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Monocular Visual Odometry Based on Line Features____oh'

Grid Mesh Plane and Rectangular Geometric Constraint |

Student: Yun-Xian Li Advisor: Feng-Li Lian, Ph.D.

Department of Electrical Engineering

National Taiwan University

ABSTRACT

Nowadays, mobile robots can perform complex tasks independently, reducing the
requirement for human involvement and thus significantly improving the convenience of
our everyday lives. To perform tasks independently, mobile robots need to determine their
location, sense its surroundings for navigation and avoid obstacles.

This thesis proposes a monocular visual odometry for a mobile robot localization in
urban environments. The proposed algorithm detects the horizontal and vertical structural
lines on a building facade using image processing techniques including line segment
detection, segments merging, clustering and outlier removal. Then, the rectangular
geometric constraint is applied to form the grid mesh plane in 3-D space using the
detected line features, and the mobile robot position is estimated by tracking the plane in
camera images. For the proposed algorithm to operate in the real-time, a reliability testing
is involved to enhance the calculation efficiency by downsampling data via feature

reprojection.

doi:10.6342/NTU202402036



l'{./f/
I

The proposed algorithm in this thesis has validated the performancew'rou&
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simulations and both indoor and outdoor experiments, demonstrating its cagb; 16,&{ ’1
. A

localization in noisy urban environments.
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Chapter 1
Introduction \Npdl

NI

In this chapter, the motivation of this thesis is first presented in Section 1.1."The
problem formulation is provided in Section 1.2. The contribution of this thesis is
summarized in Section 1.3. Finally, the organization of this thesis is provided in Section

1.4.

1.1 Motivation

Nowadays, mobile robots are able to perform complex tasks without human
intervention and have been widely used in various fields such as military, agriculture and
domestic appliances fields, making our lives more convenient.

For a mobile robot to perform tasks autonomously, it needs to be able to determine
its location, sense its surroundings for navigation and avoid obstacles. The traditional
method is Global Positioning System (GPS) [48: Limitd 2007] with a prior map. A GPS
device must receive signals from at least four satellites to get reliable position estimation
[49: Penn State], as illustrated in Figure 1.1, the GPS cannot be used indoors or in
sheltered environments since the radio signals from the satellites are affected by walls
and other obstacles. But according [1: Vatansever & Butun 2017], even in outdoor
environments, there are many factors that can affect GPS accuracy, such as satellite and
receiver clock error, electronic noise, uncertainty in the position of the satellites and
multipath error (Figure 1.2).

In complex environments like forests and urban canyons, there are various sensors
can improve positioning accuracy. For example, in [4: 7 & & %5 & 2023], the
authors improve the GPS accuracy with real time kinematic(RTK) technique, and utilize

LiDAR for creating point cloud data of the surroundings for localization in orchards.
1
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Other examples in urban environment, Liao et al. [5: Liao et al. 2023] pr0V1d lm‘ *®

~
dataset and benchmarks which includes color image from fisheye cameras_r, stijf

from perspective cameras, point cloud data from LiDAR and pose data of th

GPS/IMU. Yin et al. [6: Yin et al. 2022] provide both indoor and outdoor dataset"u’sin'g‘ d
ground robot with multiple sensors, includes color camera, infrared camera, event camera,
stereo camera, LIDAR, IMU and GNSS receiver. These datasets allow researchers to

study various positioning methods with multiple sensors.

NSS Satel

i I|

Figure 1.1: The radio single from satellite is blocked by obstacles.[3: Strandjord et al.
2020]

Q
NN

Recorded Actual
Location Location

Figure 1.2: The multipath error due to GPS signals reflecting off of tall buildings.[2:
Hutt et al. 2021]
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maintenance costs, commercial applications prefer visual methods over otli

sensing methods for localization. In [50: Tesla], Tesla uses vision modid_el’t___
ultrasonic sensors for close-range sensing, claiming that the vision module caﬁ '{aéhi'e\‘/.e'
the same function with ultrasonic sensors through software update. By the test in [51: It's
Only Electric], the vision module can achieve the same function as ultrasonic sensors, but
its performance is poorer. Such as the minimum safety distance and larger blind zone as

shown in Figure 1.3.

(a) Safety distance test (b) Obstacle test

TESLAVISION DEAD ANGLE

(c) Tesla Vision dead angle
Figure 1.3: The test result from [51: It's Only Electric]
Considering the trend of research in visual localization and the applications in the
urban environments, when the mobile robot is near a building, the building will block the

GPS signals. This thesis will concentrate on the visual localization method near the

doi:10.6342/NTU202402036



buildings with specific features, such as the building facade, doors and windows. The

goal is to achieve visual localization in these challenging environments.

N

1.2 Problem Formulation

This thesis is aiming to achieve monocular visual localization near the buildings
under following constraints: planar, repetitive and regular grid-like features. Some
example scenarios are shown in Figure 1.4. These features are not suitable for standard
visual localization methods due to their lack of uniqueness and varied depth information.
As illustrated in Figure 1.5, to achieve localization in such environments, there are two
main tasks need to be addressed.

The first task is to find the target plane, the camera captures the target plane and
surrounding scenes, so it is necessary to find the boundaries of the plane, then extract
valid features from the plane for use in subsequent localization processes, such as the
structure lines and the corner points on the plane.

After identifying the target plane, the second task is to establish the camera's position
relative to the target plane. Determine the relative angle between the plane and the camera
using the identified features, then track the target plane in camera’s view and estimate the

6 degrees-of-freedom poses of the camera.

1.3 Contribution

The contributions of this thesis can be divided into following two parts.

First is the plane tracking method with monocular camera, this thesis uses structure
lines as features similar to [7: Liu et al. 2022] and [8: Zhou et al. 2015], However, unlike
matching features through pixel patches on the lines, this thesis matches features based
on their position and geometric relation, so the matching process is not affected by

changes in time, light and shadow.

doi:10.6342/NTU202402036



features on the plane, the depth estimation of features can be simplified as linear é'qi"fé"%iﬁ'&:jﬁs'

without iteration.

=X

(a) Glass curtain wall (b) Building facades

(c) Windows in hallway (d) Doors in hallway

Figure 1.4: The scenarios of grid-like planar features

doi:10.6342/NTU202402036



Input image Plane detection

Pose estimation

Figure 1.5: Schematic diagram of localization process

1.4 Organization of the Thesis

The rest of this thesis is organized as follows. The background and relative literature
are discussed in Chapter 2. And some related algorithm implemented in the proposed
algorithm are introduced in Chapter 3. In Chapter 4, the details of the proposed algorithm
are introduced, including an overview of entire algorithm, feature extraction and motion
estimation. The experiment result and analysis are presented in Chapter 5, Finally, the

conclusions and future works of this thesis is discussed in Chapter 6.

doi:10.6342/NTU202402036



Chapter 2

Background and Literature Survey |

..-'\H :

In this chapter, the background and literature survey of the visual localization

methods are discussed. Section 2.1 introduce the diverse visual sensors employed in

visual odometry. The comparison of different data processing methods and estimation

methods are provided in Section 2.2 and Section 2.3. The overview classification is

summarized in Figure 2.1.

Visual Localization

Type of
Visual Sensors

Monocular
[11][12][13][14]

Stereo
[15][16]

RGB-D
[17][18][19]

Event
[20][21]

Data Processing Estimation
Methods Methods

Direct-Based/ Filter-Based

—{ Semi-direct-Based [8]1[35][37]
[22][23][24]

Optimization-

Feature-Based Based

—  [71[81[25][27] [7][14][38]

[28][29]

Machine learning-
- Based
[30][31][32][33]

Figure 2.1: Different methods for visual localization

2.1 Type of Visual Sensors

The visual odometry relies on visual sensors to offer the information about the

environment. The typical sensor types include monocular, stereo, RGB-D and event

doi:10.6342/NTU202402036



camera, each type has its own advantages and disadvantages, and the data proeessing

methods and suitable scenarios are also different.

i

Monocular cameras are cost-effective, common and easy-to-use sensors: Hlo‘w-evvelt,‘
they suffer from scale ambiguity problem, making it challenging to accurately estimate
the length of translational movement from features [11: Choi et al. 2013]. ORB-SLAM
[12: Mur-Artal et al. 2015] uses ORB features to compute the relative pose between two
frames in parallel two geometrical models, try to recover the unique solution of relative
pose. Structure-SLAM [13: Li et al. 2020] uses convolutional neural network and
Manhattan World assumption to estimate pose from point, line and planar features. Qin
et al. [14: Qin et al. 2018] present a method that tightly couples pre-integrated IMU
measurements and feature observations to achieve highly accurate and robust estimation.

Stereo cameras use a pair of cameras, the left camera is generally taken as the pose
of the stereo camera, and the pose of right camera is fixed from left camera, so the depth
of the pixels in the image can be estimated. But it requires higher computational cost to
calculate depth from two images, and the camera needs to be well calibrated to get
accurate results. Lin et al. [15: Lin et al. 2022] use stereo camera to obtain point cloud
map, and detect the point cloud changes to estimate trajectory. Zhang et al. [16: Zhang et
al. 2015] present a graph-based SLAM using 3-D straight lines as features, and uses two
different representations to parameterize 3-D lines for initialization and optimization,
performs better result in line-rich environment.

RGB-D cameras combine an RGB camera with a depth sensor, like an infrared light
camera and projector, utilizing structured-light or time-of-flight (ToF) methods to
measure the pixel depth directly, simplifying the depth estimation process. However, the
depth sensors are interference by observed material and sunlight, and the measurement

range is restricted. Lin et al. [17: Lin et al. 2023] propose a key-frame based method with

doi:10.6342/NTU202402036



intrinsic keyframe selection mechanism, effectively reduces the tracking error: Cheng.'.et
al. [18: Cheng et al. 2023] present a system that fuses 2-D semantic informatio;i‘lﬁom

m
RGB image and 3-D geometric information from depth sensor. The framework p!rOp-(;se:(l
in [19: Zhao et al. 2019] is able to operate in dynamic environments by segmenting
objects and categorizing them as static or dynamic objects.

Unlike other conventional visual sensors that provide the entire images at a fixed
frequency, event cameras have independent pixels that transmit data solely when
brightness changes in the scene at the time they occur. Thus, the sensor output is
asynchronous and has high temporal resolution, resulting in low power consumption and
suitable for tracking fast motion and high-speed dynamics without suffering from motion
blur. The system proposed in [20: Weikersdorfer et al. 2013] tracks the events at edges
from the scenes and achieves real-time performance on standard computing hardware.
Rebecq et al. [21: Rebecq et al. 2017] present an event-based visual odometry that can
track fast camera motions, unaffected by motion blur, and operates very well in high
dynamic environments.

