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摘要
由於網路系統的複雜性不斷增加，多個任務必須即時協調對共享資源的存

取，延遲、同步和資源爭用的挑戰變得至關重要，但仍須保持精準的運動表現。

為了應對這些挑戰，該研究透過即時作業系統 Xenomai將 EtherCAT與基於訊號

量的即時調度方法整合，使用 PID方法控制網絡上的馬達，提出了一種綜合解決

方案進行多軸開源控制。這種方法增強了運動控制任務的反應能力，同時管理多

任務環境中的資源分配。實驗與模擬結果表明，單軸控制在 30 rev/s時的最小延

遲為 1微秒，相對速度誤差為 1.47%。在多軸場景中，即使軸數量增加，系統也

能以最小的偏移量保持可預測的同步。在 3個設備時，基於信號量的調度方法使

較低的優先級的設備任務執行次數提高 32%，使多設備時，較高優先級的設備能

夠維持良好的資源實用效率，同時較低的優先級的設備相比傳統排程方式也可以

獲得不錯的資源分配。這一研究成果為工業自動化和機器人技術提供了新的解決

思路，有助於推動相關領域的進一步發展。

關鍵字：

EtherCAT、即時控制系統、即時排程、信號量、PID控制、軟硬體整合
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ABSTRACT

As the complexity of networked systems increases, multiple tasks need to coordinate

access to shared resources in real time. The challenges of latency, synchronization, and

resource contention become critical while still maintaining accurate motion performance.

To address these challenges, this research integrates EtherCAT with a semaphore-based

real-time scheduling method through the real-time operating system Xenomai, uses the

PID control method to control motors on the network, and proposes a comprehensive

solution for multi-axis open-source control. This approach enhances responsiveness in

motor control tasks while managing resource allocation in a multi-tasking environment.

Experimental and simulation results show that the minimum delay of single-axis control

is 1 microsecond at 30 rev/s, and the relative speed error is 1.47%. In multi-axis situation,

the systemmaintains predictable synchronization with minimal offset, even as the number

of axes increases. When there are 3 devices, the semaphore-based scheduling method in-

creases the number of task executions of lower-priority devices by 32%, so that when there

are multiple devices, higher-priority devices can maintain good resource utilization effi-

ciency while lowering the Compared with traditional scheduling methods, devices with

higher priority can also obtain better resource allocation. These results provide new so-

lutions for industrial automation and robotics, and helps promote further development in
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related fields.

Keywords:

EtherCAT, Real-time system, Real-time scheduling, Semaphore, PID control, Software

and hardware integration
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Chapter 1

Introduction
In this chapter, the motivation will be shown in Section 1.1. The problem formulation

will be discussed in Section 1.2. The contribution and the organization of this thesis are

provided in Section 1.3 and Section 1.4.

1.1 Motivation

In modern manufacturing, networked actuator systems play a crucial role in automat-

ing and enhancing production processes. These systems consist of multiple actuators con-

nected and controlled through a network, enabling precise and coordinated actions in real-

time as shown in Figure 1.1. The real-time concept is vital in networked actuator systems

as it ensures that commands and feedback are executed and received with minimal delay.

This timeliness is essential for maintaining synchronization, optimizing performance, and

ensuring the safety and efficiency of industrial operations. Without real-time capabili-

ties, the potential for delays and errors increases, which can lead to suboptimal production

quality and even hazardous situations.

In the system, the choice of communication protocol for network is important to en-

sure efficient and timely data exchange among system components. One notable protocol

that has gained significant traction in recent years is EtherCAT (Ethernet for Control Au-

tomation Technology). According to [1: Rostan et al. 2010], EtherCAT stands out for

its exceptional real-time performance, making it particularly well-suited for demanding

industrial automation and control applications.

1
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networkcontroller

drive 1

drive 2

actuator 1

supervisor

drive 3

drive 4

actuator 2

actuator 3

actuator 4

Figure 1.1: The concept of networked actuator system

According to [2: Potra and Sebestyen 2006], EtherCAT’s real-time capabilities em-

power engineers to design highly responsive and precise control loops, ensuring rapid

feedback and adjustment to change environmental conditions or system disturbances. For

instance, in motion control applications as shown in Figure 1.2, EtherCAT’s ability to de-

liver synchronized, high-speed data enables precise coordination of motion axes, leading

to smoother trajectories, reduced settling times, and improved accuracy. Because of this

advantage, the application of motion control (Figure 1.2(a)) and CNC controller (Figure

1.2(b)) are common. Similarly, EtherCAT facilitates seamless communication between

PLCs, HMIs, and I/O modules, enabling coordinated control and monitoring of complex

manufacturing processes in distributed control systems for industrial processes. For ex-

ample, EtherCAT plays a pivotal role in factory Automation (Figure 1.2(c)) and smart

factories (Figure 1.2(d)), enabling seamless real-time communication and synchroniza-

2
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tion among various industrial devices, thereby facilitating agile production processes and

efficient resource utilization.

(a) Credit to [3: NXP 2022] (b) Credit to [4: NEXCOM 2014]

(c) Credit to [5: Axiomtek 2016] (d) Credit to [6: NEXCOM 2016]

Figure 1.2: Scenarios of the real environment with EtherCAT
(a) 9-axis robot arm control
(b) CNC
(c) Factory Automation
(d) Industry 4.0 IIoT smart factory

Recent years, EtherCAT has been used extensively in the field of robotics. For ex-

ample, authors developed a real-time EtherCAT Master library in [7: Moon et al. 2009],

applied EtherCAT technology on servo motor with softPLC and Codesys through Win-

dows in [8: Wang et al. 2010] and [9: Zhou et al. 2015], applied EtherCAT with real-time

operating system in [10: Delgado and Choi 2017], and developed EtherCAT with Robot

Operating System(ROS) to control 7-DOF robot in [11: Zhang et al. 2019].

The decision to focus on EtherCAT stems from the notable absence of comprehensive

research and analysis encompassing both Xenomai and softPLC within existing literature.

While numerous studies have explored the applications and performance of EtherCAT in

real-time systems, the intersection with Xenomai and softPLC remains largely uncharted

3
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territory. By directing attention towards this overlooked area, this research seeks to bridge

the gap in current knowledge and provide insights into the integration of EtherCAT with

Xenomai-based real-time systems and softPLC environments. Understanding how Ether-

CAT can be effectively utilized alongside Xenomai and softPLC holds significant impli-

cations for industries reliant on precise and responsive control systems, such as manu-

facturing, robotics, and automation. By elucidating the synergies and potential challenges

inherent in combining these technologies, this study aims to contribute to the advancement

of real-time control solutions and inform future developments in the field.

1.2 Problem Formulation

In order to cope with networked systems with a large number of nodes, the concept

of traffic lights inspires me. The traffic light system manages traffic flow by indicating

when vehicles should stop, get ready, and pass, ensuring that vehicles and pedestrians in

each direction can pass through intersections in an orderly manner to avoid traffic jams

and accidents. This control method of traffic lights can help us understand how signal

volume manages resource access and task scheduling in computer systems.

In real-time systems, multiple tasks may need to access shared resources at the same

time, and these resources are often limited. Without an effective management mechanism,

contention between tasks will lead to reduced system performance and even deadlock.

The semaphore plays a role similar to that of a traffic light, coordinating the access of

various tasks to resources and ensuring that the system operates efficiently and orderly.

The semaphore controls the use of resources through counters and waiting mechanisms,

similar to how traffic lights control traffic flow through color signals.

Figure 1.3 provides an illustration of the formulated problems. It involves key vari-
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ables and objectives that are directly impacted by scheduling in networked systems. The

primary inputs to consider are command velocity and position, while the outputs are motor

velocity and position. A crucial variable in this context is the delay D (latency in signal

transmission), and the number of nodes n in the network. Efficient scheduling must ac-

count for these inputs and outputs, ensuring that the delay and network congestion do not

adversely affect the system’s performance.

Effective scheduling algorithms are critical in managing the timing and sequence of

tasks across the network nodes, ensuring that command signals (velocity and position) are

processed and transmitted to the motors without undue delay. As the number of nodes

n increases, the complexity of scheduling also rises, necessitating more sophisticated al-

gorithms to prevent network congestion and priority inversion. This is essential to avoid

missed deadlines and ensure that critical data is prioritized, maintaining the system’s real-

time performance.

In addition to scheduling, in order to achieve real-time control of a mesh system

with multiple nodes on a network, the following issues need to be considered. Frist, in-

tegrate EtherCATMaster with Xenomai and SoftPLC. One of the primary challenges

in real-time systems is the seamless integration of EtherCAT masters with Xenomai and

softPLC. While EtherCAT offers high-speed and deterministic communication, ensuring

compatibility and interoperability with Xenomai and softPLC environments presents sig-

nificant hurdles. The integration process involves addressing issues such as synchroniza-

tion between EtherCAT communication cycles and the real-time scheduling mechanisms

of Xenomai, as well as ensuring reliable data exchange between the EtherCAT master and

softPLC for precise control and monitoring of industrial processes.

5
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Second, achieve control accuracy with multiple axes. Another critical problem

in real-time systems revolves around achieving control accuracy in applications involving

multiple axes of motion or control. Whether it’s robotic arms or industrial automation sys-

tems, maintaining precise coordination and synchronization across several axes is essential

for optimal performance and efficiency. Challenges arise in designing control algorithms,

communication protocols, and feedback mechanisms that can handle the complexities of

multi-axis control while meeting stringent timing requirements.

Third, design a platform for remote control. In this interconnected world, the de-

mand for remote monitoring and control of real-time systems is on the rise. Designing a

platform that enables remote access and control of EtherCAT-based systems poses several

challenges. These include ensuring secure communication over networks, minimizing

latency to maintain real-time responsiveness, and providing a user-friendly interface for

remote operators. Addressing these challenges requires careful consideration of system

architecture, communication protocols, and cybersecurity measures to deliver a robust and

reliable remote control solution for EtherCAT-based real-time systems.

Figure 1.3: Illustration of the formulated problems
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1.3 Contribution

The contribution of this thesis focuses on the field of real-time motion control and

scheduling within industrial applications by leveraging Intel Edge Controls. The primary

contributions are listed belowed.

1. A novel solution with the combination of Xenomai and openPLC via Intel Edge

Control for Industrial: The thesis provides an open-source and free solution to

control motor in real-time situation, which gives a novel solution in industrial au-

tomation.

2. A scheduling method that fits the designed system: A set of edge-based control

algorithms is designed and implemented, taking advantage of the computational

capabilities of Intel Edge devices. These algorithms enhance the responsiveness

and precision of motion control tasks, crucial for industrial automation.

3. The great motion performance and real-time perfornance: With the real-time

motion control system platform and scheduling method, great motion and real-time

performance is displayed.
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1.4 Organization of the Thesis

In Chapter 2, the survey of the real-time system, EtherCAT, and PLC are discussed.

