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ABSTRACT

As population grows rapidly and urbanization accelerates, the volume of domestic
wastewater continues to increase. Coupled with complex pollutants from industrial
discharges and agricultural irrigation, wastewater treatment plants (WWTPs) face the
dual challenges of higher influent loads and greater pollutant complexity. Therefore,
effective monitoring and prediction of effluent water quality in the WWTPs have become
a crucial task. In this study, on-site sensor data from an industrial WWTP are combined
with machine learning (ML) models to forecast effluent chemical oxygen demand
(COD.out). First, sensor readings are cleaned to remove outliers, and time lag analysis is
incorporated to capture the retention effects occurring throughout the treatment process.
Subsequently, three models, random forest (RF), gradient boosting machine (GBM) and
extreme gradient boosting (XGB), were trained and compared. RF delivered the best
performance in predicting COD.out, achieving a mean absolute percentage error (MAPE)
of 6.22%. SHapley Additive exPlanations (SHAP) analysis was employed to evaluate the
influences of each input parameter, including influent pH (pH.in), influent temperature
(Temp.in), oxidation ditch temperature (Temp.Ox.ditch), effluent pH (pH.out), effluent
temperature (Temp.out), and effluent suspended solids concentration (SS.out) on the
model output. The results indicate that the TEMP.Ox.ditch, TEMP.out, and SS.out have
the most significant influences on COD.out. When Temp.Ox.ditch and Temp.out are
maintained between 27 and 32 °C and SS.out is kept below 2.5 mg/L, the model predicts
a declining trend in effluent COD. By focusing on monitoring these three key parameters,

the COD.out can be effectively predicted.

il
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Chapter 1 Introduction

1.1 Background

With the rapid growth of the global population and accelerated urbanization,
domestic wastewater generated has been continuously increasing. Moreover, the
expansion of industrial activities and the rising demand for agricultural irrigation have
further exacerbated water pollution (Moss, 2008). As a result, wastewater treatment plants
(WWTPs) face the dual challenge of processing larger volumes of wastewater and dealing
with increasingly complex pollutants. Ensuring the effectiveness of the treatment
processes has become an indispensable responsibility of wastewater treatment industry,
in which water quality monitoring and water quality prediction play important roles.

Machine learning (ML) models which are developed using historical data collected
from on-site sensors have been employed to uncover the complex relationships between
water quality parameters and to predict effluent water quality in WWTPs (Miiller and
Guido, 2016). Since ML models rely entirely on sensor data, ensuring data integrity is
critical. In addition, past studies often overlook the wastewater retention and transport
between treatment units, which prevents the data from reflecting true water quality
conditions and leads to incorrect patterns and poor accuracy (Wang et al.,, 2021).
Moreover, ML models are frequently regarded as “black boxes” and unable to explain the
contributions of input parameters to the final predictions. These challenges must be
addressed to ensure the proper applications of ML models to assist water quality

predictions and optimal operations of WWTPs.
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1.2 Research Objectives

The goal of this study is to apply ML models for effluent water quality predictions

in WWTPs. Specific objectives include:

1. To develop a data screening procedure to ensure the integrity of sensing data.

2. To incorporate the “time lag” concept in data processing workflow to reflect the
water retention in treatment units.

3. To evaluate the performance of different ML models in predicting effluent water
quality.

4. To quantify and explain the impact of each input data feature on the ML predictions.
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Chapter 2 Literature review

2.1 Water Quality Monitoring in WWTPs

In WWTPs, multiple key water quality parameters are monitored, including
temperature for evaluating thermal contamination, biochemical oxygen demand (BOD)
and chemical oxygen demand (COD) for assessing organic load; total suspended solids
(TSS) for evaluating particle removal efficiency; electrical conductivity (EC) for
assessing the concentration of dissolved ions, serving as an indirect measure of total
dissolved solids, and total nitrogen (TN) and total phosphorus (TP) for evaluating nutrient
removal performance (Tchobanoglous et al., 2014). If a WWTP fails to control its effluent
quality to meet the standards required by environmental regulations, it can cause
ecological damage to natural water bodies. For example, when wastewater with a high
residual organic content is discharged into a natural water body, it consumes excess
dissolved oxygen (DO), which adversely affects the survival of aquatic organisms (Von
Sperling, 2007).

Traditional laboratory analyses provide high accuracy measurements of water
quality parameters but require a relatively long time (hours or days) to complete sampling
and testing. Therefore, abnormal influent water quality, failures in water treatment
processes, and violations of discharge standards could not be detected and responded
immediately. In contrast, on-site sensors continuously monitor water quality, providing
real time information to prompt corrective measures if the situations mentioned above
occur. Currently in Taiwan, a continuous water monitoring system (CWMS) is
implemented according to the Ministry of Environment’s regulations, in which

temperature, pH, EC, COD and suspended solids (SS) in the effluent are continuously
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monitored in industrial WWTPs (Ministry of Environment, 2024).

There is an increasing demand to digitalize traditional WWTPs to improve water
quality management. The application of ML models using historical data collected from
on-site sensors has been considered to reveal complex relationships among different water
quality parameters and to predict water quality under different scenarios, enabling
WWTPs operators to take action before abnormality occurs (Safder et al., 2022).
Although ML model is a powerful tool, its performance critically depends on the quality
of the input data. Water quality sensors can be affected by malfunctions, connectivity
errors, and other factors that degrade data quality (Szelag et al., 2017). Consequently, it

is essential to identify anomalous data before feeding them into ML models.