According to the problem to be solved in this thesis, the featureless planar scenarios
are not suitable for stereo camera and event camera, and considering the hardware cost
and computation cost, a monocular camera is selected for this thesis. The depth estimation

for 3-D reconstruction can be addressed using the data processing techniques outlined in

Section 2.2.

2.2 Data Processing Methods

The data processing methods can be categorized into three types: direct based,
feature-based and machine learning-based. These approaches have their trade-offs and

considerations, such as system complexity, computation cost, and application scenarios.
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Direct-based methods directly operate on the pixel intensity or colorvalues frdfn
sensor raw data. Semi-direct methods are similar to direct-based method but conc;%ate
on the pixels with high intensity gradients. LSD-SLAM [22: Engel et al. 2014} ailloQé to
estimate in large-scale environments with pose estimation based on direct image
alignment and 3-D reconstruction with semi-direct depth maps. The visual SLAM system
in [23: Silveira et al. 2008] aligns the reference image with successive frames directly and
selects image regions to estimate motion by plane-based epipolar geometric method. SVO
[24: Forster et al. 2017] uses direct-based methods to track and triangulate pixels, and
uses feature-based methods for optimization of structure and motion.

Feature-based methods focus on specific areas within an image that contain unique
information known as features. These features can take on various forms, including points,
lines, planes, markers, or specific objects. ORB-SLAM3 [25: Campos et al. 2021] is one
of the fundamental feature-based SLAM that extracts the features using ORB descriptor
[26: Rublee et al. 2011]. In order to extract more useful information from images, in [7:
Liu et al. 2022], [8: Zhou et al. 2015], [27: Gomez-Ojeda et al. 2019], and [28: Guan et
al. 2023], both point features and line features are extracted to obtain more robustness
and accurately estimation. Sun et al. [29: Sun et al. 2018] propose a statistical information
grid-based plane extraction algorithm for tracking planes in indoor environments,
achieving high accuracy and robustness in both on-board and hand-held applications.

Machine learning-based methods integrate valuable additional information from the
environment with artificial neural networks to train models that can replace conventional
processes. The framework proposed in [30: Gelen & Atasoy 2023] uses three different
models to achieve pose estimation with an event camera. The SLAM system proposed in
[31: Yang & Scherer 2019] improves the accuracy of monocular SLAM by integrating

semantic scene understanding with traditional methods during feature extraction. The

10
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SLAM systems proposed in [32: Liu & Miura 2021] and [33: Ran et al. 20211 dse

semantic segmentation to recognize dynamic objects, and achieve precise estimation:in
R
dynamic environments. BN | i}

Since corner points and structure lines are valuable information in scenarios with

grid-like planar features, feature-based methods are selected in this thesis.

2.3 Estimation Methods

The estimation methods can be separated into two main categories: filter-based
methods and optimization-based methods.

Filter-based methods consist of two main parts: a prediction step and an update step,
they compare predicted state with the measurement from sensor data to rectify the current
state, reducing estimation error. Such as extended Kalman filter (EKF) [34: Kalman 1960]
used in [8: Zhou et al. 2015] and [35: Bloesch et al. 2015]. And error-state EKF [36: Sola
2015] used in [37: Chamorro et al. 2022].

Optimization-based methods achieve the optimal estimation by minimizing the
designed cost function. Consequently, they outperform filter-based methods in terms of
accuracy but requires more computational resources. In [14: Qin et al. 2018], the system
optimizes camera pose with pose graph optimization. Another commonly used method is
bundle adjustment, which is used in [7: Liu et al. 2022]. The visual-inertial odometry
proposed in [38: Mueggler et al. 2018] expresses the optimization problem as a nonlinear
least square problem and apply it with standard numerical solvers.

Since the monocular camera is the sole sensor utilized in this thesis, the proposed
system is relatively simple compared to existing methods. As a result, optimization-based
methods can achieve accurate estimation without requiring extensive computational

resources.

11
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Chapter 3
Related Algorithms

In this chapter, the existing algorithms and techniques related to the. propose

N

|
algorithm are presented. This includes the pinhole camera model in Section 3.1,
representation method of line features in Section 3.2, the clustering algorithm used in the

proposed algorithm in Section 3.3, and the optimization algorithm in Section 3.4.

3.1 Pinhole Camera Model
According to [52: Savarese & Bohg 2023] and [53: Collins 2007], the pinhole
camera model is a mathematical representation used to establish a direct correspondence

between 3-D points in the real world and their projection onto a 2-D image in pixels.

o

Camera center

Y
Figure 3.1: Illustration for pinhole camera model
The pinhole camera model projects a 3-D scene point onto a 2-D image point through
perspective projection. The camera's intrinsic parameters, such as the image center
(cx,¢y) and focal length f, are well-defined. As illustrated in Figure 3.1, consider a 3-
Dpoint P atposition (X,Y,Z) relative to the camera center O, where the Z axis is the

12
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optic axis of the camera. First, project point P onto the film plane (X-Y plane at Z=f)

using perspective projection as Equation (3.1), and obtain the projected point"%.;at
i1 A

|
position (x,y, f). € N

X
x=f=
Z
fY
y=1Iyz 3.1)
Cx  Film plane Image plane
b p (0,0) gep
u H
Cx < i
v H
................... . S
(0,0) | Camera center (cx, €y) Camera center
y

Figure 3.2: Coordinates of film plane and image plane

After determining the position of point p, the next step is mapping the point p to
the 2-D image coordinate in pixels. As illustrated in Figure 3.2, the position (x,y,f) of
the point p on film plane in real world scale can be mapped to the position (u,v) on
the image plane in pixels as shown in Equation (3.2).

U=Cy+Xx

v=c,+y
g (3.2)

On the contrary, Equation (3.1) and Equation (3.2) can also map the point from
image pixels to film plane in real world coordinates. However, the 2-D image lacks the
depth information, resulting in the transformation outputting homogeneous coordinates

[54: Wikipedia] without providing the actual depth from camera images.

13
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3.2 Line Representation

The common way to represent a line segment is by using endpoints, like LSD:;[39
Grompone von Gioi et al. 2010], EDLines [40: Akinlar & Topal 2011] and FLD!ﬁsed 1n
[41: Lee et al. 2014], they all output the endpoints of the detected line segments. But in
this thesis, the geometry relation of line features as the input for localization, it is more
effective to compare the distance and angle between line segments using line equations
rather than endpoints in computation.

The straight line can be represented in general form as Equation (3.3), and can be
parameterized by a point (b, m). However, this parameterization method has a problem

when it encounters a vertical line, resulting in unbounded values for the slope parameter

m.

| (x1,¥1)

0"

Figure 3.3: The parameters for a line

y=mx+b
(3.3)

r = xco0s6 + ysinf
(3.4)

Thus, for computational reasons, [42: Duda & Hart 1972] proposed the use of the
Hesse normal form to express the equation of a line as Equation (3.4) and illustrated in

Figure 3.3, and can be parameterized by a point (7, 8).

14
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According to Equation (3.3) and Equation (3.4), a line with two knownspoints

(%1,¥y1), (x2,y,) can be represented as a point (r,8) using Equation (3.5). E- i
i1 A
(| &
Xy — X 2\
6 =tan! (— #) |
Y2 =M1

r = x1c080 + y,sinf
(3.5

3.3 Density-Based Spatial Clustering of Applications
with Noise

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a
clustering algorithm proposed in [43: Ester et al. 1996]. Unlike other clustering
algorithms, it groups together points with many nearby neighbors and treats points with
distant neighbors as outliers, so it is not necessary to know the number of groups before
clustering.

DBSCAN requires two parameters: the radius € to define the neighborhood with
respect to other points, and the minimum cluster size MinPts. The points in a dataset D
follow these definitions:

Definition 1: The e-neighborhood of a point p is defined by Equation (3.6).

N, (p) ={q € D|dist(p,q) < €}
(3.6)

Definition 2: As shown in Equation (3.7), a point p is core point if its
neighbors with in distance ¢ are larger than MinPts.

IN.(p)| = MinPts
3.7)

Definition 3: A point p is directly reachable from a point g with respect to
g, MinPts if it follows Equation (3.8).
{p € N:(q)
|N:(p)| = MinPts (3.8)

15
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Definition 4: A point p is reachable from a point g if there ‘isqa pe&h
P1) - PnP1 = q,Pn = p such that p;, is directly reachable from pl;:q- \
Definition 5: All points not reachable from any other point are outliers!.i 2
After classifying all the points in D, if p is a core point, then it forms a cluster
together with all points that are reachable from it. An example is shown in Figure 3.4.
@ Core point

@ Reachable point
@ Outlier

Cluster A+

"Cluster B

Figure 3.4: An example of clustering result: The circle radius represents &, MinPts=4.
Red and green points indicate cluster members, while blue points signify outliers.

3.4 Random Sample Consensus

Random Sample Consensus (RANSAC) is an iterative method proposed in [44:
Fischler & Bolles 1981], it estimates parameters of a mathematical model from a set of
observed data without being influenced by outliers. Therefore, it also can be interpreted
as an outlier detection method.

The RANSAC algorithm consists of following steps that are iteratively repeated:
Step 1: A sample subset containing minimal data items is randomly selected as
hypothetical inliers.

Step 2: A fitting model is calculated using only the elements of the hypothetical

inliers.

16
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Step 3: All data are then tested against the fitted model, considering then as

inliers and outliers based on a defined error threshold, the inliers are calléﬁ-;the
A
[| &
consensus set. "N |

Step 4: The estimated model is quite reliable when a significant number of data
points have been classified as part of the consensus set.
This process is iterated a set number of times, refining model with a consensus set
size larger than the previous one.
The number of iterations k can be roughly determined based on the desired

probability of success p and the size of hypothetical inliers n. Assuming w represent

the probability of selecting an inlier from the entire data.

number of inliers in data

" number of points in data (39)

A common case is that w is not well known because the number of inliers in data
i1s unknown before running the RANSAC algorithm, but a rough value can be given.
Given a rough value of w, select the size of hypothetical inliers n, let p be the
probability of at least one successful model estimation occurring, the probability that the
algorithm failing to produce a successful model estimation can be expressed as Equation
(3.10), then k can be determined by taking the logarithm of both sides. Figure 3.5
illustrates an example of line fitting for a dataset containing outliers.

