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ABSTRACT

This study aims to explore the role of urban lakes in the global carbon cycle, particularly
their potential and actual performance as carbon sources or sinks. Urban lakes, situated
in densely populated areas, are often affected by inputs of pollutants and nutrients such
as nitrogen and phosphorus, leading to eutrophication, which in turn influences their
carbon fluxes. This research focuses on two representative urban water bodies in
Taiwan—Longtan Large Tourist Pond and Dahu Park —and analyzes carbon dioxide
(CO2) and methane (CHa4) emissions through year-round field sampling and flux
measurements. The results show that Longtan Large Tourist Pond generally exhibited
greenhouse gas fluxes lower than the global average and even demonstrated
characteristics of a carbon sink during certain seasons, indicating a potential for CO-
absorption. In contrast, Dahu Park exhibited significantly higher methane emissions, with
some periods reaching more than twice the global average, identifying it as a notable
carbon source. This phenomenon is likely related to factors such as sediment thickness,
anoxic conditions, and primary productivity. The study also found that methane fluxes
were generally higher during the day than at night, possibly due to the combined effects
of photosynthetic activity and wind speed variations. Statistical analysis revealed
significant seasonal variation in CHa4 flux, particularly between winter and summer, which
may be associated with temperature changes, whereas CO: fluxes did not show clear
temporal or seasonal patterns. Redundancy analysis (RDA) was conducted to examine
the relationships between water quality parameters and gas fluxes. The results indicate
that chlorophyll-a, total phosphorus, nitrate, organic carbon, dissolved oxygen, and light
intensity were closely associated with methane flux, reflecting the influence of
eutrophication and primary productivity. CO: flux, on the other hand, was significantly
correlated with variables such as chlorophyll-a, particulate and dissolved organic carbon,
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pH, dissolved oxygen, and total phosphorus, suggesting that both algal photosynthesis
and water quality jointly affect carbon emissions or uptake in urban lakes. The study also
observed that, compared to other water bodies such as natural lakes and reservoirs, urban
lakes—especially small-sized ones—tend to have higher methane fluxes and substantial
emission potential. This finding aligns with global research pointing out that small lakes
are important hotspots of carbon emissions in inland waters, especially under accelerating
climate change and urbanization. While urban lakes may possess some carbon sink
potential, they are likely significant methane sources. Thus, measures such as water
quality improvement, reduction of nutrient inputs, and ecosystem management are
essential to enhance their contribution to carbon neutrality goals.

Keywords: urban lakes, carbon flux, methane, carbon dioxide, carbon source, carbon
sink, greenhouse gases
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2009) » # P AFAl Gk ok 2 Heb o P ¥ BB R FI 0 $ A AR oL
MPIMER -

AT Y A BORAERD KA B AP A KRG R oo APIR A R
TRAREE Y AR HEANERRE ST BRI B AT AL N
dn ~ FrX 0 R iR E X (Bi et al. 2024; Schafft et al. 2024) - 3E A i AR s EP
TR s EERS o
232 FokpkPez f i 2atn TR

AOREUR AR e A F S ikt o 2 L 2SR TR O E £ 447 ¥ (Thalasso
et al. 2022; Grasset et al. 2020; Sun et al. 2022) - ;@ /& ~ @ Jp 2 K E & 7 35 4] ek
KRB WAL R TR F I ES BB D F PR R H
DB F F g € 0 5 (Bhushan, Goyal, and Srivastav 2024; Li et al. 2024)
P o P~ R TR RCE S oo RiER i AR F R S
Flpbmnid ¥ H - F AR B kR o gt i A Bt B
FI* B qa bl > blde B EEH{old B FH AR S B 2R A

Y EE R T R

o

F_L
)

¢ LB SRS RT & &gy 11 PgCo ARt 2T 0 B
6
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KR F SRR k2R E KR © F R BRI B LR
9 03PgCoiz— £ 84 FRUPBAIREERZE T G F i &G 7w o
blde o R RT R SRAPE B B g k- R R @A gt b
Ak v A RTRRIETR Y T Apso] o PR E R R E S RIK R
60 - 70% - @ P p hp P P AR TR R R E S 10 -
20%(Vachon, Sponseller, and Karlsson 2021; Cole et al. 2007; Raymond et al. 2013) -
233 AP Rk kB FHEEBAY

MR G fF 5 3.6x10° km? 0 A B @ FEPan g~ R BB 0 Bk 23k
B 2.67% 0 B¢ 90%r0 b e R AP o Bt o ok kAL 2 IRALTE
%P FHLE & iT* (Mehner 2009; Raymond et al. 2013; Kazanjian et al. 2018) » % %
DI F R sl o K PR T B RS ST SR

SRPM BB REFHEET R BT IP R ERf-S 8 BBp 2K
Bg § § R B enpondiciffort - § g £ 5 8 il £(g COreq m? yr')
A3t 8 0 an > R g i % (Global Warming Potential , GWP) » 3P 7 % e 3+ BEFF e
HEHZEME LRFApH 2 PP ¢ Wz WOk EE - §F PR E=R
® e 25(1230.2 £ 110.0 g CO: m? yr') » e pEs  f g eh? 2l £(11.84 £ 1.28 ¢
CHim? yr')» #RHEE =5 T GWP # B k7|1 269.63 - 4537.37 g COz-eq m™
yr!o AP E G T Y RS AR Rk i ed

A 22T o £ F ek B4 F.D. Roosevelt ~ Dworshak ~ Wallula ~ New Melones
PlEgm M T3o- 5 PR T EIRE
o pF e ol $4 f BT ERAR R oK E 0 RRIEE Beh oo TR T F A
HEREF AL B o n FIZERAPPE-REF R §F L RE T

HE o T GWP i > 2P H g ff ™ 0 F R KRIE 2ok eR i aiB

=

R R B S Y - SN

HP o bLEHE AR AIRE A RRTHELZ BE T3] BREEF RBIIR
Ben? R R EAP 0 TR SR FAAHR,  HET NI

AR e ZRA o PR SR AR SRS o R ERT PR o AR B i
PR S AP A B E PRS2V R EREEORF > a B
7
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MRSl o FI K 8 AT R e B A P p ol e s e e iy 0
YRR R L P e e I P U &

o+l
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221 BP R sk A R

£ 305 W §

IoER| £358 GWP
R 5, & 13 F&F&& ﬁ{ﬁ?
% s (m) (C) CO: CHq (g COz-eq m? yr) ‘
(g CO2m?yr') | (g CHsm?yr?)
. 123.3 +166.1(F) (Wang et al.
R B i 1.85 16.3 2022.11-2023.3
155.5 + 147.6(7%) 2024)
, (Xing et al.
L~ P 2.5 16.7 2003.4-2004.3 121.3 £ 584 8.51+6.79 -499.32 - 2704.32 2005)
v # R A 1.7 7.5 2020.1-2021.1 99.0 £ 24.9 15.59 £ 4.41 519.84 (Li et al. 2022)
L~ L 19.6 2011.3-2012.8 1230.2 £ 110.0 11.84 £+ 1.28 269.63 - 4537.37 |[(Lietal. 2021)
19.3 2010.6-2010.10 -541.2-303.6 0.53-22.13 -526.43 - 901.20
" St. Augustin (Bartosiewicz
2K . , 6 18.6 2011.6-2011.10 -364.5-979.7 0.47-13.47 -351.87-1343.33
(TR 27 %) et al. 2021)
19.7 2012.6-2012.10 -483.3-1331.4 0.87-43.80 -459.87 - 2512.17
% R | F.D Roosevelt 44 21.7 2001.9 -168.6 + 94.9 1.17 £ 0.59 -295.2-172.43
iR Dworshak 65 21.9 2001.9 -436.2 £ 166.1 1.60 £ 1.17 -825.6 - -116.9
E 9 Wallula 18 20.4 2001.9 -138.4 + 206.6 3.28 £1.28 -560.1 - 554.4 (Soumis et al.
eS| Shasta 36 23.6 2001.9 455.1+152.2 3.47+3.13 113.33 - 1072.5 2004)
iR Oroville 107 23.9 2001.9 374.5 +238.0 1.53 +0.99 107.93 - 990.43
% B | New Melones 44 24.5 2001.9 -432.9 +242.7 2.59 £+ 1.57 -1219.9 - 100.7
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Ly soapEw o [1.0-16| 292 | 2010.9-2011.5 147.8 + 96.3 2.09+0.63 1042-60322 | 5 2 ms
S| ComeaHk 0.3 33.7 | 2010.9-2011.5 387.2+362.7 4.16+7.52 -577.25-2379.01 | =i a4
o * R 20-60| 305 | 2010920117 | 304242649 14.67+12.85 | -141.24-3657.9 |7 #(100.10)
o ) 2019.1.3- 606.1 £ 119.2 -4.99 + 8.80 (%P @ and
.y 3 B R 1.28 471.5-1150.5
2019.1.6 -1043.9 + 281.6 3.95+1.20 +h% 84 2019)
LA | 2B A 1R 24.1 | 2017.3-2018.3 635.1 + 389.8 1121 +10.25 335.5 - 1666.2 =
g F 0.4 20.2 282.7+214.5 1.16 + 0.27 247.62 - 828.57
LA | AR kRTHE | 168 25.7 819.5+ 191.4 9.60 + 1.67 624.0 - 1714.67
B % 731 5L 2019.2-2019.10 RS 2021
Ly o ¥ 1 0,59 252 2202.2 + 532.0 16.41 = 3.24 1099.1 - 4432.43 GF-P* )
¥ (% 4R 2021)
ol =T W S (3 0.48 14.7 560.3 +129.4 3.48 +£0.52 270.93 - 965.52
S| K RE 1.28 23.6 | 2018.1-2018.11 91.7+133.1 2.97+0.35 41.18 - 635.29

(G & %% MOST 107-2621-M-110-001) -
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24 F F ML E ORI T FpE > 2
BEFAHEETPPEHNTGAL ARE A F2ZFOiHIKIMEL > A
HE AR B F Mo GRBOFTL P o F LR BT RIFEAR
FAZCEREEERFNF Y BRAS2RG A pEORH AR T AT
FPHRBEET LG 3 paig® (o
24.1 F R %3 £ (Eddy covariance measurements)

MR A2 E - B R RS F 2B F MR iy R
ok ERE c BRI WEREZF Y FE R Efof MER TR LK
PEFMIGTHERR ARV MAEAR IR EAF 2 TR BAES
A RRIR R FRA DT E R TR TS R HERE TR B ad
i3 TOPFERFEFE NI RRRRD o M iR A R R L D T 4R
Tl By PP RFER S ST ST AFRE > R RE PR
drtmlicdy o Ra 0 FREPBS AZL 3 HERRUE gL T

i3
BRI frEHRNRE > X0 L PERPIE RS LT BofR i ER
¥

EITHT R P AR B SR g el B D4 BRaRE T
ﬂim%%~&&%wiﬂ%m%@owﬂ’a&ﬁagé,gﬁﬁég@ﬁﬁ

MAMMAE R > Vit § M - & E & %484 o (Baldocchi 2014;
Podgrajsek et al. 2016; Mauder et al. 2021) -

2.4.2 :# % & = (Boundary layer method)
WhAZE - AN LGRS BN I FRIEH WERE KT B fRAF
WER - RBFZ2 LRELEAFELF Ao L€ 28 £ ERY
BEAcf 23 hlk)EF iy -

PR EZEA R NEERRAY 0 SR B I ACRE R F BT R o f
BB 0k itfHE s 2 AM, PV ERpFHCEREFFHRE N
FRA S BPREDREGHEE  FBRBTFAI S A FREERMETFH
PG ERF RSN o Re o P2 G A RS g 7 A MR (<Sm/s)fe
®RECIOm/s)FEET FrgE T A5 o F R "‘&(k)m'nﬁﬁt)ﬁ“ 8 & £30%
H& oo 2855 5 X2 (floating chamber)4p vt > 3B A K23 F M B - 3 L k=

W

11
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R ERAE R FR AR TRFARLRE TR 4 BRI 0 MR E TR
FRhoF MIEER @O BT AR 2 - B AL o Pk
Wikl ROVRIREN TEE I PR IEFAT O ERFTHFREDERRBE T
R GEREEREIRAZ ) PR RS PRE R
o P IR G B A R R 3§ 484 % (Duchemin, Lucotte, and Canuel 1999;

Lambert and Fréchette 2005)

ﬁz

ot

243 k%35 § ¥ # (floating chamber)

BN FEZE - Ry A2 0 PRI E KM L F 2 B ehi R
oo B REERERBEF R RPrOfRERELFFRAFRE A
WAYTiE- BT UL FHOEE o 2 E SR o g e k- F
ﬂﬁﬁﬁﬁif@ Wmﬁ%&@*3¢QMﬁ%%£i$ﬁﬁ%ﬁPiﬂ°
ke A BB EHE D E PRA o 1 BRI
WA BB kG o A ERFEE A H L BRE R EYP DL o
PR AR AR RS RINRSE S T AR T HRT RERR
oo BT R g W Blcdp o Aot o BN F 24 5 TR EPR
FHEET G LR T R A BER R RS T §

REn g o gt ot o d R d BEH P FERERZR . FRERE PR ZA 0
ook P BBk ALen g B8 % 3% 5k j2(Baldocchi et al. 2020; Mannich, Fernandes, and

&5

Ry

N

o

P8 o 2K

3l

:\tt

Bleninger 2019; Lambert and Fréchette 2005) -

FARP 22 R EEDRUNER > FEAT S FRRRY 20 Rd
Fedpa i o e G FREFEITRE Y LV REN AR foBIR L A RT
BEHAB 2B cERKEEFRL G GEEDPFHERE > LI R
I NELE-T- SN TRUIE NI - et ECREE IR UEEE 7 8 AR - R - P

FopA AR HITHE G FRLEDRE R RERET
Fodicdy o BT AU RORURF IR RERGE Y Y SR R EREE R F
AL - Ft o BENFEES AP RMRAREEE §F R EE -