2.2 Categories of ML

ML can be categorized into supervised learning, unsupervised learning, semi-
supervised learning, and reinforcement learning (Mohammed et al., 2016). Among these,
supervised learning relies on labeled datasets, meaning each input sample is paired with
a known output. It encompasses traditional algorithms such as decision trees (DT),
logistic regression (LR), multiple linear regression (MLR), support vector regression
(SVR) and k-nearest neighbors (KNN), and extends to ensemble learning like random
forests (RF), gradient boosting machines (GBM) and extreme gradient boosting (XGB),
adaptive boosting (AdaBoost), light gradient boosting machine (Light GBM) (Murphy,
2012). Ensemble learning combines multiple simple weak learners, typically DT, which
can either function independently as a single model or serve as the fundamental units of
a larger ensemble (Hastie et al., 2009). Ensemble learning trains models on different
random subsets of data and averages their predictions to smooth out noise. It can also

build models sequentially, with each new model focusing on correcting the remaining
4
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errors to gradually reduce overall errors and boost accuracy. By aggregating many weak
learners, ensemble learning can even surpass a single complex model, such as a deep
neural network (Zhou, 2012). A deep neural network is inspired by the human brain and
consists of layers of interconnected nodes that learn to recognize relationships in data.
Supervised learning also incorporates deep learning models such as artificial neural
network (ANN), multilayer perceptron (MLP), backpropagation neural network (BP-NN),
deep neural network (DNN), recurrent neural network (RNN), and long short-term
memory (LSTM) (Chollet, 2017).

Unsupervised learning relies on unlabeled datasets, allowing models to discover
internal data structures and perform clustering (James et al., 2013). Semi-supervised
learning is between these two approaches: it initially trains a model with a small set of
labeled datasets and then uses a large amount of unlabeled datasets for refinement
(Mohammed et al., 2016). Reinforcement learning does not depend on labeled or
unlabeled datasets but instead learns by interacting with the environment and receiving

feedback (Alpaydin, 2006).

2.3 Application of ML models in Water Quality Management in

WWTPs

In recent years, ML has been applied to WWTPs for water quality management. For
instance, Qambar and Al Khalidy (2022) proposed a dynamic ML model for real time
influent BOD prediction to optimize the operation of aeration tanks in WWTPs. Unlike
the traditional use of DO control threshold, the ML model adjusts the DO concentration
based on actual influent conditions, leading to a 23% reduction in energy consumption.

Wang et al. (2022) used RF, XGB and LightGBM to predict effluent TSS at WWTP. The
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results showed that XGB performed best among the three models and that influent
temperature is a critical parameter. Nasir and Li (2024) used ANN, GBM, RF, XGB and
a hybrid RF-GBM model to predict effluent BOD at WWTP. The ANN achieved the most
accurate predictions, enabled real-time BOD monitoring, eliminating the 5-7 day waiting
time for traditional lab tests and reducing labor costs. Mahanna et al. (2024) used ML
models such as LR, RF, GBM, and SVR to predict the removal efficiencies of SS, COD,
and BOD in WWTPs. The results showed that RF was the best model in predicting COD
and SS removal efficiencies while GBM performed the best in predicting BOD removal
efficiency. The importance of input parameters was also analyzed, revealing that influent
COD and total dissolved solids (TDS) were the most influential parameters for both COD
and BOD removal efficiencies, whereas influent SS and TDS were most critical for SS
removal efficiency. Accordingly, operators should closely monitor these parameters.
Manav-Demir et al. (2024) used XGB, LightGBM, SVR and RF to predict effluent COD
and BOD at WWTP. The results indicated that SVR achieved the best accuracy. By
integrating on-site sensors, the model can provide real-time predictions and alerts to
support WWTP operations and decision-making. Cechinel et al. (2024) used SVM, LSTM,
MLP and RF to predict effluent COD at WWTP. The results showed that LSTM
performed best. The importance of input parameters was also analyzed, revealing that
influent TSS was the most significant parameter affecting effluent COD. Ye et al. (2024)
used MLR, BP-NN, SVR, DNN and XGB to predict effluent BOD at WWTP. The results
showed that XGB outperformed other models. Effluent COD was identified as the most
influential parameter affecting effluent BOD. Bo-Qi et al. (2025) used AdaBoost, BP-NN,
SVR, XGB and GBM to predict a composite effluent quality index (EQI) at WWTP. EQI
was defined as the weighted sum of effluent BOD, COD, TN, TP and SS concentrations.

The results showed that XGB outperformed other models and can be used to forecast

6
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effluent water quality in real time, enabling operators to adjust operational parameters,
such as aeration rate, preventing pollutant concentrations from exceeding discharge
stahdards. Wang et al. (2025) used RF, LSTM, RNN and SVM to predict N,O emissions
at WWTP. The results showed that RF was the model with the highest accuracy. The study
demonstrated that traditional monitoring methods are limited by high costs, time
consuming and complex procedures, while ML can directly extract hidden relationships
from historical sensor data for N>O level prediction, thereby enabling early warnings for

possible abnormalities.

2.4 Challenges and Limitations of Water Parameters Predictions in

WWTPs

Although ML models have been applied for water quality management in WWTPs,
relatively poor prediction performances are also reported in some studies. For instance,
Bagherzadeh et al. (2021) found that GBM reached an R? of 0.58 for influent TN
prediction; Cechinel et al. (2024) showed that SVR attained an R? of 0.60 for effluent
COD prediction; and Manav-Demir et al. (2024) reported that when predicting TN and
TP in the effluent of a WWTP, RF and XGB predictions produced relatively high MAPE
of 0.34 and 0.27, respectively.