1—p=(1-whk

_ 1og(1 —p)
log(1 —w™) (3.10)
17
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Figure 3.5: An example of line fitting with RANSAC, red dot line is the fitted line with
inlier, blue dot line is the fitted line with entire dataset.
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Chapter 4
Proposed Algorithm \ (

N

In this chapter, the details of the proposed algorithm are discussed. the overyiew of
the algorithm is presented in Section 4.1, line segment detection and merging methods
are discussed in Section 4.2, Section 4.3 introduces the feature extraction process, and
motion estimation procedures are explained in Section 4.4. Lastly, the state updating rules

are introduced in Section 4.5.

4.1 Overview

The goal of the proposed algorithm is to achieve the visual localization using a
monocular camera in environments with grid-like planar features. The algorithm takes
the camera stream as input and outputs the camera motion between camera images as
shown in Figure 4.1.

An overview of the algorithm is depicted in Figure 4.2, the algorithm firstly finds
the target plane by detect the lines, and extract features from the target plane. Estimates
motion with RANSAC after matching the features with previous result, and updates the
features before start next estimation.

There are four coordinate systems used in the algorithm: image frame {I}, world
frame {W}, camera frame {C}, and plane frame {P}. A schematic diagram of the

coordinate systems is shown in Figure 4.3.

19
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Figure 4.1: The process of solving visual localization problem
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Figure 4.2: Overview of the algorithm process
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Figure 4.3: The coordinate systems used in the proposed algorithm

The image frame is a 2-D camera image with origin on the top left of image. The
world frame is the coordinate system defined by the target plane, the X and Z axes are
land on the plane with horizontal and vertical direction, and the Y axis is parallel to the
normal vector of the target plane, the origin is fixed as the initial position of the camera.
The camera frame is the coordinate system with the camera position as origin, X axis 1s
parallel to the u axis of the image frame, Y axis is the optical axis of the camera. The
plane frame is the same coordinate system as the world frame, but the origin moves with
the camera center.

The notations used in the proposed algorithm are defined in Table 4.1.

21
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Table 4.1: The notations used in the proposed algorithm

N

Notation | Description
L Set of detected line segments
Ly, Set of weighted line segments
Ly Set of merged horizontal line segments
L, Set of merged vertical line segments
R, Rotation matrix of a quadrilateral

Rotation matrix of the target plane

Set of horizontal line features

Set of vertical line features

distance between target plane and camera

Threshold for minimum segment length

Threshold for add weights

Threshold for identify horizontal and vertical line segments

Threshold for the tolerance distance of quadrilateral corner

Threshold for minimum edge length of quadrilateral

Threshold for minimum angle difference of the target plane

Threshold for minimum distance of add new features

Threshold for success rate of invalid features

4.2 Line Segments Detection and Merging

To detect the target plane in the camera scene, the algorithm must identify structure

lines to create planes. The line extraction method is adopted from [41: Lee et al. 20141, it

will generate the endpoints of detected line segments. However, the detected line

segments may be affected by the light or camera resolution, causing one structure line to

be split into multiple line segments. Therefore, the line segments belonging to the same

structure line will be merged in this process. An example of the process is shown in Figure

4.4.

Let L be the set of all detected line segments, defined as Equation (4.1), where line

segment 1, contains the endpoints position p},p2 in image frame, parameters of the

line equation 7y, 8,, introduced in Equation (3.5).

L= {lll lz, ey ln}
l, = (prlv przv ey en)

pr = (un, vn)

22
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(a) The imput image

(b) The output of line segments detector

(c) Line merging result

Figure 4.4: The process of detection and merging line segments

First, as shown in Algorithm 4.1, remove line segments with a length less than a

threshold Tj, and allocate weights by replicating elements according to a threshold T,

to generate L,,.

23
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Algorithm 4.1: Remove invalid line segments and add weights to valid ling segments
Input: L, T, T,
Output: L,,
L, = {; € L|dist(p{,p}) > T} A\
]
forall [; € L,:
ldlst(pL1 )J

2\l %

1

2

3

4

o. while w > 0:
6 w=w-1

7 Ly < add_element(l;)
8 endwhile

L, <« merge_set(L,,Lg)

10. endfor

Then, as shown in Algorithm 4.2, apply the DBSCAN algorithm using the 2-D
position (r,8) of the line segments in L,,, For each cluster S;, merge the line segments
into one structural line segment, the parameters r, 6 of the merged line segment are the
average value of elements in S;. Project all the endpoints of the line segments onto the
merged line, then the outer boundary of the projected endpoints will be the endpoints of
the merged line segment, as shown in Figure 4.5. Lastly, the merged line segments are

divided into horizontal lines Lj and vertical lines L, by a predefined threshold Tj.

Figure 4.5: Schematic of merging line segments within a cluster.
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Algorithm 4.2: merge line segments of each cluster

Input: L, Ty
Output: Ly, L,

1. S={8,,S,..,S;} « DBSCAN(L,,)
2. Ly<0Q,L,<0
3. foreach §; €S:
4, T = mean(‘v’r elc Sj)
5. 0; = mean(VH ElC S]-)
6. P<0@
7. for all endpoints p;(u;, v;) in [ € §;:
8. r' = u;sind; — v;cosb;
o _ [C?SHj sind;
sinf;  cos0;
r
10. b=U]
11. Let pT = A7
12. P « add_element(p)
13. endfor

14. (p},p]?) = (py,p,) € P|dist(py,p,) is maximum
15. ;= (p}.p}.7.6)
6. if 6, > Ty:

17. Ly, < add_element(l;)
18.  else:

19. L, < add_element(l;)
20.  endif

21. endfor

N

The reason for duplicating the line segments as weights is that DBSCAN clusters

data based on their density, if a structure line is perfectly detected, DBSCAN will treat it

as an outlier because the density is not high enough. Therefore, duplicating the line

segments based on their length will increase the density and allow the data to be processed

in a standard DBSCAN without modifying the algorithm.
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4.3 Extract Line Features from Grid Mesh Plane

After generate the horizontal lines L, and vertical lines L, in Section4i2, Fﬁ%éxf
TR
step is to identify which lines belong to the target plane and estimate the rotation Bétweeﬂ
the target plane and the camera frame.
The extraction process is split into two parts, estimating the relative depth ratio

between lines (Section 4.3.1) and identifying the lines on the same plane to create the

target plane (Section 4.3.2).

4.3.1 Depth Estimation with Rectangular Constraint

Since the scenario of this thesis is grid-like planes, the property of rectangular in 3-
D space can be used to calculate the relative depth of corner points composed of vertical
and horizontal line segments.

First, choose two vertical lines and two horizontal lines from L, and L,, if they
can create a convex quadrilateral within a tolerance threshold T; (Figure 4.6) and the
shortest edge length is larger than a threshold T, to ensure the noise cause by pixel error
is small, the relative depth ratios of corner points can be determined by assuming the
quadrilateral is the perspective projection of a rectangle in 3-D space as shown in Figure
4.7. Using the property that the opposite sides are parallel and have same length, and
using the vector of adjacent sides along with their cross vector as the rotation matrix of

the rectangle with respect to the camera frame, as shown in Algorithm 4.3.
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Radius

(a) A valid quadrilateral with actual cross points or distance from intersection to
endpoint within Ty.

(b) An invalid quadrilateral which distance from intersection to endpoint greater than
Ty.

V

(c) An invalid quadrilateral that isn’t convex quadrilateral.

Figure 4.6: Examples of composing a quadrilateral from line segments.
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Rectangl
Can, Camera Image

Figure 4.7: The rectangle in the camera image as seen through perspective projection

Algorithm 4.3: Estimating rotation matrix of a quadrilateral.

Input: pq,p2, 3,04, f)Cxi €y

Output: R,

1. pi(uqy,vy), 02Uy, vy), p3(Us, v3), pa(Uy, v,) < the corner points of a
convex quadrilateral in image frame, p; € R?*!

2. Let Py(Xy,Yy,Z)), Py(Xy, Yo, Z5), Ps(Xs, Vs, Z3), Pa(Xs, Yo, Z4) be the 3-D
positions of pq,p,, P3, P4 in camera frame, P; € R3*!

3. Assume P;P, and P,P; are same vectors:

X, — X4 X; — X,
Y ,-Y|=|—-Y
| Z4 — 74 Zs— 17,
4.  multiply by focal length f:
Xy — X1 fX3—fX,
Y- =| -1
fZy = fZ1) \fZ3—fZ,
5. with Equation (3.1) and Equation (3.2) of camera model, obtain:
Uy Y, —u Y uz¥; —u,Y,
Y,—-Y ‘ =| ¥3-Y ‘
v, Y, — 1Y) v3Ys — 1Y,

6. Let Y; =1, solve the relative depth Y,,Y;,Y, respectto Y; as alinear
equation below:

Uy —uz Uy [tz Uy
[vz —V5 v4l ;| = lvll
1 -1 1llyl L1
T
7. The 3-D pOiI’ltS Pi — (Xir YirZi)T — ((ui_;x)yi ’ Yi' (Cy ;l)yl)
P3P,
8 Vx= [P3—P4|
PP
Z 7 |Py—Py

10 VY = VZ X VX
11 R(’] = [VX Vy Vz]
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) A f./

However, Algorithm 4.3 does not check if all four angles are right qngie oﬁ\ b

constraint is suitable for a parallelogram, resulting the output matrix notj})e;i g f

matrix. If the right angles constraint is added, it cannot be solvable as lin'e_a’rx[ w ___"":"‘
and increase the computational complexity. In this thesis, the result is approxfnaaité;i “[:o' |
rotation matrix R, using singular value decomposition, as shown in Equation (4.2), but
a drawback of the approximation is that the algorithm cannot determine the camera scene
does not adhere the grid-like assumption.

usvT = SVD(R,")

Rq = UVT (4.2)

4.3.2 Target Plane Detection and Line Features Extraction

After calculating the rotation matrices of all the possible quadrilaterals, the next step
is to identify which quadrilaterals are the rectangles lying on the same plane in 3-D space
and extract the position of the lines on the plane. an example is shown in Figure 4.8, note

that the quadrilaterals in the figure are just for indication, not complete results.

