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摘要 

科技發展迅速，機器人已經可以獨自執行各種複雜的任務，不需要額外的人為

參與，從而提升我們日常生活的便利性。為了讓機器人能夠自主執行任務，機器人

必須能夠感知周遭的環境，以便在場景中移動與避開障礙物。 

本論文提出一個單眼視覺里程計，用於機器人在都市環境的定位。透過線段偵

測、合併、分群與排除異常值，偵測出畫面中建築物外牆上的水平與垂直結構線，

並透過矩形幾何約束，從偵測到的線條在三維空間中建立網格平面，經由追蹤建立

的網格平面來估測機器人的位置。為了讓本論文所提出的演算法能在即時條件下

執行，加入了可靠性測試，透過重投影特徵將估測資料做降取樣處理，進而提升運

算的效率。 

本論文透過模擬、室內與室外的實驗驗證了演算法的效能，展示在實際的都市

環境中定位的能力。 
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ABSTRACT 

Nowadays, mobile robots can perform complex tasks independently, reducing the 

requirement for human involvement and thus significantly improving the convenience of 

our everyday lives. To perform tasks independently, mobile robots need to determine their 

location, sense its surroundings for navigation and avoid obstacles. 

This thesis proposes a monocular visual odometry for a mobile robot localization in 

urban environments. The proposed algorithm detects the horizontal and vertical structural 

lines on a building facade using image processing techniques including line segment 

detection, segments merging, clustering and outlier removal. Then, the rectangular 

geometric constraint is applied to form the grid mesh plane in 3-D space using the 

detected line features, and the mobile robot position is estimated by tracking the plane in 

camera images. For the proposed algorithm to operate in the real-time, a reliability testing 

is involved to enhance the calculation efficiency by downsampling data via feature 

reprojection. 
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The proposed algorithm in this thesis has validated the performance through 

simulations and both indoor and outdoor experiments, demonstrating its capability for 

localization in noisy urban environments. 

 

Keywords: 

Visual odometry, line features, geometric constraint, monocular vision, image processing 
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Chapter 1  

Introduction 

In this chapter, the motivation of this thesis is first presented in Section 1.1. The 

problem formulation is provided in Section 1.2. The contribution of this thesis is 

summarized in Section 1.3. Finally, the organization of this thesis is provided in Section 

1.4. 

1.1 Motivation 

Nowadays, mobile robots are able to perform complex tasks without human 

intervention and have been widely used in various fields such as military, agriculture and 

domestic appliances fields, making our lives more convenient. 

For a mobile robot to perform tasks autonomously, it needs to be able to determine 

its location, sense its surroundings for navigation and avoid obstacles. The traditional 

method is Global Positioning System (GPS) [48: Limitd 2007] with a prior map. A GPS 

device must receive signals from at least four satellites to get reliable position estimation 

[49: Penn State], as illustrated in Figure 1.1, the GPS cannot be used indoors or in 

sheltered environments since the radio signals from the satellites are affected by walls 

and other obstacles. But according [1: Vatansever & Butun 2017], even in outdoor 

environments, there are many factors that can affect GPS accuracy, such as satellite and 

receiver clock error, electronic noise, uncertainty in the position of the satellites and 

multipath error (Figure 1.2). 

In complex environments like forests and urban canyons, there are various sensors 

can improve positioning accuracy. For example, in [4: 廖育萱 & 彭彥嘉 2023], the 

authors improve the GPS accuracy with real time kinematic(RTK) technique, and utilize 

LiDAR for creating point cloud data of the surroundings for localization in orchards. 
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Other examples in urban environment, Liao et al. [5: Liao et al. 2023] provide a novel 

dataset and benchmarks which includes color image from fisheye cameras, stereo image 

from perspective cameras, point cloud data from LiDAR and pose data of the car from 

GPS/IMU. Yin et al. [6: Yin et al. 2022] provide both indoor and outdoor dataset using a 

ground robot with multiple sensors, includes color camera, infrared camera, event camera, 

stereo camera, LiDAR, IMU and GNSS receiver. These datasets allow researchers to 

study various positioning methods with multiple sensors.  

 

Figure 1.1: The radio single from satellite is blocked by obstacles.[3: Strandjord et al. 

2020] 

 

Figure 1.2: The multipath error due to GPS signals reflecting off of tall buildings.[2: 

Hutt et al. 2021] 
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However, with improving computing performance, increasing sensor and 

maintenance costs, commercial applications prefer visual methods over other ranging 

sensing methods for localization. In [50: Tesla], Tesla uses vision module to replace 

ultrasonic sensors for close-range sensing, claiming that the vision module can achieve 

the same function with ultrasonic sensors through software update. By the test in [51: It's 

Only Electric], the vision module can achieve the same function as ultrasonic sensors, but 

its performance is poorer. Such as the minimum safety distance and larger blind zone as 

shown in Figure 1.3. 

  

(a) Safety distance test (b) Obstacle test 

 

(c) Tesla Vision dead angle 

Figure 1.3: The test result from [51: It's Only Electric] 

Considering the trend of research in visual localization and the applications in the 

urban environments, when the mobile robot is near a building, the building will block the 

GPS signals. This thesis will concentrate on the visual localization method near the 
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buildings with specific features, such as the building facade, doors and windows. The 

goal is to achieve visual localization in these challenging environments. 

1.2 Problem Formulation 

This thesis is aiming to achieve monocular visual localization near the buildings 

under following constraints: planar, repetitive and regular grid-like features. Some 

example scenarios are shown in Figure 1.4. These features are not suitable for standard 

visual localization methods due to their lack of uniqueness and varied depth information. 

As illustrated in Figure 1.5, to achieve localization in such environments, there are two 

main tasks need to be addressed. 

The first task is to find the target plane, the camera captures the target plane and 

surrounding scenes, so it is necessary to find the boundaries of the plane, then extract 

valid features from the plane for use in subsequent localization processes, such as the 

structure lines and the corner points on the plane. 

After identifying the target plane, the second task is to establish the camera's position 

relative to the target plane. Determine the relative angle between the plane and the camera 

using the identified features, then track the target plane in camera’s view and estimate the 

6 degrees-of-freedom poses of the camera. 

1.3 Contribution 

The contributions of this thesis can be divided into following two parts. 

First is the plane tracking method with monocular camera, this thesis uses structure 

lines as features similar to [7: Liu et al. 2022] and [8: Zhou et al. 2015], However, unlike 

matching features through pixel patches on the lines, this thesis matches features based 

on their position and geometric relation, so the matching process is not affected by 

changes in time, light and shadow. 
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Second, the camera pose can be estimated in single camera frame, the common 

estimation method is to solve five-point relative pose problem between two views [9: Lu 

et al. 2000] [10: Nister 2004]. Since the scenario in this thesis is aiming the grid-like 

features on the plane, the depth estimation of features can be simplified as linear equations 

without iteration. 

  

(a) Glass curtain wall (b) Building facades 

  

(c) Windows in hallway (d) Doors in hallway 

Figure 1.4: The scenarios of grid-like planar features 
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Figure 1.5: Schematic diagram of localization process 

1.4 Organization of the Thesis 

The rest of this thesis is organized as follows. The background and relative literature 

are discussed in Chapter 2. And some related algorithm implemented in the proposed 

algorithm are introduced in Chapter 3. In Chapter 4, the details of the proposed algorithm 

are introduced, including an overview of entire algorithm, feature extraction and motion 

estimation. The experiment result and analysis are presented in Chapter 5, Finally, the 

conclusions and future works of this thesis is discussed in Chapter 6. 

 

Input image Plane detection 

Plane tracking 
Pose estimation 
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Chapter 2  

Background and Literature Survey 

In this chapter, the background and literature survey of the visual localization 

methods are discussed. Section 2.1 introduce the diverse visual sensors employed in 

visual odometry. The comparison of different data processing methods and estimation 

methods are provided in Section 2.2 and Section 2.3. The overview classification is 

summarized in Figure 2.1. 

 

Figure 2.1: Different methods for visual localization 

2.1 Type of Visual Sensors 

The visual odometry relies on visual sensors to offer the information about the 

environment. The typical sensor types include monocular, stereo, RGB-D and event 

Visual Localization 

Type of 

Visual Sensors 

Monocular 

[11][12][13][14] 

Stereo 

[15][16] 

RGB-D 

[17][18][19] 

Event 

[20][21] 

Data Processing 

Methods 

Estimation 

Methods 

Direct-Based/ 

Semi-direct-Based 

[22][23][24] 

Filter-Based 

[8][35][37] 

Feature-Based 

[7][8][25][27] 

[28][29] 

Machine learning-

Based 

[30][31][32][33] 

Optimization-

Based 

[7][14][38] 
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camera, each type has its own advantages and disadvantages, and the data processing 

methods and suitable scenarios are also different. 

Monocular cameras are cost-effective, common and easy-to-use sensors. However, 

they suffer from scale ambiguity problem, making it challenging to accurately estimate 

the length of translational movement from features [11: Choi et al. 2013]. ORB-SLAM 

[12: Mur-Artal et al. 2015] uses ORB features to compute the relative pose between two 

frames in parallel two geometrical models, try to recover the unique solution of relative 

pose. Structure-SLAM [13: Li et al. 2020] uses convolutional neural network and 

Manhattan World assumption to estimate pose from point, line and planar features. Qin 

et al. [14: Qin et al. 2018] present a method that tightly couples pre-integrated IMU 

measurements and feature observations to achieve highly accurate and robust estimation. 

Stereo cameras use a pair of cameras, the left camera is generally taken as the pose 

of the stereo camera, and the pose of right camera is fixed from left camera, so the depth 

of the pixels in the image can be estimated. But it requires higher computational cost to 

calculate depth from two images, and the camera needs to be well calibrated to get 

accurate results. Lin et al. [15: Lin et al. 2022] use stereo camera to obtain point cloud 

map, and detect the point cloud changes to estimate trajectory. Zhang et al. [16: Zhang et 

al. 2015] present a graph-based SLAM using 3-D straight lines as features, and uses two 

different representations to parameterize 3-D lines for initialization and optimization, 

performs better result in line-rich environment. 

RGB-D cameras combine an RGB camera with a depth sensor, like an infrared light 

camera and projector, utilizing structured-light or time-of-flight (ToF) methods to 

measure the pixel depth directly, simplifying the depth estimation process. However, the 

depth sensors are interference by observed material and sunlight, and the measurement 

range is restricted. Lin et al. [17: Lin et al. 2023] propose a key-frame based method with 
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intrinsic keyframe selection mechanism, effectively reduces the tracking error. Cheng et 

al. [18: Cheng et al. 2023] present a system that fuses 2-D semantic information from 

RGB image and 3-D geometric information from depth sensor. The framework proposed 

in [19: Zhao et al. 2019] is able to operate in dynamic environments by segmenting 

objects and categorizing them as static or dynamic objects. 

Unlike other conventional visual sensors that provide the entire images at a fixed 

frequency, event cameras have independent pixels that transmit data solely when 

brightness changes in the scene at the time they occur. Thus, the sensor output is 

asynchronous and has high temporal resolution, resulting in low power consumption and 

suitable for tracking fast motion and high-speed dynamics without suffering from motion 

blur. The system proposed in [20: Weikersdorfer et al. 2013] tracks the events at edges 

from the scenes and achieves real-time performance on standard computing hardware. 

Rebecq et al. [21: Rebecq et al. 2017] present an event-based visual odometry that can 

track fast camera motions, unaffected by motion blur, and operates very well in high 

dynamic environments. 

According to the problem to be solved in this thesis, the featureless planar scenarios 

are not suitable for stereo camera and event camera, and considering the hardware cost 

and computation cost, a monocular camera is selected for this thesis. The depth estimation 

for 3-D reconstruction can be addressed using the data processing techniques outlined in 

Section 2.2. 

2.2 Data Processing Methods 

The data processing methods can be categorized into three types: direct based, 

feature-based and machine learning-based. These approaches have their trade-offs and 

considerations, such as system complexity, computation cost, and application scenarios. 
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Direct-based methods directly operate on the pixel intensity or color values from 

sensor raw data. Semi-direct methods are similar to direct-based method but concentrate 

on the pixels with high intensity gradients. LSD-SLAM [22: Engel et al. 2014] allows to 

estimate in large-scale environments with pose estimation based on direct image 

alignment and 3-D reconstruction with semi-direct depth maps. The visual SLAM system 

in [23: Silveira et al. 2008] aligns the reference image with successive frames directly and 

selects image regions to estimate motion by plane-based epipolar geometric method. SVO 

[24: Forster et al. 2017] uses direct-based methods to track and triangulate pixels, and 

uses feature-based methods for optimization of structure and motion. 

