108.165 | 177.12 | 4634.66 | 19638.797 | 29035.722“| 30294.104
Avg. Power (excluding GPU) | 37.893 35.211 51.748 76.729 75.537 74.969 72.21
GPU Avg. Power 50.8 52.267 70.733 98.5 98.967 97.433 83.667
Avg. Power (W) 88.78 87.478 | 122.481 | 175.217 174.504 172.402 155.877
Ttl. Energy Consumption (J) | 53269.8 | 52486.8 | 73488.6 | 105130.2 | 104702.4 103441.2 93256.2
B Cache Hit Rate == Avg. Power (excluding GPU) Avg. GPU Power == Avg. Power (W)
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Figure 4.1: Metrics for Various Similarity Thresholds

ment, this resulted in a total energy consumption of 93,256.2 J, which serves as the critical

benchmark for our energy efficiency evaluation.

In contrast, the benchmark configurations demonstrate a clear, non-linear relationship
between the similarity threshold and the system’s power and performance profile. At
lenient thresholds (0.7, 0.75), the total power consumption was dramatically reduced to
88.78 W and 87.478 W, respectively—a reduction of over 43% compared to the baseline.
This directly translates to a significant reduction in total energy consumption, which fell
to as low as 52,486.8 J—a saving of over 40,000 J compared to the non-cached system.
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As the threshold was made stricter, total power consumption increased, eventually
surpassing the baseline at a threshold of 0.85 (175.217 W) and remaining higher for all
subsequent stricter settings. A similar trend was observed in average response times. The
lenient thresholds of 0.7 and 0.75 yielded extremely fast responses (approx. 105-108 ms).
However, as the threshold increased, response times grew exponentially, approaching the
baseline’s latency at the strictest setting of 0.95. These results indicate the existence of
a "benefit inversion point,” where the semantic cache transitions from an energy-saving
component to a parasitic overhead. Crucially, the total energy consumed at thresholds of
0.85 and above exceeded 100,000 J, quantitatively proving that an improperly tuned cache

consumes more total energy than having no cache at all.

4.2 Discussion

The observed results can be explained by the fundamental trade-off between cache
hit rate and computational overhead, which is governed by the similarity_threshold.

The following sections analyze the system’s behavior at different threshold intervals.

4.2.1 Analysis at Low Similarity Thresholds (0.7, 0.75, 0.8)

At the lenient thresholds of 0.7 and 0.75, the system achieved near-perfect cache
hit rates of 99.99%. This is attributed to the lenient matching criteria combined with the
nature of the Quora Question Pairs dataset, which is designed to contain many semanti-
cally similar pairs. With such a high hit rate, the vast majority of incoming requests were
handled by GPTCache and its pgvector backend, almost completely avoiding calls to the
GPU-intensive Ollama service.
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This is directly reflected in the power data. The average GPU power 'was minimal
(around 50-52 W), while the primary power draw came from the CPU-bound processes
of the API Gateway and the semantic cache itself. The result was a total system power
consumption (approx. 87-88 W) that was significantly lower than the baseline’s 155.877
W. This demonstrates the ideal operating scenario for a semantic cache: the modest energy
cost of the cache lookup is far outweighed by the massive energy savings from avoiding
LLM inference. Consequently, the total energy consumed during the entire test run was
the lowest in these configurations, bottoming out at 52,486.8 J. This figure represents a
tangible energy saving of 43.7% compared to the baseline, providing strong evidence for

the cache’s effectiveness when properly configured for a given workload.

At a threshold of 0.8, the cache hit rate decreased slightly to 99.30%. While still
very high, this minor drop meant that a larger fraction of requests resulted in a cache miss
and were forwarded to Ollama. Consequently, GPU power consumption rose to 70.733
W, pushing the total average power up to 122.481 W. This marks the beginning of a clear
trend: even a small decrease in cache hit rate leads to a disproportionate increase in total
energy consumption due to the high energy cost of GPU activation. Specifically, the total
energy consumption rose to 73,488.6 J; although still more efficient than the baseline, the
system consumed over 21,000 J more than it did at the 0.75 threshold, highlighting the

system’s sensitivity to even minor drops in cache hit rate.

4.2.2 Analysis at an Intermediate Threshold (0.85, 0.9)

The experiment revealed a critical ”benefit inversion point” at a similarity threshold
of 0.85. At this setting, the cache hit rate dropped to 87.30%. While still substantial,
this meant that over 12% of requests resulted in a cache miss. For each miss, the system
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incurred a double performance fallback:

1. Cache Search Overhead: The CPU and DRAM resources were consumed by GPT-

Cache to perform the initial (failed) similarity search.

2. Inference Cost: The request was then forwarded to Ollama, consuming the full

amount of GPU power and time for inference.