- —

(a) Clustering quadrilaterals (b) Identified plane and valid features
Figure 4.8: An example of plane detection and features extraction

Let R ={R{,R,,...,R,} be the set contains all possible rotation matrices of

quadrilaterals obtained from Section 4.3.1, clustering them using DBSCAN, and the
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distance function of calculate the angle 6;; between rotation matrices R;,R;7is shown

in Equation (4.3).

i i

L tr(R;RjT) — 1 W
2 (4.3)

|6;;| = cos™
After finishing clustering, select the largest cluster as the candidate target plane,
calculate the rotation matrix R, of the target plane respect to the camera frame.
Let C ={Ry,R,, ..., R;} be the set of the largest cluster
USVT = SVD(ZRy)
1 Tiz T3

21 T2 To3
31 T3z T33

R, = =yyT

(4.4)
Let a point Py, (Xy, Yy, Zp) be the reference point on the target plane in 3-D space in
camera frame, obtain the plane equation with P, and R; (Equation (4.5)). This thesis
selects one of the endpoints belongs to a line segment in the cluster C as reference point.
Ax +By+Cz+D =0

Where:
A =T1y1133 = 131773
B = 113131 — 114733
C =111723 — T3l
D = —(AX, + BY, + CZ,) 4.5)

Determine the 3-D positions “P(“X,€Y,¢Z) of each line's endpoints (u,v) in
camera frame by solving Equation (4.6), transform the endpoints from camera frame to
plane frame using Equation (4.7) with R, from Equation (4.4), the target plane is the X-
Z plane in world frame and the Y positions of all endpoints are equal the distance from
the target plane to the camera, this distance lacks the scale factor to transform the position
to real-world scale during initialization. In experiments, the scale factor is given by user

through measurement.
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(A°X + B°Y 4+ C°Z + D = 0 (plane equation)

| p %
U—Cy=f——= =it
{ v (&
¢z H ol
¢, — vV = f — (pinhole camera model *
lo-v=rz @ ) -
Pp = RICP
4.7)

Calculate line equation parameters r,8 with the endpoints P on X-Z plane in
plane frame using Equation (3.5). Then approximate the parameters to horizontal (X-axis)
and vertical (Z-axis) lines by ignore parameters 6 of the lines, the parameters r will be
the z and x positions of horizontal and vertical lines to obtain features Fj, F,. And d;
is the distance between target plane and camera on Y axis in plane frame ,which can be
obtained by the y position of endpoints PP in plane frame. A schematic diagram is

shown in Figure 4.9.

Fn ={z1,2,, ..., 2}

E, = {xl,xz, ...,xj}

d; is the minimum distance between target plane and camera center. (4.8)
/
_— |_—
. ] | =
zi _—] | _— ] |
[ _— | _— _— |_— X;
Z2 // X7
Zq /xl 0 xP

Camera Position {P}

Figure 4.9: A schematic diagram about parameterize target plane

31
doi:10.6342/NTU202402036



4.4 Plane Tracking with RANSAC

In this section, the motion estimation is divided to two steps: feature matchingﬁﬂeé
|| <

(Section 4.4.1) and motion estimation with RANSAC (Section 4.4.2).

4.4.1 Feature Matching

After finishing the feature extraction in Section 4.3, the first step is to verify whether
the detected plane and the stored target plane are the same plane. This can be done by
comparing the angle between rotation matrices with Equation (4.3). If the angle is less
than a threshold T, treat them as same plane then matching the features with nearest
distance; if the angle is greater than T,, identified them as different planes and skip
current estimation and wait for next estimation.

Fy, F, are the features of detected plane, let F,,_q, F,,_; are the features of stored
target plane from previous estimation. The matching pairs M, M,, can be obtained by
Equation (4.9).

My ={(21,21-1), (23, 22-1), -, (21, Zi-1) }
s.t. z; € Fy,,z;_, € Fj,_4,dist(z;,z;_;) is minimun

My = {Cx1, %120), (2 Xpm1), e, (37, %121) )
s.t. xj € E,xj_1 € Fy_4, dist(xj,xj_l) is minimun (4.9)

4.4.2 Motion Estimation with RANSAC

The motion estimation is optimized using least squares method. It estimates the
motion between frames by minimizing the square of the distance of matching pairs. These
matching pairs are sampled and estimated iteratively with RANSAC to eliminate false
matches.

The cost function can be written as Equation (4.10), s is the scale factor; v, h are
the shift of features in X, Z axes in plane frame.

32
doi:10.6342/NTU202402036



L 5 2
mine = ZZ(szi —v—z_1)?+ (sx; —h—x_,)
i

S.t. z;,Zi—q € M'p;xj,x;_1 € M',; My, M,, are the sampled set in L&
RANSAC process with select i,j elements from My, M,, : !(4.10)i f

The motion in plane frame can be determined by Equation (4.11), d;_; 1S the
distance to the target plane from previous estimation. The current camera orientation R,
and position p. in the world frame can be determined by R; in Equation (4.4)
accumulating motion in Equation (4.12).

te =—(,sd¢ —de—q, h)

(4.11)
R, =R!
Pc = Pc-1t L
Where p._; is the previous position (4.12)

The reason the camera motion is opposite to the estimated is because the cost
function is designed to estimate feature motion with a static camera, and the camera image
is as same as a moving camera and static features, but in the opposite direction of

estimation. A schematic is shown in Figure 4.10.
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Figure 4.10: The scenarios (a) and (b) are having same camera image (c), and the
camera and features motion are in opposite directions.
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4.5 Update States

In this section, the estimated result will run a reliability testing(Section 4.5. 1);?&@
| < |
update the stored features if the estimation is reliable, includes update the existing feattires

(Section 4.5.2), add new features (Section 4.5.3) and eliminate invalid features (Section

4.5.4).

4.5.1 Reliability Testing

After calculating the orientation and position of the camera with respect to the world
frame, it is necessary to verify the reliability of the estimation results as it does not account
for noise from the camera, such as distortion from camera resolution or motion blur.

In the reliability testing, the stored features at previous position will be reprojected
onto the image frame at the current estimated position. A schematic diagram is shown in
Figure 4.11, the reprojected line I does not overlap with observation [, because of
estimation error. To determine the distance between feature lines, first, represent the lines
in Hough space (r,0) which is also a 2-D polar coordinate system as shown in Figure
4.12. Define the distance between lines as Equation (4.13), if the average distance
between reprojected lines [, and current observations [. is greater than the average
distance between previous observations [._; and current observations [., treat this
estimate as an unreliable one, skip current estimated result and wait for next camera image;
on the country, if the average distance between reprojections [, and observations [ is
less than average distance across observations [._; and [,.

After reliability testing, unreliable estimates will be discarded, and the process can
be seen as downsampling data to improve the algorithm speed. Only features with reliable
estimates will be updated follow Section 4.5.2, Section 4.5.3 and Section 4.5.4. This
process discards unreliable estimates without optimization, it has a drawback that when
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the camera frames lost the target plane, the algorithm will pause the estimation until the

camera frame find back the target plane. =i
A

D= \/rlz + 1} — 21315 cos(6;, — 6,)

Actual camera pose
Re1Pe-1 t.
RC' pC

Figure 4.11: A schematic diagram of line reprojection

Reprojection

Directly shift

Figure 4.12: Represent lines with Hough space (7, 8)

4.5.2 Update Existing Features
The matched features after estimation with RANSAC will update their positions. For
each matched pair, the feature is updated using exponential moving average, as shown in

Equation (4.14), where z;x; and z,_q,x;_q are the current and previous feature
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position in a matched pair, they will align with the current position before averaging. This

moving average helps in noise reduction and provides smoother data.

i i

{Zt < 0.55z; + 0.5(z,—1 — V) AN |
x¢ < 0.55x; + 0.5(x;_; — h) (4.14)
And the distance between camera and the target plane is updated by the scale factor

s from estimation to align the actual scale to plane frame.

de s (4.15)

4.5.3 Add New Features

For the new features that belong to the target plane and do not match to the existing
features will be added to them. To prevent false features from being considered inliers in
RANSAC, the new features must have a minimum distance to the existing features greater
than a threshold T,,. This strategy helps keep the stored features stay sparse and maintain

calculation speed.

4.5.4 Remove Invalid Features

For each stored feature, the algorithm has stored the matching success rate W,
which is the ratio about number of successful matching and features shown in camera
FOV in the past n frames as shown in Equation (4.16).

number of successful matching in past n frames

number of shown in FOV in past n frames (4.16)
If the W of a feature is less than a threshold T, the feature will be identified as
invalid and unable to provide reliable information, and will be removed from stored

features.
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Chapter 5
Synthetic and Real-World X
Experiments

N

In this chapter, the experiments based on the propose algorithm are discussed. the
experiments in simulation and real-world are evaluated. In Section 5.1, the experiments
in simulation are verified for the accuracy in noisy environments and the performance
with adding reliability testing. The real-world experiments performed with real-time

computation are detailed in Section 5.2.

5.1 Evaluate Performance in Simulation

In this section, the construction of synthetic scenes and designed trajectories are
introduced in Section 5.1.1. Method to measure performance of the propose algorithm is
discussed in Section 5.1.2. The estimate results of simulations are present in Section 5.1.3.

A concise summary of the simulations is presented in Section 5.1.4.

5.1.1 Synthetic Scenes

To evaluate the performance of the propose algorithm, a simple synthetic scene
involves a 29.9x3 m grid mesh plane with 24 vertical lines and 7 horizontal lines, parallel
to the X-Z plane of the world frame, as shown in Figure 5.1. In noisy scenes, some noise
line segments are randomly positioned with varying lengths, creating different levels of
noise based on the number and length of line segments. All the noisy synthetic scenes are
shown in Table 5.1, the columns of the table represent different length ranges of noise
line segments, and the rows of the table represent varying numbers of noise line segments.

A virtual perspective camera moves in the synthetic scenes and generates the
sequential images for the algorithm input, the virtual camera has 90x74° FOV(HxV),
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640x480 pixels resolution without any distortion and motion blur. An example of.¢amera

imaging in the scene is shown in Figure 5.2.

afi

For the length of noise line segments, in cases with the same number of n(i)ise- hne‘
segments, the length of line segments can be categorized into three types. The centers of
the line segments are consistent, and the length of the segments is double that of the
previous type. The camera imaging of noise line segments with the same number but
different lengths is shown in Figure 5.3.

For the number of line segments, there is a noise set containing 50 noise line
segments, in the cases from no noise to 50 noise line segments, it retains the previously
selected noise line segments and adds 10 more noise line segments selected from the noise
set. The camera imaging of noise line segments of the same length but with different
numbers is shown in Figure 5.4.

For each synthetic scene in the simulations, the virtual camera moves along the grid
mesh plane following various trajectories in X-Y plane, and the grid mesh plane is
captured in all the camera frames of the sequential images. There are four trajectories for
the simulations: Straight, Straight and U-turn, Wave, Wave and U-turn.