Feature-based methods focus on specific areas within an image that contain unique 

information known as features. These features can take on various forms, including points, 

lines, planes, markers, or specific objects. ORB-SLAM3 [25: Campos et al. 2021] is one 

of the fundamental feature-based SLAM that extracts the features using ORB descriptor 

[26: Rublee et al. 2011]. In order to extract more useful information from images, in [7: 

Liu et al. 2022], [8: Zhou et al. 2015], [27: Gomez-Ojeda et al. 2019], and [28: Guan et 

al. 2023], both point features and line features are extracted to obtain more robustness 

and accurately estimation. Sun et al. [29: Sun et al. 2018] propose a statistical information 

grid-based plane extraction algorithm for tracking planes in indoor environments, 

achieving high accuracy and robustness in both on-board and hand-held applications. 

Machine learning-based methods integrate valuable additional information from the 

environment with artificial neural networks to train models that can replace conventional 

processes. The framework proposed in [30: Gelen & Atasoy 2023] uses three different 

models to achieve pose estimation with an event camera. The SLAM system proposed in 

[31: Yang & Scherer 2019] improves the accuracy of monocular SLAM by integrating 

semantic scene understanding with traditional methods during feature extraction. The  
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SLAM systems proposed in [32: Liu & Miura 2021] and [33: Ran et al. 2021] use 

semantic segmentation to recognize dynamic objects, and achieve precise estimation in 

dynamic environments. 

Since corner points and structure lines are valuable information in scenarios with 

grid-like planar features, feature-based methods are selected in this thesis. 

2.3 Estimation Methods 

The estimation methods can be separated into two main categories: filter-based 

methods and optimization-based methods. 

Filter-based methods consist of two main parts: a prediction step and an update step, 

they compare predicted state with the measurement from sensor data to rectify the current 

state, reducing estimation error. Such as extended Kalman filter (EKF) [34: Kalman 1960] 

used in [8: Zhou et al. 2015] and [35: Bloesch et al. 2015]. And error-state EKF [36: Solà 

2015] used in [37: Chamorro et al. 2022]. 

Optimization-based methods achieve the optimal estimation by minimizing the 

designed cost function. Consequently, they outperform filter-based methods in terms of 

accuracy but requires more computational resources. In [14: Qin et al. 2018], the system 

optimizes camera pose with pose graph optimization. Another commonly used method is 

bundle adjustment, which is used in [7: Liu et al. 2022]. The visual-inertial odometry 

proposed in [38: Mueggler et al. 2018] expresses the optimization problem as a nonlinear 

least square problem and apply it with standard numerical solvers. 

Since the monocular camera is the sole sensor utilized in this thesis, the proposed 

system is relatively simple compared to existing methods. As a result, optimization-based 

methods can achieve accurate estimation without requiring extensive computational 

resources.  
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Chapter 3  

Related Algorithms 

In this chapter, the existing algorithms and techniques related to the propose 

algorithm are presented. This includes the pinhole camera model in Section 3.1, 

representation method of line features in Section 3.2, the clustering algorithm used in the 

proposed algorithm in Section 3.3, and the optimization algorithm in Section 3.4. 

3.1 Pinhole Camera Model 

According to [52: Savarese & Bohg 2023] and [53: Collins 2007], the pinhole 

camera model is a mathematical representation used to establish a direct correspondence 

between 3-D points in the real world and their projection onto a 2-D image in pixels.  

 

Figure 3.1: Illustration for pinhole camera model 

The pinhole camera model projects a 3-D scene point onto a 2-D image point through 

perspective projection. The camera's intrinsic parameters, such as the image center 

(𝑐𝑥, 𝑐𝑦) and focal length 𝑓, are well-defined. As illustrated in Figure 3.1, consider a 3-

D point 𝑃 at position (𝑋, 𝑌, 𝑍) relative to the camera center 𝑂, where the 𝑍 axis is the 



 

13 

doi:10.6342/NTU202402036 

optic axis of the camera. First, project point 𝑃 onto the film plane (X-Y plane at Z=𝑓) 

using perspective projection as Equation (3.1), and obtain the projected point 𝑝  at 

position (𝑥, 𝑦, 𝑓).  

 
𝑥 = 𝑓

𝑋

𝑍
 

 

 
𝑦 = 𝑓

𝑌

𝑍
 

(3.1)  

 

Figure 3.2: Coordinates of film plane and image plane 

After determining the position of point p, the next step is mapping the point 𝑝 to 

the 2-D image coordinate in pixels. As illustrated in Figure 3.2, the position (𝑥, 𝑦, 𝑓) of 

the point 𝑝 on film plane in real world scale can be mapped to the position (𝑢, 𝑣) on 

the image plane in pixels as shown in Equation (3.2). 

 𝑢 = 𝑐𝑥 + 𝑥  

 𝑣 = 𝑐𝑦 + 𝑦 
(3.2) 

On the contrary, Equation (3.1) and Equation (3.2) can also map the point from 

image pixels to film plane in real world coordinates. However, the 2-D image lacks the 

depth information, resulting in the transformation outputting homogeneous coordinates 

[54: Wikipedia] without providing the actual depth from camera images. 
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3.2 Line Representation  

The common way to represent a line segment is by using endpoints, like LSD [39: 

Grompone von Gioi et al. 2010], EDLines [40: Akinlar & Topal 2011] and FLD used in 

[41: Lee et al. 2014], they all output the endpoints of the detected line segments. But in 

this thesis, the geometry relation of line features as the input for localization, it is more 

effective to compare the distance and angle between line segments using line equations 

rather than endpoints in computation. 

The straight line can be represented in general form as Equation (3.3), and can be 

parameterized by a point (𝑏,𝑚). However, this parameterization method has a problem 

when it encounters a vertical line, resulting in unbounded values for the slope parameter 

𝑚.  

 

Figure 3.3: The parameters for a line 

 𝑦 = 𝑚𝑥 + 𝑏 
(3.3) 

 𝑟 = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 
(3.4) 

Thus, for computational reasons, [42: Duda & Hart 1972] proposed the use of the 

Hesse normal form to express the equation of a line as Equation (3.4) and illustrated in 

Figure 3.3, and can be parameterized by a point (𝑟, 𝜃). 
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According to Equation (3.3) and Equation (3.4), a line with two known points 

(𝑥1, 𝑦1), (𝑥2, 𝑦2) can be represented as a point (𝑟, 𝜃) using Equation (3.5). 

 𝜃 = tan−1 (−
𝑥2 − 𝑥1
𝑦2 − 𝑦1

) 
 

 𝑟 = 𝑥1𝑐𝑜𝑠𝜃 + 𝑦1𝑠𝑖𝑛𝜃 
(3.5) 

3.3 Density-Based Spatial Clustering of Applications 

with Noise 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a 

clustering algorithm proposed in [43: Ester et al. 1996]. Unlike other clustering 

algorithms, it groups together points with many nearby neighbors and treats points with 

distant neighbors as outliers, so it is not necessary to know the number of groups before 

clustering. 

DBSCAN requires two parameters: the radius 𝜀 to define the neighborhood with 

respect to other points, and the minimum cluster size 𝑀𝑖𝑛𝑃𝑡𝑠. The points in a dataset 𝐷 

follow these definitions: 

Definition 1: The 𝜀-neighborhood of a point 𝑝 is defined by Equation (3.6). 

 𝑁𝜀 (𝑝) = {𝑞 ∈ 𝐷|𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝜀} 
(3.6) 

Definition 2: As shown in Equation (3.7), a point 𝑝  is core point if its 

neighbors with in distance 𝜀 are larger than 𝑀𝑖𝑛𝑃𝑡𝑠. 

 |𝑁𝜀(𝑝)| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 
(3.7) 

Definition 3: A point 𝑝 is directly reachable from a point 𝑞 with respect to 

𝜀,𝑀𝑖𝑛𝑃𝑡𝑠 if it follows Equation (3.8). 

 
{
𝑝 ∈ 𝑁𝜀(𝑞)
|𝑁𝜀(𝑝)| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 

 
(3.8) 
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Definition 4: A point 𝑝  is reachable from a point 𝑞  if there is a path 

𝑝1, … , 𝑝𝑛, 𝑝1 = 𝑞, 𝑝𝑛 = 𝑝 such that 𝑝𝑖+1 is directly reachable from 𝑝𝑖. 

Definition 5: All points not reachable from any other point are outliers. 

After classifying all the points in 𝐷, if 𝑝 is a core point, then it forms a cluster 

together with all points that are reachable from it. An example is shown in Figure 3.4. 

 

Figure 3.4: An example of clustering result: The circle radius represents 𝜀, MinPts=4. 

Red and green points indicate cluster members, while blue points signify outliers. 

3.4 Random Sample Consensus 

Random Sample Consensus (RANSAC) is an iterative method proposed in [44: 

Fischler & Bolles 1981], it estimates parameters of a mathematical model from a set of 

observed data without being influenced by outliers. Therefore, it also can be interpreted 

as an outlier detection method. 

The RANSAC algorithm consists of following steps that are iteratively repeated: 

Step 1: A sample subset containing minimal data items is randomly selected as 

hypothetical inliers. 

Step 2: A fitting model is calculated using only the elements of the hypothetical 

inliers. 
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Step 3: All data are then tested against the fitted model, considering then as 

inliers and outliers based on a defined error threshold, the inliers are called the 

consensus set. 

Step 4: The estimated model is quite reliable when a significant number of data 

points have been classified as part of the consensus set. 

This process is iterated a set number of times, refining model with a consensus set 

size larger than the previous one. 

The number of iterations 𝑘  can be roughly determined based on the desired 

probability of success 𝑝 and the size of hypothetical inliers 𝑛. Assuming 𝑤 represent 

the probability of selecting an inlier from the entire data. 

 

𝑤 =
number of inliers in data

number of points in data
  (3.9) 

A common case is that 𝑤 is not well known because the number of inliers in data 

is unknown before running the RANSAC algorithm, but a rough value can be given. 

Given a rough value of 𝑤 , select the size of hypothetical inliers 𝑛 , let 𝑝  be the 

probability of at least one successful model estimation occurring, the probability that the 

algorithm failing to produce a successful model estimation can be expressed as Equation 

(3.10), then 𝑘  can be determined by taking the logarithm of both sides. Figure 3.5 

illustrates an example of line fitting for a dataset containing outliers. 

 1 − 𝑝 = (1 − 𝑤𝑛)𝑘 

𝑘 =
log (1 − 𝑝)

log (1 − 𝑤𝑛)
 

(3.10) 
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Figure 3.5: An example of line fitting with RANSAC, red dot line is the fitted line with 

inlier, blue dot line is the fitted line with entire dataset. 
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Chapter 4  
Proposed Algorithm 

In this chapter, the details of the proposed algorithm are discussed. the overview of 

the algorithm is presented in Section 4.1, line segment detection and merging methods 

are discussed in Section 4.2, Section 4.3 introduces the feature extraction process, and 

motion estimation procedures are explained in Section 4.4. Lastly, the state updating rules 

are introduced in Section 4.5. 

4.1 Overview 

The goal of the proposed algorithm is to achieve the visual localization using a 

monocular camera in environments with grid-like planar features. The algorithm takes 

the camera stream as input and outputs the camera motion between camera images as 

shown in Figure 4.1. 

An overview of the algorithm is depicted in Figure 4.2, the algorithm firstly finds 

the target plane by detect the lines, and extract features from the target plane. Estimates 

motion with RANSAC after matching the features with previous result, and updates the 

features before start next estimation. 

There are four coordinate systems used in the algorithm: image frame {𝐼}, world 

frame {𝑊 }, camera frame {𝐶 }, and plane frame {𝑃 }. A schematic diagram of the 

coordinate systems is shown in Figure 4.3.  
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Figure 4.1: The process of solving visual localization problem 

 

Figure 4.2: Overview of the algorithm process 
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Figure 4.3: The coordinate systems used in the proposed algorithm 

The image frame is a 2-D camera image with origin on the top left of image. The 

world frame is the coordinate system defined by the target plane, the X and Z axes are 

land on the plane with horizontal and vertical direction, and the Y axis is parallel to the 

normal vector of the target plane, the origin is fixed as the initial position of the camera. 

The camera frame is the coordinate system with the camera position as origin, X axis is 

parallel to the 𝑢 axis of the image frame, Y axis is the optical axis of the camera. The 

plane frame is the same coordinate system as the world frame, but the origin moves with 

the camera center. 