12
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25 A A2 wlldi o

P

LR NOER R E R LR SR e R = L

AR RZ R RRUH RAT R A AR AHAET LR RS

~ CE
—}‘ /a#q ~ /I

2 ﬂ}i;%i 2<% ’}j—ir’;lg—r‘; ’F'@ﬁ%ﬁfﬁﬁ’“ﬂ‘ﬁi") o A H Er_«]g,g—r‘ _';;.(-ﬁ = ’3; N

BERZEW AT SEFETFHIALPPEE > VR LPRDIPERE -

BORAL R RS BRT RTR N B SRR B
BAF O RBH ZF CRE T B - AE RN AT R EE  FRA R

PR FME R E AR AREERA

Wi ML o 2 B

d
d 7 R B G ORAEE  F P LT AT AR -

13

doi:10.6342/NTU202501440



Yz e

BIF L RHE R

RGP HHRACR 30 TR o F A KPP FEEHOCE S HT  FE
vl TERFF B BRFEARRROREE D UREERRS R
&«aj’j%M{?§¢%§ﬁ%%%ioaw%ﬁ RS ELAT S
Bl TR FF WA T K E R E B TS | R o
FLEEFFAE A1 PP PRIr? ey U E > =RER

FARER PR A WS R A RB TS BN

5]
s
5
=
-*&‘

¥
i
<5
g}

Urban freshwater carbon sink surve

v

Design sampling box

h 4

Test sampling box

Decide sampling method and location

v v
Gas analysis Water quality analysis Environmental factors
1.CO 1.Chl-a 7.pH 1 .Tempe.ralture
5 CH2 2.TP 8.DO 2.Humidity
T 3. TN 9.D0C 3.Tllumination

4.NH;-N 10.DIC
5.NO;-N 11.POC
6.Water temperature

3.1 7 5 % 1M

14
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32 B
32147k 4
S R TR IR 138 (1748 ) BR - B LB
WHE -FIRSFEEE? TR, 82 T kA TR BHFERL THE
Boy» FOTRE 9 EM G TR o AR FRB PG - AN AREAE
RS FOREELEF R MRT R LG H EL D RTRE R FRA -
TR P EEER S AR 60 FE F by E 3 A E K
?~%W&ﬁ#ﬁﬁﬁ%*%*ﬁ°i3%i$§§ﬂ¥i“%’&“ﬁ%kﬁ’
B A PRI AR BIMT AT Y 12T F A AR A S T E S P

PR E 24°51'42.1"N, 121712'36.1"E » 3¢5 230 &= » RiFEA 053 2 =

~

2B (B4R 2017) R AR RAR AT R L E Rk 4 RERAY E o &
’ 1"?-5: j\rd]ﬂ‘ IS r'iﬁﬁ-p\ V%EL% ‘Cfr‘v‘ﬂiﬁl % %’J’(%i#k l"t’i‘;r.,“i J\L'E)‘ » by

Bl S| EHEA A BCKE B A B o R ERHEE AR F T
eB 32577 0 advh A S B FRE 3 B4R A6 5 L1213 ¥

En

|~

- XA G 3 BREEEFHFER A5 E 6:00-10:00 ~ 10:00-14:00 ~ 18:00-22:00( & P
P> VR EPFERE BREREFOFMEE LR o T ArcGIS B HP G 2 9
Frlse 5 101690 m? . ¥R L FEEer R & hR B (EX L1 5 23305 m?..)

PEIR-E £ TR SR R I P P ort S

15
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"\ A V ) /- ) :_-" ‘.“ »
(Y 24°51' 48.0848"N, "’;1\“
121°12' 33.7385"E \ﬁ o
=P 55820 ' f”

24°51" 44.5388"N,
121°12' 42.0955"E

22565 £,

L2 " 24°51" 36.014"N,

Sl 121°12' 37.737"E 4
-1 LA );

N i o

Total area : 101690m2 bt ¢}

B 3.2 40% ~ 5 H gL

322 X @2

S AE BT AR R AT B R (25°51N 121°36'9"E) -
Bamr@~rF—- o pAROELREN & > F 50T L FF T HE & B2
RS LA SAEEd BREM L - FIR®R 2L 0 ¢ 520542 ~ad
KB A A REHFEEFE O FRED AP A AHHEE TR L A
Bp Ed By > REAFARE I I o

],\M

R o EFALZEBRER > APPBRTENRKATECRE T2 FHAF
Y I %qag\%;441£rﬁéiq% ERAF~EF72 -~ kWE R
R - R R BB AR EFRERREREET 2 A4

%m@’%$$?ﬁﬁmiwg1ﬁ°é&imﬁ%ﬁ’éwhﬁﬁ&gﬁ%§ﬁﬁ

B
2

€ﬁ%$’ #”%mﬁ%‘aﬁi@ﬁé\aﬁﬁ%ﬂ%ﬁﬁ\ﬁ@amgﬁ
LIBEEE ) DBy o Y BER d TEAH g kTR A

WP Ip ISR o
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B33 9F 0 AW AHT #WE 3BHEER > A5 Dl D2 D3y 5

- XA G 3 BREEEFRE > A% L 6:00-10:00 ~ 10:00-14:00 ~ 18:00-22:00(£ P
PB) > WREPES BRREFOFHMEELR o 1% ArcGIS B /A G 2
E PG f 5 105671 m? > &7 3 &

W f;} ’
i LA mEar it 4 e 3 (EX DI A 45926 m
DEIREN ST E S

2.

I mpzpen®git g o

%fx ‘_; T =
»%m . > 1 A
\

:‘t:‘
2574' 55.285"N,
25°4' 52 .9032"N, 121°36' 15.8008"E
121°36' 9.1872"E -~
[ | 45926 .
13341

@ 46404

25°4' 49.9166"N,
121°36' 13.4154"E

by
‘-nulﬁ.uﬁ‘l\b}

Total area'": 105671m? -

point !
area =

g
0 0.05 0.1 0.2 Kilometers

B 3.3 <~ o Flatk gk
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33 EFFMEE
331 HFEH K

%gﬁgg%#ﬁw%ﬁmﬁm\¢E§$@ﬂ$wiiﬁ%“’%wif

¥- § it g2 7 'z (Deemer et al. 2016; Martinsen, Kragh, and Sand-Jensen 2018) -
FraR PR A FIHAL P R p R RN o RPN IEERITR
R > PR BP P Y B0 BRI S TR g o

B i%@,q#g£§£302&a%4w%ﬁ@%éﬁmIO%E
T 15 e eIt P i RS R ATY kadgds o MR F IVKE AERF faeht
P BRI EY BRL NREHF B ERTRER S 35 24
PUBE L F RSB o BRHREE O MR R YRS o FER R T AR o @ )
BRI R S G F v o R B AP o 4 0K 2 B AL B4 B
3.4 455 o

Sampling port

|

30cm

ooooooooocy_/ 3.5cm
Floating device

B 343K B(=)2 57 HEBI(+)

Water

/g> 30cm

18
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332 § Wich & A4

BPpY REIBIRIRE F BRERRE IBRER P A A5 HES
BRE > A B 25 R(6:00-10:00)~ ¢ =(10 2 00-14 : 00)% 8 F (18 : 00-22 :
00) 8t ¢ AkPBAFRI OQLUX=0)1 ¢ BRFEFHE -

FBEFECEF MR ES 60150240 248 » BRI F 5 - B - = -
FREERFALY § R4 FA14mL chg BEIRILY 3B SmL g 8> £ E SmL
R L N F ORI ERELY o I F RE R LB S § 49 K 45 R (Gas
Chromatography Agilent 7890A > GO):& 74 47 > A {7 g M e 7 - 3 itz @

2o A Ao d 3.1 A o

% 3.1 GC ~ F7 15 2

A CH CO
% E 4 2
e 1 # H 4P| B (TCD)
s bG8+ kR E(FID ' ”
8 ;P 2 (Detector) s i ,/ ~ (FID) (Thermal Conductivity
(Flame Ionization Detector)
Detector)
# 12.(Column) TG-BOND Msieve 5A TG-BOND Q column
(£ BXP ExE) (30m x 0.53mm x 50.0um) (30m x 0.32mm x 10um)
i\‘ /n —T/F N2 HC
e 60°C 60°C
1 &4 (Inlet) 250°C 200°C
= 300°C 200°C

3321 Bz f ML ¥

@@GOHD/mD%w@ﬁ:gﬂmuiHﬁ%&ﬁﬁbémwmﬁﬁﬁ
- BARBRPFE LS 60~ 150 ~ 240 A 48T I kR (C) SR T FEAHTT
N AC/At FHEFAAC/AtF » 2557 > v @32 § LA g 8

HEmgm?hh) FlcE 0 > ZAE S FHEL L R SAE -
M 273
F,

AC
=HX—X—X 1
gas At TV T 273+T (1

19
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H ¢

-~

Feas © # #(CO2 & CHs)i £ (mgm?h')
H: 5 ¥ a3 & (m)

AC/At: # Bk B WEREF ens it 42 % (mg L b))

M: f44a 5+ £(gmol)(CO: & 44 #2 CHs i 16)

Vo B AR T (& 0°C, latm) T b HEAK 5 22.4 L mol”
T:F%EKCO

3322 prrpmg v BA TR

R 2 4 M R ke VB G E > 1935 IPCC ¥~ S mgama v
(Ipcc 2023)3p 41 » ¥ 2= 7 100 & B 4 2 2k og 1 P 584 (GWP-100)13 45 % i 7 e
Mg eTER o RPN A G NP e g 208 LIt BRI L 27 0 Bl Rp & 2T
B FIQ AT TR P e an > Tfeg (VA E 5 27 0 T * o 38 (2)(Liikanen,

Fl16jt, and Martikainen 2002)# {F3]12 = § it g & 5 H maud £ 258 o

GWP,, = CO, flux + 27 CH, flux 2)
He
GWPy @ 2= § g d £2 # Wi & 974 7 2 23keg * B4 i (mg COreqm™ dh)

3323 g P
T b s )T s fes § A F R B (mg m? h)A Bk b A BB h] A

I HE B 7f;l iS4 > TV RIS BRI E CEFF S iR g o

E =33,(F; % A) 3)

H
E: @2 F (mgh')

Fi: # #(CO2 2 CHy)i £ 51=1,23 (mgm?h')
At B BAIA 26 A 12123 (md)

20
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34 %BE T+ 2L R

LB % & & * B8R 2 (Thermo-Hygrometer, Anymetre TH-108):& {7 & ] >
P R B * P& 3+ (Light meter, Lutron LX-105):& (7 £ p] » & BHF IR BFEIBE R =
Fo BRIFERLEF I RESAMEL ) FRFATSL BT

35 kB g A
BILM @ HOK BB 0.5miFhA Kok o #okiEE N R 5 IL SR T Ag
Poo LR AR B AT R R SRR T RGE TR o HHEG  2

WA R TR P T 0 AR iR
i f L?Qﬁw’%ﬁﬁﬁéawﬁﬁﬁﬁﬁﬂ’ﬂ%&ggiﬁﬁaﬁ
pm 4 EF g 0 SIS TR F R R

3.5.1 gtk & (pH) ~ i3 § (Dissolved Oxygen, DO)£? -k ¥

MY stk & pH ~ DO 11 2 RGE ek i o pH 4 457 * Orion Star™ A329 {
5% 7 2 8cp) £ R (Thermo Scientific, USA) » & %R F 4% & pH &2 % pl%
ﬁ*%mEAWM4%MﬂiJDOF%HOmm&MmAﬂ9Q%§?%&Wi%
(Thermo Scientific, USA) > &It ¥ k¥ 3 3 P> 2-T &2 (NIEA W455.52C)
2 B E R s kg B2 K-TYPE TM-905 #2008 & 3 (HILA, Taiwan) » % B %k
W % KB R~ 2 (NIEA W203.52C) -

3.5.2 § ¥ (Ammonium Nitrogen, NHs-N)£&2 7' & 8 § (Nitrate Nitrogen, NOs™-N)

s

AT & FEAEBF B4+ & 17 ®R(on Chromatography, Dionex, Thermo
Fisher Scientific)i& {7 4 47 o SR I “T4k ek P 12 B 33 P2 2405 R 47
i (NIEA W415.54B ~ NIEA W461.50B)ip| %_o % 55 B # B2 {5 » # * Dionex
IonPac AS4A-SC ¥ HLi& {7154+ A 47 ¢ B4+ @ * Dionex lonPac CS12 ¥ 1€ {7
AT e Bt o d MELEHRENEEZRERTE IR EARET LY £ §F B/

B Rk R o

21
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3.5.3 %, ¥ (Total Nitrogen, TN)

B F ~ 47 %P Hagedorn and Schleppi (2000) i #rfie M § 1472 > 4k SL/5 5 adl
55 B 10mL vk 4% £ 4~ 15mL B AEfE B 3 % (B 15g Nax$:0773 >+ 250mL 0.5M
NaOH # # % Az 3 -k %8 2 500mL) > 2 {5 #-k # % ** 3 &% 5 % (1.2hPa» 121°C)
bodh A5 mds 0 A Eris e R é H OpH 3t 1 s * 4 kS 3 R (UV-VIS

Spectrophotometer, UV-1280, Shimadzu)** & £ 210 nm Eip] {5 % & & o

3.5.4 £ %% a(Chlorophyll-a)

FS A SBRRR TR EDKY EEZEEF awBIZ2-A@EPE 4
% kB 3t 4 47 (NIEA E507.04B) 0 % & 55 3L 38 4 2 g A (Whatman GF/F, & /&
47mm > L3234 E 9 0.7 um)iE i is 0 4v > 90%F k3R SmL I gAY TR 3K
Fets be ~ 90% fk i3 SmL (2 10mL) > £ 1% =7 BRFR A1 > 2 r 5k
% R(4°C£2°C)2 5 20 PF o B fs I Hes $5(4000 rpm) s 10 4 48 0 B B R T
© k% k2 & (UV-VIS Spectrophotometer, UV-1280, Shimadzu) 4 %[ B {7 4 £ 750nm ~
664 nm ~ 647 nm ~ 630 nm 2%k B (% * 90%[F kB ik el £ 750nm Ak (TEFR) 0
EAF 28Q) @)t E%E adkR -