In Chapter 3, the system architecture is showed and somemodels used in this paper are also

provided. Chapter 4 contains the details of delat effects and semaphore-based scheduling

method. In Chapter 5, the software and hardware integration of system platform is dis-

played. In Chapter 6, the setups, results and analysis of experiment and simulation are

introduced. In Chapter 7, the conclusion and future work are listed.

8
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Chapter 2

Background and Literature Survey
In this chapter, the concept of real-time system will be introduced first, which is

the system used in this paper. Then, communication protocol including EtherCAT and

the technology, softPLC, used for motor control are discussed. The literature survey is

presented at the last.

2.1 Background of Real-time System

Real-time system means that the system must respond correctly within a fixed time

and requires strict accuracy and timing. More precisely, real-time is the relationship be-

tween event and temporal.

Real-time system can be divided into two main types according to [12: Davis and

Burns 2011]:

1. Hard Real-time: Tasks must be scheduled and executed such that they always meet

their deadlines. This requires deterministic guarantees about the maximum time it

takes to complete a task.

2. Soft Real-time: While meeting deadlines is desirable, occasional deadline misses

may be tolerated as long as they happen infrequently and within acceptable bounds.

The comparison between soft and hard real-time are listed in Table 2.1. Hard real-

time systems prioritize deterministic scheduling for critical tasks, ensuring efficient pack-

ing, reliable peak load performance, and stringent safety measures. They excel in main-
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taining data integrity and error detection. Soft real-time systems offer more flexibility in

task scheduling but may sacrifice deterministic performance and safety guarantees. They

prioritize overall system performance over strict timing constraints, potentially leading to

less efficient packing and looser error detection mechanisms.

Table 2.1: Comparison of soft real-time and hard real-time

Characteristic Hard real-time Soft real-time

Explanation Responses occur within
the required deadline

Deadlines can be
occasionally missed

Deadlines hard-required soft-required
Packing environment computer

Peak load performance predictable degraded
Safety often crirical non-critical

Data intedrity short-term long-tem
Error detection autonomous user

Time Utility Curves

2.1.1 Concept and Common Types of Real-time Scheduling

In order to ensure that tasks are executed within strict deadlines, task scheduling is a

common way to fulfill the requirement. According to [13: Liu and Layland 1973], real-

time scheduling is a method used in computer systems to ensure that tasks or processes

are completed within specific time constraints, known as deadlines. This is crucial in sys-

tems where timely execution is essential, such as in embedded systems, industrial control

systems, multimedia applications, and many others. There are some common method of

scheduling listed below.

1. Rate-monotonic scheduling (RMS):

According to [14: Lehoczky et al. 1989], RMS is a priority-based scheduling
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algorithm that assigns priorities to tasks based on their periods. That is, the shorter

the period, the higher the priority. RMS assumes periodic tasks with known execu-

tion times and periods. The scheduler continuously monitors the system and assigns

the CPU to the task with the highest priority (shortest period) among those ready

to execute. When a higher-priority task becomes ready, it preempts the currently

executing task. The pattern of RMS is shown in Figure 2.1(a).

RMS has several advantages that the algorithm is relatively simple to implement

and understand and is optimal for independent periodic tasks with known execution

times and periods. When tasks have periods that are integer multiples of each other,

RMS can achieve optimal processor utilization. However, RMS also has limitations

like its inflexibility,which may not be suitable for systems with a mix of periodic

and aperiodic tasks or tasks with varying execution times. Also, if tasks have tight

deadlines or if the system becomes overloaded, RMS may lead to missed deadlines,

especially if tasks are not schedulable.

2. Earliest deadline first (EDF):

Unlike RMS, EDF schedules tasks based on their absolute deadlines. The task

with the earliest absolute deadline is given the highest priority. The pattern of EDF

is shown in Figure 2.1(b). According to [15: Short 2010], EDF offers several ad-

vantages as its optimality. EDF is optimal for scheduling independent tasks with

arbitrary release times, execution times, and deadlines, under the condition that the

system is schedulable. It can achieve the highest possible system utilization in such

scenarios. EDF is also suitable for systems with both periodic and aperiodic tasks,

as well as tasks with varying execution times and deadlines. However, EDF also

has limitations. EDF requires maintaining a priority queue of tasks sorted by their
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deadlines, which can introduce overhead, especially in systems with a large number

of tasks. Moreover, determining whether a set of tasks is schedulable under EDF

can be computationally complex. Despite its limitations, EDF remains widely used

in real-time systems, particularly in scenarios where tasks have varying execution

times and deadlines or when optimality is crucial.

Real-time scheduling is a complex area with many challenges, including ensuring

schedulability, managing system resources efficiently, dealingwith task dependencies, and

handling priority inversion and preemption issues. As a result, designing real-time systems

requires careful consideration of these factors to meet the required timing constraints and

ensure system reliability.
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Execute Deadline Period
Task 1 2 4 5
Task 2 3 7 12
Task 3 3 8 10

(a) Rate monotonic scheduling

(b) Early deadline first

Figure 2.1: The pattern of different scheduling methods

13

http://dx.doi.org/10.6342/NTU202403297


doi:10.6342/NTU202403297

2.1.2 Utilization and Common Types of Real-time Operating System

According to [13: Liu and Layland 1973], a real-time operating system (RTOS) is a

specialized software component designed to manage and control the execution of tasks in

real-time systems. With this tool, real-time scheduling can be easily conducted. Unlike

general-purpose operating systems, which prioritize tasks based on factors such as fairness

and efficiency, RTOS prioritizes tasks based on their timing requirements and criticality.

One of the defining features of an RTOS is its ability to provide deterministic behavior,

ensuring that tasks meet their timing deadlines consistently and predictably.

RTOS typically offers features such as preemptive multitasking, where tasks are pre-

empted based on their priority levels, allowing higher-priority tasks to interrupt lower-

priority ones when necessary. Additionally, RTOS often provide mechanisms for task

scheduling, inter-task communication, synchronization, and resource management, all op-

timized for real-time performance according to [16: Burns 1991]. These features enable

developers to design and implement complex control algorithms, sensor data processing,

and communication protocols while guaranteeing timely and deterministic execution.

There are some common RTOSs from [17: Barbalace et al. 2007] listed below.

1. PREEMT-RT:

Preemption Real-Time patch, which is abbreviated as PREEMPT-RT, is an en-

hancement to the Linux kernel that aims to bring real-time capabilities to standard

Linux distributions. According to [18: Reghenzani et al. 2019], it introduces full

preemption support to the Linux kernel, allowing it to respond quickly to external

events and meet real-time requirements. PREEMPT-RT modifies the Linux kernel

itself to introduce full preemption support, making it more tightly integrated with
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the mainline Linux development process.The structure is shown in Figure 2.2(a).

PREEMPT-RT primarily focuses on reducing interrupt latency and improving ker-

nel responsiveness through full preemption support. It doesn’t enforce specific real-

time scheduling policies but provides a foundation for implementing them.

2. RTAI:

RTAI is an open-source software developed by the Department of Aerospace En-

gineering, Politecnico di Milano (DIAPM), which follows the GNU General Public

License (GPL). According to its homepage from [19: RTAI home page ], it provides

the hard real-time and retains the services provided by Linux. RTAI uses ADEOS

as the hardware architecture layer (HAL) under the Linux kernel, and implements

initialization, interrupt application through ADEOS. The structure is displayed in

Figure 2.2(b).

RTAI as the real-time kernel has a higher priority than Linux kernel. When an

interrupt occurs, ADEOS first calls RTAI to process the interrupt and executes the

real-time task. Only when there is no real-time task or interrupt that needs to be

processed, ADEOS will permissions be given to Linux.

3. Xenomai:

Xenomai uses ADEOS as the middle HAL layer like RTAI. The difference is that

Xenomai’s hardware layer is completely separated by ADEOS. RTAI is committed

to the lowest technically feasible latency; Xenomai also attaches great importance

to extended functionalilability.

Xenomai supports various real-time scheduling algorithms, including fixed prior-

ity scheduling (Cobalt) and earliest deadline first (Mercury) according to its home-
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page from [20: Xenomai home page ]. Developers can choose the scheduling al-

gorithm that best suits their application’s requirements. The main advantage is that

Xenomai employs a dual-kernel approach, consisting of a primary Linux kernel and

a secondary real-time kernel, known as the Xenomai nucleus. The Xenomai nucleus

runs alongside the Linux kernel, and it is responsible for managing real-time tasks

with precise timing requirements.The structure is displayed in Figure 2.2(c).

Hardware

Preemptable Linux kernel

User

Kernel

real-time tasknon real-time task

Preempt

(a) PREEMPT-RT

Hardware

Linux
kernel RTAI

ADEOS(ipipe)

User

Kernel

real-time task

(b) RTAI

Linux
kernel

Xenomai
kernel

ADEOS(ipipe)

Hardware

glibc libcobalt

real-time
task

non real-time
task

User

Kernel

(c) Xenomai

Figure 2.2: Architecture of different RTOSs

The paper [17: Barbalace et al. 2007] mainly evaluates the performance of interrupt

delay, rescheduling and network communication. The experimental results are shown

in Table 2.2. We found that the performance of RTAI is better than that of Xenomai.
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The reason is attributed to the processing method of ADEOS. RTAI directly intercepts

unnecessary interruptions and then passes them through ADEOS, while Xenomai passes

through ADEOS every time, so there will be some additional latency.

Table 2.2: Comparison of RTOSs from paper [17: Barbalace et al. 2007]

Measured delays with real-time network communication
Linux RTAI Xenomai

jitter(s) 11.1 3.0 3.3
delay(s) 113 101 104.5
Measured delay and jitter including rescheduling

Linux RTAI Xenomai
jitter(s) 1.5 0.4 0.45

rescheduling(s) 5.60 0.20 2.70
delay(s) 72.8 71.8 73.2

Xenomai, RTAI, and PREEMPT-RT are all powerful tools for real-time develop-

ment on Linux-based systems, each offering unique features and approaches to achieve

real-time capabilities. RTAI works the greatest real-time performance; Xenomai supports

various real-time scheduling algorithms with the highest flexibility; PREEMPT-RT main-

tains compatibility with existing Linux software and applications, allowing real-time tasks

to coexist with standard Linux processes seamlessly. It doesn’t impose a specific API for

real-time application development. The choice between them depends on each require-

ments.

2.2 Background of Communication Protocol: EtherCAT

EtherCAT is a kind of industrial control communication technology based on Ethernet

which was proposed by Beckhoff Company. EtherCAT realizes high-performance, low-

latency, and high-precision data exchange according to [21: EtherCAT technology group

]. Therefore, EtherCAT is widely used in automation control systems, such as robots,

machine tools, automated production lines, and factory automation. In 2006, EtherLAB
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proposed an open-source software, IgH EtherCAT Master, as the main tool to develop

related technology.