The notations used in the proposed algorithm are defined in Table 4.1. 
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Table 4.1: The notations used in the proposed algorithm 

Notation Description 

𝐿 Set of detected line segments 

𝐿𝑤 Set of weighted line segments 

𝐿ℎ Set of merged horizontal line segments 

𝐿𝑣 Set of merged vertical line segments 

𝑅𝑞 Rotation matrix of a quadrilateral 

𝑅𝑡 Rotation matrix of the target plane 

𝐹ℎ Set of horizontal line features 

𝐹𝑣 Set of vertical line features 

𝑑𝑡 distance between target plane and camera 

𝑇𝑙 Threshold for minimum segment length 

𝑇𝑤 Threshold for add weights 

𝑇𝜃 Threshold for identify horizontal and vertical line segments 

𝑇𝑡 Threshold for the tolerance distance of quadrilateral corner 

𝑇𝑒 Threshold for minimum edge length of quadrilateral 

𝑇𝑝 Threshold for minimum angle difference of the target plane 

𝑇𝑛 Threshold for minimum distance of add new features 

𝑇𝑟 Threshold for success rate of invalid features 

4.2 Line Segments Detection and Merging 

To detect the target plane in the camera scene, the algorithm must identify structure 

lines to create planes. The line extraction method is adopted from [41: Lee et al. 2014], it 

will generate the endpoints of detected line segments. However, the detected line 

segments may be affected by the light or camera resolution, causing one structure line to 

be split into multiple line segments. Therefore, the line segments belonging to the same 

structure line will be merged in this process. An example of the process is shown in Figure 

4.4. 

Let 𝐿 be the set of all detected line segments, defined as Equation (4.1), where line 

segment 𝑙𝑛 contains the endpoints position 𝑝𝑛
1, 𝑝𝑛

2 in image frame, parameters of the 

line equation 𝑟𝑛, 𝜃𝑛 introduced in Equation (3.5). 

 𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑛}  

 𝑙𝑛 = (𝑝𝑛
1, 𝑝𝑛

2, 𝑟𝑛, 𝜃𝑛)  

 𝑝𝑛
𝑖 = (𝑢𝑛

𝑖 , 𝑣𝑛
𝑖 ) 

(4.1) 
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(a) The imput image 

 

(b) The output of line segments detector 

 

(c) Line merging result 

Figure 4.4: The process of detection and merging line segments 

First, as shown in Algorithm 4.1, remove line segments with a length less than a 

threshold 𝑇𝑙, and allocate weights by replicating elements according to a threshold 𝑇𝑤 

to generate 𝐿𝑤. 



 

24 

doi:10.6342/NTU202402036 

Algorithm 4.1: Remove invalid line segments and add weights to valid line segments 

Input: 𝐿, 𝑇𝑙 , 𝑇𝑤 

Output: 𝐿𝑤 

1. 𝐿𝑟 = {𝑙𝑖 ∈ 𝐿|dist(𝑝𝑖
1, 𝑝𝑖

2) > 𝑇𝑙} 

2. 𝐿𝑑 ← ∅ 

3. for all 𝑙𝑖 ∈ 𝐿𝑟: 

4.   𝑤 = ⌊
dist(𝑝𝑖

1,𝑝𝑖
2)

𝑇𝑤
⌋ 

5.   while 𝑤 > 0: 

6.     𝑤 = 𝑤 − 1 

7.     𝐿𝑑 ← 𝑎𝑑𝑑_𝑒𝑙𝑒𝑚𝑒𝑛𝑡(𝑙𝑖) 

8.   endwhile 

9.   𝐿𝑤 ← 𝑚𝑒𝑟𝑔𝑒_𝑠𝑒𝑡(𝐿𝑟 , 𝐿𝑑) 

10. endfor 

 

Then, as shown in Algorithm 4.2, apply the DBSCAN algorithm using the 2-D 

position (𝑟, 𝜃) of the line segments in 𝐿𝑤, For each cluster 𝑆𝑗, merge the line segments 

into one structural line segment, the parameters 𝑟, 𝜃 of the merged line segment are the 

average value of elements in 𝑆𝑗. Project all the endpoints of the line segments onto the 

merged line, then the outer boundary of the projected endpoints will be the endpoints of 

the merged line segment, as shown in Figure 4.5. Lastly, the merged line segments are 

divided into horizontal lines 𝐿ℎ and vertical lines 𝐿𝑣 by a predefined threshold 𝑇𝜃. 

 

Figure 4.5: Schematic of merging line segments within a cluster.  
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Algorithm 4.2: merge line segments of each cluster 

Input: 𝐿𝑤, 𝑇𝜃 

Output: 𝐿ℎ, 𝐿𝑣 

1. 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑗} ← 𝐷𝐵𝑆𝐶𝐴𝑁(𝐿𝑤) 

2. 𝐿ℎ ← ∅, 𝐿𝑣 ← ∅ 

3. for each 𝑆𝑗 ∈ 𝑆: 

4.   𝑟𝑗 = 𝑚𝑒𝑎𝑛(∀𝑟 ∈ 𝑙 ⊆ 𝑆𝑗) 

5.   𝜃𝑗 = 𝑚𝑒𝑎𝑛(∀𝜃 ∈ 𝑙 ⊆ 𝑆𝑗) 

6.   𝑃 ← ∅ 

7.   for all endpoints 𝑝𝑖(𝑢𝑖, 𝑣𝑖) in 𝑙 ⊆ 𝑆𝑗: 

8.     𝑟′ = 𝑢𝑖𝑠𝑖𝑛𝜃𝑗 − 𝑣𝑖𝑐𝑜𝑠𝜃𝑗  

9.     𝐴 = [
cos𝜃𝑗 𝑠𝑖𝑛𝜃𝑗
sinθj 𝑐𝑜𝑠𝜃𝑗

] 

10.     𝑏 = [
𝑟𝑗
𝑟′
] 

11.     Let 𝑝𝑇 = 𝐴−1𝑏 

12.     𝑃 ← 𝑎𝑑𝑑_𝑒𝑙𝑒𝑚𝑒𝑛𝑡(𝑝)  

13.   endfor 

14.   (𝑝𝑗
1, 𝑝𝑗

2) = (𝑝1, 𝑝2) ∈ 𝑃|dist(𝑝1, 𝑝2) is maximum 

15.   𝑙𝑗 = (𝑝𝑗
1, 𝑝𝑗

2, 𝑟𝑗 , 𝜃𝑗) 

16.   if 𝜃𝑗 > 𝑇𝜃: 

17.     𝐿ℎ ← 𝑎𝑑𝑑_𝑒𝑙𝑒𝑚𝑒𝑛𝑡(𝑙𝑗) 

18.   else: 

19.     𝐿𝑣 ← 𝑎𝑑𝑑_𝑒𝑙𝑒𝑚𝑒𝑛𝑡(𝑙𝑗) 

20.   endif 

21. endfor 

 

The reason for duplicating the line segments as weights is that DBSCAN clusters 

data based on their density, if a structure line is perfectly detected, DBSCAN will treat it 

as an outlier because the density is not high enough. Therefore, duplicating the line 

segments based on their length will increase the density and allow the data to be processed 

in a standard DBSCAN without modifying the algorithm. 
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4.3 Extract Line Features from Grid Mesh Plane 

After generate the horizontal lines 𝐿ℎ and vertical lines 𝐿𝑣 in Section 4.2, the next 

step is to identify which lines belong to the target plane and estimate the rotation between 

the target plane and the camera frame. 

The extraction process is split into two parts, estimating the relative depth ratio 

between lines (Section 4.3.1) and identifying the lines on the same plane to create the 

target plane (Section 4.3.2). 

4.3.1 Depth Estimation with Rectangular Constraint 

Since the scenario of this thesis is grid-like planes, the property of rectangular in 3-

D space can be used to calculate the relative depth of corner points composed of vertical 

and horizontal line segments. 

First, choose two vertical lines and two horizontal lines from 𝐿ℎ and 𝐿𝑣, if they 

can create a convex quadrilateral within a tolerance threshold 𝑇𝑡 (Figure 4.6) and the 

shortest edge length is larger than a threshold 𝑇𝑒 to ensure the noise cause by pixel error 

is small, the relative depth ratios of corner points can be determined by assuming the 

quadrilateral is the perspective projection of a rectangle in 3-D space as shown in Figure 

4.7. Using the property that the opposite sides are parallel and have same length, and 

using the vector of adjacent sides along with their cross vector as the rotation matrix of 

the rectangle with respect to the camera frame, as shown in Algorithm 4.3. 
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(a) A valid quadrilateral with actual cross points or distance from intersection to 

endpoint within 𝑇𝑡. 

 

(b) An invalid quadrilateral which distance from intersection to endpoint greater than 

𝑇𝑡. 

 

(c) An invalid quadrilateral that isn’t convex quadrilateral. 

Figure 4.6: Examples of composing a quadrilateral from line segments. 
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Figure 4.7: The rectangle in the camera image as seen through perspective projection 

Algorithm 4.3: Estimating rotation matrix of a quadrilateral. 

Input: 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑓, 𝑐𝑥, 𝑐𝑦 

Output: 𝑅𝑞
′  

1. 𝑝1(𝑢1, 𝑣1), 𝑝2(𝑢2, 𝑣2), 𝑝3(𝑢3, 𝑣3), 𝑝4(𝑢4, 𝑣4) ← the corner points of a 

convex quadrilateral in image frame, 𝑝𝑖 ∈ ℝ
2×1 

2. Let 𝑃1(𝑋1, 𝑌1, 𝑍1), 𝑃2(𝑋2, 𝑌2, 𝑍2), 𝑃3(𝑋3, 𝑌3, 𝑍3), 𝑃4(𝑋4, 𝑌4, 𝑍4) be the 3-D 

positions of 𝑝1, 𝑝2, 𝑝3, 𝑝4 in camera frame, 𝑃𝑖 ∈ ℝ
3×1 

3. Assume 𝑃1𝑃4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑃2𝑃3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   are same vectors: 

[
𝑋4 − 𝑋1
𝑌4 − 𝑌1
𝑍4 − 𝑍1

] = [

𝑋3 − 𝑋2
𝑌3 − 𝑌2
𝑍3 − 𝑍2

]  

4. multiply by focal length 𝑓: 

[

𝑓𝑋4 − 𝑓𝑋1
𝑌4 − 𝑌1
𝑓𝑍4 − 𝑓𝑍1

] = [

𝑓𝑋3 − 𝑓𝑋2
𝑌3 − 𝑌2

𝑓𝑍3 − 𝑓𝑍2

]  

5. with Equation (3.1) and Equation (3.2) of camera model, obtain: 

[
𝑢4𝑌4 − 𝑢1𝑌1
𝑌4 − 𝑌1

𝑣4𝑌4 − 𝑣1𝑌1

] = [
𝑢3𝑌3 − 𝑢2𝑌2
𝑌3 − 𝑌2

𝑣3𝑌3 − 𝑣2𝑌2

]  

6. Let 𝑌1 = 1, solve the relative depth 𝑌2, 𝑌3, 𝑌4 respect to 𝑌1 as a linear 

equation below: 

[
𝑢2 −𝑢3 𝑢4
𝑣2 −𝑣3 𝑣4
1 −1 1

] [
𝑌2
𝑌3
𝑌4

] = [
𝑢1
𝑣1
1
]  

7. The 3-D points 𝑃𝑖 = (𝑋𝑖, 𝑌𝑖, 𝑍𝑖)
𝑇 = (

(𝑢𝑖−𝑐𝑥)𝑌𝑖

𝑓
, 𝑌𝑖 ,

(𝑐𝑦−𝑣𝑖)𝑌𝑖

𝑓
)
𝑇

 

8. 𝑉𝑋 =
𝑃3−𝑃4

|𝑃3−𝑃4|
 

9. 𝑉𝑍 =
𝑃1−𝑃4

|𝑃1−𝑃4|
 

10. 𝑉𝑌 = 𝑉𝑍 × 𝑉𝑋 

11. 𝑅𝑞
′ = [𝑉𝑋 𝑉𝑌 𝑉𝑍] 
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However, Algorithm 4.3 does not check if all four angles are right angles, so the 

constraint is suitable for a parallelogram, resulting the output matrix not being rotation 

matrix. If the right angles constraint is added, it cannot be solvable as linear equations 

and increase the computational complexity. In this thesis, the result is approximated to 

rotation matrix 𝑅𝑞 using singular value decomposition, as shown in Equation (4.2), but 

a drawback of the approximation is that the algorithm cannot determine the camera scene 

does not adhere the grid-like assumption. 

 𝑈Σ𝑉𝑇 = 𝑆𝑉𝐷(𝑅𝑞′) 

𝑅𝑞 = 𝑈𝑉𝑇 (4.2) 

4.3.2 Target Plane Detection and Line Features Extraction 

After calculating the rotation matrices of all the possible quadrilaterals, the next step 

is to identify which quadrilaterals are the rectangles lying on the same plane in 3-D space 

and extract the position of the lines on the plane. an example is shown in Figure 4.8, note 

that the quadrilaterals in the figure are just for indication, not complete results. 