One possible reason for the poor predictions is that water retention in each treatment
processes in WWTPs were not considered. Clarifying the impact of the retention or “time
lag” in each treatment process is essential to correctly capture the relationship between
the water quality parameters inside the WWTP and those in the effluent (Wang et al.,
2021). Toivonen and Résdnen (2024) found that the influent COD impacts the effluent

COD after about 23.25 hr. They also showed that DO begins to affect COD removal
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efficiency after roughly 100 hr. Therefore, incorporating time lag of data and
understanding the appropriate time series between water quality parameters are important
for ML application in WWTPs. Moreover, even the ML models demonstrate good
performance, their results remain difficult to interpret due to the “black box” natures of
the ML models. Therefore, search for a method that can be used to interpret the results

from ML models is essential for the application of ML models to WWTP operations.
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Chapter 3 Materials and Methods

3.1 Research Flowchart

The research flowchart of this study is shown in Figure 1. The water quality data
acquired from different treatment processes in an industrial WWTP are collected and
processed through a series of data cleaning steps to maintain data integrity. The cleaned
data were analyzed using correlation analysis to identify the key water quality parameters
affecting effluent COD. The data were then used as the input for various ML models to
evaluate their prediction performance to determine the best ML model. Finally, SHAP is
used to quantify the contribution of each important feature to the COD predictions,
thereby identifying the most influential factors affecting water quality.

This simulation was implemented using Python 3.10 and conducted within the
Visual Studio Code (VSCode) development environment for programming and execution.
The construction, training, optimization, and evaluation of all ML models were performed
in VSCode. The simulation was conducted on a workstation equipped with an AMD
Ryzen 9950X3D CPU, which is the main processor that runs the computer and handles
most tasks; 32 GB of DDR5 RAM, which is the memory that helps the computer run
programs faster by temporarily storing data; and an NVIDIA RTX 5080 GPU with 16 GB
of dedicated memory, a special processor that helps speed up calculations, especially

those used in ML.
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Data Collection

7 water quality parameters from different processes in an industrial wastewater
treatment plant (6,430 data)
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Random Forest (RF) / Gradient Boosting Machine (GBEM) / Extreme Gradient Boosting (XGB)

Y

Model Performance Evaluation

R*MAE/PRMSE/MAPE

.

Model Interpretability (SHAP)
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Dependence Plots : Illustrate how each feature 1s influenced by other features.

Figure 1. Research Flowchart
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3.2 WWTP data collection

The data were collected from an industrial WWTP located in central Taiwan. The
treatment processes employed in the WWTP are shown in Figure 2. The wastewater first
passes through physical treatment processes, including bar screens, grit chamber, and
primary clarifier, to remove large particles. Then, the wastewater enters an oxidation ditch
to break down organic matter, followed by the secondary clarifier, allowing sludge to
settle and separate from the clarified supernatant. Finally, the supernatant undergoes

coagulation, flocculation and sedimentation before discharge.

Coagulation&

Bar Grit Equalization  Primary Oxidation ~ Secondary g\ .. [ation Final Effluent
Screens Chamber Tank Clarifier Ditch Clarifier Tank Clarifier Unit
//] | [ ]

—_

1 | | | | Ll — - —

v v v

1

1
1
1
1

v

Influent : Q Oxidation Ditch Influent :  Aerobic : Effiuent ;
Temp, pH, EC,COD, 55 Temp, pH, Temp, pH, EC,
ORP, DO coD, 88

Figure 2. Treatment processed employed in the WWTP

Data collected from on-site sensors between January 1, 2024, and September 30,
2024, were used for this study. The monitored water quality parameters include
temperature (Temp), pH, EC, COD, SS, oxidation-reduction potential (ORP), and DO.
The sensor deployment is shown in Table 1. All data points are collected at an hourly

frequency, with a total of 6,430 data points.

11
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Table 1. Sensor deployment in the WWTP

Sensors Location Monitored Parameters

Temperature (TEMP.in), pH (pH.in), Conductivity
Oxidation ditch inlet (EC.in), Chemical Oxygen Demand (COD.in),
Suspended Solids (SS.in)

Temperature (TEMP.Ox.ditch), pH (pH.Ox.ditch),
Oxidation ditch Oxidation Reduction Potential (ORP.Ox.ditch),
Dissolved Oxygen (DO.Ox.ditch)

Temperature (TEMP.out), pH (pH.out), Conductivity
Effluent unit (EC.out), Chemical Oxygen Demand (COD.out),
Suspended Solids (SS.out)

3.3 Data Preprocessing

3.3.1 Data Cleaning

To ensure data validity, data preprocessing to remove missing data, invalid data, and
outliers is required. For the monitored water quality parameters (Table 1), except
ORP.Ox.ditch, should be greater than or equal to zero and any negative values found in
the data must be removed. Additionally, if the data contain ten or more consecutive
identical values, which may be caused by sensor malfunction or connection anomalies,
these repeated values are considered invalid and removed from the dataset.

To determine the outliers, multivariate analysis incorporating the correlation
between parameters was employed. The covariance matrix (S, Equation (1)) was used to
evaluate the correlation between two parameters and the mahalanobis distance (MD,
(Equation (3)) was calculated. MD measures the distribution of univariate data points
using standard deviations, taking the correlation between variables in a multivariate
context into account. If the variables are highly correlated, the S value is large and the
MD value is reduced, indicating that the point is close to the mean and is not seen as an

12
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outlier. Conversely, if the variables are less correlated, the S value is small and the MD
value is enlarged, reflecting that the point is an outlier. The covariance matrix and
Mahalanobis Distance are integrated with the Chi-Square Distribution to identify outliers

(Murphy, 2012).