C = 11.85X — 1.54Y — 0.08Z (4)
H ¢

DEBRY %2 az kA (mg/l)
D E 664 nm &k iE- £ 750 nm ek kB

DR 647 nm vk B - £ 750 nm ¥R kB

N < X 0

DA E 630 nm Bk iE-jk & 750 nm vk sk E

e %% a ki (ug/l)
. F PRk R (C)XE P2 44 (mL)
T B RAE (L)X 3 S %47 (cm)/1(cm)

)
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3.5.5 2% (Total Phosphorus, TP)

RS S RBRTRESRY BIRRI D 2 A RER R Y EFE
(NIEA W427.53B) » 4 § -k # 15 % 4c » 72t (HaSO4) 8 pH /[ 0 2@ 1 > & 130 4
+2°C o R A R 2B AN I F 1A BRI o

AR kRS SRS B 25ml kR4 » - IRk G T AR 0.2g AR
4 0 LB E R ES M 120°C 0 1.0- 14Kg/cm24 #3044 BIRAL AR de m
-~ FRRcdpn A XL IN & F AR IRF L AERSEI L A
B TR I S0ml I 4 » R EFR|(d AL IR )RR~ dPEkdEs B2 F CRE)

£353 1 > A 10-30 &4 p 12 A sk k2 ik (UV-VIS Spectrophotometer, UV-1280,

) B 118 eh

Shimadzu)** /4 £ 880 nm Fup| F ek & o F s » d 3 E 5 d 3R Eﬁé‘}ﬁ'f“ v &
kR G - B Pl idd mE A Mz ERER 2B TLI LR -

3.5.6 /3 f#{+7 8¢ (Dissolved Organic Carbon, DOC) 4 2 3 f3 1% & #5% (Dissolved
Inorganic Carbon, DIC)

BRI RSB R E PR SRR TR Sk Y R WRRR S 2 —&

F OEAEL A 12/t P 23 (NIEA W532.53C) @ A 72k » Eié * &

PR ABA TR o B A0mL PR S K o BREFL i W /P/] de e
FORA TR AR A RT P - 0 s * Milli-Q -k (Millipore, USA)*
rAZF A RT WM FES T p R Sz o Mg * F RS % Jp(ChiHow, Taiwan) 2
550C %90 ~ 48> MFERRLT FWFTAT -

RFRET RIS > A TR R A KRR 40~ 0.15mL hRipkie FRE o
Rkt Y a2 5 CO AR HRRIFF AT Tl enF 3 0 @ R IR E S
e F R EEf o B8 B HRIFERRE N DR ERRE TR S P E
KR o
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3.5.7 31+ 3 A (Particle Organic Carbon, POC)
S 33 B R A (Whatman GF/F, ® /& 47mm » T 3534 2 4 0.7 £ m)iB Ja (s
EHEIRZOKEMAE c BRE S 4 r INHCI I o b feik » £ % Milli-Q -k #
g2 HCLib ik > B f8 3 » fa P 11 65°CHzpn AT 12 E o {8 SRR ITHR B
BE N E S FicF ~F v F 7 EWRBICE— = % 447 1R2 (NIEA M403.02B) > i#
~ % % 17 ik (elementar Vario EL cube for NCSH, German) 4 #7 jjg & + e #1 ik e

EF AV R BEEPE T @R R g £

3.6 Redundancy Analysis (RDA)
RDA #_PCA (Principal Component Analysis) =z # > ¥ 3% ik — BARA it chiE s

£ Fl(triplot) » ¥ " e AT PR E A R RE LM G RRE 2T adp
MEB{RAHIE -RDAV U E BREEHTREE PR > e [ §h
Btipth o o B R R 0E Lt o G BN 20 IR R EOR B4 o RDA AR
PCA &7 { ¥ghaisaifi@at - RBLEgLrHERSE RS
M % i % E 4 7> % ('Principal component analysis and redundancy analysis'

2007)
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3T PHRE

AT TR R REREE QAR 3.2 95

2 32FFAPTRE

Parameters Instrument Brand Model
CH4 ~ CO; Gas Chromatography Agilent 7890A
Temperature ~ Humidity =~ Thermo-Hygrometer Anymetre TH-108
[llumination Light meter Lutron LX-105
Thermo Fisher
pH ~ DO pH/DO meter o Orion Star™ A329
Scientific
Water temperature Water thermometer HILA K-TYPE TM-905
Dionex ICS-5000+ DC,
Dionex ICS-5000+ SP,
Ion Thermo Fisher
NOs™-N . o ULtiMate 3000, Dionex
Chromatography(anion) Scientific
IonPac AS4A-SC
column
Dionex A QUION,
Ion Thermo Fisher ) )
NHs-N ULtiMate 3000, Dionex

TN ~ Chl-a ~ TP

DOC ~ DIC
POC

Chromatography(cation)

UV-VIS
Spectrophotometer
TOC Analyzer

Elemental Analyzer

Scientific

Shimadzu

OI Analytical

Elementar

IonPac CS12 column

UV-1280

Aurora 1030
Vario EL cube
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Frg 2%

4.13FF 4 #
AP AR A B T AW - & TR BRIEET R 2024 & 17 32025
=

-&19 oﬁbﬁpﬁﬂ&/i’«%—k%‘g‘f‘k\i ’gzgaﬁﬁﬁgﬁirjﬂ]})ﬁg%%“kﬁjgz%o

JLLHFE A # BB B KT Rk

R 4357 0 FERERTER S H FHEHRR o B L 2024 &
PSRRI AP FEEDN 5100 ARl e R KA b
15-20°C » § %305 @Bl 14 30 °C « Aptt 2% » SRA > & (- ABH 2 AT »
T 3o 4 40 - 80%2 0 hof] 4240 c AR G 0 0 302024 11 4 5
FERIE X AR X > BA M 10000 LUX ; @ § FF X8 Lk @ X §
S50 TIOEARE 0 4 & 20000 - 30000 LUX 2 [+ 4] 4.3 #75 o 1235 %
41 A EA > FREPFREZESC I HTLE > A RABBAD IR
THELR AEELFEPG R AETLE -

45
40
35
30
25
20
15
10

°C

0

ISPV ERUUNL SN - SR N I A BN NS SRR AU I SN AUPRAS
AP A SN A X N 'L“q’&wﬁ”'m\m@)‘\mﬁ’?’&\ o

date (y/m)
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BE

100
90
80 °
70
60 8
50
40
30
20
10

0

AN G2 oald NS e A N A WOy N
AP A AN X S N ,L@M 'LQ”'M@ N ,LQ'fJ

%

date (y/m)
BA42% R+ RE S £ HE

B

70000
60000
50000
. 40000
= 30000
20000

10000

0

NI

BN SN
NN ,L@P‘\ 'L@’Mi@&\ ,LQ’f?

g

N A N I
qp'lb‘\ q’@o.\ ’L@M rl(s'lb‘\ @’L“‘\ @,L

date (y/m)

BA3FR A2 RASL T £ HE

4ol 44 ot o RIEEFRERTART AP O BHERTFER - 4 F MR
BRERERNRA2024F 1% > 5-10C a3 BREINRALT ST » 25 -
30C » g eh > B 677 pFs BT E B DBy~ F s > 7 AP
Wik o 4eBl 45977 o pH 2024 # 6-8 ¥ WAk T > T L T L2 EH
ChgAR 2~ > pHAREAET-102F > & RP AR~ 3 RF ikl o 4B 4.6 %7
T AFERDECABRREREREF A F TR ERNE 10mgL A g
FhM: 8mgll EMAER L EN FERBFPETAC- 4mgL2 7 -

MPIRIAFIZAF AMETORREARE A LEXBENERTF F B
fRi 4 o 13EA 41 chAr AT kR pHDO MR 2 2 8073 pIOT NEF
2 .

=

"R A ST

\

fobac
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K

35
30
25
20
¢
15
10
5 o
0
MY AN B D e A A A9 QY D e
A A A D AN AN A D oM b o S\
date (y/m)
B 4445% < # RERT £ 5B
pH
10
9
8
7 \O,
6
5
4
3
2
1
0
APV C RN N N IV RN N SR RS SRS
@Q’L r'LQ’L rLQ'L rLQ'L PLQ’L r-LQ’L rLQ'L 'ldl' %Q'-LM ,LQ’LD"\rLQ'jP‘\ ,-LQ'LEJ
date (yv/m)
R4S pH R £ 5 W
DO
16
14
12
10
ERE .
= .
4
2
0
MY AN B aD a0 p D a0 A Y WD ey
AR AR AR AT A A AL Y ,LQ'LM mQ’lb‘\%Q'-LM qp’f)

date (y/m)

S
~

1)

28

doi:10.6342/NTU202501440



JeBl 475 o A S Y 2 ELF THEER L GE0-05mgN/L2ZF 5 A
TOAIRAPER KA G FOERIRK o WA 2024 & 30 2 40 ERTIREER D
£% > Tk RAu 5 1.94 mg-N/L 2 0.78 mg-N/L © 4-B] 4.8 #7 » §7/F % 4 ¢
PEMFBEFERARRTEM S A E B rABE > A 2024 E 5-9 0 i F TIER
B 0-1.0mgN/L2 > @ 2024 & 1~11~12% 2025& 1" s § T3k R 425
-4.0mg-N/L2 ¥ o 4ol 4.9 #77% » 358 <3 ¢ 28§ Bl f g 8% - 2T
FMNAFEF 0 2024 & 5-9 BF T5kRE A 1.0-20mg-NL2Z & @ 2024
E 13 11122 2025# 1% e TH9ER 3.0 - 5.0 mg-N/L 2 [ o gt ¢ »
&%%ﬁﬁ*%&ﬂ¢w$+ww%éﬁﬁ§oﬁ%%41m%f@ﬁ’g?\
2F HRICFISFFIHEFLE LEFFERCMNAEAEFLE -

NH3-N

2.5

2.0

L5

mg-N/L

1.0

0.5

0.0
>

A\ o
’L@M ’L“f]’& \

N yo 1S 0 O A
NN AR 0 s o

date (y/m)
BA4T3wF<# 55 % E£HF

NO3-N

4.0
3.5
3.0
2.5
2.0
L5
1.0

mg-N/L

0.5

0.0
>

A\ o
’L@M ’L“f]’& \

S ab n ©
HONNEEN NS ’LD‘\%M%%“\ T

date (y/m)

Bl484 8 S AL %1 £ 5B
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TN

mg-N/L

0
A} O M
o o oMl ot St LN ot

date (y/m)

o] 410 T 0 AR A S P 2ELBMIEEFTER A G P R
BHL Al ey B aad & hg it P R HF LR - 52024 & 47 pET
EHRP nEdp A, TR B TERRE T RBRERR IR FE TR BER
& 0.05-0.20 mg-P/L 2. ¥ » 139534k #7# &2 + [ & (Carlson) ¥ - S-dicdy #ic| T

Bk 2B B0 AL R A 0.024 mg/L WL BE o 4 E AT g E

‘];’K *“lﬁ.% ey g @ oo

TP

0.35

0.30

0.25

0.20

mg-P/L

0.15
0.10

0.05

o Q,-Lb‘\ rLD(\ Q,-LD(\\ rLQfL }(\ q Q.-LD“\ ’) “,-Lb‘\ q rLM ,Lb‘\q \\ "L \}LB#L \\ ’)L’Qrfj\

date (y/m)

Bl 410358 % 4 % £ %R
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Yo 411 5555 o AT A R ¢ FoA2 af B EFFT SR P RaAgg
Ripd 41l OB T ESEZ 2 REFLANTSFL  0aFL R FEE Y
2 aTHkERA50-200 pg/L2 > fwf2024& 9% 5 BLRIF
a> ER 5 29601 g/L o 13Tkt Pr#k -2+ f & (Carlson) ¥ -
b2 8 HY B Z akBRARET2 pgLrifRit » 4 LRmP RSP
.&ﬂ'rs S’ °C L 2 AL

Chl-a

400

350

300

250

T 200 1

150 .

100 ¢

50

0

ﬂﬂpéﬁg%ﬂm%ﬁg5qpqﬁy qp%qy “®§°M 1NQ§ﬁ“
date (y/m)

MAlli=E < %% a% ™ £ HE
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YeBl 412 4757 0 AR A 4 Y R R
T 9ppm T 2L 6-7 ppm 2 >
6 -7 ppm e i3 R E BT
§: %7 225 (Zhao et al. 2015) © 4cBl 4.13 #7771 - FE % 5 ¢ B R G BAUER &

y

ppm

ppm

3gi9g,ga.if$ﬁ—_5-7ppm,w%

2

2024 # 1% 3] 7 2

i

o
LA B

<7

= ~ ok

el ez v %

B

. 4.1 ekt
LR KA TR R F LD -

DIC

32024 # 1~10~ 1112 % 2025 & |
RER BRI RS E B RILT B G LF F T

— N W R Y 0 O

(=]

AN C RN N - SN I VA BN S~ BT SRR ST AP
AP A N SN AN X 0 AN o e

Nl

date (y/m)

[ERERE Y8 )

Sox
A
‘v

Bl 412358 % it £ 5E

DOC

9
8
7
6
5
4
3
2
1
0

. @_m\\q @m\") \

X 5 o 0 S a0 O Ay il e
> ’@m\ ’L@D‘ rLQ'LD‘\ qp’l?‘\ qp'LD‘\ m@b‘: S 1”‘\\@’19‘\: Q’L”‘\\ '1537’5\

date (y/m)

G R

S
A
Az

B 4.133% ~ i
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ho@l 414 977 0 ATR A SRR WA 2 ERARFF L 2-10ppm > T R4
FEER a5 PROEE - B AISR 50T PR 3BT BREERET
WriApeenSE % > VU RE P SRR T 2 E R E & 6- 16 ppm 2
o P f2024 & 92 BRTIFEA TR B PRI Y D RER AL
ATELGE eh o U A AL SRR T AR G WAL 2 B PBRLE L F S a e
FTRHFLE > ANPFEASFREREFALR -

POC
12

10

ppm
(=)

2

0
N N Ak NS ne A A N9 S
VLQ(LD‘ qp"’b‘ ) VQ’)’D‘ ) VQ'LD( ) VQFLD( o) VQ'.I’& o) ’le‘ 'LQQ}"L@ s "b‘\ ,.LQ"&‘ QPLB

date (y/m)

TOC

18

16

14 .