EtherCAT offers significant advantages in industrial automation and real-time con-

trol systems due to its high-speed communication capabilities, enabling extremely low

latency and jitter essential for precise and synchronized operations. Its ability to pro-

cess data on-the-fly drastically reduces cycle times, making it suitable for applications

requiring high responsiveness. EtherCAT’s scalability and flexible topologies allow easy

expansion and adaptation to various system layouts, supporting many nodes without com-

promising performance. Efficient bandwidth usage maximizes data throughput, enabling

the integration of more devices and sensors, enhancing overall system capabilities. Ad-

ditionally, its compatibility with a broad array of standard and vendor-specific protocols

ensures interoperability with diverse devices and equipment, promoting a versatile and

cost-effective approach to automation system development and maintenance.

2.2.1 Functional Principle of EtherCAT

EtherCAT architecture operates on a host/device basis. The main feature of Ether-

CAT is the ”on the fly” technology which improves network transmission delays and asyn-

chronization problems according to [2: Potra and Sebestyen 2006]. Host transmits data

packets that comply with the IEEE 802.3 standard and passes through all nodes in the

network architecture. Therefore, the device side can obtain the required data when the

packet arrives and put the data which needs to be transmitted into the frame as shown in

Figure 2.3. Thus, the feature, on the fly, will only be affected by the operating delay of the

hardware. Since the Ethernet network has the characteristics of full-duplex, the message

will eventually be sent back to the master. Therefore, according to [22: Nguyen and Jeon

2016], the transmitting data rate can exceed 100 Mbps, allowing EtherCAT to become a
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high-performance distributed I/O system.

Device 2
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Device 1
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receive datagram
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Figure 2.3: The concept of on the fly mechanism

2.2.2 Synchronization Mechanism: Distributed Clock

EtherCAT achieves precise synchronization through the mechanism of distributed

clock (DC). Since the Ethernet physical layer has a full-duplex and ring structure, nodes

can use the timestamp to measure the difference of the time between the packet leaving

and the return when the EtherCAT packet passes through. Therefore, according to [23:

Shen et al. 2020], by setting the first one of all nodes as the reference clock (Clock 0), the

difference of the time referred to Clock 0 on other nodes can be calculated during each

cycle. The host can calculate the propagation offset of each independent nodes with a

simple and effective way. Distributed clock is adjusted according to the offset, which can

also reduce the jitter and meet the requirement of precise synchronization control with the

delay less than 1 µs, and support multi-axis synchronous motion control.
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2.2.3 Format of EtherCAT Protocol

EtherCAT communication protocol is optimized for data processing. The master can

communicate with nodes via broadcast. As shown in Table 2.3, an EtherCAT frame con-

sists of Ethernet header, EtherCAT telegram and frame check sequence. The detailed items

are provided in Table 2.3(a). EtherCAT frame starts with a standard Ethernet header,

including fields the source and destination MAC addresses, and is followed by Ether-

Type field, which use standard IEEE 802.3 Ethernet frame transmission. The Ethertype is

0x88a4.

Then, the information about EtherCAT is contained in EtherCAT telegram as shown

in Table 2.3(b). AnEtherCAT frame can consist of several datagrams, each ofwhich serves

a specific memory area of a logical addressing. This area can be up to 4GB bytes. The

EtherCAT header follows the Ethernet header . This header contains crucial information

for EtherCAT processing,which is divided into a length specification, a reserved bit 0 and

a specification for the protocol type.

According to [21: EtherCAT technology group ], the part of EtherCAT datagram is

shown in Table 2.3(c). If there are n nodes in the EtherCAT network, EtherCAT datagram

will contain n datagrams in each frame. Datagram header indicates what type of themaster

is and what would like to execute such as read, write, read-write. Logical addressing is

used for the exchange of process data. Each datagram addresses a specific part of the

process image in the EtherCAT segment. During network working, each node is assigned

one or more addresses in this global address space. Since datagrams contain all the data

related information, the host can decide when and which data to access.
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Table 2.3: Format of EtherCAT protocol frame

- Ethernet header EtherCAT telegram FCS
Bytes 14

Table 2.3(b)
4

Item Destination
or target adress (DA) Source address (SA) Type -

Bytes 6 6 2
(a) Overall datagram

- ECAT header EtherCAT datagram Padding bytes
Bytes 2 A 0∼32
Item Length of A Reserved Protocol type Table 2.3(c) -Bits 11 1 4

(b) EtherCAT telegram

- Datagram 1 ... Datagram n
Bytes 10+n+2 ... 10+k+2
Item Datagram header Data WKC
Bytes 10 n 2

Item CMD IDX Address Length
of n R C R M IRQ

Bits 8 8 32 11 2 1 1 1 16 -
as Datagram 1

(c) EtherCAT datagram

2.2.4 EtherCAT State Machine

EtherCAT State Machine (ESM) is responsible for coordinating the status relation-

ship and transition between the host station and the device station application during ini-

tialization and running. From the initialization state to the running state, the process of ”

Initialization -> Pre-operation -> Safe Operation -> Operation” must be followed sequen-

tial transformation. Skip-level transition is possible when returning from the running state.

According to [21: EtherCAT technology group ], ESM is shown in Figure 2.4.

1. INIT state: The device is in the INIT state when it is powered on. The host can

read information from devices and prepare to enter the pre-op initialization like

setting the node address, mailbox information, DC transmission delay and offset for

synchronization by Sync Manager. After devices check right, the host can request

to enter the pre- op state.
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Master configures the Sync Manager

Pre-OP

Master configures parameter

Safe-OP

Master sends valid outputs

OP

Correct

Error

Correct

Error

Error

INIT

Correct

Figure 2.4: EtherCAT state machine diagram

2. Pre-op state: The host sets the processing data object (PDO) that the device need

to map, and configures the mapping in this state. Also, the master will set the DC

cycle time, startup time, trigger mode, and start synchronizing the DC clock. After

setting the above information and checking right, the host requests to enter the safe-

op state.

3. Safe-op state: In safe-op state, the host mainly sets the data in the PDO to the nodes,

confirms whether the device will report an error, and tests the DC synchronization

of nodes to reach a stable value. If the device does not report an error, it will request

to enter the OP state.

4. OP state: After entering the OP state, system can perform motion control through

EtherCAT.
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2.3 Background of Controller: SoftPLC

In 1969, American Digital Equipment Corporation (DEC) developed the first indus-

trial programmable controller (PLC) to solve the problem about the maintenance andmod-

ification on traditional relay. PLCwas then widely used in industrial production processes.

According to [24: John and Tiegelkamp 2010] in 1982, International Electro-technical

Commission (IEC) promulgated the PLC standard after many revisions, and PLC interna-

tional standard IEC61131 was formulated . With the promotion of IEC61131 standard, a

new technology SoftPLC had been developed. According to [25: Song et al. 2007], it is

a software running on industrial computers which follows the IEC61131 standard about

PLC. SoftPLC uses software to replace traditional hardware PLC controller and has an

open architecture, supports control algorithms, such as PID control, etc.

To make programming easier, Mário proposed MATPLC, which follows IEC 61131-

3 and utilizes five PLC languages into C programming language. MATPLC can also com-

pile it into a programmable program through Linux’s GCC and G++ compilation software

according to [26: de Sousa and Carvalho 2003]. In 2007, Edouard developed an open-

source integrated development environment named Beremiz, which provides a PLC pro-

gram editor function and can also execute PLC, complying with the five PLC standards

of IEC61131-3. language from [27: Tisserant et al. 2007]. For hardware real-time mul-

titasking, authors proposed an effective reproducible debugging solution by leveraging

the special properties of these programs from [28: Prahofer et al. 2011]. This technology

enables recording a minimum amount of data and adhere to real-time constraints.
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2.3.1 Motion Control Library: PLCopen Motion Control

IEC has organized and formulated the IEC61131-3 protocol, which is the standard

language of the international PLCopen architecture. According to [29: Eldijk 2018], the

IEC61131-3 protocol includes five languages, ladder diagram (LD), function block dia-

gram(FBD), structure text (ST), instruction list (IL), and sequential function chart (SFC).

While promoting the IEC 61131-3 standard, PLCopen introduced motion control tech-

nology into the research and development of IEC. environment and developed a set of

standard motion control function blocks. According to [30: Lin et al. 2018], PLCopen

adopts the IEC 61131-3 standard function blocks programming language as the motion

control programming language.

PLCopen motion control can perform corresponding single-axis, multi-axis and axis

positioning, fixed speed and other functions based on the motion parameters input by the

user, including displacement, speed, acceleration, deceleration and jerk. The operation of

PLCopen motion control is based on the axis state machine. These state machines include:

discrete motion state, continuous motion state, stopping state, homing state, synchronized

Motion state, errorStop state, standStill state and disabled state. The PLCopen state ma-

chine diagram is shown in Figure 2.5.

Under the architecture of distributed motion control, software and hardware can be

flexibly modified. PLCopen Motion Control facilitates seamless integration with other

automation systems and devices, enabling comprehensive control and synchronization of

motion tasks within larger production processes.
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Figure 2.5: PLCopen motion control state machine diagram

2.4 Literature Survey

This section provides an extensive literature survey on three critical areas in real-time

systems: the application of semaphores in scheduling, the evolution and comparison of

communication protocols, and the integration of robotics with real-time systems.

2.4.1 Application of Semaphore in Scheduling

In real-time systems, the efficiency and reliability of task scheduling are crucial to the

overall performance of the system. As a classic synchronization mechanism, semaphore

is widely used to manage resource access of concurrent tasks.

According to [31: Downey 2009], semaphores were introduced in 1965. Semaphores

control access to shared resources through an integer counter. When the resource is occu-

pied, the counter decreases. On the other hand, when the resource is released, the counter

increases. The task checks the value of the semaphore before accessing the resource. If

the counter is greater than zero, access is allowed. Otherwise, the task enters the waiting
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state.

Many studies have shown that semaphore-based scheduling algorithms perform well

in managing concurrent access to real-time tasks. For example, according to [32: Ander-

sson and Tovar 2006], Andersson and Tovar explored the use of semaphores in a multi-

processor environment in their study. They proposed a global scheduling algorithm based

on semaphores, which can effectively reduce the number of task context switches and im-

prove the throughput of the system. Another study from [33: Sha et al. 1990] analyzed

the application of semaphores in real-time operating systems and proposed an improved

priority inheritance mechanism to avoid priority inversion through semaphores, thereby

improving the response speed and reliability of the system.

In the fields of industrial control and automation, semaphore-based scheduling algo-

rithms also have important applications. Instant communication protocols require precise

timing control to ensure low-latency transmission and efficient processing of data.