_5‘11 Slk
s E Equation (1)
Skl Skk
: v tq)" Equation (2
Spq = n—1 Z(l’@p—xp) (Xi,q—%q) quation (2)
i€N
MD; =/(x; = DTS (x;— %) i=12,...,n Equation (3)

where, k is number of features, p and q ranges from 1 to k, n represents the total number
of samples, x; represents a data point, X denotes the mean vector of the data, N is the
sample index set, 7 denotes the transpose operator, which converts a column vector into
a row vector and vice versa.

The estimation of the covariance matrix is based on the entire dataset, and the
presence of outliers may affect the accuracy of the covariance matrix. To reduce the
interference of outliers on matrix estimation, the minimum covariance determinant (MCD,
Equation (4)) was adopted (Yoon et al., 2019). This method randomly selects a subset of
the dataset of size h = 0.75 n and calculates its covariance determinant. The selection is
repeated until the subset with the smallest determinant is found. Based on this subset, the
mean and covariance matrix are calculated, thereby improving the matrix's accurate
reflection of the central tendency of the data. The distance calculated using the above

matrix is referred to as the robust distance (RD, Equation (6)). When combined with the

13
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Chi-Square Distribution, it can be used to identify outliers. Data points falling outside the

range defined by the Chi-Square Distribution are regarded as outliers and removed.

S v (S )
Suep = [( M(,;D)ll ( MCED)lk] Equation (4)
(Smepdir - (Smep)kk
1 ) ) . .
(Smep)pq = h—1 Z(x/;,p_xMCD,p) (Xi,q—%mcD,q) Equation (5)
1EH
RD,!: = J(xl - :EMCD)T. S'p:‘«éD . (x,i - fMCD) i= 1,2, eey h Equatlon (6)

where, h represents the number of samples in the subset, H is the sample index set.

3.3.2 Time Lag Calculation

In the WWTP, wastewater flows through different treatment units in sequence. The
data synchronously collected by the sensors in different treatment units at the same time
reflect the characteristics of different batches of wastewater. This fact results in time
delays between the data collected by sensors in different treatment units and affects the
correlations between water quality parameters. To address this time delay issue,
correlation analysis is employed to explore the relationships between each parameter and
effluent COD to calibrate the data collected at the same time.

To quantitatively analyze the time delay effect, two correlation assessment methods
were used, namely the Pearson product-moment correlation and Spearman’s rank
correlation. Additionally, the Jackknife method was used to enhance their robustness
(Stehlik et al., 2023). These two methods calculate the correlation coefficient between

each water quality parameter and the target effluent COD at different time delays. The
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Pearson product-moment correlation coefficient (r) measures the linear relationship
between variables, while the Spearman’s rank correlation coefficient calculates the
correlation after ranking the data to capture nonlinear relationships. The Jackknife method
calculates the Pearson product-moment correlation and Spearman’s rank correlation
coefficient by removing one data point at a time and averaging all the recalculated values.
This method helps to assess the robustness of the results and reduces the influence of any
single data point on the final correlation coefficient. The formula applies to Pearson
product-moment correlation coefficient on raw data and to Spearman’s rank correlation

coefficient after converting the raw data into ranks.

r= Equation (7)

where X; and Y; represent the observations of two data sets, and X and Y represent the
respective mean values of these two data sets, and n is the total number of data points.
The results from the two statistical methods will be compared and the lag value
corresponding to the largest absolute correlation coefficient will be selected as the best
time delay. This captures the time delay effect in each parameter’s data and recovers the
characteristics of different batches of wastewater, providing more accurate data for

training models.

3.4 Feature Selection and Data Extraction

The water quality parameters that showed relatively higher Pearson product—
moment correlation coefficients with the target variable (COD.out) are designated as

“features”. Only these features are selected for subsequent model training to prevent
15
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potential interferences from model prediction and to avoid an excessive computational
load that would prolong the training time.

After feature selection, the data were split into a 70% training dataset (4,501 data
points) and a 30% test dataset (1,929 data points). The training dataset is used to fit the
ML models, allowing them to learn patterns and relationships between features and the

target variable. The test dataset is used to evaluate the model performance on unseen data.

3.5 ML Model Selection

Three ML models, including Random Forest (RF), Gradient Boosting Machine
(GBM), eXtreme Gradient Boosting (XGB), are employed in this study for effluent COD
prediction.

RF is an ensemble learning method that combines the predictions of multiple DT for
judgment. This method uses Bagging to resample the dataset, ensuring that the training
samples for each DT are different. During the node splitting process of each DT, random
features are selected for splitting to reduce the correlation between the trees
(Lakshmanaprabu et al., 2019). As shown in the Figure 3, for regression problems with
predicted values, the final prediction of the RF is the average of the predictions from all
DT. RF excels in handling high-dimensional data, capturing nonlinear relationships

between variables.
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Figure 3. RF structure (Bagherzadeh et al., 2021)

GBM is an ensemble learning model based on boosting that employs gradient
descent to minimize the loss function. The gradient can be seen as a direction for adjusting
the model, guiding how the model should update in order to reduce prediction error. The
gradient is calculated by taking the partial derivative of the loss function L(y,
F)=0.5(y — F(x))? with respect to F(x), resulting in —(y — F(x)) (Friedman, 2001).
The gradient and the residual usually only differ by a negative sign. As a result, the
gradient can be interpreted through the residual, with the negative gradient serving as the
direction for adjustment. Typically, the residual, which is the difference between the
predicted value and the actual value, i.e., y - F(x), is calculated from the prediction F(x)
of the current model. Then, a weak learner is trained to fit this residual, such that h(x) =
y - F(x). The weak learner h(x) is added to the original model F(x) to obtain a new model
F(x) + h(x). This process is repeated iteratively, with the residuals of the previous model
training the new weak learner, until the predetermined number of training iterations is
reached or the model's performance is satisfactory. The final model is the sum of all these
terms: F(x) + h(x) +---.