  

(a) Clustering quadrilaterals (b) Identified plane and valid features 

Figure 4.8: An example of plane detection and features extraction 

Let 𝑅 = {𝑅1, 𝑅2, … , 𝑅𝑛}  be the set contains all possible rotation matrices of 

quadrilaterals obtained from Section 4.3.1, clustering them using DBSCAN, and the 
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distance function of calculate the angle 𝜃𝑖𝑗 between rotation matrices 𝑅𝑖 , 𝑅𝑗 is shown 

in Equation (4.3). 

 
|𝜃𝑖𝑗| = cos−1

𝑡𝑟(𝑅𝑖𝑅𝑗
𝑇) − 1

2
 

(4.3) 

After finishing clustering, select the largest cluster as the candidate target plane, 

calculate the rotation matrix 𝑅𝑡 of the target plane respect to the camera frame. 

Let 𝐶 = {𝑅1, 𝑅2, … , 𝑅𝑘} be the set of the largest cluster 

 𝑈𝑆𝑉𝑇 = 𝑆𝑉𝐷(Σ𝑅𝑘) 

𝑅𝑡 = [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] = 𝑈𝑉𝑇 

(4.4) 

Let a point 𝑃𝑏(𝑋𝑏, 𝑌𝑏 , 𝑍𝑏) be the reference point on the target plane in 3-D space in 

camera frame, obtain the plane equation with 𝑃𝑏 and 𝑅𝑡 (Equation (4.5)). This thesis 

selects one of the endpoints belongs to a line segment in the cluster 𝐶 as reference point. 

 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0 

Where: 

𝐴 = 𝑟21𝑟33 − 𝑟31𝑟23 

𝐵 = 𝑟13𝑟31 − 𝑟11𝑟33 

𝐶 = 𝑟11𝑟23 − 𝑟13𝑟21 

𝐷 = −(𝐴𝑋𝑏 + 𝐵𝑌𝑏 + 𝐶𝑍𝑏) (4.5) 

Determine the 3-D positions 𝑃 
𝐶 ( 𝑋 

𝐶 , 𝑌 
𝐶 , 𝑍 

𝐶 )  of each line's endpoints (𝑢, 𝑣)  in 

camera frame by solving Equation (4.6), transform the endpoints from camera frame to 

plane frame using Equation (4.7) with 𝑅𝑡 from Equation (4.4), the target plane is the X-

Z plane in world frame and the Y positions of all endpoints are equal the distance from 

the target plane to the camera, this distance lacks the scale factor to transform the position 

to real-world scale during initialization. In experiments, the scale factor is given by user 

through measurement. 
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{
 
 

 
 
𝐴 𝑋 
𝐶 + 𝐵 𝑌 

𝐶 + 𝐶 𝑍 
𝐶 + 𝐷 = 0 (plane equation)

𝑢 − 𝑐𝑥 = 𝑓
𝑋 
𝐶

𝑌 𝐶

𝑐𝑦 − 𝑣 = 𝑓
𝑍 
𝐶

𝑌 𝐶
 (pinhole camera model)

 

(4.6) 

 𝑃 
𝑃 = 𝑅𝑡

𝑇 𝑃 
𝐶  

(4.7) 

Calculate line equation parameters 𝑟, 𝜃  with the endpoints 𝑃𝑃  on X-Z plane in 

plane frame using Equation (3.5). Then approximate the parameters to horizontal (X-axis) 

and vertical (Z-axis) lines by ignore parameters 𝜃 of the lines, the parameters 𝑟 will be 

the 𝑧 and 𝑥 positions of horizontal and vertical lines to obtain features 𝐹ℎ, 𝐹𝑣. And 𝑑𝑡 

is the distance between target plane and camera on Y axis in plane frame ,which can be 

obtained by the 𝑦  position of endpoints 𝑃𝑃  in plane frame. A schematic diagram is 

shown in Figure 4.9. 

 

Figure 4.9: A schematic diagram about parameterize target plane 

 𝐹ℎ = {𝑧1, 𝑧2, … , 𝑧𝑖} 

𝐹𝑣 = {𝑥1, 𝑥2, … , 𝑥𝑗} 

𝑑𝑡 is the minimum distance between target plane and camera center. (4.8) 
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4.4 Plane Tracking with RANSAC 

In this section, the motion estimation is divided to two steps: feature matching rules 

(Section 4.4.1) and motion estimation with RANSAC (Section 4.4.2). 

4.4.1 Feature Matching 

After finishing the feature extraction in Section 4.3, the first step is to verify whether 

the detected plane and the stored target plane are the same plane. This can be done by 

comparing the angle between rotation matrices with Equation (4.3). If the angle is less 

than a threshold 𝑇𝑝, treat them as same plane then matching the features with nearest 

distance; if the angle is greater than 𝑇𝑝 , identified them as different planes and skip 

current estimation and wait for next estimation. 

𝐹ℎ, 𝐹𝑣 are the features of detected plane, let 𝐹ℎ−1, 𝐹𝑣−1 are the features of stored 

target plane from previous estimation. The matching pairs 𝑀ℎ, 𝑀𝑣 can be obtained by 

Equation (4.9). 

 𝑀ℎ = {(𝑧1, 𝑧1−1), (𝑧2, 𝑧2−1),… , (𝑧𝑖, 𝑧𝑖−1)} 

𝑠. 𝑡.   𝑧𝑖 ∈ 𝐹ℎ, 𝑧𝑖−1 ∈ 𝐹ℎ−1, dist(𝑧𝑖, 𝑧𝑖−1) is minimun 

𝑀𝑣 = {(𝑥1, 𝑥1−1), (𝑥2, 𝑥2−1), … , (𝑥𝑗 , 𝑥𝑗−1)} 

𝑠. 𝑡.   𝑥𝑗 ∈ 𝐹𝑣, 𝑥𝑗−1 ∈ 𝐹𝑣−1, dist(𝑥𝑗 , 𝑥𝑗−1) is minimun (4.9) 

4.4.2 Motion Estimation with RANSAC 

The motion estimation is optimized using least squares method. It estimates the 

motion between frames by minimizing the square of the distance of matching pairs. These 

matching pairs are sampled and estimated iteratively with RANSAC to eliminate false 

matches. 

The cost function can be written as Equation (4.10), 𝑠 is the scale factor; 𝑣, ℎ are 

the shift of features in X, Z axes in plane frame. 
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 min
𝑠,ℎ,𝑣

𝑒 =∑∑(𝑠𝑧𝑖 − 𝑣 − 𝑧𝑖−1)
2 + (𝑠𝑥𝑗 − ℎ − 𝑥𝑗−1)

2

𝑗𝑖

 

𝑠. 𝑡.   𝑧𝑖, 𝑧𝑖−1 ∈ 𝑀
′
ℎ; 𝑥𝑗 , 𝑥𝑗−1 ∈ 𝑀

′
𝑣;  𝑀ℎ

′ , 𝑀𝑣
′  are the sampled set in 

RANSAC process with select 𝑖, 𝑗 elements from 𝑀ℎ , 𝑀𝑣 (4.10) 

The motion in plane frame can be determined by Equation (4.11), 𝑑𝑡−1  is the 

distance to the target plane from previous estimation. The current camera orientation 𝑅𝑐 

and position 𝑝𝑐  in the world frame can be determined by 𝑅𝑡  in Equation (4.4) 

accumulating motion in Equation (4.12). 

 𝑡𝑐 = −(𝑣, 𝑠𝑑𝑡 − 𝑑𝑡−1, ℎ) 
(4.11) 

 𝑅𝑐 = 𝑅𝑡
𝑇 

𝑝𝑐 = 𝑝𝑐−1 + 𝑡𝑐 

Where 𝑝𝑐−1 is the previous position (4.12) 

The reason the camera motion is opposite to the estimated is because the cost 

function is designed to estimate feature motion with a static camera, and the camera image 

is as same as a moving camera and static features, but in the opposite direction of 

estimation. A schematic is shown in Figure 4.10. 
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(a) Camera moving right 

 

(b) Features moving left 

 

(c) Camera image 

Figure 4.10: The scenarios (a) and (b) are having same camera image (c), and the 

camera and features motion are in opposite directions. 
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4.5 Update States 

In this section, the estimated result will run a reliability testing(Section 4.5.1), then 

update the stored features if the estimation is reliable, includes update the existing features 

(Section 4.5.2), add new features (Section 4.5.3) and eliminate invalid features (Section 

4.5.4). 

4.5.1 Reliability Testing 

After calculating the orientation and position of the camera with respect to the world 

frame, it is necessary to verify the reliability of the estimation results as it does not account 

for noise from the camera, such as distortion from camera resolution or motion blur. 

In the reliability testing, the stored features at previous position will be reprojected 

onto the image frame at the current estimated position. A schematic diagram is shown in 

Figure 4.11, the reprojected line 𝑙𝑐
′   does not overlap with observation 𝑙𝑐  because of 

estimation error. To determine the distance between feature lines, first, represent the lines 

in Hough space (𝑟, 𝜃) which is also a 2-D polar coordinate system as shown in Figure 

4.12. Define the distance between lines as Equation (4.13), if the average distance 

between reprojected lines 𝑙𝑐
′   and current observations 𝑙𝑐  is greater than the average 

distance between previous observations 𝑙𝑐−1  and current observations 𝑙𝑐 , treat this 

estimate as an unreliable one, skip current estimated result and wait for next camera image; 

on the country, if the average distance between reprojections 𝑙𝑐
′  and observations 𝑙𝑐 is 

less than average distance across observations 𝑙𝑐−1 and 𝑙𝑐. 

After reliability testing, unreliable estimates will be discarded, and the process can 

be seen as downsampling data to improve the algorithm speed. Only features with reliable 

estimates will be updated follow Section 4.5.2, Section 4.5.3 and Section 4.5.4. This 

process discards unreliable estimates without optimization, it has a drawback that when 
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the camera frames lost the target plane, the algorithm will pause the estimation until the 

camera frame find back the target plane. 

 
𝐷 = √𝑟1

2 + 𝑟2
2 − 2𝑟1𝑟2 cos(𝜃1 − 𝜃2) 

(4.13) 

 

Figure 4.11: A schematic diagram of line reprojection 

 

Figure 4.12: Represent lines with Hough space (𝑟, 𝜃) 

4.5.2 Update Existing Features 

The matched features after estimation with RANSAC will update their positions. For 

each matched pair, the feature is updated using exponential moving average, as shown in 

Equation (4.14), where 𝑧𝑡, 𝑥𝑡  and 𝑧𝑡−1, 𝑥𝑡−1  are the current and previous feature 
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position in a matched pair, they will align with the current position before averaging. This 

moving average helps in noise reduction and provides smoother data. 

 
{
𝑧𝑡 ← 0.5𝑠𝑧𝑡 + 0.5(𝑧𝑡−1 − 𝑣)

𝑥𝑡 ← 0.5𝑠𝑥𝑡 + 0.5(𝑥𝑡−1 − ℎ)
 

(4.14) 

And the distance between camera and the target plane is updated by the scale factor 

𝑠 from estimation to align the actual scale to plane frame. 

 𝑑𝑡 ← 𝑠𝑑𝑡 
(4.15) 

4.5.3 Add New Features 

For the new features that belong to the target plane and do not match to the existing 

features will be added to them. To prevent false features from being considered inliers in 

RANSAC, the new features must have a minimum distance to the existing features greater 

than a threshold 𝑇𝑛. This strategy helps keep the stored features stay sparse and maintain 

calculation speed. 

4.5.4 Remove Invalid Features 

For each stored feature, the algorithm has stored the matching success rate 𝑊 , 

which is the ratio about number of successful matching and features shown in camera 

FOV in the past 𝑛 frames as shown in Equation (4.16). 

 
𝑊 =

number of successful matching in past 𝑛 frames

number of shown in FOV in past 𝑛 frames
 

(4.16) 

If the 𝑊 of a feature is less than a threshold 𝑇𝑟, the feature will be identified as 

invalid and unable to provide reliable information, and will be removed from stored 

features.  
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Chapter 5  
Synthetic and Real-World 

Experiments  
In this chapter, the experiments based on the propose algorithm are discussed. the 

experiments in simulation and real-world are evaluated. In Section 5.1, the experiments 

in simulation are verified for the accuracy in noisy environments and the performance 

with adding reliability testing. The real-world experiments performed with real-time 

computation are detailed in Section 5.2. 

5.1 Evaluate Performance in Simulation 

In this section, the construction of synthetic scenes and designed trajectories are 

introduced in Section 5.1.1. Method to measure performance of the propose algorithm is 

discussed in Section 5.1.2. The estimate results of simulations are present in Section 5.1.3. 