Straight trajectory

In the Straight trajectory, the virtual camera first stops at origin and facing the

X-axis direction for 30 frames and then moves forward 15 meters along X-axis for

500 frames, resulting in a total of 530 sequential images.

Straight and U-turn trajectory

In the Straight and U-turn trajectory, the virtual camera first stops at origin and
facing the X-axis direction for 30 frames and then moves forward 15 meters along

X-axis for 500 frames, then turn around along a counterclockwise circular path with
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a radius of 0.125 meters for 200 frames, and continues forward for 15 meters-in fhe

negative X-direction for 500 frames, resulting in a total of 1230 sequential images.
A
[| &
Wave trajectory N |

In the Wave trajectory, the virtual camera first stops at origin and facing the X-
axis direction for 30 frames and then the yaw angle oscillates between plus and
minus 10 degrees as it moves forward, with a total distance of 15 meters for 500
frames, resulting in a total of 530 sequential images.

Wave and U-turn trajectory

In the Wave and U-turn trajectory, the virtual camera first stops at origin and
facing the X-axis direction for 30 frames and then the yaw angle oscillates between
plus and minus 10 degrees as it moves forward, with a total distance of 15 meters
for 500 frames, then turn around along a counterclockwise circular path with a radius
of 0.125 meters for 200 frames, and continues forward with the yaw angle oscillates
between plus and minus 10 degrees for a total distance of 15 meters in 500 frames,

resulting in a total of 530 sequential images.

The camera pose for each trajectory is detailed in Table 5.2 and Figure 5.5.

Figure 5.1: The synthetic scene with a grid mesh plane
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Figure 5.4: Different number of noise line segments in Length B scenes
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Table 5.2: 6-DOF camera poses in designed trajectories

Frame count | Straight | Straight and Wave and U-turn Wave
k U-turn iR
[1,30] x[k] =0 |
Stop y[k] =0
z[k] =0
ulk] =0
vlk] =0
wlk] =0
[31,530] | x[k] = x[k — 1] + 0.03 x[k] = x[k — 1] + 0.03 cos(w[k])
Forward | y[k] =y[k — 1] ylk] = y[k — 1] — 0.03sin(w[k])
z[k] = z[k — 1] z[k] = z[k — 1]
ulk] = ulk — 1] ulk] = ulk — 1]
vlk] = v[k — 1] v[k] = v[k — 1]
wlk] = wl[k — 1] " n . (2n(k —30)
wlkl = 18“"( 250 )
[531,730] o T
Untarn x|k] = x[k — 1] + 3 7T200 cos(wlk])
yIT] = ylie = 1] = = sin(wlk])
z[k] = z[k — 1]
ulk] = ulk — 1]
vik] = v[k — 1]
Vs
wlk] = wlk - 1] - >
[731,1230] x[k] = x[k] =
Return x[k —1] —0.03 | x[k — 1] + 0.03cos(w[k])
ylkl =ylk—1] | y[k] =
z[k] = z[k — 1] | y[k — 1] — 0.03sin(w[k])
ulk] = ulk — 1] | z[k] = z[k — 1]
vlk] = vk — 1] | ulk] = u[k — 1]
wlk] = vik] = v[k — 1]
wlk — 1] wlk] =
m  (2n(k —730)
"7 18 Sm( 250 >
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Figure 5.5: Position and orientation of all trajectories
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5.1.2 Evaluate Performance Using Dynamic Time Warping

To evaluate the similarity between estimation and ground truth, dynamic%ime
i - = |

warping (DTW) is utilized to align and quantify the performance. DTW ‘s’ a distance
measure that compares two time series after optimally aligning them [46: Mueen & Keogh
2016], it can calculate the similarity between two sequences, even if they differ in speed
or length. Compare to calculate the Euclidean distance based on time sequence, DTW can
provide reasonable performance when the trajectory drifts.
For example, there are three 1-D trajectories shown in Figure 5.6 with following

definitions:

C, = sin(2mk)

C, = cos(2mk)

C; = 0.5 sin(mk)
k = [0,0.01, ...,0.99,1] (5.1)

<

D21

04T

D6

08

] 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k
Figure 5.6: 1-D trajectories C;,C,, and C3

Using Euclidean distance based on time sequence, Figure 5.7 shows the
corresponding pairs with gray lines and the squared distance for each corresponding pair
between C;,C, and C;,C3;. The cumulative squared distance indicates that C; bears

greater resemblance to C; than Cj,, yielding an erroneous outcome given their trajectory
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the corresponding pairs from DTW indicated that C, is more similar to Cl

i‘]«[@
Note that in Figure 5.7 and Figure 5.8, the gray lines represent matched It/

I

length does not reflect the actual distance as the x-axis denotes time.

Due to the advantages of the DTW method, which can measure similarities with data

of different lengths, it is the best method for evaluating the performance of the proposed

algorithm and the effect of adding reliability testing.
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Figure 5.7: The matching result using Euclidean distance based on time sequence
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Figure 5.8: The matching result using dynamic time warping method

5.1.3 Estimate Without and With Reliability Testing

In this section, the synthetic scenarios are executed without and within reliability

testing. In the simulations without reliability testing, all input frames were estimated and

recorded as trajectory waypoints; on the contrary, in the simulations within reliability

testing, the unreliable estimations won't update the stored information as mention in

Section 4.5.1.

The following parts of this section compare performance under different levels of

noise and the difference with or without reliability testing based on camera trajectories.
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In each scenario, the proposed algorithm is executed 10 times each with‘and without

reliability testing to ensure the consistency of the estimation results. And some figurés

i

| .
illustrate the root-mean-square error (RMSE) and the smoothness determined bysthe

integral of the squared second derivative of each estimation, with some instances

depicting the contrast between with and without reliability testing.

Figure 5.9 to Figure 5.12 are the RMSE and smoothness of 10 estimations of each

trajectory performed in all synthetic scenes in both with and without reliability testing,

and the average value of 10 estimations are shown in Table 5.3 to Table 5.5.

RMSE of Straight scenarios

w/o reliability testing
w/ reliability testing

04r
0.3
0.2F

0.1+
4 o & A'A

!f;i"u.lu A‘AAA"’:'

DN oD o O P O SO PP O P
©°vvwv’v’v<b<b{”<b<bq>oo"”ooo

(a) RMSE of estimated results

Smoothness of Straight scenarios

w/o reliability testing
w/ reliability testing

]
! ] H

LI T L LI ) .
..A'A...AAAA‘QAAAi

0

PO D o 1 O D D 0 DO DS O S
W W W e o e G S

(b) Smoothness of estimated results

Figure 5.9: Estimated results of Straight trajectory in various synthetic scenes
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Figure 5.10: Estimated results of Straight and U-turn trajectory in various synthetic

Scencs
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Figure 5.12: Estimated results of Wave and U-turn trajectory in various synthetic scenes

Table 5.3: Average RMSE of 10 estimations across all scenarios (RT: reliability testing)

Unit: m | Straight Straight Wave Wave
and U-turn and U-turn

w/OoRT | w/RT |w/oRT |w/RT | w/oRT | w/RT | w/oRT | w/RT

Ideal 0.0697 10.0705 | 0.1081 | 0.0888 | 0.2492 | 0.2264 | 0.4232 | 0.3638

A-10 0.0709 | 0.071 | 0.0956 |0.0933 | 0.2404 | 0.2242 | 0.4668 | 0.4548

A-20 0.0689 |0.0716 | 0.1009 | 0.0883 | 0.2265 | 0.2187 | 0.3888 | 0.4277

A-30 0.0670 | 0.0706 | 0.0884 |0.1017 | 0.3096 | 0.2052 | 0.5685 | 0.4658

A-40 0.0637 |0.0703 | 0.1075 ]0.0929 | 0.2630 | 0.2537 | 0.5179 | 0.4612

A-50 0.0585 ]0.0700 | 0.0868 | 0.0826 | 0.3667 | 0.1638 | 0.8237 | 0.4032

B-10 0.0788 ] 0.0652 | 0.1331 | 0.0821 | 0.3627 | 0.1965 | 0.6209 | 0.3063

B-20 0.0713 | 0.0662 | 0.1303 | 0.0741 | 0.3648 | 0.1923 | 0.5639 | 0.299

B-30 0.0702 ] 0.0668 | 0.1440 | 0.0755 | 0.3388 | 0.2258 | 0.5570 | 0.3835

B-40 0.1034 | 0.0683 | 0.2036 | 0.078 | 0.2918 | 0.1815 | 0.4944 | 0.2748

B-50 0.0959 10.0843 | 0.1465 | 0.1506 | 0.4793 | 0.2166 | 0.4322 | 0.4104

C-10 0.0705 | 0.0801 | 0.1277 ]0.1076 | 0.2483 | 0.2788 | 0.4298 | 0.4699

C-20 0.0698 |0.0814 | 0.1371 |0.1121 | 0.3866 | 0.2217 | 0.4051 | 0.3605

C-30 0.0613 ] 0.0800 | 0.1409 |0.1042 | 0.3459 | 0.1736 | 0.5725 | 0.3036

C-40 0.0599 10.0724 | 0.1117 | 0.0851 | 0.2658 | 0.2056 | 0.5423 | 0.2877

C-50 0.1028 ]0.0729 | 0.1681 | 0.1173 | 0.3886 | 0.2116 | 0.6346 | 0.3320
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RMSE
trajectory length
10 estimations in all scenarios (RT: reliability testing)

Table 5.4: Ratio between RMSE and trajectory length ( X 100%) fromm

T

Unit: % | Straight Straight Wave Wave i
and U-turn and U-turn.