XGB is an ensemble learning algorithm that combines the advantages of both
17
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Bagging and Boosting. XGB incorporates random feature selection when constructing
each tree, while maintaining the learning characteristics of gradient boosting, enabling
each tree to correct the errors made by the previous tree (Chen and Guestrin, 2016).
Furthermore, XGB incorporates L1 regularization (alpha) and L2 regularization (lambda)
on leaf weights to control model complexity and prevent overfitting.

To prevent the model from overfitting (memorizing noise in the training data) or
underfitting (failing to capture underlying trends), K-fold validation was employed to
evaluate model performance, setting K = 5. In 5-fold cross-validation, the training set is
evenly divided into 5 subset. In each fold, 4 subsets are used for training and the
remaining subset is used for validation. This approach ensures that each data point serves
as both a training and a validation example at different stages, preventing the model from

focusing on only one portion of the dataset.

3.6 Model Performance Evaluation

Selecting the best model is a key step in the ML process. In regression models, the
smaller the difference between the predicted results and the actual values, the better the
model performance. To conduct a comprehensive and objective evaluation, four
commonly used evaluation metrics, namely mean absolute error (MAE), mean absolute
percentage error (MAPE), root mean square error (RMSE), and coefficient of
determination (R?) were employed.

MAE is the average absolute error between the predicted values and the actual values.
Since the error is taken as the absolute value, it avoids the issue of positive and negative
errors canceling each other, making it less sensitive to extreme values compared to other
metrics. MAE is suitable for situations where extreme values are prevalent in the training

data. MAPE is the absolute percentage error between the actual values and the predicted
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values, averaged across all data points. The lower the MAPE, the more accurate the
predictions. MAPE is useful because it converts the error into a percentage, avoiding the
need to consider the unit of the data. However, it cannot be used when the target value (y)
contains zero. RMSE is based on mean square error (MSE), which calculates the average
of the squared differences between the actual values and the predicted values. The square
feature penalizes extreme values (outliers), making RMSE more sensitive to them. RMSE
is derived by taking the square root of MSE, with the primary goal of keeping the unit
consistent with the actual values. Finally, R? measures the goodness-of-fit of the model
by calculating the difference between the variation of the actual values and the squared
errors of the predicted values. The closer R? is to 1, the higher the model's goodness-of-
fit. Through the comprehensive analysis of these evaluation metrics, the model
performance can be fully evaluated. The equations for calculating MAE, MAPE, RMSE,

and R? are shown in Equations (8)-(11).

2 _ 2{:1(3’& _)7)2

R R Equation (8)
MAE = L TX17: — il Equation (9)
RMSE = \/% T — ya)? Equation (10)
MAPE =<3, yyi| x 100% Equation (11)

where y,; represents the actual value, y; represents the model's predicted value, y

represents the mean value, N is the total number of data points.
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3.7 SHapley additive exPlanations (SHAP)

Because the ML models are regarded as “black boxes,” their internal computations
are not transparent to users. To verify which features the model relies on, the SHAP is
used. SHAP is a feature attribution method based on cooperative game theory (Lundberg
and Lee, 2017). By comparing predictions with and without a given feature, SHAP
computes each feature’s contribution to the final prediction, thereby quantifying its

impact on the model’s output.

$: = Bser B £ (SUL) — £(S)] Equation (12)

where ¢, is the SHAP value of feature 4, F represents the set of features (with a total
of M features), S represents any subset of features that does not include the 4-th feature,

/+() represents the model’s prediction function, SU{4} is the subset S plus feature 4.
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Chapter 4 Results and Discussion

4.1 Analysis and Preprocessing of WWTP Data

Water quality data detected using 14 sensors (Table 1) in an industrial WWTP over
a period of 9 months were used in this study to develop a ML model for effluent COD
prediction. A total of 6,430 data were recorded. Since some of the data could be erroneous
due to equipment malfunctions, connection interruptions, sensor fouling and other issues,
direct use of these data in model training could introduce bias and deteriorate the model
development. Therefore, these data must first undergo cleaning to remove missing data,
invalid data, or outlier before model development.

Blanks resulting from the “no response” of the sensors in the dataset are treated as
missing data. Negative values, except the ORP in the oxidation ditch (ORP.Ox.ditch), and
ten or more identical consecutive measurements are considered as invalid data. The
numbers of missing and invalid data detected in the dataset are summarized in Table 2.