2.4.2 Evolution and Comparison of Communication Protocol

The evolution of communication protocols has been driven by the need for faster,

more reliable, and more efficient data transfer methods in increasingly networked sys-

tems. In the early days of digital communication, according to [34: EIA 2010], protocols

like RS-232 were sufficient for simple point-to-point connections. However, as industrial

automation and networking demands grew, more sophisticated protocols emerged. Ac-

cording to [35: Organization ], the advent of fieldbus technologies in the 1980s, such as

Modbus, allowed for better handling of data in industrial environments, providing deter-

ministic and robust communication. In the 1990s and 2000s, according to [36: Alliance

], Ethernet-based protocols began to dominate due to their high speed and wide accep-
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tance. This period saw the rise of protocols like EtherNet/IP, Profinet, and EtherCAT,

which leveraged the ubiquity and performance of Ethernet while adding features critical

for industrial applications.

Table 2.4 displays the comparison of different protocols. EtherCAT stands out among

communication protocols for its high performance and efficiency, particularly in real-time

industrial automation environments. Unlike traditional Ethernet, which handles data pack-

ets in a store-and-forward manner, EtherCAT processes frames on-the-fly as they pass

through each node. This method significantly reduces latency and improves synchroniza-

tion, making it ideal for applications requiring precise control and fast response times.

In contrast, protocols like Profibus and Modbus, although reliable and widely used, of-

fer lower data rates and higher latency, which can be limiting for modern, high-speed

applications. EtherNet/IP, while offering good interoperability and scalability, tends to

have higher overheads compared to EtherCAT. Each of these protocols has its strengths

and ideal use cases, but EtherCAT’s unique approach to data handling and its superior

real-time performance give it a distinct advantage in many demanding industrial settings.

Table 2.4: Comparison of different protocols

Feature EtherCAT EtherNet/IP Profibus Modbus
Data

Handling
On-the-fly
processing

Cyclic and
acyclic Cyclic Cyclic

Latency Very low Moderate Moderate
to high

Moderate
to high

Real-time
Performance Excellent Good Fair Fair

Bandwidth Up to
100 Mbps

Up to
100 Mbps

Up to
12 Mbps

Up to
1 Mbps

Determinism High Moderate High Moderate

Topology Flexible
(line, star, tree) Flexible Line, star Line, star

Synchronization Distributed clocks CIP Sync None None
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2.4.3 Robotics with Real-time System

The application of robotics with EtherCAT technology revolutionizes industrial au-

tomation by providing high-speed, deterministic communication and synchronization ca-

pabilities essential for precise robotic control. With EtherCAT’s real-time communication,

robots can receive instantaneous commands and feedback, facilitating agile and adaptive

motion control for tasks. Additionally, EtherCAT’s distributed clock synchronization en-

sures accurate timing and coordination among multiple robotic axes, enabling synchro-

nized motion and collaborative operation in complex production scenarios.

EtherCAT have been used extensively in the field of robotics. In [7: Moon et al.

2009], the authors developed a real-time EtherCAT Master library, which can supported

application programming interfaces(APIs) for programming of real-time application to

control EtherCAT network. In [8: Wang et al. 2010] and [9: Zhou et al. 2015], the au-

thors applied EtherCAT technology on servo motor with softPLC and Codesys as the de-

velopment environment respectively. However, both of them utilized the platform based

on Mindows provided by Beckhoff company. In [10: Delgado and Choi 2017], the au-

thors applied EtherCAT with real-time operating system, Xenomai and PREEMT-RT and

conclued that Xenomai has more accurate cyclic task periodicity. And also, they applied

EtherCAT with Xenomai on mibile robot in [37: Delgado et al. 2016]. With the trajectory

planning method proposed, mobile robot can work in high accuracy and performance.

On the other hand, the authors utilized EtherCAT with Codesys to improve the syn-

chronicity between the network clock and the local motor control task onmulti-axis, which

get a better real-time performance on the control of multi motors in [23: Shen et al. 2020].

However, the application can only utilize on the certain platform. The authors developed
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EtherCAT with Robot Operating System(ROS) to control 7-DOF robot and they did some

experiment to show the high real-time performance of this control system in [11: Zhang

et al. 2019].

Table 2.5: The category of real-rime implementation from recent works

SoftPLC ROS CodeSys
Non

real-time [8: Wang et al. 2010] chang-chengDesignServoDrive2015
[23: Shen et al. 2020]

Linux [11: Zhang et al. 2019]
Xenomai [38: Zhou et al. 2019] [37: Delgado et al. 2016]
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Literature Survey

Real-time
implementation

Table 2.5
Scheduling

library [39: Yoon et al. 2009]

[7: Moon et al. 2009]

servo motor [8: Wang et al. 2010]

chang-chengDesignServoDrive2015

[10: Delgado and Choi 2017]

mobile robot [37: Delgado et al. 2016]

platform [40: Delgado and Choi 2017]

snake robot [38: Zhou et al. 2019]multiple axes [23: Shen et al. 2020]

robot arm [11: Zhang et al. 2019]

[41: Hu et al. 2022]

normal method [12: Davis and Burns 2011]

[16: Burns 1991]

RT scheduling [12: Davis and Burns 2011]

[42: Wang and Lin 1999]

[43: Wang and Gombolay 2020]

[44: Zhou and Li 2021]

Figure 2.6: Key survey of this theis.
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Chapter 3

System Overview

3.1 System Architecture

The overall system consists of structural part and scheduling part. As shown in Figure

3.1, the system is composed of a control host and EtherCAT networks with drives and mo-

tors. In the control host, the real-time motion control system based on Intel Edge Controls

for industrial applications offers a robust framework for precise and efficient control, and

the structural architecture is shown in Figure 3.2. A modular architecture is designed for

scalability and flexibility. At its core, the system integrates Intel’s cutting-edge hardware

and software capabilities to enable real-time processing and decision-making at the edge,

minimizing latency and enhancing responsiveness. The architecture can be separated into

communication part and motion comtrol part,which are running as the real-time task. In

the software layer, EtherCAT master is conducued to create the network communication

and the openPLC rumtime is utilized as the motion controller in the user layer part. Then,

a supervisory control and data acquisition (SCADA) software is built for monitoring.
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Figure 3.1: Schematic diagram of the system
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Figure 3.2: The system architecture
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3.2 System Model

3.2.1 Real-time System Model

In this section systemmodels are described. Assuming the adoption of a fixed priority

scheduling algorithm is RMS, the task model Ti can be characterized by Equation (3.1).

Ti = (Ci, ϕi, Ri, Ji, Pi) (3.1)

Ci is the release cycle of Ti; ϕi represents the phase that is defined as the relative offset of

the first start time; Ri is the response time; Ji is the jitter; Pi is the fixed priority.

Then, define the instance of Ti at the jth period is represented by τ ji . There are two

specific time are marked as, aji , and t
j
i . a

j
i represents the ideal starting time of the instance

τ ji , which fit Equation (3.2). t
j
i is the actual starting time of τ

j
i . Beacause of the existence

of jitter, the actual starting time will be delayed. The relation is shown in Equation (3.3).

aj+1
i = aji + Ci (3.2)

tji = aji + Ji (3.3)

To define the deadline, (m,k)-firm dealine is used in this thesis. In real-time systems,

(m,k)-firm deadlines represent a critical scheduling concept where tasks must meet a cer-

tain level of reliability and timing guarantees according to [45: Hamdaoui andRamanathan

1995]. It must complete successfully at leastm out of the last k instances within a speci-

fied deadline. This model accommodates occasional missed deadlines due to system un-

certainties or transient faults while maintaining overall system integrity and performance.

In this thesis, the deadline is assumed to be eual to the period for each task.
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Therefore, given the tasks Ti constrained with (mi, ki)-firm deadline, the time utility

U(Ti) can be described in Equation (3.4).

U(Ti) =
1

ki

k∑
j=1

u(τ ji ),

s.t u(τ ji ) =


1, Rj

i < Cj
i ,

0, Rj
i ≥ Cj

i

(3.4)

u(τ ji ) is the utility within the instance τ
j
i . For the system satisfying the deadline, the time

utility U(Ti) must larger thanmi/ki.

3.2.2 EtherCAT Model

EtherCAT structural model contains various elements that are essential for under-

standing and implementing EtherCAT-based control systems. At its core, EtherCAT is

built on host-device communication architecture, where a master device coordinates com-

munication with multiple slave devices distributed across the network.

The physical layer of the EtherCAT architectural model defines the network topology

and hardware components. In this thesis, EtherCAT network is configured in a line topol-

ogy, depending on the specific requirements of the application. Communication within the

EtherCAT network is controlled by protocol stacking, facilitating real-time data exchange

and synchronization between host and devices. The protocol defines frame formats, data

transmission methods and error handling mechanisms to ensure high-speed and determin-

istic communication.

To create a mathematical model for EtherCAT, assumptions and parameters for Ether-

CAT model are listed below.
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Assumptions and Parameters:

1. N : Number of devices (nodes) on the network.

2. L: Length of the data payload in bytes.

3. Dp: Propagation delay

4. Dt: Transmission delay

Propagation delay(Dp) depends on the speed of the signal in the medium,which is

typically close to the speed of light in a vacuumbut slightly slower in cables. For a Ethernet

cable, the propagation delay is approximately 5 nanoseconds per meter.

Processing delay in EtherCAT is very low because data is processed instantly as it

passes through each node. Therefore processing delay is ignored in this article.

Transmission delay(Dt) is the time taken to push all the bits of the frame onto the

wire. For Fast Ethernet (100 Mbps), the transmission delay for a frame size of L bytes is

listed in Equation (3.5).

Dt =
L ∗ 8

100 ∗ 106
(3.5)

The total latency for the EtherCAT network is the summation of propagation delay,

transmission delay, and processing delay. Beacause processing delay is low , the relation

is shown in Equation (3.6).

Dlatency = Dt +Dp (3.6)
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Chapter 4

Semaphore-Based Real-time Scheduling

4.1 Delay Effect on Multiple Devices System

4.1.1 System Design

For the networked system, the performance directly influences the whole precision

and response time of the servo system. The networked actuator system is designed from

the inner loop to the outer, so that each loop is made stable. The system is described in

Equation (4.1).

ẋ(t) = Apx(t) + Bpu(t) (4.1)

x(t) ∈ Rn and u(t) ∈ Rm. If the data process delay is small enough to be neglected, the

time delay induced by network is composed of sensor to controller delayDsc(t) and con-

troller to actuator delay Dca(t). To simplify analysis, according to [46: Tran et al. 2013],

Dsc(t) and Dca(t) could be integrated into a single time communication delay Dcomm(t)

without affecting the control performance. The relation is displayed in Equation (4.2) .