12
g 10 : °
= g

6

4

2

0

qpq}\lq}\ﬁ 1&\&3&\?@&\ q@}\ Qq}\ 1&\9 q}\\i \\\ \\'L 1«\

date (y/m)

B AISFE S % 0 W% £ HF
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1245 (Redfield 1958; Klausmeier et al. 2004) 5% 3 7 pLE T

16 : 1 ey B

W e C NAe P (FE N:P v

FATT 507 106

HET) B FMERLEA1601

P G R GTLHIFS R 2 Rd § FAFF S o d Bl 416 VAo AR A
PO LRV AINAIF T L R ATIR A P A R R R g L

BEFUFIF]F > m 2024 # T2 9 G RAIFAOFTE IV ZITW T R

PSP hE 2 B B L RS2 £ U F]S 0 @ B 4.17 2 BT e

AP R o

mg-N/mg-P

160
140
120
100
80
60

40

(=L

TN/TP

® Chl-a
® @ TN/TP

‘. L) @ .. ]

TP(mg-P/L)

0.30
0.25
0.20
0.15
0.10
0.05
0.00

Col e S B AN -ER ~ B SN
WO 2 a0 B D S

NGNS I VRN

date(y/m)
Bl 4167 F% ~» % §F ~ Bz V&
REiE Kt

) y=0.0003x +0.1024
R*=10.0931

.t
......
-

0 100 200 300 400
Chl-a(ug/L)
Bl 417858 % 3 e E 8 % v fFas
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4124F A4 F AR
4121 %% A3 Fp s

Yol 418 #TF T OLRB IR A S E 0 9 e

a—

£7% & 0-100 mg-
CH4-C/m¥d > 54 23579 7 F g aud £ 3w > » )5 13563 ~ 138.60

W
A

154.28 ~ 575.75 mg-CHs-C/m?/d » %2024 & 5% % 9 " T ia2if § 4 26.47-93.76 mg-
CH4-C/m*/d 2. B > v+ 2024 & 1101112 % 3 2025 # 1 ? enT 30 § 3.64 -
19.65 mg-CH4-C/m*d k0 { B » A L FH BB >4 5 > 4 3P FIEH7 oy
WA G B 2 B AT L 8 A 2024 # % 2025 # 5 U ehg iR o 19354 4.1

AT T R EEEF TR A T EFAR AP A A XL VT
M2 B3 HEFLR

CH,
700

600
500
400

300

mg-CH,-C/m?/d

200

°

100
0 . = = + -

5 o a0 O M ESTANY
\n@ A (9}\ n@&\qy AN QFLD.\rL Y Qns\

@m\ Qp]‘m\ QfLM mm\
date (y/m)

@41889&—"?"“%‘ ‘E_ﬁfa‘g]

bR 419 17 > = F AR £ 4 5 & -1000 - 1000 mg-CO»-C/m%d 2 F >

b4 B8 BBRFIRF ) UEE LA E A B 5 268476 2 2560.46 mg-CO,-

Cm¥d > BB §F it T o £ 0 FRA 2024 & 1236781011 1 12

202025 & 1 P AT A 5§ AR 0 A 2024 & 45595120 £

?%’ﬁﬂliﬂﬁiii%%¥§$%ﬂajmgﬁ@@, B AL R

PEF S F BB R R AU o {34 4D SRPREE - F R
FEGga fEELR o

y

& B

V‘b
[RH
E-)
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Co,

3000

2000

1000

0

-1000

mg-CO,-C/m?/d

-2000

o

k) Q N L A
q{r} D«\’ﬂq/&\ Qq A ('?—b‘\sﬂb‘\q&mq(@b‘\ rLDc\ qj)(\\ qb&\\ N p]:-:,\

date (y/m)

Bl 419358+ % - 5 LRI & £ E

A122FH <P UEFERA2ZFREE

4ol 420 P > RBEERGZ BREFEITL RA O A BERSE ¢ oLz BpF
B e gon®it o 5 ¢ s Tiapid § 4 W 5 1.87 ~ 1.03 ~ 0.69 mg-CHy-
C/m?hr » R P 2 ehpdid €55 40 - 5Smg-CHs-C/m*/hr 2. o fe 4.5 2 7 = % &
FpIT 4 BHEE I E o A8 L5 2399643~ 5.65 mg-CHs-C/m*/hr 14 % ¢

= 5.78mg-CHa-C/m?/hr » 13354 4.1 i3 Bgm P Rl B X @' F P E B @ 3

MEZLR -

CH,
30
25
(-]
,;é 20
0
Y 15
ouf
g
[=1]
g 10
5 H °
T — D .
0
morning noon night

B 420358 % 8 UPFE R A 2 P xpFid B £ HE
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4o 421 A1 0 RREFERGZ BREEITL RA O A BBERS P 8= B
B F LA Bt o F 79 g T g 4% 5 790134 -2.70
mg-CO»-C/m*/hr » #48 = § 1 g ehpdid £ 5% £.-50 - 50 mg-CO,-C/m*/hr 2. B o K@ -
A& P2t 2B ERI I R F e g A H 5 10669 2 2 -111.86 mg-CO»-

Cm’hre 1354 41 ch - F P REEL AEF PR DR A HEFLE o

Co,
150

100 °

50

mg-CO,-C/m?/hr
=
‘ z

-50

-100

-150

morning noon night

BlA421 %A S NEFRRAZ - F L RAPFIE £HE
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A123WH X P EFEF 2 NP4

FoA14TI% 4 F R B2 R S AT A

Varible Factor Test P value Tukey/Dunn’s test
CHa time Kruskal-Wall%s 0.572 N.S.
season  Kruskal-Wallis ~ <0.05  Aut® Spr® Sum® Win®
co time Kruskal-Wallis  <0.05 N.S.
’ season  Kruskal-Wallis ~ 0.093 N.S.
Tn time Kruskal-Wallis ~ <0.05 Mor®® Noon® Night”
season  Kruskal-Wallis ~ <0.05  Aut®* Spr® Sum® Win®
numidity time Kruskal-Wallis  <0.05 Mor® Noon® Night®
season Kruskal-Wallis 0.800 N.S.
Jlumination time  Kruskal-Wallis  <0.05  Mor® Noon® Night”
season Kruskal-Wallis  0.054 N.S.
oH time Kruskal-Wallis ~ <0.05 Mor® Noon® Night”
season Kruskal-Wallis ~ <0.05 Aut® Spr® Sum® Win®
50 time ANOVA <0.05 Mor® Noon®® Night*
season ANOVA <0.05  Aut®® Spr*® Sum® Win®
Tw time Kruskal-Wallis ~ <0.05 Mor? Noon®® Night*®
season Kruskal-Wallis ~ <0.05 Aut® Spr? Sum” Win®
Chia time Kruskal-Wallis ~ 0.558 N.S.
season Kruskal-Wallis 0.314 N.S.
time Kruskal-Wallis ~ 0.955 N.S.
TN . a4 b A< b
season Kruskal-Wallis ~ <0.05 Aut” Spr’ Sum® Win
P time ANOVA 0.332 N.S.
season Kruskal-Wallis  <0.05  Aut® Sprb Sum® Win®®
DIC time Kruskal-Wallis 0.056 N.S.
season  Kruskal-Wallis ~ <0.05  Aut® Spr® Sum® Win®
DOC time Kruskal-Wallis 0.269 N.S.
season Kruskal-Wallis ~ <0.05 Aut? Sprb Sum® Win?
POC time Kruskal-Wallis  0.587 N.S.
season Kruskal-Wallis ~ <0.05 Aut® Spr® Sum? Win®
TOC time Kruskal-Wallis 0.534 N.S.
season  Kruskal-Wallis ~ <0.05  Aut® Spr*® Sum® Win®
NHa-N time Kruskal-Wallis ~ 0.208 N.S.
season Kruskal-Wallis ~ <0.05 Aut? Sprb Sum® Win®
NOs-N time Kruskal-Wallis 0.983 N.S.

season  Kruskal-Wallis ~ <0.05  Aut® Spr® Sum® Win”

N.S. : No Significant
Aut © Autumn (Sep. ~ Nov.) ; Spr : Spring (Mar. ~ May)
Sum : Summer (Jun. ~ Aug.) ; Win : Winter (Dec. ~ Feb.)
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2ALATR AP FHEEE BB S A A1TE 4L SRR S B g Sk
FRPFLATOES > 2 A BEREFAIT A B UE P 8L - e pE e
ME S At - mhE e o F AR SRR EF A ARl F
& e m R ANOVA & {7 ficdp s 47 0 #41 % Tuket test 3817 F (S48 23
FHFEF AR * Kruskal-Wallis & {7 #icdy c04 47 - 41 % Dunn test i€ {7
TR MBRBRLFERELIST aEFLEP<005 ¥ 2 NS.&7 & F
B FaRagFLid  F Y S 5l@ bkl ATA HFREEFL
PoFEAARPRIALG AMELAP<005) BRAT 0 FT FE KR BR
BE~pH DO 2 ¢ » 2 APFET FFHEATHEFLE A% 1 COx
humidity ~ illumination ~ Chla2_ *} » 244 8"EF T &% B F L B o

4124 %% 4 % B g

Yo 422 4t o TR A B ER T B AP RR RSB N 3) FEED
H g B 45 0.346 - 13.575 kg-CHy-C/d 2 [ » & 42024 & 9 7 e1® Sptac g it 5
PEBBE B AR AN O R 2024 & 50 1 90 Y T amp
s B 2.575 - 13.575 kg-CHy-C/d 2 B > 1 2024 & 110~ 11~ 12 7 % 2025 & |
Vo 0364 - 2.609 kg-CHy-C/d % chi 8 52— AT a @ L 57823

FH O FIE B R R § LT B FEE L 0 A H 4 T R nE 4

CH,
16
14
12
10

kg-CH,-C/d

(= S A ]

Nl ook s b A G O 0N LN
R N RN
VAN VANV VA A S PN

date (y/m)

B 422%5% < 3 9 iz ptag §
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o) 423 Pt o TR AR P ER - § LA AR R E I EEON 3) tEE
o H gl 4 -33.877-41.603 kg-CO-C/d 2 F = £ 2024 # 1 » 2 42 HF > =
AP R T AR 0 J£.26.529 T *% 1 -33.877 kg-CO»-C/d » % P TP
RACE & 3 ¥ 2§ P paofoar 4 iR ae 0 K 2024 & 40 3 82 - F b
P M BE g v o 8 -33.877 £ 8 I 41.603 kg-CO»-C/d » * #2024 & 9 *
Bdp o = F Ao R @H AR R T g 44 22,089 - 2.185 kg-CO»-
Cd2 /@ -FHa7 FTHAA? - F PREPRIIAEFISIRCAGTPH
PABE > B 2024 FE 457120 R 2025 F 10 ¢ 0§ iLpa P L g
B T 40 ks S o A P - PRI T e irds

G FIATE A S P BB Y B P L A o

Co,

kg-CO,-C/d
=

AR TR T TR AL PO SRR
W 30 > 0 g0 0 P 0 O g
FIP& &I F ISP PP
L M M O R I NN
date (y/m)

B 423408+ % - §F tppapnd
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AETRIHAPOFRALY - ESNTR 0 LA 2024 100 420 4 pD
FIp Bdpi Ao B ¢ PABREZBIHBR - PR F
Mok EREFEAHEG - T AP OB SR EPET R 2024 20 5 90 4 o
421 A P2 FRBR A KT S

Yol 4249557 0 FEERTER A FHOFEPEL 202420 590
TR A3 20-40°C o deR 4254757 0 B 1 P BRI ERKSERR 0§ 2 BAF
BA*35-60% 2/ > d Hak7 SRIA350-90% 2 o BAES & 4ol 426
S RITEF A FHMAPL > 225340 TomE K3 10000 LUX ;5
57 By TIHRARE 0 X & 10000 - 30000 LUX 2 fF o {954 4.2 hiih b
g CRAEFREZZSORIHFLE  ARARAEFER G HY

i
L8 -

40
35
30

25

°C

20

2024/2 2024/3 2024/4 2024/5 2024/6 2024/7 2024/8 2024/9
date (y/m)

g]424“/v54[§]$ B EHE
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100
90
80
70
60
50
40
30
20

%

2024/2 2024/3 2024/4 2024/5 2024/6 2024/7 2024/8 2024/9
date (y/m)

BA425 AP FRE S £ HE

RE

80000
70000
60000
50000
40000

LUX

30000
20000
10000

2024/2 2024/3 2024/4 2024/5 2024/6 2024/7 2024/8 2024/9
date (y/m)

Bl420 P FIRART £ R E

4ol 427 7T KB B FER AR BERETEF 4 F Mok
BRMERHEDIRA2024E20 > 915-20C > A BB EFHRIBAET E > 925
30C e fe e 8 " B RT £ Wiz A Tt > Vit 9 REL A HEK - 4o
Bl428 % »pH &3 32 5" YREEHF T > T 90471 709 54 1
9 F PIFF A Ty0 7092 3 857 pHFRA R 430 T7-92 F > » WP =
W OFR T Rk o Ao B 429977 0 B F ER RV ABRRIEERPF > K27
ISP YT TERF RAK 121 T E 81mg/Ly AFT 9 4 F P AD
FHCERY 9 TmEL ERAZE T EM - MEAEILFZRE AR
TERERRE O m R ERERERCE F OB fRN A o Rgpk 42 DA ET
ki ~pH -DOSEFFEZ ZE&NHLFHFLR -

[add
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°C

12
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mg/L

35

30

25

20

KB

2024/2 2024/3 2024/4 2024/5 2024/6 2024/7 2024/8 2024/9
date (y/m)

pH

2024/2 2024/3 2024/4 2024/5 2024/6 2024/7 2024/8 2024/9

date (y/m)
1 4.28 < i 2 F pH % 1 £ % F)