For outlier detection, the RD for each sample based on the MCD was calculated and
subjected to the chi-square distribution test (Section 3.3.1). At a significance level of a
= 0.01 with 14 degrees of freedom, the corresponding chi-square critical value is 29.14.
Therefore, when the RD of a sample exceeds 29.14, it is classified as an outlier at the 99%
confidence level. Multivariate detection was performed to compute the RD value for each
data point. Among the 6,430 data points, a total of 262 were classified as outliers. Values
obtained from linear interpolation were used to replace the removed data points as data

continuity is required for model development.
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Table 2. Summary of Missing and Invalid Data Counts for Each Water Quality

Parameter
Invalid data
Missing data Negative Consecutive identical
values values
Q 0 0 0
pH.in 5 6 0
TEMP.in 5 0 0
EC.in 5 0 0
SS.in 5 0 124
COD.in 5 0 0
pH.Ox.ditch 0 54 0
TEMP.Ox.ditch 0 0 88
ORP.Ox.ditch 0 -- 665
DO.Ox.ditch 0 53 1509
pH.out 37 0 10
TEMP.out 37 0 0
EC.out 37 0 0
SS.out 59 0 0
COD.out 59 0 60

Figure 4, Figure 5, and Figure 6 illustrate the data for the water quality parameters
over the 9-month period before and after data cleaning in oxidation ditch influent,
oxidation ditch, and effluent, respectively. Using the pH in oxidation ditch effluent as an
example, before data cleaning several pH values dropped into negative ranges or far
below the normal pH range (Figure 4(a)). After cleaning, all negative values and
anomalous spikes were removed and linear interpolation restored the pH values to a
reasonable range (Figure 4(f)). Similar for water temperature, the readings occasionally
approached 0 °C or deviated significantly from the reasonable range (Figure 4(b)). After
cleaning, these erroneous points were removed and replaced to restore the temperature to
a reasonable range of approximately 17 °C to 35 °C to reflect the realistic temperature
condition in central Taiwan (Figure 4(g)).

After data cleaning, the maximum, minimum, mean, and standard deviation for each

water parameter are presented in Table 3. For the target variable COD.out, the maximum,
22
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minimum, mean and standard deviations are 97.4 mg/L, 9.8 mg/L, 27.0 mg/L, and 7.8

mg/L, respectively.
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Figure 4. Water quality parameters at the oxidation ditch influent over a 9-month
period. (a) pH, (b) TEMP, (c¢) EC, (d) SS, and (e¢) COD before data cleaning; (f) pH,
(g) TEMP, (h) EC, (i) SS, and (j) COD after data cleaning
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Figure 5. Water quality parameters in the oxidation ditch over a 9-month period :
(a) pH, (b) TEMP, (¢) ORP, and (d) DO before data cleaning; (e) pH, (f) TEMP, (g)
ORP, and (h) DO after data cleaning

25

doi:10.6342/NTU202503249



A

Vo e
6
I
2y
)
0
R S et N P als
P IO
¢ & @ R @ Y R
Time (month)
35.0
25|(b) My
30.0
U275
o 25.0
=
BH22s M!
lw
20.0 |
17.5
15.0
D D D D 3 e >
il w&h & o B M M ﬁ?ﬂy
P L S SN S L .Y
AR R A S O ST A
Time (month)
9000 (C) W H h
8000 ‘ /‘I H 1 F‘,
g | ‘\l‘ \“\ M
S 7000| | L“ H J "‘I“ / I
E | l||‘ ‘ N ‘ M ‘/H\\'(J\
§ 6000 V1Y ‘ \ \
w \ \ | d
5000, | w | }
4000 M |
» [N N S N N
LA A U A SR I L A s
L & > g
SRR S A Al
Time (month)
()
gt '
£
=10
@
M 1.“ | MA
4]
LA A A s A A 4
S o Ao o o
¥ @ ¥ @YY
Time {month)
100
(e)
80-
-
5 60
£
3 )
© u W’M\‘, I U Mﬂu"
20 v
0
S X x X% N X
I - L L L L i
™
R R N

Time (month)

76 ()

7.4-
57.2
7.0
6.8
™ ™ PRI x RS
Cﬂ§L ¥ (ﬁsb qgéb QﬂéL \j§L & ‘ﬂ§L
¢ @ # @ Y @ &
Time (month)
35.0
325 (g)
30.0
Y275
£ 250
w
=225
20.0
17.5
> Y & NS Iy [
= I L i
N
& & VQ( .\@ RN ‘?‘\)Q R &
Time (month)
9000 (h)
8000
£
& 7000
=
5 6000
w
5000
4000
B ™ ™ S N RS
& S GRS I S A
L > X
& & W@ Y R F
Time (month)
12{
(1)
10
g s
d
o
Es
w
w
4
2
» x v b b ™ ™ N
LA U RN LA L
N PO
@ LARCE S A
Time (month)
100 (J)
80
=
(=2
£ 60
8
9 40
20
B '3 D D 3 3 D 3 e
’P"l« ’LQ'L ’L@' q’g‘l 3V /19’1' ’]’Dl]r ’L@’ q?"l/
L N M
& & & @ ¥ P L £
Time (month)

Figure 6. Water quality parameters for the effluent over a 9-month period: (a) pH,
(b) TEMP, (¢) EC, (d) SS, and (e) COD before data cleaning; (f) pH, (g) TEMP, (h)
EC, (i) SS, and (j) COD after data cleaning
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Table 3. The maximum, minimum, mean and standard deviations of each water