A concise summary of the simulations is presented in Section 5.1.4. 

5.1.1 Synthetic Scenes 

To evaluate the performance of the propose algorithm, a simple synthetic scene 

involves a 29.9×3 m grid mesh plane with 24 vertical lines and 7 horizontal lines, parallel 

to the X-Z plane of the world frame, as shown in Figure 5.1. In noisy scenes, some noise 

line segments are randomly positioned with varying lengths, creating different levels of 

noise based on the number and length of line segments. All the noisy synthetic scenes are 

shown in Table 5.1, the columns of the table represent different length ranges of noise 

line segments, and the rows of the table represent varying numbers of noise line segments. 

A virtual perspective camera moves in the synthetic scenes and generates the 

sequential images for the algorithm input, the virtual camera has 90×74° FOV(H×V), 
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640×480 pixels resolution without any distortion and motion blur. An example of camera 

imaging in the scene is shown in Figure 5.2. 

For the length of noise line segments, in cases with the same number of noise line 

segments, the length of line segments can be categorized into three types. The centers of 

the line segments are consistent, and the length of the segments is double that of the 

previous type. The camera imaging of noise line segments with the same number but 

different lengths is shown in Figure 5.3. 

For the number of line segments, there is a noise set containing 50 noise line 

segments, in the cases from no noise to 50 noise line segments, it retains the previously 

selected noise line segments and adds 10 more noise line segments selected from the noise 

set. The camera imaging of noise line segments of the same length but with different 

numbers is shown in Figure 5.4. 

For each synthetic scene in the simulations, the virtual camera moves along the grid 

mesh plane following various trajectories in X-Y plane, and the grid mesh plane is 

captured in all the camera frames of the sequential images. There are four trajectories for 

the simulations: Straight, Straight and U-turn, Wave, Wave and U-turn. 

Straight trajectory 

In the Straight trajectory, the virtual camera first stops at origin and facing the 

X-axis direction for 30 frames and then moves forward 15 meters along X-axis for 

500 frames, resulting in a total of 530 sequential images. 

Straight and U-turn trajectory 

In the Straight and U-turn trajectory, the virtual camera first stops at origin and 

facing the X-axis direction for 30 frames and then moves forward 15 meters along 

X-axis for 500 frames, then turn around along a counterclockwise circular path with 
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a radius of 0.125 meters for 200 frames, and continues forward for 15 meters in the 

negative X-direction for 500 frames, resulting in a total of 1230 sequential images. 

Wave trajectory 

In the Wave trajectory, the virtual camera first stops at origin and facing the X-

axis direction for 30 frames and then the yaw angle oscillates between plus and 

minus 10 degrees as it moves forward, with a total distance of 15 meters for 500 

frames, resulting in a total of 530 sequential images. 

Wave and U-turn trajectory 

In the Wave and U-turn trajectory, the virtual camera first stops at origin and 

facing the X-axis direction for 30 frames and then the yaw angle oscillates between 

plus and minus 10 degrees as it moves forward, with a total distance of 15 meters 

for 500 frames, then turn around along a counterclockwise circular path with a radius 

of 0.125 meters for 200 frames, and continues forward with the yaw angle oscillates 

between plus and minus 10 degrees for a total distance of 15 meters in 500 frames, 

resulting in a total of 530 sequential images. 

The camera pose for each trajectory is detailed in Table 5.2 and Figure 5.5. 

 

Figure 5.1: The synthetic scene with a grid mesh plane  
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Table 5.1: Overview of the noisy scenes 

 A 

0m < Length < 2.5 m 

B 

0m < Length < 5 m 

C 

0m < Length < 10 m 

10 

   

20 

   

30 

   

40 

   

50 

   
 

 

 

(a) Camera at origin and the 

optical axis overlaps with the x-

axis. 

(b) Camera imaging at origin 

Figure 5.2: The virtual camera imaging in the synthetic scene 
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(a) Length A (b) Length B (c) Length C 

Figure 5.3: Different lengths of noise line segments in 50 noise line scenes 

   

(a) 10 line segments (b) 20 line segments (c) 30 line segments 

  

(d) 40 line segments (e) 50 line segments 

Figure 5.4: Different number of noise line segments in Length B scenes 
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Table 5.2: 6-DOF camera poses in designed trajectories 

Frame count 

k 

Straight Straight and 

U-turn 

Wave and U-turn Wave  

[1,30] 

Stop 
𝑥[𝑘] = 0 

y[𝑘] = 0 

z[𝑘] = 0 

u[𝑘] = 0 

v[𝑘] = 0 

w[𝑘] = 0 

[31,530] 

Forward 

 

𝑥[𝑘] = 𝑥[𝑘 − 1] + 0.03 

y[𝑘] = y[𝑘 − 1] 
𝑧[𝑘] = 𝑧[𝑘 − 1] 
𝑢[𝑘] = 𝑢[𝑘 − 1] 
𝑣[𝑘] = 𝑣[𝑘 − 1] 
𝑤[𝑘] = 𝑤[𝑘 − 1] 

𝑥[𝑘] = 𝑥[𝑘 − 1] + 0.03 cos(𝑤[𝑘]) 
𝑦[𝑘] = 𝑦[𝑘 − 1] − 0.03𝑠𝑖𝑛(𝑤[𝑘]) 
𝑧[𝑘] = 𝑧[𝑘 − 1] 
𝑢[𝑘] = 𝑢[𝑘 − 1] 
𝑣[𝑘] = 𝑣[𝑘 − 1] 

𝑤[𝑘] =
𝜋

18
𝑠𝑖𝑛 (

2𝜋(𝑘 − 30)

250
) 

[531,730] 

U-turn 

 𝑥[𝑘] = 𝑥[𝑘 − 1] +
𝜋

8 × 200
𝑐𝑜𝑠 (𝑤[𝑘]) 

𝑦[𝑇] = 𝑦[𝑘 − 1] −
𝜋

8 × 200
𝑠𝑖𝑛(𝑤[𝑘]) 

𝑧[𝑘] = 𝑧[𝑘 − 1] 
𝑢[𝑘] = 𝑢[𝑘 − 1] 
𝑣[𝑘] = 𝑣[𝑘 − 1] 

𝑤[𝑘] = 𝑤[𝑘 − 1] −
𝜋

200
 

 

[731,1230] 

Return 

 𝑥[𝑘] = 
𝑥[𝑘 − 1] − 0.03 

𝑦[𝑘] = 𝑦[𝑘 − 1] 
𝑧[𝑘] = 𝑧[𝑘 − 1] 
𝑢[𝑘] = 𝑢[𝑘 − 1] 
𝑣[𝑘] = 𝑣[𝑘 − 1] 
𝑤[𝑘] = 
𝑤[𝑘 − 1] 

𝑥[𝑘] = 
𝑥[𝑘 − 1] + 0.03𝑐𝑜𝑠 (𝑤[𝑘]) 
𝑦[𝑘] = 
𝑦[𝑘 − 1] − 0.03𝑠𝑖𝑛(𝑤[𝑘]) 
𝑧[𝑘] = 𝑧[𝑘 − 1] 
𝑢[𝑘] = 𝑢[𝑘 − 1] 
𝑣[𝑘] = 𝑣[𝑘 − 1] 
𝑤[𝑘] = 

−𝜋 −
𝜋

18
𝑠𝑖𝑛 (

2𝜋(𝑘 − 730)

250
) 
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(a) Position of Straight trajectory 

 
(b) Orientation of Straight trajectory 

 
(c) Position of Straight and U-turn 

trajectory 

 
(d) Orientation of Straight and U-turn 

trajectory 

 
(e) Position of Wave trajectory 

 
(f) Orientation of Wave trajectory 

 
(e) Position of Wave and U-turn 

trajectory 

 
(f) Orientation of Wave and U-turn 

trajectory 

Figure 5.5: Position and orientation of all trajectories 
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5.1.2 Evaluate Performance Using Dynamic Time Warping 

To evaluate the similarity between estimation and ground truth, dynamic time 

warping (DTW) is utilized to align and quantify the performance. DTW is a distance 

measure that compares two time series after optimally aligning them [46: Mueen & Keogh 

2016], it can calculate the similarity between two sequences, even if they differ in speed 

or length. Compare to calculate the Euclidean distance based on time sequence, DTW can 

provide reasonable performance when the trajectory drifts.  

For example, there are three 1-D trajectories shown in Figure 5.6 with following 

definitions: 

 𝐶1 = sin(2𝜋𝑘) 
𝐶2 = cos(2𝜋𝑘) 
𝐶3 = 0.5 sin(𝜋𝑘) 
𝑘 = [0,0.01,… ,0.99,1] (5.1) 

 

Figure 5.6: 1-D trajectories 𝐶1, 𝐶2, and 𝐶3 

Using Euclidean distance based on time sequence, Figure 5.7 shows the 

corresponding pairs with gray lines and the squared distance for each corresponding pair 

between 𝐶1, 𝐶2  and 𝐶1, 𝐶3 . The cumulative squared distance indicates that 𝐶3  bears 

greater resemblance to 𝐶1 than 𝐶2, yielding an erroneous outcome given their trajectory 
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patterns. On the other hand, as in Figure 5.8, the cumulative squared distance based on 

the corresponding pairs from DTW indicated that 𝐶2 is more similar to 𝐶1 than 𝐶3. 

Note that in Figure 5.7 and Figure 5.8, the gray lines represent matched pairs, their 

length does not reflect the actual distance as the x-axis denotes time. 

Due to the advantages of the DTW method, which can measure similarities with data 

of different lengths, it is the best method for evaluating the performance of the proposed 

algorithm and the effect of adding reliability testing. 

  

(a) Euclidean corresponding pairs 

between 𝐶1, 𝐶2 

(b) Euclidean corresponding pairs 

between 𝐶1, 𝐶3 

  

(c) Squared distance of corresponding 

pairs in 𝐶1, 𝐶2 and 𝐶1, 𝐶3 

(d) Cumulative squared distance of 

𝐶1, 𝐶2 and 𝐶1, 𝐶3 

Figure 5.7: The matching result using Euclidean distance based on time sequence  
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(a) DTW corresponding pairs between 

𝐶1, 𝐶2 

(b) DTW corresponding pairs between 

𝐶1, 𝐶3 

  

(c) Squared distance of corresponding 

pairs in 𝐶1, 𝐶2 and 𝐶1, 𝐶3 

(d) Cumulative squared distance of 

𝐶1, 𝐶2 and 𝐶1, 𝐶3 

Figure 5.8: The matching result using dynamic time warping method 

5.1.3 Estimate Without and With Reliability Testing 

In this section, the synthetic scenarios are executed without and within reliability 

testing. In the simulations without reliability testing, all input frames were estimated and 

recorded as trajectory waypoints; on the contrary, in the simulations within reliability 

testing, the unreliable estimations won't update the stored information as mention in 

Section 4.5.1. 

The following parts of this section compare performance under different levels of 

noise and the difference with or without reliability testing based on camera trajectories. 



 

48 

doi:10.6342/NTU202402036 

In each scenario, the proposed algorithm is executed 10 times each with and without 

reliability testing to ensure the consistency of the estimation results. And some figures 

illustrate the root-mean-square error (RMSE) and the smoothness determined by the 

integral of the squared second derivative of each estimation, with some instances 

depicting the contrast between with and without reliability testing. 

Figure 5.9 to Figure 5.12 are the RMSE and smoothness of 10 estimations of each 

trajectory performed in all synthetic scenes in both with and without reliability testing, 

and the average value of 10 estimations are shown in Table 5.3 to Table 5.5. 