w/oRT | w/ RT |w/oRT | w/ RT | w/oRT | w/RT | w/oRT |.w/RT

Ideal 0.4647 10.4701 [ 0.3555 [0.292 | 1.6615 | 1.5095 | 1.3924 | 1.1968

A-10 0.4723 10.4735 [ 0.3147 ]0.3069 | 1.6029 | 1.4949 | 1.536 1.4963

A-20 0.4592 104775 | 0.3320 | 0.2907 | 1.5103 | 1.4583 | 1.2794 | 1.4071

A-30 0.4466 | 0.4703 | 0.2909 | 0.3345 | 2.064 1.3679 | 1.8706 | 1.5325

A-40 0.425 10.4689 | 0.3538 | 0.3057 | 1.7531 | 1.6916 | 1.7039 | 1.5174

A-50 0.3901 | 0.4664 | 0.2857 |0.2718 | 2.4446 | 1.0919 | 2.7103 | 1.3268

B-10 0.5251 ]0.4347 [ 0.4379 |0.2701 | 2.4179 | 1.3102 | 2.0428 | 1.0078

B-20 0.4752 |0.4415 | 0.4287 |0.2438 | 2.4321 | 1.2823 | 1.8555 | 0.9839

B-30 0.4677 10.4455 | 0.4737 |0.2486 | 2.2584 | 1.5052 | 1.8327 | 1.2617

B-40 0.6892 | 0.4552 | 0.6698 | 0.2568 | 1.9452 | 1.2103 | 1.6267 | 0.9043

B-50 0.6396 | 0.5619 | 0.4821 | 0.4955 | 3.1955 | 1.4439 | 1.4220 | 1.3503

C-10 0.4702 ]0.5343 | 0.4202 | 0.3539 | 1.6551 | 1.8585 | 1.4140 | 1.5462

C-20 0.4652 | 0.5423 | 0.4510 | 0.3689 | 2.5775 | 1.4778 | 1.3328 | 1.1862

C-30 0.4085 ]0.5332 | 0.4636 |0.343 |2.3060 | 1.157 | 1.8837 | 0.9988

C-40 0.3994 |0.4827 | 0.3674 | 0.2801 | 1.7718 | 1.3705 | 1.7843 | 0.9466

C-50 0.6851 |0.4862 | 0.5530 | 0.3859 | 2.5905 | 1.4108 | 2.0882 | 1.0924

Table 5.5: Average smoothness value of 10 estimations across all scenarios (RT:

reliability testing)
Straight Straight Wave Wave
and U-turn and U-turn

wW/ORT | W/ RT |woORT |wRT |woRT |w/RT |w/oRT | w/RT

Ideal | 1.2731 [ 0.6565 |2.4887 | 1.5420 |3.9713 | 1.4852 | 7.2420 |2.7249

A-10 | 1.4358 |0.6482 |3.0617 | 1.7343 | 5.5358 |1.3230 | 7.0931 |2.8179

A-20 | 1.5163 | 0.6794 |2.9700 | 1.7282 |4.9453 [1.1943 | 7.3412 | 2.9457

A-30 | 1.4315 | 0.7220 |2.9294 | 1.7326 |6.1652 | 1.2629 | 8.0859 | 2.8995

A-40 | 1.4307 |0.6930 |3.0176 | 1.8253 |3.9906 |1.2276 | 7.4620 |2.9285

A-50 | 2.4862 | 0.7338 |4.8483 | 1.8253 | 7.3627 | 1.4506 | 10.9646 | 3.1431

B-10 | 1.5637 | 0.8355 |3.4929 |2.2949 |7.0011 |1.2297 |9.5392 | 2.4587

B-20 | 1.5147 | 0.8241 |3.8474 | 2.2046 | 10.2598 | 1.4835 | 11.6095 | 3.4666

B-30 | 1.8527 | 0.8865 |3.4349 |2.2269 | 7.0053 | 1.2485 | 11.5816 | 3.3768

B-40 | 1.8234 | 0.8068 | 3.5262 | 2.2152 | 7.4558 | 1.5757 |12.2732 | 3.3349

B-50 | 2.8299 | 1.2681 |4.6767 |2.6771 |10.1421 | 1.7392 | 12.3536 | 4.2038

C-10 | 1.9463 | 0.9082 |4.0749 |2.2189 |6.2542 | 1.3682 | 14.8427 | 3.7885

C-20 | 1.9197 ]0.9250 |4.6156 |2.2734 |6.6151 | 1.1976 | 13.645 | 4.6000

C-30 | 2.2507 |0.8487 |4.0506 | 2.0964 |8.2717 | 1.3752 | 16.8236 | 3.7061

C-40 | 2.1256 | 0.8235 | 4.2438 | 2.1476 |8.2345 |3.0639 | 17.1378 | 4.8072

C-50 13.2074 | 1.1281 |4.9876 |2.6579 |16.1809 | 1.5609 | 16.2715 | 3.4944
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The estimated results indicate that the level of noise has a slight impactgon &lC
estimated accuracy, showing that the algorithm is capable of functioning 1n1';xiolsy
environments. And comparing the accuracy of estimated results with ‘and !wit‘-ﬁloﬁt
reliability testing, adding reliability testing makes the estimated results more stable in
repetitive tests, but the improvement in accuracy is marginal, because the reliability
testing only discards unreliable estimations without optimizing the remaining estimations
to guarantee the proposed algorithm’s real-time capability.

For the trajectory smoothness, the smoothness of the estimated results is determined
by the integral of the squared second derivative of estimated trajectories, the lower results
indicate smoother trajectories. As the figures and Table 5.5 show, adding reliability testing
makes the estimated trajectories smoother than without it. The reliability testing discards
unreliable estimations which often cause trajectory drift, improving trajectory smoothness
by reducing drift and high frequency errors.

Following are some estimated results to show the performance and the difference of
adding reliability testing.

Figure 5.13 shows an estimated result of Straight trajectory in the synthetic scene B-
30 without reliability testing, with an RMSE of 0.0495 m (0.33 %) and a smoothness of
2.6011. Overall, the performance is well in going straight without any camera rotation,

and hardly affect by noise, only occurs a drift at k=350 (Figure 5.13 (b)), the estimated

trajectory has slight error due to limitation of camera resolution (Figure 5.13 (c)).
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Figure 5.13: Estimated results of Straight trajectory in scene B-30 without reliability

testing

Figure 5.14 shows an estimated result of Straight trajectory in the synthetic scene B-

30 with reliability testing, with an RMSE of 0.0693 m (0.462 %) and a smoothness of

0.5496. Compare to estimated results without reliability testing like Figure 5.13, because

the original estimation is good enough and almost no drifts occur, the RMSE is slightly

increase due to data downsampling during reliability testing, the number of waypoints

between estimation and ground truth are different, the ground truth that cannot align by

time will optimally match the estimated position at another time (Figure 5.14 (b)) through
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DTW method as discussed in Section 5.1.2. The trajectory smoothness improves by

downsampling data during reliability testing, reducing high-frequency errors (ofithe

m
estimated trajectory and resulting a smoother estimation as shown in Figure 5:14/(c)q, !

Figure 5.15 shows an estimated result of Wave trajectory in the synthetic scene B-
30 without reliability testing, with an RMSE of 0.2791 m (1.8607 %) and a smoothness
0f 6.4503. Compare to the Straight trajectory, the RMSE is increased and less smooth due
to changes in camera’s yaw angle during the estimation, the estimated result shows the
proposed algorithm has good performance when moving in X-Y plane. And Figure 5.16
shows an estimated result of Wave trajectory in the synthetic scene B-30 with reliability
testing, with an RMSE 0f 0.2229 m (1.486 %) and a smoothness of 1.0481. In the complex

trajectory, the reliability testing can improve performance in both RMSE and smoothness.

53
doi:10.6342/NTU202402036



Straight B-30 #9 w/ RT

18
T — =
—Y
14 5
12 ——GT
£ 1or
C
S s8r
2
o °f
Al
2 |-
0 |-
_2 1 1 Il 1 1 Il 1 1 Il 1 1
0 50 100 150 200 250 300 350 400 450 500
k
(a) Estimated trajectory
Straight B-30 #9 w/ RT Straight B-30 #9 w/ RT
56fF —
—X
55 —Y
sal—Z
GT
E“ " |——Matching pairs E
c c
Ss2 9
z 3
& 51 g
5 04
49 021
0
48[ L i L L I N L I 1 L L I 1 L L |
190 195 200 205 210 0.250 55 60 65 70 75 80 85 920 95 100
k
(b) DTW matching pairs (c) Smoother trajectory after adding
reliability testing

Figure 5.14: Estimated results of Straight trajectory in scene B-30 with reliability testing
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Figure 5.15: Estimated results of Wave trajectory in scene B-30 without reliability

testing
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Figure 5.16: Estimated results of Wave trajectory in scene B-30 with reliability testing

For the Straight and U-turn trajectory, and Wave and U-turn trajectory in the
synthetic scenes, the estimated results are shown in Figure 5.17 to Figure 5.20, as
discussed in Straight and Wave trajectories, the reliability testing can yield improved
performance in both RMSE and smoothness, However, when examining the performance
of each segment in the trajectory, it is observed that the U-turn segment at k=531 to 730
has a higher error. this phenomenon happened because the target plane changes greatly in
camera imaging as shown in Figure 5.21, the accumulated error has little effect on the
accuracy in the Return segment, the estimated trajectory pattern still reflects the ground

truth pattern. This conclusion can be obtained from Table 5.6 to Table 5.9 that calculate
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Figure 5.17: Estimated results of Straight and U-turn trajectory in scene B-20 without
reliability testing
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Figure 5.18: Estimated results of Straight and U-turn trajectory in scene B-50 with
reliability testing
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Figure 5.19: Estimated results of Wave and U-turn trajectory in scene B-40 without
reliability testing
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Figure 5.20: Estimated results of Wave and U-turn trajectory in scene C-40 with
reliability testing
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Figure 5.21: Camera images at U-turn segment of Wave and U-turn trajectory in scene
B-30.

Table 5.6: Average RMSE of the segments of Straight and U-turn trajectory in synthetic
scenes, estimated without reliability testing.

Forward U-turn Return
Ideal 0.0719m (0.48%) 0.0474m (12.08%) 0.0773m (0.52%)
A-10 0.0585m (0.39%) 0.0424m (10.79%) 0.0648m (0.43%)
A-20 0.0700m (0.47%) 0.0451m (11.49%) 0.0932m (0.62%)
A-30 0.0632m (0.42%) 0.0411m (10.47%) 0.0880m (0.59%)
A-40 0.0581m (0.39%) 0.0488m (12.42%) 0.1380m (0.92%)
A-50 0.0609m (0.41%) 0.0563m (14.34%) 0.0853m (0.57%)
B-10 0.0738m (0.49%) 0.0507m (12.91%) 0.0976m (0.65%)
B-20 0.0806m (0.54%) 0.0447m (11.39%) 0.0719m (0.48%)
B-30 0.0769m (0.51%) 0.0580m (14.76%) 0.0803m (0.54%)
B-40 0.1067m (0.71%) 0.0529m (13.46%) 0.1045m (0.70%)
B-50 0.0825m (0.55%) 0.0520m (13.25%) 0.1356m (0.90%)
C-10 0.0664m (0.44%) 0.0543m (13.84%) 0.0559m (0.37%)
C-20 0.0520m (0.35%) 0.0471m (12.00%) 0.1256m (0.84%)
C-30 0.0765m (0.51%) 0.0468m (11.93%) 0.1198m (0.80%)
C-40 0.0646m (0.43%) 0.0508m (12.94%) 0.0887m (0.59%)
C-50 0.0929m (0.62%) 0.0664m (16.91%) 0.2402m (1.60%)
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Table 5.7: Average RMSE of the segments of Straight and U-turn trajectory:in synthetlc
scenes, estimated with reliability testing.