quality after data cleaning

Parameters Units Max Min  Average SD
Q M?/day 7092.0 459.0 3760.2  1426.0
pH.in - 8.0 6.2 6.9 0.3
TEMP i, °C 34.2 16.1 27.7 3.9
ECin uS/cm 12662.7 576.4 53125  2578.7
SS.in mg/L 45450.0 7.3 127579 12088.6
COD.in mg/L 974.8 69.7 614.5 276.7
PH ox ditch - 7.5 4.8 6.5 0.8
TEMP ox ditch °C 333 17.2 274 4.0
ORP ox ditch mV 3353 -1032.3 25.9 330.5
DO ox ditch mg/L 6.0 0.1 1.4 1.3
pHoout - 7.7 6.7 7.3 0.1
TEMP out °C 34.6 17.1 27.6 4.4
EC.out uS/cm 9671.8 36109 6821.4  1207.6
SS.out mg/L 12.1 0.8 3.0 1.8
COD out mg/L 97.4 9.8 27.0 7.8
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Since all water quality parameter sensors record data simultaneously, a time lag must
be introduced to reflect the fact that different batches of water are detected by these
sensors. The optimal time lag for each of the 14 water quality parameters relative to
COD.out was calculated using the method described in Section 3.3.2. and the results are
shown in Table 4. The optimal time lag varies across water quality parameters, likely due
to factors such as hydraulic retention times and the reaction kinetics affecting each water
quality parameters in different treatment units before the parameter’s association with
COD.out becomes evident. For example, Influent COD must experience all treatment
units with a cumulative time lag of 20 hr to be associated with COD.out. Similarly, ORP
and DO in the oxidation ditch reflect the redox status in the ditch that affect microbial
activity, which require a sufficient retention time to reveal their impact on COD removal
that ultimately affect COD.out. Figure 7 shows an example of the water quality
parameters are shifted according to the optimal time lag in Table 4. In the subsequent

model training, the shifted data (marked by the red box in Figure 7) are used as the input.
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Table 4. Optimal time lag between each parameter and COD.out

Parameters Best time Lag

pH.in 0
TEMP i, 4
ECin 10
SS.in 0
COD.in 20
PH ox.ditch 3
TEMP ox ditch 12
ORP ox ditch 12
DO ox.ditch 13
pH.out 14
TEMP out 14
EC out 0
SS.out 1

time Q pH.in TEMP.in EC.in SS.im  COD.in pH.Ox.ditch TEMP.Ox.ditch ORP.Ox.ditch DO.Ox.ditch pH.out TEMP.out EC.out SS.out COD.out

2024-01-01 01:00:00 669 6.81 6033.92 5969.12 3853

2024-01-01 02:00:00 669 6.81 5855.11 5951.58 2.87 38.86

2024-01-01 03:00:00 669 6.80 5321.79 594326 212 37.75

2024-01-01 04:00:00 669 681 5855.67 27 593344 266 3684

2024-01-01 0: 669 6.81 22.49 5769.44 7.26 5924.17 2.61 36.98

2024-01-01 0 669 6.82 233 4893.31 7.26 5924.47 37.09

2024-01-01 0 669 6.82 217 4856.94 725 5913.68 2.64 37.56

2024-01-01 08:00:00 669 6.82 22.04 6245.03 7.25 5904.93 271 3794

2024-01-01 09:00:00 669 6.83 21.85 5440.82 724 589453 2.68 36.81

2024-01-01 10:00:00 669 6.83 21.74 5383.64 724 5878.76 2.59 35.86

2024-01-01 11:00:00 669 6.83 4329.18  5417.48 723 3862.67 249 3593

2024-01-01 12:00:00 669 6.83 4346.47  5060.44 7.23 5841.91 248 36.00

2024-01-01 13:00:00 669 6.83 4369.33  4530.92 .22 23.07 -137.86 5824.30 238 36.61

2024-01-01 14:00:00 669 6.83 4384.48 538432 721 22.96 -123.94 5797.16 227 3711

669 6.83 441532 4971.26 719 287 -130.06 745 22.30 5766.96  2.20 35.83

669 6.83 4453.78 411041 717 2276 -124.33 145 2232 5738.55 211 3480

669 6.83 4466.33  3179.44 7.15 22.67 -101.78 7.45 219 5716.05 2.03 34.78

669 6.83 4478.00 278823 7.14 -99.03 745 22.06 570150 1.93 34.76

663 6.83 450112 2602.89 713 2246 -92.85 744 21.95 5660.98  2.65 34.76

669 6.84 4563.92 7.12 22.37 -86.77 7.44 21.82 5627.69 1.79 34.76

669 6.86 4593.87 7.10 229 -83.35 743 2173 5596.67 1.58 34.19

669 6.85 4624.27 7.09 nn -35.66 743 2180 5573.50 151 37

2024-01-01 23:00:00 669 6385 207 4624 88 7.08 2228 -32.51 743 21.95 5559.77 147 BN
2024-01-02 00:00:00 810 6.85 2070 4652.77 7.06 231 =378 145 257 552539 117 337

2024-01-02 01:00:00 810 6.83 2083 7.04 2238 -3.60 746 3.4 5488.00 1.88 3278

810 685 2090 704 2240 -7.38 747 2351 5455.77 141 3203

810 6.85 20.80 7.05 2233 -7.3% 7.46 2353 542746 1.34 32.14

810 6.86 20.69 7.06 2228 -1230 746 2334 5462 57 1.2 223

810 687 2054 7.07 2216 -19.70 744 23.06 553578 126 3232

:00:00 810 6.87 20.42 7.08 22,09 -26.46 743 2.5 3506.55 128 32.40

0:00 810 6.88 2026 7.10 22.00 -2471 740 22 5492 65 123 3230

2024-01-02 08:00:00 810 650 20.16 in 21.90 -1031 7.36 21.97 5546.19 129 21

2024-01-02 09:00:00 810 6.89 20.08 712 21.83 11.87 735 21.76 5437.35 135 32.62

2024-01-02 10:00:00 810 6.89 20.00 714 21.74 46.61 734 21.61 5364.49 143 3296

2024-01-02 11:00:00 810 6.89 19.90 714 21.68 81.66 733 2147 3316.97 143 3253

Figure 7. Data shifted by optimal time lag
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4.2 Model Development and Performance Evaluation

4.2.1 Feature Selection

To investigate the relationship between each water quality parameter (feature) and
COD.out, the Pearson correlation coefficient between each feature and COD.out was
calculated (see section 3.4) and plotted as a heatmap as shown in Figure 8. The red color
indicates positive correlation and the blue color indicates negative correlation. Among the
14 features, only those with a higher correlation with COD.out were selected for the
following model development as irrelevant features could increase computational load
and interfere with the model performance. Based on the heatmap, pH.in, Temp.in,

Temp.Ox.ditch, pH.out, Temp.out, and SS.out were selected.