DO

2024/2 2024/3 2024/4 2024/5 2024/6 2024/7 2024/8 2024/9
date (y/m)

B 420X B Fin s 20 £HE
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4o 430 FrT 0 AP OFY 4 F L2 P BAeEETED] 4 0 > TISE R
092 7% % 0.22mg-N/L - j€ 4" B4B 48T % 3 77 » T30k R K 0227 %
3 005mg-N/L> @ 8-~9 71 it 24 » kARA Y% 0.08% 0.07mg-N/L > %R+
TF R E MR o oW 431 T AP ORI ERAIREEM A F
- RMREFRAE AR K27 250 5 T adEg > JEARK072 T L 0.20
mg-NL>5 %3 9% plEL AT, At mF > TkA 5 017 - 0.38 mg-
N/L o 4e@l 432 #77 > * @2 FRF - HRIRTFM -2 FTF /L2731 677
TE B > R 324 T3 1.06mgN/L 6% 19 P EA Y AT, A
BB TR R L 1.06 - 1.47 me-N/L o 43354 42 chii Eion & § SEE R Z
FEORUIFRFLB > ARFEIARINLLTSRO I HFLE -

NH3-N

0.8

0.6

mg-N/L

0.4

0.2 °

0.0

2024/2 2024/3 2024/4 2024/5 2024/6 2024/7 2024/8 2024/9
date (y/m)

Bl430 < ¥ 2 Fli § %1 £ %B

NO3-N

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

mg-N/L

0.1
0.0

2024/2 2024/3 2024/4 2024/5 2024/6 2024/7 2024/8 2024/9
date (y/m)

Bl 431 A P FA s 1 £%8
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TN
5.0

4.5
4.0
3.5
3.0
2.5
2.0
L5
1.0
0.5
0.0

mg-N/L
o

2024/2 2024/3 2024/4 2024/5 2024/6 2024/7 2024/8 2024/9
date (y/m)

Bl432 2P oFRi % £HE

4ol 433 7m o AR AR Y 2 ERBMT ELFLER A G P R L
27370 F A ETESARE > X A5 E P B E o kA K 0.035mg-P/L &
3 0156 mg-P/L> f {47 % 0079 mg-P/L> @ % 8~9 7 ch&it 2 % » Tk R
25 0.105 mg-P/L > & T 28k & & 0.035 mg-P/L 1} > 1355k ie “TH 2
f % (Carlson) ¥ — Sty | 2 ip & v 2 12 > # ¢ %pik & 424§ 0.024 mg/L
B R P A S FIREE SRS R AR Y o R 4.2 i g
TREBEREER R REFELR -

TP
0.25

0.20

0.15

mg-P/L

0.10

0.05 °

0.00

2024/2 2024/3 2024/4 2024/5 2024/6 2024/7 2024/8 2024/9
date (y/m)

Bl 4.33 < 8 D> Flamig i £ 5% E
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YRl 43490 > AP OF2EESE a X AEFTEH A G P AEY

EESE a TR 6 752-1395 ng/L 2 B > 19454 42 s T E %R NE
FESORLFHFLE o AR TR B2+ F & (Carlson) B - 5 #icdy #e| &
AR S F akREET2 ugL T FREL S BIRP AP D
B 3kt ok ek Y o

Chl-a

2024/2 2024/3 2024/4 2024/5 2024/6 2024/7 2024/8 2024/9
date (y/m)

M3~ B oFESF a % £HF
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o] 435077 0 AP S FIN B AR L3 BRETIERS B R
BT 3 70 P e Tk R K _17.582 T % % 8.624ppm o fE 7 P B s
EREBTE A > ¥ A 9 0T 11429 ppm v B A T 0 BEMEBET LT EE
FHEFD TP EART T o oW 436 417 0 AP OF Y AR BEER &
20 3 40 BRA A 5T % o kR j6_3.468 ppm # 4c 1 4.781 ppm > 2 {4
TR 3.679ppme B S5 P R 9 P R fRfG WARAAENET > TIHRR 13T 4.6 -
50 ppm 2 fF o 1¥Pp 4 42DRF TR BEARREF ISR T HEFLE
AARENG PRI IERER: TSR RFLE -

DIC

ppm
)
-]

2024/2 2024/3 2024/4 2024/5 2024/6 2024/7 2024/8 2024/9
date (y/m)

] 4.35 300 2 B33 fR 1 A 1 £

DOC

ppm

2024/2 2024/3 2024/4 2024/5 2024/6 2024/7 2024/8 2024/9
date (y/m)

B 4.36 < i 2 Fli3 2147 g1 £ R El
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4o 437 07 0 4 A TINALT B A2 0 D 40 AR TIHER 4
% 3.398-3.899ppm 2 ¥ » 3 50 kAP P FABNAER T 90 0 TR
305194 -6.108 ppm 2 FF » 7 L AR AR F h5-9 7 3kt WAk A B3
R BERMGA2-47 o @ B438 0] 5 R R A5 R PR BRI
A% o TP SRR RS 2 EERT A T- 1l ppm 2
d ARG A AR S A SRR R AT 0 385 520 1 JER B3 2
S4 T FR R A AR R o JdE A 42 R ARG e
4SREPR TR0 E LR o

POC

—
o

ppm
=T S N - e o IN=]

2024/2 2024/3 2024/4 2024/5 2024/6 2024/7 2024/8 2024/9
date (y/m)

B 437 < S FIERIET B £ HF

TOC

ppm
[o22]

2024/2 2024/3 2024/4 2024/5 2024/6 2024/7 2024/8 2024/9
date (y/m)
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#1411 §4pk > 2 Redfield (1958)## 12 § FAL D1 4 16 1 B i¥ 5 2| %r

L] F]+

r’

N

g 2 Bk

lt:';o

mg-N/mg-P

AFRGIFF R (FE NP YL 7)) §FBLR g 160 L7

FIFIS D F 2R § RS o d B 4397 v A B2 FE

KPR PE R AR E B T G R

BT oos P AP OFY
m w2024 & 5567 PG ERRIE Mm%‘rﬂ WeREITY T WP e
PR Rspd £ T+ o a Bl 440 2 oo R ESF 5 EAPH
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160 200
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e @ ® Chl-a
o ® 160
120 e ® ]
° ° ..0. o 140
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e ° *ete’e 120 g;
0 | o oo o ® o %o 100 2
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60 | % o’ %o 80 =
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20 ® [ ]
; ........ o eo mlﬂ o 20
0 rrrerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrorr 0
WS I\ N e T G AN N
ﬂ?ﬁ"b‘ @"?‘ qsg*v"‘ r@"‘ ﬁsgv"‘ é\?‘ ﬁ/@"‘ r&%"‘
date(y/m)
Bl 439~ @2 FlALF ~ BpL v E
g NIES
0.25
y =0.0003x + 0.0733
° ]
2 015 :. ®
-»
&0 e f °9 '? - ®
\é/ 0.10 i ... o ® o
o @0
0.05 . .. @ @ @
)
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422 * P Bl WAL &
4221+ P Bl§ P F WHELE

4oBl 4.41 91 0 T OUBRRT| X P A FF P hT i X K A% 0-2500 mg-
CHy-C/m2/d 2 F¥ » Jp #0408 < 3% % 9 0 - 100 mg-CHy-C/m?/d 07 230 £ F 0
FEOAREFG AP OF D3 iR BB O R EER S BV
EF A AN HFREEDRER S T - P TE ¥ p 2% 179.05 mg-CHs-
C/m%d B4sEbrt 2 B 4 7 E 5] %% 612.43 mg-CHs-C/m*d > 2. 15 7% % 6 ?
£1330.74 mg-CH4-C/m?¥/d > %£18 &7 * 3¢ 5 = = T 583.98 mg-CH4-C/m?/d » £ 2 3%
9 7 LT 1 260.51 mg-CHs-C/m*/d > » Bgr <~ 2F 2024 & 2% 2 9% %
PR AR o RPpd 42 RIS T U BT SR RF AR 2P
FHERE2ZRA 3 HFLE -

CH,
2500

2000

1500

1000

mg-CH,-C/m?/d

500

2024/2 2024/3 2024/4 2024/5 2024/6 2024/7 2024/8 2024/9
date (y/m)

B 44l ~ P F 9 =i § £ B

Yol 442t o0 X AFE Y cho § L £ 43 <1000 - 1000 mg-CO»-
Cm*d 2 B« 7" FBBE2xEFFhr @ £ A %5 205251 2 1953.32 mg-
COr-Cm’/d > @ 8% RINIR 1= R ¥ F ch @ £ (2027.98 mg-CO--C/m?/d) %

1B ¥ Fenfd £ (-1874.61 mg-CO-C/m¥d) » &= § 1 penTiod § k5 >
BMABOIF 2024 E2-5-6-8~95 - F LA > @ 2024 & 347
RlG - F PP cih  BIY Bpr > - F PRUEEZSAEFTSF M TP AR
Foo REP AP OFREG S F RPN R PES o UL 42 gt

WA rRABEA AR A HFLD -
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Co,
2500
2000 H °
1500
1000 .

500

-500
-1000
-1500
-2000 °
-2500

mg-CO,-C/m?/d
o

2024/2 2024/3 2024/4 2024/5 2024/6 2024/7 2024/8 2024/9
date (y/m)

B 4425 POFl- & L £ HE

4222 A MAFINELT AL F I E

4o 443 2T o BB BRERITLRA O A LEEE VY Bz B
BT i Fangit o & ¢ BT E A w5 1715 16.22 ~ 16.30 mg-
CH4-C/m?/hr » EERE ? 22 cnpFid £ 4% 0 - 50 mg-CH4-C/m?/hr 2. o ¥ 4= B PFEL
R 1 xR ¥ ol ® o 4w 5% e 71.83 mg-CHs-C/m?/hr ~ ¢ = £ 89.76
mg-CHs-C/m?/hr 12 % 8+ ¢ 84.51 mg-CHa-C/m?/hr » 1345 % 4.2 hse Bt 7 =il
EXAMEERELa g EFLE o

CH4

100
90 °
80
70 °
60
50 °
40
30
20
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mg-CH,-C/m?/hr

-10
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B 443 49 2P R ® A LT B E £ R
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4Bl 444 o > RBEEGSZ BEFERITLRA 0 A BRS¢ s gi- B
BN F LR RS o % 7 B T R A Y5 -1.10 ~ 0.88 ~ -3.23
mg-CO-C/m*/hr » FERE = § i g enpid £ 4% -40 - 40 mg-COx-C/m*/hr 2 B © @ >
BE AP ZLu R 3B FE R A5 81.3984.50 122 -78.11 mg-
CO»-Chm/hr = 12354 4.2 ehies B = § AU B X AEFREL A JHFLE -

Co,
100

80 ° °
60

40 °
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<
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-40 . °
-60
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Bl 444 < B 2FIUpFE T A2 - 5 PRI E EHR
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4223 AP FIEFF 2 £ 8004

2424 P o FF M E 2 RE SRS

Varible Factor Test P value Tukey/Dunn’s test
CH4 time Kruskal-Wallis  0.891 N.S.
season  Kruskal-Wallis ~ <0.05  Aut®® Spr®® Sum® Win®
co2 time Kruskal-Wallis  0.492 N.S.
season Kruskal-Wallis  0.662 N.S.
Tn time Kruskal-Wallis ~ <0.05 Mor? Noon? Night”
season  Kruskal-Wallis  <0.05  Aut® Spr® Sum® Win®
humidity time Kruskal-Wall%s <0.05 Mor? Noon® Night?
season Kruskal-Wallis ~ <0.05 Aut® Spr® Sum® Win"
lumination time Kruskal-Wallis ~ <0.05 Mor® Noon? Nightb
season Kruskal-Wallis  0.069 N.S.
oH time Kruskal-Wallis ~ <0.05 Mor® Noon® Nigh‘[b
season  Kruskal-Wallis ~ <0.05  Aut® Spr®® Sum® Win®
50 time ANOVA <0.05  Mor® Noon” Night”
season Kruskal-Wallis ~ <0.05 Aut® Spr® Sum® Win"
Tw time Kruskal-Wallis ~ <0.05  Mor® Noon® Night®
season  Kruskal-Wallis  <0.05  Aut® Spr® Sum® Win®
Chia time Kruskal-Wallis ~ 0.299 N.S.
season  Kruskal-Wallis  <0.05  Aut® Spr® Sum® Win®
™ time Kruskal-Wallis ~ 0.119 N.S.
season Kruskal-Wallis ~ <0.05  Aut® Spr® Sum® Win®
P time ANOVA 0.945 N.S.
season Kruskal-Wallis ~ <0.05 Aut® Spr® Sum® Win"
DIC time Kruskal-Wallis  0.144 N.S.
season  Kruskal-Wallis  <0.05  Aut* Spr*® Sum® Win®
DOC time Kruskal-Wallis ~ <0.05 Mor? Noon® Night*
season Kruskal-Wallis ~ <0.05 Aut® Spr® Sum® Win"
POC time Kruskal-Wallis ~ <0.05 Mor® Noon® Night”
season  Kruskal-Wallis  <0.05  Aut® Spr® Sum® Win®
ToC time Kruskal-Wallis ~ <0.05 Mor® Noon® Night”
season Kruskal-Wallis ~ <0.05 Aut® Spr® Sum® Win®
NHA.N time Kruskal-Wallis ~ <0.05  Mor® Noon®™ Night”
season  Kruskal-Wallis ~ <0.05  Aut® Spr® Sum® Win®
NO3-N time Kruskal-Wallis  0.478 N.S.

season  Kruskal-Wallis  <0.05  Aut® Spr® Sum® Win®

N.S. : No Significant
Aut © Autumn (Sep. ~ Nov.) ; Spr : Spring (Mar. ~ May)
Sum : Summer (Jun. ~ Aug.) ; Win : Winter (Dec. ~ Feb.)