This compounding effect caused the total average power to surge to 175.217 W, ex-
ceeding the baseline’s 155.877 W. At this point, the cache was no longer an energy-saving
mechanism but a parasitic overhead. It not only failed to prevent a significant portion of
expensive GPU work but also added its own computational load to the system. This is
further evidenced by the dramatic increase in average response time to 4,634 ms, reflect-
ing the combined latency of a cache miss and a full LLM inference. From a total energy
perspective, this configuration is the most wasteful, consuming 105,130.2 J. This is a cru-
cial finding: the cache caused the system to consume nearly 12,000 J more energy than
the baseline system without a cache. This quantifies the “’parasitic overhead” and proves
that deploying a cache without careful tuning can be actively detrimental to energy effi-
ciency. The trend continued at the 0.9 threshold, where a 54.90% hit rate was insufficient
to offset the energy cost of frequent misses, resulting in a similarly high total power draw

of 174.504 W and a total energy consumption of 104,702.4 J.

4.2.3 Analysis at a Strict Threshold (0.95)

At the strictest threshold of 0.95, the cache’s effectiveness was severely diminished,

with a hit rate of only 29.40%. The system’s behavior closely resembled the baseline, as
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nearly three out of every four requests were forwarded to the Ollama service for process-
ing. This is clearly reflected in the average response time of 29,035 ms; which is nearly

identical to the baseline’s 30,294 ms.

The total average power, while slightly lower than at the 0.85/0.9 thresholds, re-
mained high at 172.402 W, still significantly above the baseline. This demonstrates that
even when a cache is largely bypassed, its mere presence as an intermediary layer con-
tributes a persistent energy overhead. For the majority of requests, the system paid the full
price of GPU inference plus the additional, non-trivial energy cost of a highly selective,
and therefore frequently unsuccessful, cache lookup. This confirms that a poorly tuned
cache, particularly one with an overly strict threshold for a given workload, is detrimental
to both energy efficiency and performance. The total energy data reinforces this conclu-
sion: the system consumed 103,441.2 J, which is over 10,000 J more than the baseline.
This proves that for the duration of the workload, the energy penalty of the frequent, failed

cache lookups accumulates into a substantial and wasteful overhead.

4.3 Summary

The findings from this study lead to several important conclusions. First, the relation-
ship between a semantic cache’s similarity threshold and its energy efficiency is decidedly
non-linear. Semantic caching is not a universally beneficial solution for energy reduction.

Instead, its effectiveness is entirely conditional on careful parameter tuning.

The core principle revealed by this research is that the energy benefit of a cache is
fundamentally derived from its ability to successfully offload computations from a more

energy-intensive downstream component—in this case, shifting work from the GPU to
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the CPU. When the cache hit rate is high, this workload shift is highly effective. This
is demonstrated by the system’s total energy consumption being reduced by over 43%,
from 93,256.2 J to 52,486.8 J. However, when the hit rate falls, the energy cost of the
cache’s own operations becomes a significant factor, and the system begins to suffer from
the added overhead rather than benefiting from it. This is quantitatively proven at the ”
benefit inversion point” (threshold 0.85), where the total energy consumption peaked at

105,130.2 J, an increase of over 12% compared to the baseline.

This carries a critical implication: the similarity threshold must be treated as a key
hyperparameter that requires diligent tuning and monitoring. Deploying a semantic cache
with default or untested settings risks creating a system that is less performant and con-
sumes more energy than a simpler, non-cached architecture. The optimal threshold will
likely vary based on the specific LLM, the nature of the user queries, and the desired
balance between response accuracy and energy efficiency. This underscores the need for
robust monitoring of cache hit rates in production environments to ensure the caching

layer is consistently providing a net positive impact.
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Chapter S Conclusion

The rapid adoption of Large Language Models (LLMs) has introduced a new class of
energy-intensive, latency-sensitive workloads into the cloud-native ecosystem. This thesis
set out to investigate semantic caching as a potential strategy to mitigate the high energy
consumption of LLM inference services. By conducting a series of empirical experiments
on a Kubernetes-based platform, this study has demonstrated that while semantic caching
can yield substantial energy savings and performance improvements, its effectiveness is

critically dependent on the configuration of its similarity_threshold.

5.1 Key Findings

This research systematically quantified the non-linear relationship between the se-
mantic cache’s similarity threshold and the overall system efficiency. The core of the
study was to measure how adjusting this single parameter impacts the trade-off between

energy consumption and service performance. The key empirical findings are as follows:

1. The experimental data confirms that when the similarity threshold is set to a lenient
value (e.g., 0.7), the system achieves a cache hit rate of up to 99.99%. This high
hit rate successfully offloads the vast majority of computational requests from the

energy-intensive GPU to the CPU. As a result, the total system power consump-
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tion was reduced from 155.877 W to 88.78 W, which is by over 43% compared to
the non-cached baseline, while response times were also drastically improved from
30294.104 ms to 105.395 ms. More concretely, this corresponds to:a drop in to-
tal energy consumption from 93,256.2 J in the baseline to 52,486.8 J, saving over
40,000 J during the experimental run. This demonstrates the ideal operating sce-

nario where semantic caching acts as a highly effective energy-saving component.