I

Forward U-turn Return
Ideal 0.0697m (0.46%) 0.0379m (9.64%) 0.0677m (0.45%)
A-10 0.0724m (0.48%) 0.0486m (12.39%) 0.0787m (0.52%)
A-20 0.0700m (0.47%) 0.0460m (11.71%) 0.0757m (0.50%)
A-30 0.0696m (0.46%) 0.0544m (13.85%) 0.1123m (0.75%)
A-40 0.0667m (0.44%) 0.0473m (12.05%) 0.1048m (0.70%)
A-50 0.0685m (0.46%) 0.0493m (12.56%) 0.0669m (0.45%)
B-10 0.0675m (0.45%) 0.0622m (15.85%) 0.0795m (0.53%)
B-20 0.0640m (0.43%) 0.0544m (13.86%) 0.0664m (0.44%)
B-30 0.0659m (0.44%) 0.0648m (16.51%) 0.0553m (0.37%)
B-40 0.0694m (0.46%) 0.0626m (15.93%) 0.0591m (0.39%)
B-50 0.0775m (0.52%) 0.0774m (19.71%) 0.1448m (0.97%)
C-10 0.0806m (0.54%) 0.0704m (17.94%) 0.0637m (0.42%)
C-20 0.0857m (0.57%) 0.0847m (21.56%) 0.0574m (0.38%)
C-30 0.0799m (0.53%) 0.0825m (21.00%) 0.0578m (0.39%)
C-40 0.0754m (0.50%) 0.0914m (23.27%) 0.0584m (0.39%)
C-50 0.0727m (0.48%) 0.0516m (13.15%) 0.0900m (0.60%)

Table 5.8: Average RMSE of the segments of Wave and U-turn trajectory in synthetic

scenes, estimated without reliability testing.

Forward U-turn Return
Ideal 0.2980m (1.99%) 0.1007m (25.65%) 0.3543m (2.36%)
A-10 0.2193m (1.46%) 0.0648m (16.49%) 0.5484m (3.66%)
A-20 0.2130m (1.42%) 0.0785m (20.00%) 0.2836m (1.89%)
A-30 0.3043m (2.03%) 0.0809m (20.59%) 0.5356m (3.57%)
A-40 0.2821m (1.88%) 0.0785m (20.00%) 0.4250m (2.83%)
A-50 0.3739m (2.49%) 0.0605m (15.40%) 1.0688m (7.13%)
B-10 0.3266m (2.18%) 0.0752m (19.16%) 0.7821m (5.21%)
B-20 0.3271m (2.18%) 0.0778m (19.81%) 0.6117m (4.08%)
B-30 0.3463m (2.31%) 0.0799m (20.34%) 0.5433m (3.62%)
B-40 0.2981m (1.99%) 0.1085m (27.62%) 0.4585m (3.06%)
B-50 0.2731m (1.82%) 0.0817m (20.80%) 0.3465m (2.31%)
C-10 0.2556m (1.70%) 0.0871m (22.19%) 0.3805m (2.54%)
C-20 0.2050m (1.37%) 0.0770m (19.61%) 0.4164m (2.78%)
C-30 0.2596m (1.73%) 0.0638m (16.24%) 0.7469m (4.98%)
C-40 0.2716m (1.81%) 0.1003m (25.54%) 0.6743m (4.50%)
C-50 0.3364m (2.24%) 0.1188m (30.26%) 0.7277m (4.85%)
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Table 5.9: Average RMSE of the segments of Wave and U-turn trajectory in synthetlc

scenes, estimated with reliability testing.

Forward U-turn Return, || <
Ideal 0.2350m (1.57%) 0.0620m (15.79%) 0.2351m (1.57%)
A-10 0.2523m (1.68%) 0.0573m (14.58%) 0.4143m (2.76%)
A-20 0.2359m (1.57%) 0.0561m (14.28%) 0.3883m (2.59%)
A-30 0.2376m (1.58%) 0.0536m (13.64%) 0.4973m (3.32%)
A-40 0.2403m (1.60%) 0.0674m (17.17%) 0.4384m (2.92%)
A-50 0.1754m (1.17%) 0.0530m (13.50%) 0.4443m (2.96%)
B-10 0.1882m (1.25%) 0.0593m (15.09%) 0.1899m (1.27%)
B-20 0.1758m (1.17%) 0.0586m (14.91%) 0.2213m (1.48%)
B-30 0.2215m (1.48%) 0.0804m (20.47%) 0.2932m (1.95%)
B-40 0.1652m (1.10%) 0.0716m (18.24%) 0.1855m (1.24%)
B-50 0.2352m (1.57%) 0.0705m (17.96%) 0.3255m (2.17%)
C-10 0.2743m (1.83%) 0.0769m (19.59%) 0.4038m (2.69%)
C-20 0.2148m (1.43%) 0.0738m (18.79%) 0.3118m (2.08%)
C-30 0.1803m (1.20%) 0.0569m (14.48%) 0.2647m (1.76%)
C-40 0.1843m (1.23%) 0.0764m (19.45%) 0.1749m (1.17%)
C-50 0.2067m (1.38%) 0.0958m (24.40%) 0.2277m (1.52%)

5.1.4 Summary of Performance in Simulation

In this section, the performance of the proposed algorithm is verified through
estimated in 4 different trajectory and 16 synthetic scenes with varying noise levels,
resulting in a total of 64 different scenarios. The proposed algorithm is estimated in
scenarios with and without reliability testing, and the estimation is repeated 10 times to
validate the stability of the algorithm and ensure that no conclusions are drawn from
outliers.

From the estimations in different noise levels, the results show that the propose
algorithm can successfully detect and track the target plane in noisy environments,
calculate camera trajectory from the sequential images. With adding reliability testing to
the algorithm, estimation errors can be reduced by discarding unreliable estimates and
obtaining a smoother trajectory through data downsampling. In the trajectories with U-
turn segment, the estimated results show that the proposed algorithm can track the target

plane when camera yaw angle changes greatly.

60
doi:10.6342/NTU202402036



The simulation results show that the proposed algorithm is capable of handling the

estimation of a moving robot in the XY plane, and obtaining the camera's trajectory:,:g_; i
(€Y

5.2 Real-World Experiments Executed in Real-Time
In this section, the experiments setup regarding the hardware used is described in
Section 5.2.1, the indoor hallway experiments compared with the marker-based method
are shown in Section 5.2.2, the outdoor experiments of the algorithm executed in the real-

world noisy environments are presented in Section 5.2.2. A summary of experiments is

shown in Section 5.2.3.

5.2.1 Experiments Setup

This thesis run the real-world experiments on a laptop equipped with AMD Ryzen 7
7840U CPU at 3.3 GHz, 16-GB RAM, and windows 11 operation system. The proposed
algorithm is implemented in Python and provides real-time estimations during
experiments.

An RGB camera of Intel RealSense D455 [55: Intel| is used for the real-world
experiments, it has 90x65° FOV(HxV) with global shutter sensor, and the resolution is
set at 640x480 with frame rate at 30 fps. As shown in Figure 5.22, the camera is taped on

the laptop, and run the experiments by walking with the laptop in hand.

Figure 5.22 : The camera and the laptop
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As mention in Section 4.3.2, the initialization process requires the dlstaw' frox b
camera to target plane to determine the scale factor from pixels to the real W @1 ’1 B
range finder as shown in Figure 5.23 is used for measuring a rough dlstance t

plane during initialization process.

Figure 5.23: The laser range finder used in experiments

In order to verify the accuracy of the proposed algorithm, in the indoor hallway
experiments, a marker-based pose estimation using ArUco markers [45: Garrido-Jurado
et al. 2014] is employed as the ground truth in comparison to the algorithm's estimation.
The ArUco markers are made by canvas with a marker size of 102X102cm as shown in

Figure 5.24.

b T

’»
/
— :__-_:l £

Figure 5.24: A 102x102cm ArUco marker made by canvas
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5.2.2 Indoor Hallway Experiments

=

In the indoor hallway experiments, the experiment scene is shown in F&
~

the window frames on the right side of the camera image are the target%pﬁﬁlj_ -

experiment, and 4 ArUco markers M1, M2, M3, M4 arranged from near to far o‘n the lejf£
side of the camera image are used to generate the ground truth of the camera trajectory.
the camera trajectory is going straight in the experiment and repeat the experiment 10
times to confirm accuracy and consistency, the target plane and at least 2 of the ArUco

markers are visible in the camera image during the estimation.

Top view

M4 / Target plane

Camera trajectory

(a) Hallway scene (b) Schematic diagram of the scene
Figure 5.25: The hallway experiment scene

The ground truth trajectory is obtained by combining pose estimations from ArUco
markers with OpenCV library [56: OpenCV] through the absolute trajectory error method
from [57: Mur-Artal]| according to [47: Horn 1987]. The trajectory estimated from each
marker is based on its own coordinate system as shown in Figure 5.26. Align the
trajectories by time and calculate the relative pose between markers by solving Equation

5.2), get Riy,t15,Ry3,t3, Ras,t from camera images, then transform all the
g 12, b12, 23,123, 134, L34 g
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coordinate systems to the coordinate system of M1 with Equation (5. 3) as WWn\

Figure 5.27. For estimations from different markers at the same time, select the esT -
!8

from nearest marker as ground truth trajectory, the result is shown in Figuré 52811
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Figure 5.26: The initial trajectories estimated from ArUco markers
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Figure 5.27: The aligned trajectories estimated from ArUco markers
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Figure 5.28: The ground truth trajectory estimated from ArUco Markers

The estimated result from the proposed algorithm is shown in Figure 5.29, and using
world frame mentioned in Section 4.1 as the coordinate system of the estimated trajectory,

and the scale factor to the real-world is not accurate as it is determined through manual
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measurement. To determine the performance of the proposed algorithm in real=world

scenarios, it is necessary to calculate the optimal scale factor and relative pose to:align
TR
. . . ! — |
the estimation results with the ground truth. ¢ N |

Algorithm estimation #2

ok
Algorithm estimation #2
2F
—X
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600 800 1000 1200 1400 1600 1800
frame count
(a) Estimated trajectory (b) 3-D plot of the trajectory

Figure 5.29: The estimated trajectory from proposed algorithm

In the indoor experiments, the performance is determined by the root-mean-square
error (RMSE) over time indices with both ground truth and estimations from proposed
algorithm, the matched trajectories are shown in Figure 5.30. Then calculate the scale
factor and rotation between two trajectories by solving Equation (5.4), transform the
coordinate system of ground truth to the world frame, and move the start position of two

trajectories to the origin, the aligned result is shown in Figure 5.31.