Dcomm(t) = Dsc(t) +Dca(t) (4.2)
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4.1.2 Multiple Tasks in the Drive for Scheduling

The drive software has been developed in a multitasked structure using priority-based

preemptive scheduling. Considering the resource-constrained drive environment, the ker-

nel was carefully designed to minimize the overheads by including only basic primitives

such as task scheduling, timer, and synchronization. Based on the kernel primitives, the

drive function has been decomposed into four tasks: the MotorAct, MotorMon, MsgInt,

and MsgMain tasks. The timing diagram is displayed in Figure 4.1.

Figure 4.1: Timing diagram for the execution of tasks

For the taskMotorAct (TMotorAct), it executes the control loop to reach the requested

target position/velocity, which has the highest priority within these for tasks. The release

time of task MotorAct is equal to the time of interrupt. The task MotorMon (TMotorMon)

is defined to monitor the the motor status. The task MsgInt (TMsgInt) deals with the

real-time PDO for interrupt from the EtherCAT SubDevice Controller (ESC). These data

are shared with the task MotorAct and status update. This task is seen as a periodic task,

which set the master cycle time as the period.

From [47: Sung et al. 2011], results displayed that interrupts from the EtherCAT

have a high degree of periodicity with a jitter of 2 - 3 µs. The task MsgMain executes

the corresponding operations in response to state change requests initiated by the Ether-

CAT master. Another function of the task MsgMain is to deal with the non-real-time data

transfer. Because of the characteristics of the task MsgMain, it runs in background with
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the lowest priority. The order of priority is shown in Equation (4.3).

PMotorAct > PMotorMon > PMsgInt > PMsgMain (4.3)

4.1.3 Drive-Local Delay for Host Command

When a packet is sent from the host to a device, the device will check whether the

packet has been received or not. For the k-th packet, the variableαi(k) to show the relation

can be discribed in Equation (4.4).

αi(k) =


0, packet loss

1, packet received

(4.4)

The host generates the packet, and this packet is then transmitted over EtherCAT. Upon

reaching the device, the device’s internal controller then interprets the command and ex-

ecutes the required operations, such as reading or writing to storage. Refer to [46: Tran

et al. 2013], drive-local command delay is analyzed. As one of the essential performance

metrics of the drive, the drive-local command delay Ddrive(t) can be calculated in Equa-

tion (4.5).

Ddrive(t) = RMsgInt(t) + CMotorAct(t) + RMotorAct(t) (4.5)

Where RMsgInt(t) is worst-case response time of TMsgInt; CMotorAct(t) is the period

of TMotorAct;RMotorAct(t) is the worst-case response time of TMotorAct. The task TMsgInt is

cyclically activated by the host command, so it can be seen as a periodic task. The values of
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RMsgInt andRMotorAct are calculated for each command mode, i.e., the position, velocity,

or torque mode according to a deterministic delay bound analysis called the time demand

analysis.

In this situation , for the n-th drive in the network, the total end to end command

delay(D(n, t)) is the summation of the delay for communication and the delay from drive,

which is shown in Equation (4.6).

D(n, t) = Dcomm(n, t) +Ddrive(t) (4.6)

From [48: Liang et al. 2019], the communication delay can be also seen as the sum-

mation of time from host and the the k-th time form drive. This can be displayed in

Equation (4.7).

Dcomm(n, t) = thost(t) + n ∗ tdrive (4.7)

tdrive is forwarding time of a message from one drive to another one, which is a

constant determined by network topology and can be measured by the packet network

packet analyzer. thost(t) is a variable that change over time, which means the forwarding

time from host to the first node in the network. By Equation (4.2) and Equation (4.7), the

communication delay can be measured and calculated.
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4.2 System Loop and Discretization

Figure 4.2 illustrates a control system for a single drive, denoted as Gc. The system

begins with a summation block that compares the reference input with the feedback signal.

The error generated from this comparison is fed into a Proportional-Integral (PI) controller,

which adjusts the system response to minimize the error over time by considering both the

magnitude and the accumulated error. The PI controller processes this error to generate

a reference current (Iref ). The actual motor current (Is) is then subtracted from Iref to

produce a current error (Ie). This current error is used by the pulse-width modulation

(PWM) control module to generate the duty cycle command (Dcomm), which adjusts the

motor’s power input. The motor responds to the Dcomm signal, adjusting its velocity. The

actual motor velocity is then fed back to be compared again with the command velocity,

closing the control loop and ensuring the motor speed aligns with the desired setpoint.

This feedback loop helps maintain precise control over the motor’s velocity.

+
-

PI

Single drive (Gc)

Velocity

Command
Velocity

Dcomm Motorpwm
controlIref +

-

Is

Ie

Figure 4.2: Block diagram of the single drive

Figure 4.3 depicts the multi-drive control system managed by a host. Loop consists

of a scheduler, a controller, and a driveGc. This setup ensures synchronized operation and

coordination of multiple drives, allowing the host to manage complex tasks by distributing

control commands and monitoring performance.

Refer to [49: Branicky et al. 2002], there are three assumption to simplify and calcu-

late the system for discretization, and add the delay Dcomm(n, t) in the common system,
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Figure 4.3: Block diagram of multiple drives system

which is written in Equation (4.8).

ẋpi(t) = Apix(t) + Bpiui(t−Dcomm(n, t)) + Bwi(t) (4.8)

Assumption:

1. Controllers and actuators are event-driven.

2. Delay Dcomm(n, t) exists in the transmission of the network.

3. In the network, there are p actuators.

Tasks must be scheduled and executed at precise intervals. Discretization helps in

defining these intervals, ensuring that tasks are executed predictably and consistently,

which is critical for maintaining system stability and meeting deadlines. Refer to the

method in [49: Branicky et al. 2002], discretization is shown in Equation (4.9).

x(k + 1) = Ax(k) + B0(Dcomm(n, t))u(k) + B1(Dcomm(n, t))u(k − 1) (4.9)
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In Equation (4.9), the B0(Dcomm(n, t)), B1(Dcomm(n, t)) can be rewritten belowed.

B0(Dcomm(n, t)) = B0 +HF (Dcomm(n, t)
′)Bp,

B1(Dcomm(n, t)) = B1 −HF (Dcomm(n, t)
′)Bp,

Dcomm(n, t)
′ ∈ (−s/2, s/2)

(4.10)

In Equation (4.10), theB0,B1,H are constant matrice and are set as Equation (4.11).


B0 =

∫ s/2

0
eAptBp dt

B1 =
∫ 2

s/2
eAptBp dt

H = ∥
∫ s/2

0
eApt dt∥

2
eAps/2

(4.11)

F (Dcomm(n, t)
′) is a time-varying matrix and is displayed in Equation (4.12).

F (Dcomm(n, t)
′) = ∥

∫ s/2

0

eApt dt∥
∫ Dcomm(n,t)′

0

eApt dt (4.12)

F (Dcomm(n, t)
′) with this form will satisfy Equation (4.13).

F T (Dcomm(n, t)
′)F (Dcomm(n, t)

′) ≤ I (4.13)
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4.3 Details of the Scheduling Method

In the EtherCAT network, the semaphore functions here like a sensor, and its function

is to monitor and control the use of various tasks and resources in the network. Specif-

ically, the semaphore is obtained by the EtherCAT Master, which means that the host

will automatically detect and obtain the semaphore in the network when the network is

connected. These semaphores serve as a scheduling and synchronization mechanism, al-

lowing host to effectively manage resources in the network to ensure timely transmission

of data and efficient operation of the system.

The algorithm is designed to facilitate efficient taskmanagement and synchronization

in the system within a real-time operating system framework Xenomai. At its core, the al-

gorithm ensures precise timing and coordinated execution of critical tasks for applications

where timing accuracy and responsiveness are paramount.

The algorithm initializes by defining a MINIMUM_TASK_PERIOD, which estab-

lishes the smallest interval at which tasks can execute. This parameter ensures granu-

larity in task scheduling, allowing threads to operate with fine-tuned timing precision.

Threads are instantiated and configured with specific priorities and execution frequen-

cies ( thread_1, thread_2, thread_3). Each thread performs a set of device operations and

operates within its dedicated execution loop, continuously monitoring system time to de-

termine when tasks should be executed. The initialization is displayed in Algorithm 1.

Refer to [50: Zhang et al. 2018], threads periodically check if the current system

time aligns with their predefined execution intervals (MINIMUM_TASK_PERIOD * pe-

riod_multiple). For instance, thread_1may execute tasks everyMINIMUM_TASK_PERIOD,

while thread_2 and thread_3 execute tasks every MINIMUM_TASK_PERIOD * 2 and
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Algorithm 1 Initialization for semaphore-based real-time scheduling
1: MINIMUM_TASK_PERIOD← 10 ▷ milliseconds
Thread Functions:
1: function INITIALIZE_THREADS
2: create_thread(thread_1)
3: create_thread(thread_2)
4: create_thread(thread_3) ▷ thread represent the computing task for each device
5: end function
1: function THREAD
2: while true do
3: current_time← get_current_time()
4: if current_time ≥ thread_data[0].last_execution_time +

(MINIMUM_TASK_PERIOD× thread_data[0].period_multiple) then
5: acquire_semaphore(sync_sem)
6: execute_task_for_thread_1()
7: thread_data[0].last_execution_time← current_time
8: release_semaphore(sync_sem)
9: end if
10: sleep(MINIMUM_TASK_PERIOD

2
) ▷ Sleep half the minimum period

11: end while
12: end function

MINIMUM_TASK_PERIOD * 4, respectively. This setup ensures that tasks are executed

at predictable intervals. To prevent concurrency issues and ensure orderly task execution,

threads acquire the semaphore to gain exclusive access to shared resources before execut-

ing tasks.

The main scheduler loop orchestrates the overall system synchronization and timing.

It waits for real-time clock interrupts, synchronizing simulation time with system time to

maintain temporal accuracy. At predefined synchronization points, threads synchronize

their activities using sync_sem. This coordinated approach optimizes resource utilization

and ensures consistent execution flow across all threads. The main loop of scheduler is

displayed in Algorithm 2.

This algorithm effectively manages multiple threads by ensuring that each thread ex-

ecutes its tasks at predetermined intervals based on their specific period multiples. By

45

http://dx.doi.org/10.6342/NTU202403297


doi:10.6342/NTU202403297

Algorithm 2Main loop for semaphore-based real-time scheduling
1: function SCHEDULER
2: initialize_threads()
3: while true do
4: wait_for_real_time_clock_interrupt()
5: synchronize_simulation_time_with_system_time()
6: if current_time%MINIMUM_TASK_PERIOD == 0 then
7: synchronize_threads()
8: end if
9: sleep(MINIMUM_TASK_PERIOD

2
) ▷ Adjust sleep time based on requirements

10: end while
11: end function

using a semaphore for synchronization, it avoids race conditions and ensures that the criti-

cal section of code, where tasks are executed and recorded. This prevents timing conflicts

and maintains the integrity of execution times.The hierarchical structuring of task execu-

tion times ensures that tasks with higher urgency or frequency are given priority without

starving less frequent tasks.