2. This study also pinpoints the critical risk of improper cache tuning. As the similarity
threshold becomes overly strict (e.g., 0.85 and above), the cache hit rate plummets.
In this scenario, the system incurs both the overhead of a failed cache lookup and
the full cost of GPU inference. This transforms the cache layer from an asset into a
parasitic liability, causing the total system power consumption to increase by more
than 12% above the baseline, from 155.877 W to 175.217 W. From a total energy
perspective, this means the system consumed 105,130.2 J, which is approximately
12,000 J more than the baseline. The cache didn’t just fail to save energy; it actively

caused the system to waste it.

5.2 Research Contribution

This thesis makes several key contributions to the field of sustainable software engi-

neering and LLM application architecture:

1. First Quantitative Energy Profile of Semantic Caching in a Cloud-Native En-
vironment: This study is the first to quantitatively measure and document not just
the instantaneous power, but the total energy consumption (in Joules) of an LLM

semantic cache system within a representative cloud-native architecture (Kuber-
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netes with GPU acceleration). By providing a detailed, empirical baseline of power
consumption for both cache hits and cache misses, this work establishes a founda-
tional energy model. This model is a prerequisite for developing more sophisticated,
carbon-aware workload schedulers that can make intelligent decisions based on the

energy cost of different operations.

2. Empirical Evidence of Caching’s Limitations and the ”Benefit Inversion Point”:
The research empirically proves that semantic caching is not inherently energy-
efficient and has clear limitations. It demonstrates that when the similarity threshold
is set too high, the system suffers from a ”double penalty” where the low cache hit
rate forces it to incur the energy cost of both the cache lookup and the full LLM
inference. This results in a total system power draw that is higher than the base-
line, effectively making the cache detrimental to energy efficiency. This finding
provides concrete evidence of a ’benefit inversion point,” quantifying it not just as
a power increase but as a net total energy loss of over 12% (an additional 12,000 J
consumed). This serves as a critical insight for practitioners, highlighting that im-
proper configuration can negate and even reverse the intended benefits of a caching

layer.

5.3 Future Work

Building upon the findings of this research, several promising avenues for future

work have been identified:
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» Comprehensive Parameter and Quality Analysis: The current study focused on the
similarity threshold. A logical next step is to investigate other critical parameters,
such as the cache eviction policy (e.g., LRU, LFU), to understand its impact on
the trade-off between memory consumption and hit rate. Furthermore, to address
the risk of “false positives™ at lenient thresholds, future work should incorporate
NLP evaluation metrics like BLEU and ROUGE to measure accuracy of the cached

responses, providing a more holistic view of the energy-accuracy trade-oft.

Another significant future project would be to develop a custom Kubernetes Operator
that moves beyond passive energy measurement to active carbon optimization. The energy
consumption model established in this thesis provides the foundational data needed for
such a system to make intelligent, real-time decisions. The ultimate goal is to create an
operator that automates the management of LLM workloads to minimize their total carbon

footprint.

This ”Carbon-Aware Operator” would integrate several advanced strategies discussed

in green software engineering literature and would be designed to:

* Integrate the Energy Consumption Model: The operator’s core logic would be
built upon the energy-performance trade-off model quantified in this thesis, allow-
ing it to accurately predict the power consumption of different operational states

(e.g., cache hit vs. cache miss).

* Consume Real-time Carbon Intensity Data: It would connect to real-time APIs
(e.g., from providers like Watt Time) to fetch current or forecasted marginal carbon

intensity data for the electricity grid.
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* Execute Dynamic, Multi-faceted Optimization: Based on the energy model and
live carbon data, the operator would dynamically adjust system parameters to min-

imize total carbon emissions (¢C'Oyeq). Its actions would include:

— Temporal Shifting via Elasticity: Dynamically adjusting pod replica counts,
scaling up during low-carbon periods and scaling down when the grid is ”
dirtier,” a concept demonstrated by systems like CarbonScaler [25]. This the-
sis provides the data to avoid the performance pitfalls highlighted in previous

studies [26].

— Spatial Shifting via Traffic Routing: For multi-cluster deployments, using a
service mesh (e.g., Istio) to intelligently route inference requests to data cen-
ters in regions with the lowest real-time carbon intensity, operationalizing the

principles of schedulers like the Low Carbon Kubernetes Scheduler [? ].

— Application-level Adaptation: Modifying application behavior by, for ex-
ample, dynamically tuning the semantic cache’s similarity_threshold.
During high-carbon periods, the operator could lower the threshold to max-
imize the cache hit rate and reduce GPU activation, a form of graceful degra-

dation inspired by systems like BrownoutCon [27].

The development of such an operator represents the logical evolution of this thesis.
It transforms the empirical findings from a static analysis into a dynamic, automated con-
trol system for sustainable Al operations, bridging the gap between foundational energy

measurement and practical carbon reduction.
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