Estimation and ground truth #2 (unaligned)
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(a) Matched trajectories before alignment (b) 3-D plot of the trajectories

Figure 5.30: The trajectories matched by time indices before aligning the scale factor
and coordinate system.
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Aligned estimated trajectory #2
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(b) 3-D plot of the estimated result

Figure 5.31: the estimated trajectory after aligning the scale factor and coordinate

system.

Table 5.10 shows the performance of all 10 experiments, including trajectory length,

root-mean-square error (RMSE), maximum error (Max Error), the ratio between RMSE

and the trajectory length, and the ratio between the number of output positions and the

number of input camera images during estimation.

Table 5.10: The estimated results of indoor hallway experiments

Experiment | Trajectory | RMSE | Max Error RMSE Estimate
Number Length Trajectory Length Rate
#1 24.446 m 0.498 m | 0.957 m 2.04 % 37.5%
#2 21.422 m 0.212m | 0.493 m 0.99 % 341 %
#3 26.400 m 0.863m | 1.583 m 3.27% 35.0%
#4 29.185m 0.684m | 1.282m 2.34% 38.8%
#5 26.091m 0.361m | 0.898 m 1.38% 36.3%
#6 24.654 m 0.526m | 1.111m 2.13% 38.1%
#7 22.670 m 0.545m | 1.198 m 2.40 % 32.0%
#8 23.773 m 0.490m | 1.189m 2.06 % 34.4%
#9 27.261m 0.378 m | 0.893 m 1.39% 38.6 %
#10 28.267 m 0.271m | 0.730 m 0.96 % 40.9 %
Average 25417 m 0.512m 2.01% 36.6 %
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achieve real-time demand estimation by downsampling through reliability testih'é_-;.;in

The results show that the proposed algorithm can operate in real-worldsseenario,

i

average, about 65% of input images are discarded and can still estimate the entire camera

trajectory. While some experiments show higher errors due to drifts but all experiments

are able to estimate the pattern throughout the trajectory. For example, Figure 5.32 shows

the accurately estimated result, can even track the small movement in the Y-direction

while walking. In Figure 5.33, the estimated trajectory has drifts, but the motion after

drifts occur remains consistent with the ground truth trajectory. All estimated results are

detailed in Appendix A.
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Figure 5.32: Estimated result of experiment #2
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Figure 5.33: Estimated result of experiment #3
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5.2.3 Outdoor Building Facade Experiments

In the outdoor building facade experiments, the main purpose of the experiméﬁqt@ is
i - = |

to validate whether the propose algorithm can handle more complex environments.Jihere
are 4 cases in total, the first 2 cases are estimate along a building facade, with a few
checkpoints measured roughly using a tape measure. The remaining 2 cases demonstrate
the algorithm's capability to estimate across different scenes but have no comparable
references.
Case 1: Moving straight and U-turn along building facade

In this case, as shown in Figure 5.34, the target plane is the building facade with
windows in the left side of the camera frame, the camera moves forward for 13 meters,
then turns around, continues forward for 5 meters and stop the estimation. Some camera
frames during estimation are shown in Figure 5.35. The estimated trajectory is shown in
Figure 5.36, the errors of the checkpoints are shown in Figure 5.37 and Figure 5.38. The
estimated result shows that the pattern of trajectory and the designed trajectory are
consistent, but the estimated trajectory has more error compared to indoor experiment.
Possible reasons include the interference from floor tiles and inaccuracies in the scale

factor to the world.
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Figure 5.34: The experiment scene of case 1

(a) Frame 1 (b) Frame 2 (c) Frame 3
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(d) Frame 4 (e) Frame 5 (f) Frame 6

Figure 5.35: Camera frames from case 1 during estimation
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Case 2: Moving forward in XY plane along building facade V £~

-] f
Case 2 and case 1 are executed in the same location, as shown in Figu

=

>

designed trajectory moves forward in the X and Y directions, passingét}fi’r, U
checkpoints located at (5,1), (8,0) and (10,1). Figure 5.40 shows the camera frarﬁgs d‘uring“
the estimation. The estimated trajectory is shown in Figure 5.41, the errors of the
checkpoints are shown in Figure 5.42, Figure 5.43 and Figure 5.44. The estimation result
is similar to Case 1, the trajectory pattern is consistent with designed trajectory but has

quite cumulative errors.

® : checkpoints
®(10,1)
®(51)
\ X
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YR s
(a) Experiment scenes (b) Designed trajectory and checkpoints

Figure 5.39: The experiment scene of case 2
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(d) Frame 4 (e) Frame 5 (f) Frame 6

Figure 5.40: Camera frames from case 2 during estimation
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Figure 5.41: Estimated trajectory of case 2
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Case 3: Moving straight along building facade in a noisy environment _

The case 3 tests the proposed algorithm with the camera moves in a .strai hﬁh‘ﬂ
along a building, the distance from camera to the building is about 7 meters, an
some bicycles between the camera and the building. The experiment scene is shown in
Figure 5.45, the camera frames during estimation are shown in Figure 5.46, the estimated

trajectory is shown in Figure 5.47. The estimated result shows that the propose algorithm

can identify features in noisy environments and estimate the camera motion successfully.

(d) Frame 4 (e) Frame 5 (f) Frame 6

Figure 5.46: Camera frames from case 3 during estimation
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Figure 5.47: Estimated trajectory of case 3

Case 4: Moving straight along building facade with window reflections

Case 4 tests the proposed algorithm along the building facade, the target plane is the
windows with reflections on the building facade. As shown in Figure 5.48, the windows
reflect the view with fences, trees and the road on the opposite side. the camera frames
during estimation are shown in Figure 5.49, the estimated trajectory is shown in Figure
5.50. The proposed algorithm can identify the correct structural lines of the facade,

without being disrupted by reflected scenes.

Figure 5.48: The experiment scene of case 4
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Figure 5.49: Camera frames from case 4 during estimation
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Figure 5.50: Estimated trajectory of case 4

5.2.4 Summary of Real-World Experiments

In this section, the proposed algorithm is verified in real-world environments. In
Section 5.2.2, the indoor hallway experiments with marker-based ground truth
demonstrate that the algorithm can operate in real-time demand and perform well in real-

world scenarios with average RMSE of 0.512 m (2.01%). And the outdoor experiments
7
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are tested in Section 5.2.3, despite the lack of precise ground truth and scale factorte
quantify performance, the results indicate the proposed algorithm can operate in moisy
1

environments such like sunlight, obstacles and reflections, resulting in trajectory patterns

that are consistent with camera motion.
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Chapter 6
Conclusions and Future Works " -}

N

In this chapter, the conclusions of the thesis and potential improvements" are

discussed in Section 6.1 and Section 6.2.

6.1 Conclusions

In this thesis, a monocular visual odometry is utilized for localization in urban
environments by tracking the grid mesh plane made up of horizontal and vertical
structural lines. The proposed algorithm is validated through simulations, indoor and
outdoor experiments, demonstrating its ability to estimate in real-time.

In the simulations, the simulation results show that the algorithm is able to estimate
in noisy environments. And with adding reliability testing, it can make the algorithm
estimate in real-time demand without sacrifice the estimated accuracy, even enhance the
smoothness of the estimated trajectory.

In the real-world experiments, the estimated results from indoor experiments are
compared with the ground truth generated by marker-based estimation, the comparison
results show that the proposed algorithm performs well in real-world estimation. The
outdoor experiments in 3 different scenarios show that the proposed algorithm is able to
operate in complex environments with interferences like sunlight, obstacles and window
reflections. Unfortunately, because of wind and light interference, the outdoor
experiments do not have marker-based ground truth to quantify performance of the
proposed algorithm in outdoor estimation, but the trajectory patterns are still consistent
with the camera motion during estimation.

In generally, the estimated method of the proposed algorithm is similar to the marker-
based method, so the performance of the proposed algorithm is compared to the marker-
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based estimation, shows that it can perform almost same performance without the nééd
for additional markers in the scene. As for the disadvantages of the proposed alg(;rlﬁq_hm,
it requires structural lines that can form rectangles to estimate the camera pio‘se: v.th:e
application scenarios are very limited, some possible applications are patrol robot moving
in warehouses or around buildings, and there is still some work to improve the algorithm
so that it can be used in more scenarios, the potential improvements are discussed in
Section 6.2.

For the number of features needed and the execution time, the proposed algorithm
can estimate the camera pose using only 20 to 30 lines and execute at 20Hz in Python
environment without other optimization in computing speed. According the experiments
in [12: Mur-Artal et al. 2015], ORB-SLAM is set to extract 1000 corner points in similar
image resolution to ensure it can calculate the camera pose. In the system proposed in [8:
Zhou et al. 2015], the feature points and feature lines are limited to 40 points and 24 lines,
the authors implemented their system in MATLAB, which executes at about 2Hz, whereas
the C++ implementation runs at an average of about 40Hz. Considering the number of
extracted features, if the proposed algorithm can be implemented in more efficient
programming languages such as C/C++, it will be more competitive in lower budget

applications since fewer features are required.

6.2 Future Works

Although the proposed algorithm can track the grid mesh plane and localize the
camera trajectory, there are some issues that need solving to enhance performance and
apply it in a wider range of scenarios.

First issue is measuring the real-world scale factor. The current method is to
manually measure the distance to the target plane and input the measurement into the

algorithm before starting the estimation. The process can be completed automatically by
80
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adding additional sensors such as Time-of-Flight (ToF) sensor or Inertial Measurement

Unit (IMU) to calculate the precise value.

SN

Second issue is the number of target planes, in Section 4.4, if the planes -detie‘ctéa in
camera frame are not the stored target plane, the algorithm will discard these planes and
only retains the information about the stored target plane. The process could be improved
by storing the planes detected in camera frames, creating a map contains different planes
and estimate camera pose with the planes individually, and then refine the results using
filtering methods. It allows the algorithm to estimate in more scenarios without being
constrained by moving along the same plane.

The third issue continues the second issue, if the algorithm could store complete
information about the features, the loop closure process could be added to the algorithm

to increase the estimate stability and long term accuracy.
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Figure A.1: The 2-D plot of estimated trajectories and ground truth
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