Compare with RMS, EDF, and FCFS, semaphore-based real-time scheduling has its

distinct advantages and disadvantages. The comaprison is shown in Table 4.1. Semaphore-

based scheduling provides robust synchronization and mutual exclusion, preventing race

conditions and ensuring resource availability. However, it may lead to priority inver-

sion, complicating system debugging. RMS, a fixed-priority algorithm, is simple and

predictable, making it suitable for systems with static priorities. Its downside is that it can

be inefficient for tasks with varying execution times and deadlines. EDF, a dynamic pri-

ority algorithm, optimizes CPU utilization by scheduling tasks based on their deadlines,

providing flexibility for dynamic workloads. Yet, it can be complex to implement and

may struggle with overload conditions. FCFS is the simplest algorithm, easy to imple-

ment with minimal overhead, but it fails to prioritize critical tasks, leading to potential

deadline misses in real-time systems.
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Table 4.1: Comparsion of semaphore-based with other common scheduling method

Feature Semaphore-Based RMS EDF FCFS

Synchronization Prevents race
conditions

Not inherently
synchronized

Not inherently
synchronized

Not inherently
synchronized

Priority
Management

May lead to
priority inversion Fixed-priority Dynamic

priority
No priority
management

Complexity May be complex Simple Complex Very simple
CPU Ussage Lower Lower High Lower

Implementation Requires careful
debugging

Easy to
implement

Complex t0
implement

Easiest to
implement
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Chapter 5

Software and Hardware Platform
In this chapter, the software and hardware designed are discussed. First, the overall

environment is shown. Then, the hardware and software plaform are talked about indi-

vidually in the next sections.

5.1 Overall of the Environment

The overall system of the environment is displayed in Figure 5.1. The environment is

consisted of two motors with its drivers in the middle of the picture. The motors have their

pointers so that can be observed easily. The motors use a power wire and an encoder wire

to connect to its drivers induvidually. The drives use the RJ45 cable wire to connect with

the IPC and another drives so that the EtherCAT network can be built. The schematic

diagram is provided in Figure 5.1(b). In the environment, the host and the motors are

placed at the top, and the drivers and the transformer are placed on the lower floor. The

detailed information of hardwares will be discussed in the next section.

(a) Picture

Host

Monitor

Motor 1

Drive 1

EtherCAT network

Motor 2

Drive 2

transformer

220V 110V

power

Encoder wire

Powe wire

RJ45 Cable

(b) Schematic diagram

Figure 5.1: Platform environment
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To control and observe the environment, a human machine interface is provided in

Figure 5.2. In this pltform, openplc is themain sofware to control motors throgh EtherCAT

protocol. The openPLC runtime is running in the background like the picture shown.

Then, a monitoring software, VTscasa is runing through a vurtual machine in the front

of Figure 5.2. The monitoring software can give the control indication and observe the

system with the cylce of 0.1 second via modbus TCP. The details of the software plaform

is duscussed in the section 5.3.

Figure 5.2: Human machine interface

5.2 Hardware Platform

5.2.1 EtherCAT Motors and Drivers

EtherCAT motors typically refer to servo motors or stepper motors equipped with

EtherCAT-compatible communication interfaces, allowing them to be controlled and syn-

chronized over an EtherCAT network. The main advantages of EtherCAT motors and

drivers is their ability to achieve precise synchronization and coordination ofmotion across

multiple axes in real-time system. The EtherCATmotors used in this paper is an servo mo-

tor prduced by Panasonic. Its picture and the specification are listed in Table 5.1.
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EtherCAT drivers are the hardware or software components responsible for interfac-

ing with EtherCAT-enabled motors and facilitating their control. These drivers typically

reside in programmable logic controllers (PLCs), motion controllers, or other automation

devices and are responsible for sending commands, receiving feedback, and managing

communication with EtherCAT motors. The EtherCAT drivers used in this paper pro-

vides AC for matching servo motor. Its picture and the specification are listed in Table

5.1.

Table 5.1: Specification of the hardwares

Item Specification
EtherCAT motors Model MSMF012L1U2M

Brand Panasonic
Weight 0.47Kg
Dimension 6cmx7cmx14cm
Voltage 200V
Rated power 100W
Rated torque 0.32 N·m
Max. speed 6000 rev/min

Drivers Model MADLN05BE
Brand Panasonic
Control/drive type Servo/AC
Voltage 200V-240V
Rated power 200W

IPC Model EC70A-TGU
Brand DFI
CPU 11th Gen Intel CoreTM i5
Memory 8GB

5.2.2 Industrial Cpmputer

Industrial computers (IPC) and common computers serve distinct purposes and are

optimized for different environments. Industrial computers are designed to withstand

harsh conditions such as extreme temperatures, dust, humidity, and vibrations, making

them suitable for use in industrial settings. The feature ruggedized construction, special-

ized components, and extensive connectivity options tailored to industrial applications.
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The specification of IPC used in this paper are listed in Table 5.1.

5.3 Software Platform

In this section, the software platform is talked about. First, the platform provided by

Intel is introduced. Then, openPLC, the software used for motion control, is discussed.

The montoring software and the combination of this platform are presented in the third

part of this section.

5.3.1 Platform: Intel Edge Controls for Industrial

Refer to [51: Industrial et al. ], Intel Edge Controls for Industrial (ECI) are a suite

of software solutions designed to optimize and manage industrial processes at the edge

of the network. These solutions leverage Intel’s expertise in edge computing, real-time

analytics, and industrial automation to help users improve efficiency, productivity, and

safety in their operations.

In ECI, the usage of virtualization and containerization configurations consolidates

mixed-criticality workloads. One key aspect of Intel Edge Controls is the ability to col-

lect, process, and analyze data from industrial equipment and sensors in real-time. This

enables predictive maintenance, anomaly detection. Another important feature of Intel

Edge Controls is their support for industrial protocols and standards, allowing seamless

integration with existing equipment and systems. In this thesis, ECI is used for the basic

platform to build the real-time environment.
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5.3.2 Motion Controller: OpenPLC

OpenPLC is an open-source platform for Programmable Logic Controllers (PLCs),

which is the key point to be chosen in this thesis. OpenPLC allows users to freely access,

modify, and distributes the software according to their needs. The additional function of

OpenPLC is an editor. It supports standard programming languages, making it easy to

compile and execute the code directly in one software. The dashboard of openPLC is

shown in Figure 5.3. It also supports various communication protocols commonly used

in industrial automation, such as Modbus, EtherNet/IP, Profinet, and MQTT. This inter-

operability enables seamless integration with existing equipment and systems. That is the

main reason that openPLC is chosen as the control application software.

In this control systems, the Proportional-Integral-Derivative (PID) control method

is employed for its effectiveness in managing and optimizing industrial processes. PID

controllers adjust process variables by calculating the error value as the difference between

a desired setpoint and a measured process variable. By accessing a PID function block

within the software’s library, PID controllerand is integrated and configured by setting

the proportional (Kp), integral (Ki), and derivative (Kd) gains to meet the requirements.

Define the setpoint value that the PID controller will maintain, and ensure a feedback loop

is established for continuous error correction.

Figure 5.4 shows the structure of openPLC. The kernel used is the Linux based De-

bian 11 (bullseye) with the Xenomai cobalt as the RTOS, letting the scheduling tasks and

themotion control task with EtherCAT communication have the highest priority to running

in the real-time kernel. In the core of openPLC, modbus is the protocol to communicate
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Figure 5.3: Dashboard of the openPLC

OpenPLC
Structure runtime

editor

host

slave device

kernel

communication
protocol

library

Xenomai/PreemptRT with Debian

Modbus TCP

PLCopen motion control

motors and drivers of EtherCAT

IEC61131-3 ILD，LD，FBD，ST，SFC

Figure 5.4: Structure of openPLC
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and also it can be a great method to combine the the monitoring software.

In the openPLC runtime, three parts can be listed in Figure 5.5. In the core part,

files are converted from ST file, the feature that openPLC generated with IEC61131-3

standard, into common C code. Then, it also defines the hardware layer in the needed

project,. Another important part is the utils, which contains the function to let the code be

generated. The library part provides the whole needed function block.

OpenPLC
project webserver

utils

core

st_file

Hard_layers

main.cpp

Server.cpp

Store files converted to C code

Dnp3 protocol code

Generate memory shard link 

matiec_src

Contain all needed library ex: PLC motion control

Modbus.cpp

Describe hard layer API

Main file for the openPLC

Create socket to start network 

Modbus support

Upload ST files

The library convert IEC to C code

dnp3_src

glue generator

lib

Figure 5.5: Structure of open-source openPLC structure

The following function block (FB) library is designed for the purpose of controlling

axes via the language elements consistent with IEC 61131-3 standard, and their function

block diagram is listed in Table 5.2. To control each motor and combine the openPLC

runtime with monitoring software intuitively, modularization is the method used in this

thesis. It separates the code of each motor enforce modularity ,so that there is no trouble

if more motors are added to the system. The function blocks are listed below.

1. MC_Power: The function block is used to switch the software enable of an axis.
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2. MC_MoveVelocity: The function block is used to start an endless motion with

a specified velocity and direction. The movement can be stopped through a Stop

command.

3. MC_MoveRelative andMC_MoveAbsolute: The function blockMC_MoveRelative

starts a relative positioning motion based on the current set position, and the func-

tion block MC_MoveAbsolute move to an absolute target position.

4. MC_SetPosition: In absolute mode, the actual position is set to the parameterized

absolute position value. In relative mode, the actual position is offset.

5. MC_Halt andMC_Stop: These two function blocks represent to stop the motion.

However, the function block MC_Halt is used to stop an axis with a defined de-

celeration ramp and in the MC_Stop function, the axis is not locked against further

movement commands.

6. MC_Reset: The function block is used to reset axis if errors happen.
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Table 5.2: Function Blocks used in this thesis

MC_Power MC_MoveVelocity

MC_MoveRelative MC_MoveAbsolute

MC_Halt MC_Stop

MC_SetPosition MC_Reset
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5.3.3 Monitoring Application

Although there is a simple monitor in openPLC dashboard, it does not have enough

function and visual platform for user to observe directly. Therefore, because of the feature

of high compatibility of ECI, a monitoring software can be adapted with virtual machine

(VM).

VTscada is chosen in this research. VTScada is a powerful supervisory control and

data acquisition (SCADA) software platform developed by Trihedral Engineering Lim-

ited. According to [52: Trihedral ], SCADA systems like VTScada are crucial components

in industrial automation, allowing operators to monitor, control, and optimize processes

in real-time system.