 

(a) RMSE of estimated results 

 

(b) Smoothness of estimated results 

Figure 5.9: Estimated results of Straight trajectory in various synthetic scenes 

 

(a) RMSE of estimated results 

 

(b) Smoothness of estimated results 

Figure 5.10: Estimated results of Straight and U-turn trajectory in various synthetic 

scenes 
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(a) RMSE of estimated results 

 

(b) Smoothness of estimated results 

Figure 5.11: Estimated results of Wave trajectory in various synthetic scenes 

 

(a) RMSE of estimated results 

 

(b) Smoothness of estimated results 

Figure 5.12: Estimated results of Wave and U-turn trajectory in various synthetic scenes 

Table 5.3: Average RMSE of 10 estimations across all scenarios (RT: reliability testing) 

Unit: m Straight Straight  

and U-turn 

Wave Wave  

and U-turn 

 w/o RT w/ RT w/o RT w/ RT w/o RT w/ RT w/o RT w/ RT 

Ideal 0.0697 0.0705 0.1081 0.0888 0.2492 0.2264 0.4232 0.3638 

A-10 0.0709 0.071 0.0956 0.0933 0.2404 0.2242 0.4668 0.4548 

A-20 0.0689 0.0716 0.1009 0.0883 0.2265 0.2187 0.3888 0.4277 

A-30 0.0670 0.0706 0.0884 0.1017 0.3096 0.2052 0.5685 0.4658 

A-40 0.0637 0.0703 0.1075 0.0929 0.2630 0.2537 0.5179 0.4612 

A-50 0.0585 0.0700 0.0868 0.0826 0.3667 0.1638 0.8237 0.4032 

B-10 0.0788 0.0652 0.1331 0.0821 0.3627 0.1965 0.6209 0.3063 

B-20 0.0713 0.0662 0.1303 0.0741 0.3648 0.1923 0.5639 0.299 

B-30 0.0702 0.0668 0.1440 0.0755 0.3388 0.2258 0.5570 0.3835 

B-40 0.1034 0.0683 0.2036 0.078 0.2918 0.1815 0.4944 0.2748 

B-50 0.0959 0.0843 0.1465 0.1506 0.4793 0.2166 0.4322 0.4104 

C-10 0.0705 0.0801 0.1277 0.1076 0.2483 0.2788 0.4298 0.4699 

C-20 0.0698 0.0814 0.1371 0.1121 0.3866 0.2217 0.4051 0.3605 

C-30 0.0613 0.0800 0.1409 0.1042 0.3459 0.1736 0.5725 0.3036 

C-40 0.0599 0.0724 0.1117 0.0851 0.2658 0.2056 0.5423 0.2877 

C-50 0.1028 0.0729 0.1681 0.1173 0.3886 0.2116 0.6346 0.3320 
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Table 5.4: Ratio between RMSE and trajectory length (
𝑅𝑀𝑆𝐸

𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝑙𝑒𝑛𝑔𝑡ℎ
× 100%) from 

10 estimations in all scenarios (RT: reliability testing) 

Unit: % Straight Straight  

and U-turn 

Wave Wave  

and U-turn 

 w/o RT w/ RT w/o RT w/ RT w/o RT w/ RT w/o RT w/ RT 

Ideal 0.4647 0.4701 0.3555 0.292 1.6615 1.5095 1.3924 1.1968 

A-10 0.4723 0.4735 0.3147 0.3069 1.6029 1.4949 1.536 1.4963 

A-20 0.4592 0.4775 0.3320 0.2907 1.5103 1.4583 1.2794 1.4071 

A-30 0.4466 0.4703 0.2909 0.3345 2.064 1.3679 1.8706 1.5325 

A-40 0.425 0.4689 0.3538 0.3057 1.7531 1.6916 1.7039 1.5174 

A-50 0.3901 0.4664 0.2857 0.2718 2.4446 1.0919 2.7103 1.3268 

B-10 0.5251 0.4347 0.4379 0.2701 2.4179 1.3102 2.0428 1.0078 

B-20 0.4752 0.4415 0.4287 0.2438 2.4321 1.2823 1.8555 0.9839 

B-30 0.4677 0.4455 0.4737 0.2486 2.2584 1.5052 1.8327 1.2617 

B-40 0.6892 0.4552 0.6698 0.2568 1.9452 1.2103 1.6267 0.9043 

B-50 0.6396 0.5619 0.4821 0.4955 3.1955 1.4439 1.4220 1.3503 

C-10 0.4702 0.5343 0.4202 0.3539 1.6551 1.8585 1.4140 1.5462 

C-20 0.4652 0.5423 0.4510 0.3689 2.5775 1.4778 1.3328 1.1862 

C-30 0.4085 0.5332 0.4636 0.343 2.3060 1.157 1.8837 0.9988 

C-40 0.3994 0.4827 0.3674 0.2801 1.7718 1.3705 1.7843 0.9466 

C-50 0.6851 0.4862 0.5530 0.3859 2.5905 1.4108 2.0882 1.0924 

Table 5.5: Average smoothness value of 10 estimations across all scenarios (RT: 

reliability testing) 

 Straight Straight  

and U-turn 

Wave Wave  

and U-turn 

 w/o RT w/ RT w/o RT w/ RT w/o RT w/ RT w/o RT w/ RT 

Ideal 1.2731 0.6565 2.4887 1.5420 3.9713 1.4852 7.2420 2.7249 

A-10 1.4358 0.6482 3.0617 1.7343 5.5358 1.3230 7.0931 2.8179 

A-20 1.5163 0.6794 2.9700 1.7282 4.9453 1.1943 7.3412 2.9457 

A-30 1.4315 0.7220 2.9294 1.7326 6.1652 1.2629 8.0859 2.8995 

A-40 1.4307 0.6930 3.0176 1.8253 3.9906 1.2276 7.4620 2.9285 

A-50 2.4862 0.7338 4.8483 1.8253 7.3627 1.4506 10.9646 3.1431 

B-10 1.5637 0.8355 3.4929 2.2949 7.0011 1.2297 9.5392 2.4587 

B-20 1.5147 0.8241 3.8474 2.2046 10.2598 1.4835 11.6095 3.4666 

B-30 1.8527 0.8865 3.4349 2.2269 7.0053 1.2485 11.5816 3.3768 

B-40 1.8234 0.8068 3.5262 2.2152 7.4558 1.5757 12.2732 3.3349 

B-50 2.8299 1.2681 4.6767 2.6771 10.1421 1.7392 12.3536 4.2038 

C-10 1.9463 0.9082 4.0749 2.2189 6.2542 1.3682 14.8427 3.7885 

C-20 1.9197 0.9250 4.6156 2.2734 6.6151 1.1976 13.645 4.6000 

C-30 2.2507 0.8487 4.0506 2.0964 8.2717 1.3752 16.8236 3.7061 

C-40 2.1256 0.8235 4.2438 2.1476 8.2345 3.0639 17.1378 4.8072 

C-50 3.2074 1.1281 4.9876 2.6579 16.1809 1.5609 16.2715 3.4944 
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The estimated results indicate that the level of noise has a slight impact on the 

estimated accuracy, showing that the algorithm is capable of functioning in noisy 

environments. And comparing the accuracy of estimated results with and without 

reliability testing, adding reliability testing makes the estimated results more stable in 

repetitive tests, but the improvement in accuracy is marginal, because the reliability 

testing only discards unreliable estimations without optimizing the remaining estimations 

to guarantee the proposed algorithm’s real-time capability. 

For the trajectory smoothness, the smoothness of the estimated results is determined 

by the integral of the squared second derivative of estimated trajectories, the lower results 

indicate smoother trajectories. As the figures and Table 5.5 show, adding reliability testing 

makes the estimated trajectories smoother than without it. The reliability testing discards 

unreliable estimations which often cause trajectory drift, improving trajectory smoothness 

by reducing drift and high frequency errors. 

Following are some estimated results to show the performance and the difference of 

adding reliability testing. 

Figure 5.13 shows an estimated result of Straight trajectory in the synthetic scene B-

30 without reliability testing, with an RMSE of 0.0495 m (0.33 %) and a smoothness of 

2.6011. Overall, the performance is well in going straight without any camera rotation, 

and hardly affect by noise, only occurs a drift at k=350 (Figure 5.13 (b)), the estimated 

trajectory has slight error due to limitation of camera resolution (Figure 5.13 (c)). 
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(a) Estimated trajectory 

 

(b) Drift at k=350 

 

(c) Slight error cause by camera 

resolution 

Figure 5.13: Estimated results of Straight trajectory in scene B-30 without reliability 

testing 

Figure 5.14 shows an estimated result of Straight trajectory in the synthetic scene B-

30 with reliability testing, with an RMSE of 0.0693 m (0.462 %) and a smoothness of 

0.5496. Compare to estimated results without reliability testing like Figure 5.13, because 

the original estimation is good enough and almost no drifts occur, the RMSE is slightly 

increase due to data downsampling during reliability testing, the number of waypoints 

between estimation and ground truth are different, the ground truth that cannot align by 

time will optimally match the estimated position at another time (Figure 5.14 (b)) through 
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DTW method as discussed in Section 5.1.2. The trajectory smoothness improves by 

downsampling data during reliability testing, reducing high-frequency errors of the 

estimated trajectory and resulting a smoother estimation as shown in Figure 5.14 (c). 

Figure 5.15 shows an estimated result of Wave trajectory in the synthetic scene B-

30 without reliability testing, with an RMSE of 0.2791 m (1.8607 %) and a smoothness 

of 6.4503. Compare to the Straight trajectory, the RMSE is increased and less smooth due 

to changes in camera’s yaw angle during the estimation, the estimated result shows the 

proposed algorithm has good performance when moving in X-Y plane. And Figure 5.16 

shows an estimated result of Wave trajectory in the synthetic scene B-30 with reliability 

testing, with an RMSE of 0.2229 m (1.486 %) and a smoothness of 1.0481. In the complex 

trajectory, the reliability testing can improve performance in both RMSE and smoothness. 
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(a) Estimated trajectory 

  

(b) DTW matching pairs (c) Smoother trajectory after adding 

reliability testing 

Figure 5.14: Estimated results of Straight trajectory in scene B-30 with reliability testing 
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(a) Estimated trajectory 

 

(b) Details of the trajectory 

Figure 5.15: Estimated results of Wave trajectory in scene B-30 without reliability 

testing 

 

(a) Estimated trajectory 

 

(b) Details of the trajectory 

Figure 5.16: Estimated results of Wave trajectory in scene B-30 with reliability testing 

For the Straight and U-turn trajectory, and Wave and U-turn trajectory in the 

synthetic scenes, the estimated results are shown in Figure 5.17 to Figure 5.20, as 

discussed in Straight and Wave trajectories, the reliability testing can yield improved 

performance in both RMSE and smoothness, However, when examining the performance 

of each segment in the trajectory, it is observed that the U-turn segment at k=531 to 730 

has a higher error. this phenomenon happened because the target plane changes greatly in 

camera imaging as shown in Figure 5.21, the accumulated error has little effect on the 

accuracy in the Return segment, the estimated trajectory pattern still reflects the ground 

truth pattern. This conclusion can be obtained from Table 5.6 to Table 5.9 that calculate 
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the RMSE from segments separately with remove accumulated error from previous 

segment. 

 

(a) Estimated result with RMSE = 

0.1068m(0.35%), smoothness=3.4201 

 

(b) Trajectory details of (a) at U-turn 

segment  

Figure 5.17: Estimated results of Straight and U-turn trajectory in scene B-20 without 

reliability testing 

 

(a) Estimated result with RMSE = 

0.0965m(0.32%), smoothness=2.5527 

 

(b) Trajectory details of (a) at U-turn 

segment  

Figure 5.18: Estimated results of Straight and U-turn trajectory in scene B-50 with 

reliability testing 
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(a) Estimated result with RMSE = 

0.2874m(0.95%), smoothness=8.7969 

 

(b) Trajectory details of (a) at U-turn 

segment 

Figure 5.19: Estimated results of Wave and U-turn trajectory in scene B-40 without 

reliability testing 

 

(a) Estimated result with RMSE = 

0.1911m(0.63%), smoothness=6.5840 

 

(b) Trajectory details of (a) at U-turn 

segment 

Figure 5.20: Estimated results of Wave and U-turn trajectory in scene C-40 with 

reliability testing 
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(a) k=531 

 

(b) k=570 

 

(c) k=610 

 

(d) k=650 

 

(e) k=690 

 

(f) k=730 

Figure 5.21: Camera images at U-turn segment of Wave and U-turn trajectory in scene 

B-30. 

Table 5.6: Average RMSE of the segments of Straight and U-turn trajectory in synthetic 

scenes, estimated without reliability testing. 

 Forward U-turn Return 

Ideal 0.0719m (0.48%) 0.0474m (12.08%) 0.0773m (0.52%) 

A-10 0.0585m (0.39%) 0.0424m (10.79%) 0.0648m (0.43%) 

A-20 0.0700m (0.47%) 0.0451m (11.49%) 0.0932m (0.62%) 

A-30 0.0632m (0.42%) 0.0411m (10.47%) 0.0880m (0.59%) 

A-40 0.0581m (0.39%) 0.0488m (12.42%) 0.1380m (0.92%) 

A-50 0.0609m (0.41%) 0.0563m (14.34%) 0.0853m (0.57%) 

B-10 0.0738m (0.49%) 0.0507m (12.91%) 0.0976m (0.65%) 

B-20 0.0806m (0.54%) 0.0447m (11.39%) 0.0719m (0.48%) 

B-30 0.0769m (0.51%) 0.0580m (14.76%) 0.0803m (0.54%) 

B-40 0.1067m (0.71%) 0.0529m (13.46%) 0.1045m (0.70%) 

B-50 0.0825m (0.55%) 0.0520m (13.25%) 0.1356m (0.90%) 

C-10 0.0664m (0.44%) 0.0543m (13.84%) 0.0559m (0.37%) 

C-20 0.0520m (0.35%) 0.0471m (12.00%) 0.1256m (0.84%) 

C-30 0.0765m (0.51%) 0.0468m (11.93%) 0.1198m (0.80%) 

C-40 0.0646m (0.43%) 0.0508m (12.94%) 0.0887m (0.59%) 

C-50 0.0929m (0.62%) 0.0664m (16.91%) 0.2402m (1.60%) 
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Table 5.7: Average RMSE of the segments of Straight and U-turn trajectory in synthetic 

scenes, estimated with reliability testing. 