53

doi:10.6342/NTU202501440



42 FRAP ORI FEEFRILAPFDESE > L5 BB F AT
ABIIE P B L - R R R s R - He o F A
S BRI FEE A GR o FREFEAGRE Y ANOVA i (7 Hichh cha
17> F A% Tukettest £ {FTF ST F 4 & ¥ B4 P&+ Kruskal-Wallis i&
FHcpnA 47 1% Dunntesti8 FE BT UBRRLFEELEZSRF T A
FLPRP<005) £ NS.AF BHEARLESMEMFLE » £ 57 kg
@ b otpe R A7A FXBENFLE > FH iR AL S AHFLEP <005
%R "%7 % &~ kE~ERER ~BR ~pH~DO -DOC ~POC ~ TOC ~ NHs-
Nz SRl PR PRIEATHFLL A% COr2 o RS

FERRCGHFLE -

o

4224 % p2Flaiad

4o 445 27 0 AP FEER P R REZEEFELN Q) EED
2§ R 42 10.536 — 47.710 kg-CHa-C/d 2. FF o o WP ¥ 105 8> 7 g g p
2024 & 2 % B piE i 25 j8.10.536 kg-CH4-C/d + 2 5 5 £9239.266 kg-CHs-C/d »
BEAR G 6 7 Tr Pt g g A TR 0 T RFPIT AR E T RE
5 47.710 kg-CHs-C/d > Mg {8 * T " 3] 9 % > "8 1 21.355 kg-CH4-C/d 82 R 4%
ek D3 en® i By H s BRI R B o wd N H LA GG Rl o HAR
£ m?ﬂcﬂ Lo #hm o AP OF TR DB BAIIE LR L WP AP
SEARERT IR AP A - B LR DT PR o

CH,
60

50
40
30
20

ke-CH,-C/d

10

LN CIN N BN T AT N
&b‘ﬁy&b‘,\y&m@u

VA
A A AP

date (y/m)
B] 4.45 = A [f] v oo i‘a#—i—k %;:‘E'_
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4oB) 446 4 0 AP O FlenrE - §F LA RE LS ENS Q) FEESD -
H 1 42 -31.088 - 1.746 kg-COx-C/d 2. [  j€ 2024 # 27 % 57 » = § f-p44
BB R RA P A AT AR > 827635 kg-COx-C/d + 2 3 3 % £ 1.463 kg-COa-
C/d> 1T %2 59 ehd i1 E-31.088kg-COx-C/d > e j5 6 3 B s = § (- phigp
g imprw A o 8 1P| > E R B 1.746 kg-CO-C/d > 2 & 9 " pEX B X T
%0 "5 1-6799kg-CO»-C/de 27 2 9V F 245629155

Vehs §ORBAHRE DB HA AR BASE Y BY B ) REas § R

V}L’["%,ﬁ‘bi o

Co,
3
0
-5
2
8 -20
2 s
-30
-35
B o 0\ S
wé\"& f»@’b‘\% *\59’& m@&ﬁ ’v@& “Egiﬁ m@& @m@
date (y/m)

Bl 4.46 « 3 2 F1= § i pA PR
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43 3 REL 7

4314 %+ # RDA A ¥

RDAZ2 (10.9%)

RDA({Longtan)

Chl-a’

Poc ;|
pH , Ipoc
\ I| 1

/N
"NOZ-N'

illumination

N, \ [ sl
\ TaCH,
\\ \ 11{,.' f..‘/

RDAL (14.3%)

B 4.47 3<% <~ #» RDA ~ 5

(F¢ #ERABELE &0 B2 PREE)

24335 F 4 4 o

S8t CHy 2 COp chB2 42 5 (4 51%)

=
Variable CHa CO2
Chla 0.828 (13.87) -0.425 (-10.06)
TN -0.483 (-8.09) 0.155 (3.68)
TP 0.591 (9.90) 0.169 (4.00)
DIC 0.028 (0.46) 0.211 (4.99)
DOC 0.653 (10.94) -0.211 (-4.99)
POC 0.508 (8.50) -0.563 (-13.31)
NH3-N 0.049 (0.81) -0.069 (-1.63)
NO3-N -0.746 (-12.49) -0.049 (-1.17)
pH 0.159 (2.66) -0.892 (-21.10)
DO -0.417 (-6.99) -0.789 (-18.66)
Tw 0.268 (4.49) -0.129 (-3.06)
Ta 0.421 (7.06) 0.004 (0.08)
Humidity -0.113 (-1.89) -0.342 (-8.10)
illumination 0.707 (11.83) 0.219 (5.18)
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1995 RDA A 47 % 57 (B 447 2 4 43)>

‘ﬁm‘%ﬂﬁ?%&~%ﬁﬁ¢%&\wﬂﬁ

AR E Y 0 B
PRARE T it & SR o
S

WE L SRR T R ERT AN B RLRBA £ F R Rt AR b
PR S EE TR EPM R CAEE S 3F CRBREY Rt LS4
B AT R R APM o F BB B IERLA A BRSSO R
1%k S4nk o WP EE Sl - F MR ERI M G FEE S F PR OA AR
SE A M W S F CRBCEARN C E SR BRI R R

KR RRE

iﬁ%

F4F

SF Rt R S E P

FORA ARG AR

ARG A pH -

432 4 # 2 5] RDA & 5
RDA(Dahu)
humidity
+ TP
/7
i
.-". -'f
'y
o — ,."';_.f
poc ."_.f
\, /
z . DIE::.':; CH4
8 o - s Tw
poGA
3 H w
@ ’ \ ®
MN' ‘NOZN Ta
illumiggtidn. /
/ /
7 S A
Do/
4 -2 0 2 4
RDA1 (17.09)
B] 4.48 < ;# = [F] RDA 4 47
(Fém Bt 4RP%E o B2 5R%E)
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%4445 OF P & S84 CHa 2 COp e 428 (* 51%)

Variable CHas CO2
Chla -0.296 (-8.77) 0.048 (3.36)
TN -0.126 (-3.73) -0.015 (-1.05)
TP 0.425 (12.61) -0.184 (-12.76)
DIC 0.037 (1.11) -0.041 (-2.88)
DOC -0.126 (-3.75) -0.234 (-16.27)
POC -0.098 (-2.91) -0.028 (-1.97)
NH3-N -0.163 (-4.83) 0.055 (3.83)
NO3-N -0.002 (-0.05) 0.137 (9.53)
pH -0.302 (-8.95) 0.115 (7.97)
DO -0.696 (-20.65) 0.035 (2.41)
Tw 0.213 (6.32) 0.101 (7.02)
Ta 0.154 (4.56) 0.206 (14.29)
Humidity 0.399 (11.84) -0.223 (-15.50)
illumination -0.334 (-9.92) 0.017 (1.17)

BRI EASE BRI PR AR AR BRRE D F PR R SR
WP e S - F PRI AR o B TR R RAE DO R AR
B oo - F PRI BB AR R AR F R RAEDRERR

L E e
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433 p & RDA &~ 47

RDA(daytime)

DIC

RDAZ (3.6%)

"NO3-N’

RDAL (15.1%)

B 449 p B RDA 4 17
(B¢ #BRARREE 9 AL PREE)

4 4.5p FF & %8c% CHy 2 COo B2 BA2R (0 5]%)

Variable CH4 CO2

Chla -0.133 (-2.24) -0.168 (-8.52)

TN -0.712 (-11.95) 0.127 (6.43)
TP -0.139 (-2.33) -0.055 (-2.78)
DIC 1.100 (18.46) -0.239 (-12.12)
DOC -0.307 (-5.16) -0.017 (-0.88)
POC 0.043 (0.73) -0.211 (-10.7)

NH3-N -0.058 (-0.98) 0.091 (4.61)
NOs3-N -0.878 (-14.75) -0.006 (-0.29)
pH 0.040 (0.67) -0.475 (-24.11)
DO -0.768 (-12.89) -0.105 (-5.34)
Tw 0.694 (11.65) -0.017 (-0.86)
Ta 0.605 (10.17) -0.0001 (-0.01)
Humidity 0.251 (4.21) -0.134 (-6.77)
illumination -0.135 (-2.27) -0.170 (-8.62)
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pH e 5842 7 - i

\'}%$

RDA(night)

RDAL (30.0%)

R 4.50 = & RDA » +7

(Fédmi

RABRRE i BELPRRED)
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% 4.6 R L S8c¥t CHs 2 COo e B42 & (0 51%)

Variable CH4 CO,

Chla -0.335 (-5.38) -0.295 (-5.90)

TN -0.608 (-9.74) 0.247 (4.95)

TP -0.192 (-3.07) 0.345 (6.90)
DIC 0.968 (15.52) -0.034 (-0.67)
DOC -0.517 (-8.29) -0.539 (-10.77)
POC 0.128 (2.05) -0.468 (-9.35)
NH3-N -0.517 (-2.10) -0.291 (-5.82)

NOs3-N -0.670 (-10.75) 0.318 (6.35)
pH 0.577 (9.25) -0.237 (-4.73)
DO -0.204 (-3.28) -0.653 (-13.06)
Tw 0.643 (10.31) -0.296 (-5.92)
Ta 0.545 (8.74) -0.443 (-8.87)
Humidity 0.618 (9.90) -0.256 (-5.11)

Ji#* R HcHpie 7 RDA 445 (Bl 4.50 2 & 4.6)» %K1 3R R 3
f}\’f_‘t’i? ’F}&X’ﬁ\ pH‘ R El‘fg"%g Ak SRR BT l_t_%jiﬁ'{jg =R IR
— >k A = 1 ‘i—

h G ESE CRF CRBE BB PR FF AR B
e E Pl SRR T SRR APE o RF R AR o § PR

1%
3
&

ié&i’iWEﬁiﬁﬁiiﬂﬁiﬂiﬁ%?ﬁﬁﬁﬁﬁﬁﬁliﬂﬁﬁ*
BRTE R PR RPRE - F FaREN B8 BRI B
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A4 B FHRE FREREFAVR
4418 F VR

A RET ERRENE R F M E TR HE)EF AT BE e 47 0
ST R A R (BF 0-23.5° LAF 23.5-35° B4 35-66.5°) &7t
Bood WHAET ARRAF AT > Fp g * Kruskal-Wallis # 23 {7 a3 A 45 > &
%iF Dunn’s test £ FE SR T UER L F B RE A BRI FhL R o Y
HF ARt (a~brc) *NATHEFLLR R EARRMATERFLE 2R
Pldrs gy L8 (P<0.05)-

BEMET ARG GERE RGN R F PREE Y S AEFLE -
ETREE DG WRALEAPOFERD FRELFAEFLL > LELA
el

FREFRRRGEELE o0 B ASI T A TE L2 %P0 Fl

it

av
P
frefo
h=

> #c i 2.25mg CHo/m?hr » & £% % iz % 2.1 mg CHo/m?/hr 437 » fe P7 &3 8 30 37
#7 ¢10.95 mg CHo/m?/hr =i # 70272 mg CHo/m?hr » oK M2E3) k5 > p 243
PRI PR KR WA FLR A WS kR BRI RETLE -
M 45287 > p RPpH? w9 =8k i 0.502mg CHy/m?hr > %E%*fﬁ%?‘,;’ﬁ
# i Jp #0 2.04 mg CHa/m?hr fr-k & 72 1.16 mg CHa/m?/hr > 32377 89 5#9 i 2 -k L
B lmRAr bl A RBIA L B > L L ER DT IRPITR o

B FPREED G WRSFE AP OFEEL F RS HEFOLE
d Bl 453 BT BFF RS F AU R B S 0 5439 - 402.79 mg
COxym?*hr» & § iF % ehz § B £ 7 s S 3 #F 7412 mg CO/m?hr ~ &
#.4 39.27 mg COx/m?hr 12 2 8 ¥ 45.59mg COx/m?/hr » 3585 ¥ F 0408 < # 2 =
i# 2 B0 0.65 mg COY/m¥hr» BEm 5 %38 2 < 2 s § L pB % HEKR
WHEFFEFR TG RGBSR ST o JORMIE kg o 8 B2 p R
A OREZ B G AMFLE AR 454 Fivo I piaas b R ik
5 2.38 mg COx/mhr » A % M3tk B 72.58 mg COy/m*hr % f #7#5 28.6 mg
COx/m’/hr » BE7R 875 A v K B2 2R3 JA (Mo § 1 s P R

BOPRT AR RGBS IEY 5 U5y o s 2§ VR o
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#4772 FWFREFF RO (TR KRG 8TT )

Variable Factor Test P value Dunn’s test
CH. Climate Kruskal-Wallis <0.05 LDa Tr?:n DSul:;lDc Iemc
Water type  Kruskal-Wallis ~ <0.05 LDN UR
o, Climate  Kruskal-Wallis <005 LD TaroDDSua?)n Tbemo
Water type  Kruskal-Wallis ~ <0.05 LDN U R

LD : Longtan & Dahu ; Tro : Tropical ; Sub : Subtropical ; Tem : Temperate
N @ Natural lake ; U : Urban lake ; R : Reservoir

CH, FLUX

[N S VS Y
wm o O

o

-]
o
) =
0 i —

Subtropical Tropical Temperate L&D

mg CH,/m?hr
— b
e O

—
=]

4517 b5 GHE30H 208 2 2P 2 Fla " %L g ¢ HE

CH, FLUX

I
=]

[ SRS B VS ]
o O LA

mg CH,/m?/hr
—
v O

—
v O

=
I—looc °

-]

Reservoir Natural lake Urban lake L&D

B 4527 P kAUl e v+ 4 2 A 2 Fl2 ¢ % £ £ HF
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CO, FLUX

450
400

[+]
350
300
(-]
250 °
200
150 >
100 i o
50 l;l
0 ;
[-]
[-]

-50
-100

mg CO,/m?/hr

Subtropical Tropical Temperate L&D

M43 Ak Fmdaisdp 2 A pafz-F tHdEsRm

CO,FLUX
450
400 °
350 °
300
250
200
150 .
100 .
50 =

0 ;
-50 .
-100

mg CO,/m?/hr

Reservoir Natural lake Urban lake L&D

B 4547 bk WFULTRA S 2 4P 2R § CROEERR
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4.4.2 >Thg v BA R
% 4.8 2 >3k GWP +* &