VTScada offers an intuitive and user-friendly interface, allowing operators to visu-

alize data from sensors, actuators, and other devices in real-time. The platform provides

customizable dashboards, trends, alarms, and reports, making it easy for users to monitor

and analyze critical information effectively. VTScada supports a wide range of commu-

nication protocols and interfaces, allowing integration with various devices, systems, and

databases.

The standard control buttons like power, start, stop and so on are listed below. Users

can enter desired pattern to control the motors. The fuction in this HMI can be separated

into four parts.

1. Velocity command part (blue box):

In this part, user can enter desired velocity, acceleration, deceleration and the

direction of rotation to control different motors individually. Also, two visual dash-
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boards are shown so that users can observe the real-time data intuitively.

To execute velocity control, users need to turn on ”Power” button and select

the mode to velocity mode first. Then, push ”Start” button to run motors after

entering the velocity data. Motors will accelerate with the desired acceleration to

the desired veloity and then will keep at the constant speed. The motion of the

velocity command part is diplayed in Figure 5.6(a).

2. Position command part (green box):

User can enter desired position to control different motors individually. For

setting pattern quickly, simple drop-down menus are set so that users can choose

common pattern like 45, 90 and 180 degree directly.

To execute position control, users need to turn on ”Power” button and select the

mode to Position mode first. Then, push ”Start” button to run motors after entering

the position data. The system defaults forward direction to counterclockwise. If

clockwise position is needed, just use minus notation to represent. Motors will

accelerate with the default acceleration to the desired poistion and stop. The motion

of the position part is displayed in Figure 5.6(b).

3. Monitoring part (yellow box):

Users can observe the motion of motors more detailed by the instantly updated

data and the position-time line chart and velocity-time line chart. For each motors,

there are some signal to show the state is so that it can be more intuitive to check

the running state and the error is.

4. Demo part (white box):

Demo part provides some simple demo motion to show. There includes three
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t (s)

Desired velocity 1

Desired velocity 2

press "Start" press "Start" press "Stop"Power on

desired
accelaration

desired
decelaration

(a) Veolocity command part

t (s)

Desired position 1

Default velocity 

press "Start" press "Start"

t (s)

Power on

Desired position 2

default
accelaration

default
decelaration

(b) Position command part

Figure 5.6: Timing diagram for different command parts

cases to understand this system more easiliy. The showcases are listed in Figure

5.7. The first one shows the continuously synchronized counterclockwise rotation

with 90 degrees each step. The detailedmotion and the timimg diagram are provided

in Figure 5.7(a) and Figure 5.7(b). The second showcase shows the continuously

synchronized clockwise rotation with 90 degrees each step. Its motion and timing

diagram are listed in Figure 5.7(c) and Figure 5.7(d). The last showcase presents

different veliocity on twomotors. Its detailed motion and timing diagram are shown

in Figure 5.7(e) and Figure 5.7(f). With these three demo case, users only need to

select demo mode to understand the system.

60

http://dx.doi.org/10.6342/NTU202403297


doi:10.6342/NTU202403297

Demo case 1
Continuously synchronized
CCW rotation 90 degrees

time (s) 0 0.5 1 1.5
position (◦) 360 270 180 90

(a) Demo case 1
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(b) Timing diagram of demo case 1

Demo case 2
Continuously synchronized
CW rotation 90 degrees

time (s) 0 0.5 1 1.5
position (◦) 0 90 180 270

(c) Demo case 2
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(d) Timing diagram of demo case 2
Demo case 3

Different motion showcase
motor 1 2 1 2 1 2 1 2
time (s) 0 2 4 6

velocity (rev/s) 0 0 20 0 0 20 40 40
time (s) 8 10 12 14

velocity (rev/s) -20 20 0 0 40 -40 0 0
(e) Demo case 3
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(f) Timing diagram of demo case 3

Figure 5.7: The pattern of three showcases
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The operation of the HMI is provided in Figure 5.8. Through modularization, each

button can execute the program individually. The function of each button are listed below:

1. Power:

The main function of Power button is for triggering the PLC motion function:

MC_Power. If the Power button is pressed and theMC_Power.Enable equals FALSE,

a pulse signal will be given and let MC_Power.Enable be TRUE. Then, the system

will request to enter StandStll state. After it checks if the MC_Power.Powerstate is

TRUE, which means that the system boots indeedly. The system will go to Stand-

Still state and set the current position as zero point.

2. Mode Selection:

By a drop-down menu, users can choose which control mode to use.

3. Start:

The main fuction of the Start button is to give a signal for openPLC runtime, let

theMC_MoveVelocity.Enable orMC_MoveRelative.Enable to be TRUE so that the

system can start running as the given pattern.

4. Stop:

When the Stop botton is pressed, the function MC_Stop will be triggered and the

motors will stop all motion immediately. If the system checks that MC_Stop.Done

is TRUE, the system will turn back to StandStill state.

5. Reset:

When errors happen in any state, the system will give an alarm and go to Er-

rorStop state. In this state, all motion will be forced stop, waiting user to press
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Reset button. When users press the button, MC_Reset will be triggered. System

will log the error message and check itself to restart. If it restarts sucessfully, the

system will turn off the alarm, let MC_Reset be TRUE, and go back to Disabled

state. Users need to press power again to reboot the system.

6. Return:

The Return button is an auxiliary button to let the motor back to the zero point.
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Figure 5.8: Flow chart of the operation in HMI
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To communicate with openPLC, modbus protocol is the suitable one in this com-

munication. Modbus is a widely used communication protocol in industrial automation,

facilitating the exchange of data between devices such as PLCs, Remote Terminal Units

(RTUs), sensors, actuators, and other industrial control equipment according to [35: Orga-

nization ]. VTScada supports both Modbus TCP/IP (Ethernet) and Modbus RTU (Serial)

communication protocols. It only needs to define communication parameters through a

graphical interface, simplifying the setup process. The rule of PLC and SCADA address

mapping is listed in Table 5.3. The address should transform from PLC code to PLC

address first, and then transform from PLC to modbus address. Finally, the address trans-

forms to VTscada. Modbus uses a simple data model consisting of discrete input coils,

holding registers, and so on. Discrete input coils represent binary states (on/off), while

holding registers store analog data (integer values) such as sensor readings, setpoints, or

control parameters. Overall, VTScada provides comprehensive support for Modbus com-

munication, enabling to integrate PLC into SCADA applications.

Data type Discrete Input Coils Holding Registers
Usage binary states analog data

Data size 1 bit 32 bits
Access RW RW

PLC address %QX0.0–%QX99.7 %MD0–%MD1023

Modbus address 0–799
(ex: 10 = 1*8+2→%1.2)

2048–4095
(ex: 2050=2048+2*1→%MD1)

VTscada Address =Modbus address+1 =40000+Modbus address/Float
Table 5.3: Address mapping through different protocols

65

http://dx.doi.org/10.6342/NTU202403297


doi:10.6342/NTU20240329766

http://dx.doi.org/10.6342/NTU202403297


doi:10.6342/NTU202403297

Chapter 6

Results and Analysis of Experiment and

Simulation
In Chapter 6, the experimental setup, results, and analysis has been documented. In

this thesis, due to the limitation of the hardware equipment, some experiment can not be

implemented. To test the real-time motion control system discussed about in Chapter 5

and semaphore-based real-time scheduling, the experiment and simualtion are separated

into three parts:

1. The performance under single axis with the real-time motion control system.

2. The performance under two axes with the real-time motion control system.

3. Simulation of the semaphore-based real-time scheduling.

In the following sections, three parts of experiment and simualtion are discussed

separately.

6.1 Single Axis Situation with the Real-timeMotion Con-

trol System

6.1.1 Experiment Setup

The real-timemotion control system is described in Chapter 5. In this section, motion

performance and real-time performance are tested under single axis situation. In order

to get the experiment result, a non real-time monitoring task is created in the computer.
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The data from the encoder in the motor are logged to test the motion performance. First,

linear calibration is done to get accurate command. The experiment shows the motion

performacne with the real-time motion control system. Then, the test of the real-time

performance is done and shows high real-time performance in the system under single

axis situation.

6.1.2 Experiment Results and Analysis

Following the described principle, we achieve the response of the different speed

command under single axis situation. The result is shown in Figure 6.1. It shows that the

motion of motor follows the given command, accelerating with constant acceleration to

the command rotation speed and rotating at the constant speed. The error of the motion is

31.74% at the 1.0 command, 18.56% at the 10.0 command, 3.03% at the 20.0 command,

and 1.47% at the 30.0 command. The comparison of different command is displayed in

Figure 6.2. We can find that it is easy to understand the motion with the same acceleration.

as the command value increases, the system’s response improves significantly in terms of

stability and accuracy, reflecting a reduction in the error rate.
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Figure 6.1: Individual timing diagram for response of the different speed commands
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Figure 6.2: Timing diagram for the response of the different speed commands
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The result of performance is shown in Table 6.1. The analysis can be separated into

four parts:

Table 6.1: The result of motor performance

Same rotations
Item Test 1 Test 2 Test 3

Behavior 1 rotation and 1 stop 10 rotations and 1 stop 100 rotations and 1 stop
Cycle 4000 times 400 times 40 times

Total rotation 4000 4000 4000

Result Error at 4000: -0.1052
(-37.8◦)

Error at 4000: -0.009
(-3.24◦ )

Error at 4000: 0.00024
(0.086◦ )

Same cycles without calibration
Item Test 4 Test 5 Test 6

Behavior 1 rotation and 1 stop 10 rotations and 1 stop 100 rotations and 1 stop
Cycle 1000 times 1000 times 1000 times

Total rotation 1000 10000 100000

Result Error at 1000: -0.0231
(8.316◦)

Error at 10000: -0.0244
(8.78◦ )

Error at 100000: -0.0313
(11.27◦ )

Same cycles with calibration
Item Test 7 Test 8 Test 9

Behavior 1 rotation and 1 stop 10 rotations and 1 stop 100 rotations and 1 stop
Cycle 1000 times 1000 times 1000 times

Total rotation 1000 10000 100000

Result Error at 1000: -0.0022
(0.79 ◦)

Error at 10000: -0.0020
(0.72◦ )

Error at 100000: 0.0039
(1.40◦ )

1. The comparision of different behavior with the same rotation(Test 1 - Test 3):

Figure 6.3 shows the behavior of the motors. To check the source of the error, the

motor is set to rotate 1 time and urgent as 1 cycle (Test 1). Another 2 tests are similar

to this form, rotating 10 times and 100 times individually(Test 2 and Test 3). From

test 1 - test 3, we can find that the error enumerated with the cycle. The enumeration

of error within 4000 rotation is provided in Figure 6.4. Whether the behavior is, the

errors increase as the number of the rotation. At the 4000 rotation, the errors are

up to -37.8◦, -3.24◦, and 0.086◦. However, there are significant difference in these

three tests as shown in Figure 6.4(d), which means that the total number of roatation

is not the main reason of the error.
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Figure 6.3: Error-cycle diagram for the the comparison of calibration
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2. The comparision of different behavior with the same cycle(Test 4 - Test 6):

Figure 6.5 shows the error for the different behavior with the same cycle. We

can find that in the case of the same cycle, the motor has similar error accumulation

and the errors at different cycle are also similar. From Table 6.1, the error at 1000

cycle are 8.316◦, 8.78◦, and 11.27◦.
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Figure 6.4: Error-cycle diagram for the same rotation.
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Figure 6.5: Error-cycle diagram for the same cycle (Test 4,5,6)

3. The comparision of the behavior under the same rotations case (Test 1 - Test 3)

and the behavior under the same cycles(Test 4 - Test 6):

By comparing test 1 - test 3 and test 4 - test 6, the error is positively related to

the cycle defined here, which means that the urgent cause the error. To compensate

it, a proportional–integral regulator (PI regulator) is used.