 Forward U-turn Return 

Ideal 0.0697m (0.46%) 0.0379m (9.64%) 0.0677m (0.45%) 

A-10 0.0724m (0.48%) 0.0486m (12.39%) 0.0787m (0.52%) 

A-20 0.0700m (0.47%) 0.0460m (11.71%) 0.0757m (0.50%) 

A-30 0.0696m (0.46%) 0.0544m (13.85%) 0.1123m (0.75%) 

A-40 0.0667m (0.44%) 0.0473m (12.05%) 0.1048m (0.70%) 

A-50 0.0685m (0.46%) 0.0493m (12.56%) 0.0669m (0.45%) 

B-10 0.0675m (0.45%) 0.0622m (15.85%) 0.0795m (0.53%) 

B-20 0.0640m (0.43%) 0.0544m (13.86%) 0.0664m (0.44%) 

B-30 0.0659m (0.44%) 0.0648m (16.51%) 0.0553m (0.37%) 

B-40 0.0694m (0.46%) 0.0626m (15.93%) 0.0591m (0.39%) 

B-50 0.0775m (0.52%) 0.0774m (19.71%) 0.1448m (0.97%) 

C-10 0.0806m (0.54%) 0.0704m (17.94%) 0.0637m (0.42%) 

C-20 0.0857m (0.57%) 0.0847m (21.56%) 0.0574m (0.38%) 

C-30 0.0799m (0.53%) 0.0825m (21.00%) 0.0578m (0.39%) 

C-40 0.0754m (0.50%) 0.0914m (23.27%) 0.0584m (0.39%) 

C-50 0.0727m (0.48%) 0.0516m (13.15%) 0.0900m (0.60%) 

Table 5.8: Average RMSE of the segments of Wave and U-turn trajectory in synthetic 

scenes, estimated without reliability testing. 

 Forward U-turn Return 

Ideal 0.2980m (1.99%) 0.1007m (25.65%) 0.3543m (2.36%) 

A-10 0.2193m (1.46%) 0.0648m (16.49%) 0.5484m (3.66%) 

A-20 0.2130m (1.42%) 0.0785m (20.00%) 0.2836m (1.89%) 

A-30 0.3043m (2.03%) 0.0809m (20.59%) 0.5356m (3.57%) 

A-40 0.2821m (1.88%) 0.0785m (20.00%) 0.4250m (2.83%) 

A-50 0.3739m (2.49%) 0.0605m (15.40%) 1.0688m (7.13%) 

B-10 0.3266m (2.18%) 0.0752m (19.16%) 0.7821m (5.21%) 

B-20 0.3271m (2.18%) 0.0778m (19.81%) 0.6117m (4.08%) 

B-30 0.3463m (2.31%) 0.0799m (20.34%) 0.5433m (3.62%) 

B-40 0.2981m (1.99%) 0.1085m (27.62%) 0.4585m (3.06%) 

B-50 0.2731m (1.82%) 0.0817m (20.80%) 0.3465m (2.31%) 

C-10 0.2556m (1.70%) 0.0871m (22.19%) 0.3805m (2.54%) 

C-20 0.2050m (1.37%) 0.0770m (19.61%) 0.4164m (2.78%) 

C-30 0.2596m (1.73%) 0.0638m (16.24%) 0.7469m (4.98%) 

C-40 0.2716m (1.81%) 0.1003m (25.54%) 0.6743m (4.50%) 

C-50 0.3364m (2.24%) 0.1188m (30.26%) 0.7277m (4.85%) 
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Table 5.9: Average RMSE of the segments of Wave and U-turn trajectory in synthetic 

scenes, estimated with reliability testing. 

 Forward U-turn Return 

Ideal 0.2350m (1.57%) 0.0620m (15.79%) 0.2351m (1.57%) 

A-10 0.2523m (1.68%) 0.0573m (14.58%) 0.4143m (2.76%) 

A-20 0.2359m (1.57%) 0.0561m (14.28%) 0.3883m (2.59%) 

A-30 0.2376m (1.58%) 0.0536m (13.64%) 0.4973m (3.32%) 

A-40 0.2403m (1.60%) 0.0674m (17.17%) 0.4384m (2.92%) 

A-50 0.1754m (1.17%) 0.0530m (13.50%) 0.4443m (2.96%) 

B-10 0.1882m (1.25%) 0.0593m (15.09%) 0.1899m (1.27%) 

B-20 0.1758m (1.17%) 0.0586m (14.91%) 0.2213m (1.48%) 

B-30 0.2215m (1.48%) 0.0804m (20.47%) 0.2932m (1.95%) 

B-40 0.1652m (1.10%) 0.0716m (18.24%) 0.1855m (1.24%) 

B-50 0.2352m (1.57%) 0.0705m (17.96%) 0.3255m (2.17%) 

C-10 0.2743m (1.83%) 0.0769m (19.59%) 0.4038m (2.69%) 

C-20 0.2148m (1.43%) 0.0738m (18.79%) 0.3118m (2.08%) 

C-30 0.1803m (1.20%) 0.0569m (14.48%) 0.2647m (1.76%) 

C-40 0.1843m (1.23%) 0.0764m (19.45%) 0.1749m (1.17%) 

C-50 0.2067m (1.38%) 0.0958m (24.40%) 0.2277m (1.52%) 

5.1.4 Summary of Performance in Simulation 

In this section, the performance of the proposed algorithm is verified through 

estimated in 4 different trajectory and 16 synthetic scenes with varying noise levels, 

resulting in a total of 64 different scenarios. The proposed algorithm is estimated in 

scenarios with and without reliability testing, and the estimation is repeated 10 times to 

validate the stability of the algorithm and ensure that no conclusions are drawn from 

outliers. 

From the estimations in different noise levels, the results show that the propose 

algorithm can successfully detect and track the target plane in noisy environments, 

calculate camera trajectory from the sequential images. With adding reliability testing to 

the algorithm, estimation errors can be reduced by discarding unreliable estimates and 

obtaining a smoother trajectory through data downsampling. In the trajectories with U-

turn segment, the estimated results show that the proposed algorithm can track the target 

plane when camera yaw angle changes greatly. 
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The simulation results show that the proposed algorithm is capable of handling the 

estimation of a moving robot in the XY plane, and obtaining the camera's trajectory.  

5.2 Real-World Experiments Executed in Real-Time 

In this section, the experiments setup regarding the hardware used is described in 

Section 5.2.1, the indoor hallway experiments compared with the marker-based method 

are shown in Section 5.2.2, the outdoor experiments of the algorithm executed in the real-

world noisy environments are presented in Section 5.2.2. A summary of experiments is 

shown in Section 5.2.3. 

5.2.1 Experiments Setup 

This thesis run the real-world experiments on a laptop equipped with AMD Ryzen 7 

7840U CPU at 3.3 GHz, 16-GB RAM, and windows 11 operation system. The proposed 

algorithm is implemented in Python and provides real-time estimations during 

experiments. 

An RGB camera of Intel RealSense D455 [55: Intel] is used for the real-world 

experiments, it has 90×65° FOV(H×V) with global shutter sensor, and the resolution is 

set at 640×480 with frame rate at 30 fps. As shown in Figure 5.22, the camera is taped on 

the laptop, and run the experiments by walking with the laptop in hand. 

 

Figure 5.22 : The camera and the laptop 
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As mention in Section 4.3.2, the initialization process requires the distance from 

camera to target plane to determine the scale factor from pixels to the real world, a laser 

range finder as shown in Figure 5.23 is used for measuring a rough distance to the target 

plane during initialization process. 

 

Figure 5.23: The laser range finder used in experiments 

In order to verify the accuracy of the proposed algorithm, in the indoor hallway 

experiments, a marker-based pose estimation using ArUco markers [45: Garrido-Jurado 

et al. 2014] is employed as the ground truth in comparison to the algorithm's estimation. 

The ArUco markers are made by canvas with a marker size of 102×102cm as shown in 

Figure 5.24. 

 

Figure 5.24: A 102×102cm ArUco marker made by canvas 
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5.2.2 Indoor Hallway Experiments 

In the indoor hallway experiments, the experiment scene is shown in Figure 5.25, 

the window frames on the right side of the camera image are the target plane of the 

experiment, and 4 ArUco markers 𝑀1,𝑀2,𝑀3,𝑀4 arranged from near to far on the left 

side of the camera image are used to generate the ground truth of the camera trajectory. 

the camera trajectory is going straight in the experiment and repeat the experiment 10 

times to confirm accuracy and consistency, the target plane and at least 2 of the ArUco 

markers are visible in the camera image during the estimation. 

 

 

(a) Hallway scene (b) Schematic diagram of the scene 

Figure 5.25: The hallway experiment scene 

The ground truth trajectory is obtained by combining pose estimations from ArUco 

markers with OpenCV library [56: OpenCV] through the absolute trajectory error method 

from [57: Mur-Artal] according to [47: Horn 1987]. The trajectory estimated from each 

marker is based on its own coordinate system as shown in Figure 5.26. Align the 

trajectories by time and calculate the relative pose between markers by solving Equation 

(5.2), get 𝑅12, 𝑡12, 𝑅23, 𝑡23, 𝑅34, 𝑡34  from camera images, then transform all the 



 

64 

doi:10.6342/NTU202402036 

coordinate systems to the coordinate system of M1 with Equation (5.3), as shown in 

Figure 5.27. For estimations from different markers at the same time, select the estimation 

from nearest marker as ground truth trajectory, the result is shown in Figure 5.28. 

 min
𝑹𝑖𝑗,𝒕𝒊𝒋

∑ (𝑹𝑖𝑗𝒑𝑗𝑘 + 𝒕𝑖𝑗) − 𝒑𝑖𝑘
𝑘

 

𝑹𝑖𝑗 ∈ SO(3), 𝒕 ∈ ℝ
3×1 

𝒑𝑗𝑘, 𝒑𝑖𝑘 ∈  ℝ
3×1,the 𝑘th matched pair estimated by 𝑀𝑖 and 𝑀𝑗 (5.2) 

 𝒑𝑖 = 𝑹1𝑖𝒑𝑖 + 𝒕1𝑖, 𝑖 = 2, 3, 4 
𝑀1  

𝑹13 = 𝑹12𝑹23 

𝒕13 = 𝒕12 + 𝑹12𝒕23 

𝑹14 = 𝑹12𝑹23𝑹34 

𝒕14 = 𝒕12 + 𝑹12𝒕23 + 𝑹12𝑹23𝒕34 

Where 𝒑𝑖  is the trajectory estimated from 𝑀𝑖 
(5.3) 

 

 

(a) X-Time plot 

 

(b) Y-Time plot 

 

(c) Z-Time plot 

 

(d) 3-D plot 

Figure 5.26: The initial trajectories estimated from ArUco markers 
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(a) X-Time plot 

 

(b) Y-Time plot 

 

(c) Z-Time plot 

 

(d) 3-D plot 

Figure 5.27: The aligned trajectories estimated from ArUco markers 

 

(a) Aligned ground truth trajectory 

 

(b) 3-D plot of the trajectory 

Figure 5.28: The ground truth trajectory estimated from ArUco Markers 

The estimated result from the proposed algorithm is shown in Figure 5.29, and using 

world frame mentioned in Section 4.1 as the coordinate system of the estimated trajectory, 

and the scale factor to the real-world is not accurate as it is determined through manual 
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measurement. To determine the performance of the proposed algorithm in real-world 

scenarios, it is necessary to calculate the optimal scale factor and relative pose to align 

the estimation results with the ground truth. 

 

(a) Estimated trajectory 

 

(b) 3-D plot of the trajectory 

Figure 5.29: The estimated trajectory from proposed algorithm 

In the indoor experiments, the performance is determined by the root-mean-square 

error (RMSE) over time indices with both ground truth and estimations from proposed 

algorithm, the matched trajectories are shown in Figure 5.30. Then calculate the scale 

factor and rotation between two trajectories by solving Equation (5.4), transform the 

coordinate system of ground truth to the world frame, and move the start position of two 

trajectories to the origin, the aligned result is shown in Figure 5.31. 