Total Proportion WP
Emissions P (g CO2eq m™ Source
(t COz-eq yr?) (Vo) -1
yr)
(Zheng et al. 2022;
Global
Lauerwald et al.
inland 10,636,530,000 100 2950
2023; Raymond et al.
waters
2013)
0.000000239 -250.5 -
Longtan -25.5-179.2
- 1762.0
0.00000168 This study
0.00000121 1213.4 -
Dahu 128.2 - 627.8
- 0.0000059 5940.9

PIRPMERHA LG R AF S 3.6 x 100T 3 2B o NpEREE S FEPIR S KR
R EME R A E e X F B 9518 TgCH 412 % = § i % 22 Pg Cyr !
(0.7-42PgCyr ' ) (Zheng et al. 2022; Lauerwald et al. 2023; Raymond et al. 2013) >
BN E o 2Pk E E R OE F F MR E Y S 1063653 Tg
COxreqo 4ptt 2T s Fe R A s BB A P O FlenE § 3 5 WEE A w43 255 -
179.2t COz-eq % 128.2 - 627.8tCOz-eq’ 4 B & } >3k P22 9-0.000000239 -
0.00000168% % 0.00000121 - 0.0000059% (4-% 4.8 #77F )e igi & §.d 3t Bk

Behm ] o FRAPTE &2 FEEN 0 B) o

BV j\—g » TIH g T o2k VS E E X 95 2950 g COxeq
m2yr o A FTE A A N Fl e shes VBERGE § A W 4322505 - 1762.0 %
1213.4 - 5940.9 g COz-eq m2 yr ' » A B ik 2 3% T 3518 ¢ -8.49 - 59.73% % 41.13 -
201.38% P ATE A 4 PR F MR AIFTOENT > FFL T SRR
T RRATATR A S o P ORI AR F MR HEA S B T ARLE D

HIHEA B2 5 0 s FEPT A QBT RE T TR o

i
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¥IgH®w

SIFEFRAFBLAPAFIZFHLR
RHEE 4182 Bl 44l 5B > AT ¢ LB OF TP g B g
0 AR AT AP AR D3 ke KRR 0T R EHER S f
BIERFF & AGZFE RO AIRG Y O RET BT ERY BB i
EIA] %%f;ﬁﬁf#-ﬁ (e LB B EM > KA igag @ 2 il o Bl 4.16 ~ )
439 PREIA BALH B TR L8 SHPFF R T WP EA B
PREH RS U F]S AR Bl 417 B 4400 BF OB ES 2 ERR
W BB RN L G P o B 449 0p P RDA A 47+ iv g dt o
TS8R 2 WAFET H - F PR f oo TR o SRR SR 419 2 W] 442 477
ZoF P RE R RIS A B H SRR - F M REE R A

Bl WP A B BRT 3 PR SR OMG g 32§ PR

IR E 420~ Bl 421 ~ B 443~ Bl 444:8- H A4 AcE & 5 82 L o Flan?

A F PR R RS BE oy X gl £45F 38+ 0 A Sieczkoetal.

(2020)87 § ¢ & I - FenlET) o Bl R F1 L FREHF M RAPRE . R F
BRGNP o ke W IRRRE > L 5 F MBIk 5 A A kRS

P FRMAMRARE M > Bt F MERD A F Y o Ba o - F PRUEESHp B

TEHARF > - B3R5 Y X RHEARE Y Bt F bR B AR
% B ¢ f2c- §F b8 o 2395 Soctal. 2024)er%7 3 ¥ FIR > - F R E 53
BENRARBEREY Bk BMENIR Y AR E T ELBPHRF R

PoF PRI Ep RBilaprg XFIREITT Aot (vt 0 5 HE > L L4

PR GG F PR ETR G LR

BiEE 41822 42053 NRRT AR A- 2P0 R E R E G
FAR AR AS LER CBRE SRR PpHEDO S A oA AP B S

‘b s & £ DOC ~POC ~TOC 2 NHs-N» BiF 3 a2 5 § kR - < 7 g

PAEATR o AR Z. T o EH it i Bl A HF ’%‘;7%:‘“"‘/‘”/% CO:~ BR ~

PBRZ Chla t» Sy 5T MEELR A 2P 2FR W CO. 2RA

AEEF R HGEHY G T FELLR  BRHT 5 R SR Y
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HEABLPEER PR R POFY § WRE L F hp 84 Pk
Wﬁmﬁ§@%ﬁiﬁéﬁﬁﬁﬁﬁfi&£¢m§@oﬁ~ﬁﬁ$%@ﬁam

Flo @R AT G AT L
FE DOy BT e FER A
RiroiyHEAR -

otk o A PO F? B B BR IR AR > T EFE RERE

L
Fenfff > 3 o430 SEEd i AWIENMA R F PR LR
LR £

.ﬁ+¢@’a:3@ﬁ%¥ﬁg;§$

o F MRS o Pirrs F LRI E D X B RE O HRIT S F
FRE P F LR RETER BT LT P ERESEIFY
B AP R T SER AR TR BRI HFL
PoAa - FlRUEUBPAIBRATER T FHFRN

5.2 -k Frer § M § 7 ahpd 5

D 447 2 243 7o 3B Y P i BRLESE BB ENT 1
BRI A AR ARATEFEARS S - F PRUEEMNEXLESZ -
A e cpH -~ 3 F R EARRRE o W H 411 B 413 B 4.14 - B
418 #7151 0 A 2024 & 9 % ippF > AFE
WRERME PRl EHOFRKRFEcE - HP > FWRIERET R gt A
FLAFEGZER DR A G M o TS RFSER AL HowBh{vtiHE Ly ¢
oD R Y o B 4o R AL ik B (Myklestad 2000) - & F et F fL L &
SRR BT R SRk f ok T R 2 B
4 (Dzierzbicka-Glowacka et al. 2010; Szymczycha et al. 2017) o d **ig g sgftr 5
LRGFLIFER AN o TS F BRI EIRM G PR S E S
L 4piT o § Eap- {8 g%*#ﬁﬁfrb{’ﬁ ad > nA ¢ s A ip & ¥%(Hanson et al.
2004; Han et al. 2018) » & #c 2 3 » fRig Lt iw a#%{é - ¥z et 2z (Bastviken
et al. 2008; Yan et al. 2019) > j€ B 5.1 ~ Bl 52 ¥ A 2 (FAp M E B A 47 > 5 ¥ 1L
A o AR SR R T A R R AR o

#&iEJﬁﬁi%gﬁ“ﬁﬁ$’4$i%€iﬁﬁﬁaﬁﬁﬁﬁiﬁ*
i# F(Goldman 1968) ° fe -k E&rip® > 44 A4 A ¥ XM FEE - 8

ﬁﬂﬁﬁﬂ?%ﬁ%$°ﬂﬂ’%%gﬁﬁ%ﬁﬁ%gﬁ%’ﬁsr&iéi’
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R Fe 138 ¥ Y% et 3% - Morana et al. (2020)s%= 3 #F—, d o REF R R s b 0 Pz
FLean@d X EgERTE VAT HARF MY DT RE o gt b BB AR
Fpvptad gt L 2r Rh  HERDA F ¥ RAERGFL £ > &0 3
4 ¥ U efpt 2z (Zhang et al. 2021; Palma-Silva et al. 2013) - 1233 Bastviken et al. (2004)

SR P B hdg o WG A R R B R AUk R R T R itandd

PR IR R AP pRE TR L R oo Bl AR A
fak ¥ 1 E s ‘mﬁ—]m“ » g1 @ %ﬁﬁ 3 fre pr o B0 7 Rt i(Zhu et
al. 2022) -

MAEFE S F R IR AR F PRI B T O E & TR R

Lo F et - RS AR AR EY B 3 W s § MR
ey 5 04 PREELY pHe § pH ™ %5 > it § pL ¢ A 33 40 > 247
PERPLE PR N AR TRBE T { F A B SRS 3 R KA R Ao 3
F et 2z (Trolle et al. 2012; Zhang et al. 2024) » ¢t ¢k » K & (8% #7F 4 chg F P €
¥hokREY o B- BB FIAFORAE HOKWY TR BTRERE 2 PE
AFRATATER A E o AP AFHT R R RRA BB E
FrREMPEE RS REF JIAT 2R

A TR E BT R R %A E A (Ivanov et al. 2002; Hu et al.
PRI BEEEE ARG BRE rAREE T
WA AP ARG P52 B RERE AL AR R 0 T
AR KR REASFE A RHMBER LSRR o AP OFY - §F PRE TR IR
Bk~ BFEEG BR CARE 2ERDRE  RBHER A R P sd A4 0 I
WAL oo § talleyz(Xuetal. 2022) 0 R pER AR TS g et (T
oo R A W AR B Ao § LB A 4 (Morales-Williams et al. 2021; Yan et

o

F®F (F

ﬂ)‘}

448 2 % 44)> B 2§ e X o F 3]

2018) o # [ 345+ 3

-

al. 2017, Kortelainen et al. 2006) °

v L sk L weeg ., .
=S L o ) G?/-%—“f*’ A T

A
(=
|k
bk
gt
@5
e
fod
ax
b
N
-ty
H8
—i—
‘*ﬁ
pol
/
=
~my
TS
1
‘K

?%ﬁ~ﬁ&§a%%%@ﬁ%»a:iﬂmﬁimiﬁﬁﬁ&%\ﬁﬁﬁﬁﬁ
BpHEZRFHE - A @2FY > "l F LR LA IBRZ BT PR

]

FOUR BRI R A BB R B 2 RAESEE
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Longtan

CH4

CcOo2

0.16  0.04
-p=0.192 p=0.77

-0.14

TW illumination Ta

Chl-a

TN

--02

001 014 011 011
-p=0.043 p=0.938 p=0.146 p=0.341 p=0.248
*

TP

-04

DIC

0.13 0.28
-p=0.176 p=0.004
*

0.14
p=0.149

DOC

-0.6

10| p=0.12

POC

L i 1| p=0.
*
0.55 0.56 .
p=0.0 | p=0.0 .0
* * h
.

Ta iluminationT™w  Chl-a TN POC

B 5.14p B A R A 47 (3

G
Fe

A=
=
p—

Dahu

CH4

0.11
-p=0.351

Cco2

0.19  -0.03
-p=0.101 p=0.78

012 -0.18
-p=0.408 p=0.218

023  -0.03 64 o2
- p=0.05 p=0.779

Tw illumination Ta

0.09 009 022
-p=0.459 p=0.434 p=0.067

Chl-a

013 009
-p=0.266 p=0.462

TN

--02

0.13 -0.05
-p=0.295 p=0.659

TP

012 017
-p=0.305 p=0.15

DIC

-04

007 -0.16
-p=0.551 p=0.193

DoC

-06
0.15 -0.06

§ _p=0.222 p=0.621 p=0

CH4 CO2  TailluminationTw  Chl-a POC

B 5240 M EEB A 7(% & 2 F)
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BIPBAINEREF o 2 B S2 5 PMPERAB A > N FEIEFEAG
Frié * spearman E{TAPM AT 0 HY BN AA S22 T L3 HFLREP<
0.05) » ¥ LA |3 = cCHsdd £ 9 2 & ~Chl-a~ TP~ 5 #8882 2 TNARRE S

m COyR¥E TN ~DIC 11 2 3 8pARRE o 3P B ~ BR 4102 5 84 2o ik
ﬁT’C&ﬁﬁ@@ﬁhw & Mengetal. 2023)cF7 % ¢ 4581 2 § 7
22 A5 DIC > #2488 COy et o e 3 &0 Chl-a 2 B & ¥ COx e 85 47
o ?ﬂﬁg%m$ﬁuP IRFiE AR R A G A o A S 0 RA
BARLILE G PP RS BRIAY TR R F R R AT TR

RN TR LS E SR NS L ER R I

5343k FE%2EFRFAK-KMEY2Z LR

ﬁ%%47‘@4ﬂ\@4ﬂﬁﬁ%ﬁﬁ’ﬂﬁ*%ﬁ*ﬁQ@ﬁ“%iﬁ
HEZWLAFZEFFE Rk 7o Sd 2 0@ RAF B L £F 0
Feo bt XFIF i RBOPE 0 EREA BID PP mpnd {RIRF
T vk # o Sanches etal. (2019)shF7 e hdg 11 > 7 b f i ®eh ™ P g 5 ¥

AR BMENRA, LA EF > A RFENREEF o BF o
T A g KRR Rl R T RF AR S FIFR PR
EFIRAE ~F PR ITHEPF R 4Bt RS
b A B (L S2&) Ao REREFRFFEL > PR FRENAFI ML A

AR R T g TR

4 i@ H KRB % 2 (Shi et al. 2017; DelSontro, Beaulieu, and Downing 2018) - %
PEAGREY » AFRAKEL FAEREREF T RGEE A KA ERKTE
it ~ 4 %57 {rdr 3 ;2 (Garnier and Billen 2007; de Faria et al. 2015; Gao et al.
2025) > ipd FlE BB T L HR L F 0T mR o

KA 47 W 453 W 454 P S Ba o R R 24P Rhs §
RIS B GT L BRI G 0 50 T R RS KT

SRARPpE KR MG SRR > TRAE R PP § PSR
PR FAFRE AR B ARG S h® o - 2 G 0 TEA R R D
BREIrRB DG L A4 > PRFRA LY flenrtaith » R FHEF PP LR
T Syl ip e s F 2= § 1 g (Morales-Williams et al. 2021; Yan et al. 2017;

-

Kortelainen etal. 2006) ; ¥ — = & » %3 @A 7 » FIEF kit i o F
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et K guliEk £ 17 4L < £ eho § 1t gX(Zagarese et al. 2021; Xiao et al. 2022;
Bartosiewicz et al. 2021) o A7 3 cn2 & ¥ it { he 3T {8 ;ﬁ N S
APz §F AR N FIES R AR M R MR pH B F
BAAERB TS A TE(L528) .