4. The comparision of the same rotation case without calibration(Test 4 - Test 6)

and with calibration(Test 7 - Test 9):

Figure 6.6 shows the result of the compensation. The result of the case with

compensation is listed in Table 6.1(Test 7 - Test 9). We can find that the compesator

can indeed reduce the error accumulation. The errors reduce to around 1◦ at the

1000 cycle, reducing up to 90%.
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The real-time performance under single axis is shown in Table 6.2 and Figure 6.7.

Table 6.2 summarizes the maximum and minimum values of latency. We can remark that

the implementation on the real-time motion control platform with PLC motion controller

can achieve great real-time performance while maintaining low CPU usages. Besides, it

should be noted that the stability and performance of our proposal on the real-time motion

control platform have the finer timer resolution of the Xenomai patch (1 µs). In con-

clusion, these measurement results prove that the design can fulfill the basic functional

requirements under single axis condition.
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Figure 6.7: Timing diagram for the minimum and maximum latency in single axis situation

Table 6.2: Minimum and maximum latency in single axis situation

average std
Min. latency(µs) 1.2802 0.0079
Max. latency(µs) 533.034 596.82
CPU usage(%) 23.47 0.12
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6.2 Multiple Axes Situation with the Real-time Motion

Control System

6.2.1 Experiment Setup

Next, the situation of multiple axis case is discussed. In this section, motion per-

formance and real-time performance are tested under multiple axes situation. Due to the

limitation of the quantity of equipment, the experiment is done with two motors. The

situation for over two axes is done with simualtion. The method to test multiple axes is

the same as the previous scection that the simuation under single axis. In order to get the

experiment result, two non real-time monitoring tasks are created to get the real-time data

in the computer separately.

6.2.2 Experiment Results and Analysis

The experiment is operated to verify the synchronicity. If the delay exists, the motion

is provided in Figure 6.8. In the ideal case, two motors operating synchronously, the

trajectory would be a horizontal line. In Figure 6.8(a), two motors run at 1.0 rev/s with

different delay is plotted. we can find that the larger the delay is, the trajectory of motion

will have a larger offset. Motors will move linearly with offset direction after two motors

accelerate to the command speed, which is the time points marked in this figure.

In the case of motors running at the different acceleration with the same delay(1000

ms), the trajectory is shown in Figure 6.8(b). The motion with 1.0 rev/s2, 2.0 rev/s2, and

10.0 rev/s2 compare with the ideal case(accelerate with step function) and we can find that

larger acceleration is, the motion will have the larger offset because the displacement is

larger during acceleration. To compensate the offset, the series of experiment is operated.
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By Equation (4.7), the result of compensation is shown in Figure 6.9. It displays that

the delay caused by network communication can be compensated by linear method. In

different delay situation, the delay can be compensate obviously.

The real-time performance under multiple axes is shown in Table 6.3 and Figure 6.10.

Table 6.3 summarizes the maximum and minimum values of latency for mutiple axes. We

can remark that the implementation on the real-time motion control platform with PLC

motion controller can achieve great real-time performance while maintaining low CPU

usages. Besides, it should be noted that the stability and performance of our proposal on

the real-time motion control platform have the finer timer resolution of the Xenomai patch

(1 µs). In conclusion, these measurement results prove that the design can fulfill the basic

functional requirements under single axis condition.
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Figure 6.8: Timing diagram for the latency in two motor situation

Table 6.3: Minimum and maximum latency in two axes situation

average std
Min. latency(µs) 1.6401 0.0120
Max. latency(µs) 713.859 137.50
CPU ussage(%) 29.6 0.4

77

http://dx.doi.org/10.6342/NTU202403297


doi:10.6342/NTU202403297

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

X(m)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
Y

(m
)

10-3 result of position X vs Y with designed system 

Figure 6.9: The motion performance of two motors
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Figure 6.10: Timing diagram for the minimum and maximum latency in two axes situation
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To show the situation over two axes, simulation is conducted. Tasks are created with

1 ms load to simulate the case with one axis. With the quantity of the axis increasing,

the tasks also increase to simulate the situation of multiple axes. The result is shown in

Table 6.4. It shows that both minimum and maximum latencies increase with the number

of axes in the system. The increase in minimum latency is relatively small and stable,

indicating that even with more axes, the fastest operations do not significantly slow down.

In contrast, the increase in maximum latency is more pronounced, reflecting that more

complex systems may experience higher peak latencies. These findings suggest that while

the complexity added by more axes does impact latency, the effect is more pronounced at

the upper bounds of latency.

Table 6.4: Minimum and maximum latency by simulation

1 axis average std
Min. latency(µs) 1.2583 0.0095
Max. latency(µs) 567.92 130.55

2 axes average std
Min. latency(µs) 1.8374 0.0098
Max. latency(µs) 611.21 95.34

3 axes average std
Min. latency(µs) 1.742 0.0147
Max. latency(µs) 674.12 154.28

10 axes average std
Min. latency(µs) 1.877 0.0230
Max. latency(µs) 709.78 120.51
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6.3 Simulation of Semaphore-based Real-time Schedul-

ing

6.3.1 Simulation Setup

In this section, simulation of the scheduling method is done and compares with the

situation with direct FCFS. The tools used in this paper is Matlab. First, tasks is defined

with their attributes such as execution time, period, deadline, and priority. Next, a timeline

to simulate task execution and track their states are created, incorporating mechanisms to

handle task arrivals, preemptions, and context switches. In the simulation, 1000 times tests

are done to get the average value. It simulates the semaphore-based real-time scheduler

where tasks are executed based on their predefined periods. The scheduler ensures that

tasks execute at specific intervals, with the synchronization handled by a semaphore.

6.3.2 Simulation Results and Analysis

The real-time scheduling of eventsmust ensure that the advancement of discrete event

times aligns with the system time. For synchronization, each simulation task is required

to execute at a fixed update cycle or frequency, with all tasks’ update cycles being integer

multiples of the minimum task cycle and excluding any random event scheduling code.

This minimum period is known as a small frame, and the least common multiple of all

cycle multiples, multiplied by the minimum period, is called a large frame. To maintain

the real-time performance of each frame, the simulation time is synchronously checked

by the real-time clock interrupt before each small frame.

The result is displayed in Figure 6.11 and Table 6.5. Assume that the period of each

thread is the same as the deadline. From the results, the blue circles represent the execu-
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tion times for tasks scheduled by the semaphore-based real-time scheduler. The scheduler

ensures that each task runs at regular intervals based on their periods. The tasks are ex-

ecuted smoothly without significant delays, indicating effective scheduling. The orange

diamonds show the execution times for tasks under FCFS scheduling. This approach re-

sults in slightly less regular execution patterns compared to the semaphore-based real-time

scheduler, with some deviations in task execution times, particularly for tasks with longer

periods. The red squares represent the execution times for tasks scheduled using RMS.

RMS tends to favor tasks with shorter periods, resulting in more consistent execution for

such tasks. However, tasks with longer periods show more variability in their execution

times.

From Table 6.5, it shows that in the same simulation time, the semaphore-based real-

time scheduler can maintain the most consistent execution times across all threads. Thus,

if the number of devices increases, semaphore-based scheduling let devices with lower

priority be less affected. The variability in execution count from FCFS and RMS indicates

potential delays and less efficient handling of tasks with longer periods.

The semaphore-based real-time scheduler demonstrates superior performance inmain-

taining consistent execution intervals and handling tasks with varying periods effectively.

It ensures real-time performance and minimizes execution delays compared to FCFS and

RMS. FCFS shows irregularities in task execution times, particularly for tasks with longer

periods. RMS, on the other hand, favors shorter period tasks, leading to underutilization

of longer period tasks. The semaphore-based real-time scheduler thus provides a balanced

and efficient approach for real-time multi-thread scheduling.
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Figure 6.11: The execution time of three scheduling methods

Table 6.5: The number of execution times for three scheduling methods

Thread 1 Thread 2 Thread 3
Semaphore-based real-time scheduler 600 300 202
FIFO 600 295 158
RMS 554 297 151
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In conclusion, this research demonstrated the feasibility of real-time motion control

through EtherCAT. Through experiments, it is found that the relative error of this motion

control system gradually decreases with the increase of speed in the case of single axis.

At 30 rev/s, the error between speed and command is only 1.47%. In terms of real-time

performance, the system’s minimum latency is only 1 microsecond and does not occupy

too many CPU resources. In the multi-axis case, motion synchronization is slightly offset

by start-up times, but the offset is small and predictable. If the number of axes increases,

the maximum delay will increase. However, the minimum latency will still remain on the

order of 1 microsecond, with little impact.

At the same time, the semaphore-based scheduling memethod effectively manages

resource allocation in a multi-tasking environment. Compared with traditional real-time

controlmethods, higher-priority devices canmaintain similar execution times, while lower-

priority devices increase their execution times by 32% with three devices, ensuring the

real-time execution of each task.

This study proposes a new motion control and scheduling solution. This combina-

tion provides an open source and free method for real-time motion control and still has

excellent real-time performance, promoting the continued development of industrial au-

tomation technology.
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7.2 Future Works

In the future, the proposed directions for future research include:

1. Enhanced Algorithm Development : Incorporating machine learning techniques to

predict and adapt to changing conditions could further improve system efficiency

and reliability.

2. Add experimental verification: To verify the schedulingmethod, more experimental

method can be adopted. For example, the additional delay can be added deliberately

to observe the effect of delay.

3. Stability calculation: Check the stability of the Semaphore-based real-time schedul-

ing method.

4. Integrationwith IoT and Industry 4.0 Technologies: Expand the framework to seam-

lessly integrate with broader Internet of Things (IoT) networks and Industry 4.0

technologies.

By pursuing these future research directions, the potential of real-timemotion control

and scheduling based on Intel Edge Controls can be fully realized, leading to significant

advancements in industrial automation and productivity.
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