 

(a) Matched trajectories before alignment 

 

(b) 3-D plot of the trajectories 

Figure 5.30: The trajectories matched by time indices before aligning the scale factor 

and coordinate system. 
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(a) Estimated result after alignment 

 

(b) 3-D plot of the estimated result 

Figure 5.31: the estimated trajectory after aligning the scale factor and coordinate 

system. 

Table 5.10 shows the performance of all 10 experiments, including trajectory length, 

root-mean-square error (RMSE), maximum error (Max Error), the ratio between RMSE 

and the trajectory length, and the ratio between the number of output positions and the 

number of input camera images during estimation. 

Table 5.10: The estimated results of indoor hallway experiments 

Experiment 

Number 

Trajectory 

Length 

RMSE Max Error 𝑅𝑀𝑆𝐸

Trajectory Length
 

Estimate 

Rate 

#1 24.446 m 0.498 m 0.957 m 2.04 % 37.5 % 

#2 21.422 m 0.212 m 0.493 m 0.99 % 34.1 % 

#3 26.400 m 0.863 m 1.583 m 3.27 % 35.0 % 

#4 29.185 m 0.684 m 1.282 m 2.34 % 38.8 % 

#5 26.091 m 0.361 m 0.898 m 1.38 % 36.3 % 

#6 24.654 m 0.526 m 1.111 m 2.13 % 38.1 % 

#7 22.670 m 0.545 m 1.198 m 2.40 % 32.0 % 

#8 23.773 m 0.490 m 1.189 m 2.06 % 34.4 % 

#9 27.261 m 0.378 m 0.893 m 1.39 % 38.6 % 

#10 28.267 m 0.271 m 0.730 m 0.96 % 40.9 % 

Average 25.417 m 0.512 m  2.01 % 36.6 % 

 

 min
𝑹𝑤,𝑠

∑ 𝑹𝑤𝒑𝑘 − 𝑠𝒒𝑘
𝑘

 

𝑹𝑖𝑗 ∈ SO(3), 𝑠 ∈ ℝ 

𝒑𝑘 ∈  ℝ
3×1,the position of 𝑘th matched pair from ground truth trajectory 

𝒒𝑘 ∈  ℝ
3×1,the position of 𝑘th matched pair from estimated trajectory 

(5.4) 
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The results show that the proposed algorithm can operate in real-world scenario, 

achieve real-time demand estimation by downsampling through reliability testing, in 

average, about 65% of input images are discarded and can still estimate the entire camera 

trajectory. While some experiments show higher errors due to drifts but all experiments 

are able to estimate the pattern throughout the trajectory. For example, Figure 5.32 shows 

the accurately estimated result, can even track the small movement in the Y-direction 

while walking. In Figure 5.33, the estimated trajectory has drifts, but the motion after 

drifts occur remains consistent with the ground truth trajectory. All estimated results are 

detailed in Appendix A. 

 

(a) Estimated trajectory 

 

(b) Details of the trajectory 

Figure 5.32: Estimated result of experiment #2 

 

(a) Estimated trajectory 

 

(b) Details of the trajectory 

Figure 5.33: Estimated result of experiment #3 
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5.2.3 Outdoor Building Facade Experiments 

In the outdoor building facade experiments, the main purpose of the experiments is 

to validate whether the propose algorithm can handle more complex environments. There 

are 4 cases in total, the first 2 cases are estimate along a building facade, with a few 

checkpoints measured roughly using a tape measure. The remaining 2 cases demonstrate 

the algorithm's capability to estimate across different scenes but have no comparable 

references. 

Case 1: Moving straight and U-turn along building facade 

In this case, as shown in Figure 5.34, the target plane is the building facade with 

windows in the left side of the camera frame, the camera moves forward for 13 meters, 

then turns around, continues forward for 5 meters and stop the estimation. Some camera 

frames during estimation are shown in Figure 5.35. The estimated trajectory is shown in 

Figure 5.36, the errors of the checkpoints are shown in Figure 5.37 and Figure 5.38. The 

estimated result shows that the pattern of trajectory and the designed trajectory are 

consistent, but the estimated trajectory has more error compared to indoor experiment. 

Possible reasons include the interference from floor tiles and inaccuracies in the scale 

factor to the world. 
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(a) Experiment scenes (b) Designed trajectory and checkpoints 

Figure 5.34: The experiment scene of case 1 

   

(a) Frame 1 (b) Frame 2 (c) Frame 3 

   

(d) Frame 4 (e) Frame 5 (f) Frame 6 

Figure 5.35: Camera frames from case 1 during estimation 
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Figure 5.36: Estimated trajectory of case 1 

 

(a) 1.276 m error in X-direction at 

checkpoint (13,0) 

 

(b) 0.026 m error in Y-direction at 

checkpoint (13,0) 

Figure 5.37: Estimated result at checkpoint (13,0) 

 

(a) 0.326 m error in X-direction at 

checkpoint (8,0) 

 

(b) 0.087 m error in Y-direction at 

checkpoint (8,0) 

Figure 5.38: Estimated result at checkpoint (8,0) 
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Case 2: Moving forward in XY plane along building facade 

Case 2 and case 1 are executed in the same location, as shown in Figure 5.39, the 

designed trajectory moves forward in the X and Y directions, passing through the 

checkpoints located at (5,1), (8,0) and (10,1). Figure 5.40 shows the camera frames during 

the estimation. The estimated trajectory is shown in Figure 5.41, the errors of the 

checkpoints are shown in Figure 5.42, Figure 5.43 and Figure 5.44. The estimation result 

is similar to Case 1, the trajectory pattern is consistent with designed trajectory but has 

quite cumulative errors. 

 
 

(a) Experiment scenes (b) Designed trajectory and checkpoints 

Figure 5.39: The experiment scene of case 2 
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(a) Frame 1 (b) Frame 2 (c) Frame 3 

   

(d) Frame 4 (e) Frame 5 (f) Frame 6 

Figure 5.40: Camera frames from case 2 during estimation 

 

Figure 5.41: Estimated trajectory of case 2 
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(a) 0.096 m error in X-direction at 

checkpoint (5,1) 

 

(b) 0.015 m error in Y-direction at 

checkpoint (5,1) 

Figure 5.42: Estimated result at checkpoint (5,1) 

 

(a) 1.679 m error in X-direction at 

checkpoint (8,0) 

 

(b) 0.223 m error in Y-direction at 

checkpoint (8,0) 

Figure 5.43: Estimated result at checkpoint (8,0) 

 

(a) 1.333 m error in X-direction at 

checkpoint (10,1) 

 

(b) 0.063 m error in Y-direction at 

checkpoint (10,1) 

Figure 5.44: Estimated result at checkpoint (10,1) 
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Case 3: Moving straight along building facade in a noisy environment 

The case 3 tests the proposed algorithm with the camera moves in a straight line 

along a building, the distance from camera to the building is about 7 meters, and there are 

some bicycles between the camera and the building. The experiment scene is shown in 

Figure 5.45, the camera frames during estimation are shown in Figure 5.46, the estimated 

trajectory is shown in Figure 5.47. The estimated result shows that the propose algorithm 

can identify features in noisy environments and estimate the camera motion successfully. 

 

Figure 5.45: The experiment scene of case 3 

   

(a) Frame 1 (b) Frame 2 (c) Frame 3 

   

(d) Frame 4 (e) Frame 5 (f) Frame 6 

Figure 5.46: Camera frames from case 3 during estimation 
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Figure 5.47: Estimated trajectory of case 3 

Case 4: Moving straight along building facade with window reflections 

Case 4 tests the proposed algorithm along the building facade, the target plane is the 

windows with reflections on the building facade. As shown in Figure 5.48, the windows 

reflect the view with fences, trees and the road on the opposite side. the camera frames 

during estimation are shown in Figure 5.49, the estimated trajectory is shown in Figure 

5.50. The proposed algorithm can identify the correct structural lines of the facade, 

without being disrupted by reflected scenes.  

 

Figure 5.48: The experiment scene of case 4 
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(a) Frame 1 (b) Frame 2 (c) Frame 3 

   

(d) Frame 4 (e) Frame 5 (f) Frame 6 

Figure 5.49: Camera frames from case 4 during estimation 

 

Figure 5.50: Estimated trajectory of case 4 

5.2.4 Summary of Real-World Experiments 

In this section, the proposed algorithm is verified in real-world environments. In 

Section 5.2.2, the indoor hallway experiments with marker-based ground truth 

demonstrate that the algorithm can operate in real-time demand and perform well in real-

world scenarios with average RMSE of 0.512 m (2.01%). And the outdoor experiments 
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are tested in Section 5.2.3, despite the lack of precise ground truth and scale factor to 

quantify performance, the results indicate the proposed algorithm can operate in noisy 

environments such like sunlight, obstacles and reflections, resulting in trajectory patterns 

that are consistent with camera motion. 
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Chapter 6  
Conclusions and Future Works 

In this chapter, the conclusions of the thesis and potential improvements are 

discussed in Section 6.1 and Section 6.2. 

6.1 Conclusions 

In this thesis, a monocular visual odometry is utilized for localization in urban 

environments by tracking the grid mesh plane made up of horizontal and vertical 

structural lines. The proposed algorithm is validated through simulations, indoor and 

outdoor experiments, demonstrating its ability to estimate in real-time. 

In the simulations, the simulation results show that the algorithm is able to estimate 

in noisy environments. And with adding reliability testing, it can make the algorithm 

estimate in real-time demand without sacrifice the estimated accuracy, even enhance the 

smoothness of the estimated trajectory. 

In the real-world experiments, the estimated results from indoor experiments are 

compared with the ground truth generated by marker-based estimation, the comparison 

results show that the proposed algorithm performs well in real-world estimation. The 

outdoor experiments in 3 different scenarios show that the proposed algorithm is able to 

operate in complex environments with interferences like sunlight, obstacles and window 

reflections. Unfortunately, because of wind and light interference, the outdoor 

experiments do not have marker-based ground truth to quantify performance of the 

proposed algorithm in outdoor estimation, but the trajectory patterns are still consistent 

with the camera motion during estimation. 

In generally, the estimated method of the proposed algorithm is similar to the marker-

based method, so the performance of the proposed algorithm is compared to the marker-
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based estimation, shows that it can perform almost same performance without the need 

for additional markers in the scene. As for the disadvantages of the proposed algorithm, 

it requires structural lines that can form rectangles to estimate the camera pose, the 

application scenarios are very limited, some possible applications are patrol robot moving 

in warehouses or around buildings, and there is still some work to improve the algorithm 

so that it can be used in more scenarios, the potential improvements are discussed in 

Section 6.2. 

For the number of features needed and the execution time, the proposed algorithm 

can estimate the camera pose using only 20 to 30 lines and execute at 20Hz in Python 

environment without other optimization in computing speed. According the experiments 

in [12: Mur-Artal et al. 2015], ORB-SLAM is set to extract 1000 corner points in similar 

image resolution to ensure it can calculate the camera pose. In the system proposed in [8: 

Zhou et al. 2015], the feature points and feature lines are limited to 40 points and 24 lines, 

the authors implemented their system in MATLAB, which executes at about 2Hz, whereas 

the C++ implementation runs at an average of about 40Hz. Considering the number of 

extracted features, if the proposed algorithm can be implemented in more efficient 

programming languages such as C/C++, it will be more competitive in lower budget 

applications since fewer features are required. 

6.2 Future Works 

Although the proposed algorithm can track the grid mesh plane and localize the 

camera trajectory, there are some issues that need solving to enhance performance and 

apply it in a wider range of scenarios. 

First issue is measuring the real-world scale factor. The current method is to 

manually measure the distance to the target plane and input the measurement into the 

algorithm before starting the estimation. The process can be completed automatically by 
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adding additional sensors such as Time-of-Flight (ToF) sensor or Inertial Measurement 

Unit (IMU) to calculate the precise value. 

Second issue is the number of target planes, in Section 4.4, if the planes detected in 

camera frame are not the stored target plane, the algorithm will discard these planes and 

only retains the information about the stored target plane. The process could be improved 

by storing the planes detected in camera frames, creating a map contains different planes 

and estimate camera pose with the planes individually, and then refine the results using 

filtering methods. It allows the algorithm to estimate in more scenarios without being 

constrained by moving along the same plane. 

The third issue continues the second issue, if the algorithm could store complete 

information about the features, the loop closure process could be added to the algorithm 

to increase the estimate stability and long term accuracy. 
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Figure A.1: The 2-D plot of estimated trajectories and ground truth 
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Figure A.2: The 3-D plot of estimated trajectories and ground truth 
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