K 48 %R T > AR LB N T F M P MY 2T T I0E 5 WA PR

dot
fon
o
&
2
i
3
A
N
=
=
P
Rd
el
Ry
=
T
o
a4
=
frt
i
<l
(=
[l
iy
&
4~
H
=)
e
i}
)
pat

AR AR AP B PR fi T ERTS R AT 0 e AR
LB AP B R el & RTR o HP R DT R R G B A TR A AR
HORML AT RoR F F MR EL o gt 2T 2 F U pER AR ?T)gkﬁb.fj‘ 4
3 — T & 4 (Wang et al. 2021; Holgerson and Raymond 2016; Pi et al. 2022) - 2
% Wang et al. (20255 EH EF ¥V 53| 7 # R ? W7 £ =3 0.01 km® ok
B2 CHs B %5 90% - L& RFIZHIELEFFE L fHF~ > XX T

\v

ﬁ»%ﬁ?%%%ﬁﬁ%kﬁ*o o X ALRE L F AL F g R

B b Seig TP Koo nm‘-g AR B e e gL o e d S ORIERGY

-

Pz % 4 %5 % F (degassing) A s Bk > 4 BE L AR HE T BB AR T 02
B g o

FAAFTEY PP AN RPRE 0 2 F CRLEAFIRE S A
HAAA T ERAREE R AR AP HIEE
B ABTRF B % o F P i BT N KRR RGBT o 51 1R
HONREKE A D TRAP Y PR E R A > R AP T % gﬂ 7%
E-HECEDEE AR BB EREFE T *g%\;}’ﬂ%])\ VR SCe)]
F AP G -
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54 p HFE e

EFNFEET R R ERAERARBRIEE > F Y € IR P
PR R R BOF R R > 0 8@ 8¢ 5 (Matthews, St.Louis, and Hesslein
2003; Musenze et al. 2014) o Gl4e > M h FEET > F E v ¥ DT i §5l4 ¥
oo W F WS o B F 1 £ 03 4o (Matthews, St.Louis, and Hesslein
2003; Xiao et al. 2016) o ¢+ *F » d 30§ X B3v 45 ki B g IR & b fhehg
WEF i v PRz e Emito a P §F LR EFFR]
BEEERG I { * REPF 3 AT FE T (Bastviken et al. 2022) ©

F-20 o @p? KA RHEZF M2 RE B A RPT - Pip A
Ren® e kR AWE B BB Ra kR 21 R ETF LA RPrd]0 kE T
EoRERpIMHFF DT RBHAFF - PV AK KD F A kFLRER
AT dmfrs F LR D 0 A S E T a2 B 4 (Zhu et al. 2018; Holgerson

=

‘F_‘-

R

S
et al. 2022; Davidson et al. 2024) » F]p* » fokHREFHE P - %7 £ Kok o o Rt
TR AE AR RERE > N B REEE G
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Ao AL ETRRIA B RIET RN 0 A - g AL A KIRG o FlU K
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FAR BHRAER

6.1 B

MET RIS PR 2T P FI TR L 2 R AP A FA R
FEHPREFE AL AW BRS F R T F W RS S AR H 2

FFenBi Ol » S0 RA PR 8 FEHEORRENL T LB .
-382.7 ~ 4873 mg C m? h'>

Wi

F LRl o kAR5 COo T30 2
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6.2 &3

FARCREE i RN LR ﬁ%%é%ﬂﬁﬁﬁcaﬁiﬂiﬁﬁjﬁ%ﬁ
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R EA TR G TEREG PR ALY A RGRT R ATEY o R K
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or

. ) COz2 Flux CHa Flux
Country Climate Type Name Latitude |Longitude Source
(mg CO2m2hr?)| (mg CHsm=2hr?)
USA Subtropical | Reservoir Allatoona 34°08'N | 84°38'W 68.20 0.58 (Bevelhimer et al. 2016)
_ (Kemenes, Forsberg, and
Brazil Tropical Reservoir Balbina 01°55'S | 59°28'W 359.94 2.01
Melack 2011)
Brazil Tropical Reservoir | Barra Bonita | 22°31'S | 48°35'W 162.20 0.87 (dos Santos et al. 2006)
Mozambique | Tropical Reservoir | Cahora Bassa | 15°35'S | 32°42'E -54.39 0.08 (Teodoru et al. 2015)
Brazil Tropical Reservoir Corumba 17°59'S | 48°31'W 72.58 12.70 (Bergier et al. 2011)
USA Temperate | Reservoir Douglas 35°57'N | 83°32'W 161.37 0.32 (Bevelhimer et al. 2016)
) (Bastien, Demarty, and
Canada Temperate | Reservoir Eastmain 1 51°30'N | 74°0'W 14511 0.34
Tremblay 2011)
USA Subtropical | Reservoir Guntersville | 34°25'N | 86°23'W 47.18 0.22 (Bevelhimer et al. 2016)
USA Subtropical | Reservoir Hartwell 34°28'N | 82°50'W 39.27 0.95 (Bevelhimer et al. 2016)
USA Temperate | Reservoir Fontana 35°26'N | 83°48'W 27.32 0.24 (Bevelhimer et al. 2016)
Brazil Tropical Reservoir Funil 22°31'S | 44°33'W -50.16 3.20 (Pacheco et al. 2015)
Brazil Tropical Reservoir Furnas 20°40'S | 46°15'W 18.43 1.21 (Bergier et al. 2011)
Paraguay | Subtropical | Reservoir Itaipu 25°23'S | 54°33'W 7.11 0.35 (dos Santos et al. 2006)
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Zambia Tropical Reservoir Itezhi Tezhi 15°46'S | 26°01'E 112.60 1.43 (Teodoru et al. 2015)
Brazil Tropical Reservoir Itumbiara 18°24'S | 49°03'W 26.30 2.19 (Ometto et al. 2013)
L.C.B.de
Brazil Tropical Reservoir 20°09'S | 47°15'W 68.42 0.37 (Ometto et al. 2013)
Carvalho

Canada Temperate | Reservoir Laforge-1 54°12'N | 72°35'W 72.98 0.72 (Tremblay 2005)
Russia Temperate | Reservoir Mainskaya 52°58'N | 91°30'E 77.00 0.02 (Fedorov et al. 2015)
Brazil Tropical Reservoir Manso 14°52'S | 55°48'W 75.66 5.25 (Roland et al. 2010)
Brazil Tropical Reservoir | M. de Moraes | 20°16'S | 47°03'W 45.75 0.81 (Roland et al. 2010)
Brazil Tropical Reservoir Miranda 18°55'S | 48°02'W 174.76 6.59 (dos Santos et al. 2006)

Laos Tropical Reservoir Nam Leuk 18°27'N | 102°57'E -29.36 3.27 (Chanudet et al. 2011)

Laos Tropical Reservoir Nam Ngum 18°32'N | 103°33'E 5.69 0.20 (Chanudet et al. 2011)
French .

‘ Tropical Reservoir Petit Saut 5°03'N | 53°02'W 192.55 5.93 (Delmas et al. 2005)
Guiana
Robert-Bourassa
Canada Temperate | Reservoir (LG-2) 53°40'N | 77°00'W 51.34 0.28 (Tremblay 2005)
Brazil Tropical Reservoir Samuel 08°48'S | 63°25'W 300.42 3.32 (dos Santos et al. 2006)
Sayano
Russia Temperate | Reservoir 52°49'N | 91°22'E 66.14 0.03 (Fedorov et al. 2015)
Shushenkaya
Brazil Subtropical | Reservoir Segredo 25°47'S | 52°06"W 101.98 0.37 (dos Santos et al. 2006)
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Brazil Tropical Reservoir | Serrada Mesa | 13°51'S | 48°20'W 102.63 4.65 (dos Santos et al. 2006)
_ (Kumar and Sharma
India Subtropical | Reservoir Tehri 30°22'N | 78°28'E 17.75 1.16 2016)
China Subtropical | Reservoir ER L 31°2'N | 109°33'E 140.35 1.35 (Li et al. 2021)
Brazil Tropical Reservoir Trés Marias | 18°14'S | 45°15'W 39.07 8.18 (dos Santos et al. 2006)
Brazil Tropical Reservoir Tucurui 3°55'S | 49°36'W 402.79 3.06 (dos Santos et al. 2006)
USA Temperate | Reservoir Watts Bar 35°37'N | 84°46'W 40.82 0.27 (Bevelhimer et al. 2016)
) . . (Gruca-Rokosz et al.
Poland Temperate | Reservoir | Wilcza Wola | 50°21'N | 21°54°E 167.81 10.09 2010)
. (Eugster, DelSontro, and
Switzerland | Temperate Reservoir Wohlen 49°58'N | 7°19'E 43.88 16.31
Sobek 2011)
Brazil Tropical Reservoir Xingo 9°37'S | 37°47'W 329.94 1.67 (dos Santos et al. 2006)
Finland Temperate |Natural lake Paajarvi 61°04'N | 25°08'E 61.25 0.06 (Ojala et al. 2011)
Ecological )
Brazil Tropical |Natural lake ] .| 6°34'S | 37°15'W 77.92 1.56 (Almeida et al. 2016)
Station of Serid¢
Canada Temperate |Natural lake| ELA Lake 979 | 49°46'N | 93°48'W 133.33 2.73 (Kelly et al. 1997)
China Subtropical |Natural lake HE P 28°22'N | 115°47'E 36.43 0.17 (Liu et al. 2013)
China Temperate |Natural lake Daihai 40°33'N | 112°37'E 47.30 0.60 (Sun et al. 2024)
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China Temperate |Natural lake| Hongjiannao |39°04'N | 109°50'E 19.07 0.27 (Sun et al. 2024)
China Subtropical |Natural lake B b 24°17'N | 102°49'E 16.17 0.02 (Miao et al. 2022)
] (Borges et al. 2011,
East Africa Tropical |Natural lake Kivu 2°0'S 29°0'E 11.00 0.021
Borges et al. 2012)
) (Xiao et al. 2017; Xiao
China Temperate |Natural lake Taihu 39°1'N | 117°43'E 33.37 0.054
et al. 2020)
_ (Riera, Schindler, and
USA Temperate |Natural lake Sparkling 46°00'N | 89°41'E 9.17 0.105
Kratz 1999)
Finland Temperate |Natural lake| Heindlampi 62°48'N | 27°31'E 23.83 0.216 (Huttunen et al. 2003)
Finland Temperate |Natural lake [Jankalaisenlampi| 67°09'N | 27°09'E 22.00 0.274 (Huttunen et al. 2003)
(Bartosiewicz, Laurion,
Canada Temperate |Natural lake Jacques 52°55'N | 117°45'W 34.28 0.379
and Maclintyre 2015)
(Natchimuthu et al.
Sweden Temperate |Natural lake Erssjon 58°22'N | 12°9'E 85.80 0.058 2017; Natchimuthu et al.
2016)
USA Temperate |Natural lake Mendota 43°1'N | 89°4'W 14.67 0.543 (Loken et al. 2019)
China Subtropical | Urban lake R 32°04'N | 118°47'E 20.9 2.0 (Yin et al. 2025)
China Subtropical | Urban lake K 30.55°N, | 114.37°E 13.8 0.97 (Xing et al. 2005)
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China Subtropical | Reservoir RELE 28°10'N | 105°11'E 273.17 1.83 (Wang et al. 2017)
China Subtropical | Reservoir RPRE 31°04'N | 111°55'E 243.83 1.01 (Wan et al. 2024)
_ ' . (Panneer Selvam et al.
India Tropical | Urban lake Kolavai 12°42'N | 79°59'E 16.19 0.934 2014)
_ ' (Panneer Selvam et al.
India Tropical | Urban lake |Madhurandhagam| 12°31'N | 79°52'E 3.34 1.53 2014)
' ' Lago de (Gonzalez-Valencia et
Mexico Tropical | Urban lake 21°48'N [ 101°20'W 38.89
Guadalupe al. 2014)
' ' (Gonzalez-Valencia et
Mexico Tropical | Urban lake | Lago Umecuaro | 19°31'N | 101°15'W 2.40
al. 2014)
China Subtropical | Urban lake i 30°55'N | 114°37'E 30.1 (Xiao et al. 2023)
China Subtropical | Urban lake Iz 31°28'N | 120°13'E 38.71 (Xiao et al. 2023)
Taiwan L&D Urban lake Longtan 24°51'N | 121°12'E 35.318 0.901
Taiwan L&D Urban lake Longtan 24°51'N | 121°12'E 18.916 2.080
Taiwan L&D Urban lake Longtan 24°51'N | 121°12'E -58.474 0.714 ~AF Y
Taiwan L&D Urban lake Longtan 24°51'N | 121°12'E -4.911 2.431
Taiwan L&D Urban lake Longtan 24°51'N | 121°12'E 29.118 1.577
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Taiwan L&D Urban lake Longtan 24°51'N | 121°12'E 4.100 1.744
Taiwan L&D Urban lake Longtan 24°51'N | 121°12'E 74.453 1.812
Taiwan L&D Urban lake Longtan 24°51'N | 121°12'E -7.379 5.210
Taiwan L&D Urban lake Longtan 24°51'N | 121°12'E 4.636 1.090
Taiwan L&D Urban lake Longtan 24°51'N | 121°12'E 5.642 0.766
Taiwan L&D Urban lake Longtan 24°51'N | 121°12'E -6.092 0.640
Taiwan L&D Urban lake Longtan 24°51'N | 121°12'E 0.628 0.198
Taiwan L&D Urban lake Dahu 25°5'N | 121°36'E -5.690 9.949
Taiwan L&D Urban lake Dahu 25°5'N | 121°36'E 0.671 18.349 Ly
Taiwan L&D Urban lake Dahu 25°5'N | 121°36'E 7.299 34.022
Taiwan L&D Urban lake Dahu 25°5'N | 121°36'E -33.119 26.772
Taiwan L&D Urban lake Dahu 25°5'N | 121°36'E -8.010 18.373
Taiwan L&D Urban lake Dahu 25°5'N | 121°36'E 45.407 32.442
Taiwan L&D Urban lake Dahu 25°5'N | 121°36'E -33.322 22.222
Taiwan L&D Urban lake Dahu 25°5'N | 121°36'E -7.009 14.473

93

doi:10.6342/NTU202501440