10
Q -jp¥s+B -0.04 0.38 -0.08 0.18 -0.06 0.13 0.35 -B.EQ 0.08 0.31 -0.03 0.24 -0.01

£l 0.16 0.03 -0.10-0.07 -0.05 0.23 0.12 0.28

0.31 iy 0.32 0.27 0.01 0.42 [LE:ER-0.09 -0.11 | Ro#ie)

EC.in --0.08 0.16 -0.08| 0.33 -0.11 0.52 0.19 0.20
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COD.in --0.06 0.03 0.33 0.11 0.04 0.06 0.07 0.05 0.02 0.06

pH.Ox.ditch - 0.13 -0.10 0.32 ﬂo.m 0.04 pWelol 0.34 0.13 0.17 0.30 0.35 -0.10 -0.10

TEMP.Ox.ditch - 0.35 ﬁ-ﬂ.ll 0.39 0.06 0.34 0.13 -0.04 0.48 EL:N-0.08 E
ORP.Ox.ditch --0.09 -0.07 0.27 -0.03 ifra8 0.13 0.13 pEehil 0.28 0.25 0.16 0.06 Sukelo)-0.11
DO.Ox.ditch -SV82ES -0.05 0.01 geR-ld-0.07 0.17 -0.04 0.28 0.14 0.03 m

pH.out - 0.08 0.42 ﬂ 0.26 0.07 0.30 048 0.25 0.14 0.49 -0.02 -0.07 0.0
TEMP.out - 0.31 0.38 0.05 0.35 0.16 0.03 0.49 pH/E-0.10
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Figure 8. Coefficient correlation heatmap
4.2.2 Model Construction and Hyperparameter Settings
After feature selection, the data were divided into a 70% training set (4,501 data
points) and a 30% testing set (1,929 data points). To prevent overfitting that will result in

noise memory in the training data or underfitting that will hinder the model to capture the
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underlying trends, the K-fold cross validation (K=5) as shown in Figure 9 was employed.
In the 5-fold cross validation, the 4,501 training data points are divided equally into 5
subsets. In each fold, 4 subsets (3,601 data points) are used for model training, and the
remaining subset (900 data points) serves as the validation set. This process is repeated 5
times to reduce the risk that a single partition excessively influences the evaluation
metrics. After completing the 5 folds, the evaluation metrics from each fold are averaged
for each hyperparameter combination. These averaged metrics are then compared across
all configurations to identify the best hyperparameters.

Different models require different types of hyperparameters which are critical in the
model training and ultimately the model performance. The best hyperparameters used for
training the RF, GBM, and XGB models are summarized in Table 5-7, respectively. Each
model was retained using the entire training set (4,501 samples) according to the best
hyperparameters and their performances were evaluated using the test set for unseen data

(1,929 data points).

Preprocessed data

¥

Training data | Validation data Test data

T —
70 % | 30 %

‘ K-fold cross-validation (K=5)

1st F0|d Validation datal Training data | Training data | Training data | Training data

Training data Validation data| Training data | Training data | Training data

2" Fold

average - 3nd Fo|d | Training data | Training data }\/ahdatien datal Training data | Training data

Training data | Training data | Training data

4t Fold

|
Validation dae{ Training data |

Training data | Training data | Training data | Training data

. 5t Fold

|
Validation dat{‘
|

Figure 9. K-fold cross validation (K=5)

31

doi:10.6342/NTU202503249



Table 5. Hyperparameter settings for RF

Hyperparameters

Meaning of
Hyperparameters

Value Settings

Best value

n_estimators

Specifies how many
decision trees the model
will build.
Too low :
underfitting
+  Too high :
overfitting

50, 100, 200

200

max_depth

Defines how deep each

decision tree can grow.

. Too low :
underfitting

+  Too high :
overfitting

None (No Limit), 10, 20, 30

20

min_samples_split

Determines how many
samples must exist in a
node before the algorithm
attempts to split it.
Too low : overfitting
+  Too high :
underfitting

2,5,10

min_samples_leaf

Indicates how many
samples each leaf node
must contain.
+  Too low : overfitting
+  Too high :
underfitting

1,2,4

max_features

Specifies how many
features to consider when
searching for the best split
at each node.
+  Toolow:
underfitting
+  Too high :
overfitting

Sqgrt(vNumber of features ),
10g2(10g2Number of features)

32

doi:10.6342/NTU202503249




Table 6. Hyperparameter settings for GBM

Hyperparameters

Meaning of
Hyperparameters

Value Settings

Best value

n_estimators

Specifies how many weak
learners (decision trees) the
model uses to iteratively reduce
error.

+  Too low : underfitting

. Too high : overfitting

50, 100, 200

200

max_depth

Defines how deep each
decision tree can grow.

Too low : underfitting
. Too high : overfitting

3,5,7

learning_rate

Scales each weak learner’s

contribution at every iteration.
Too low : underfitting

. Too high : overfitting

0.01,0.1,0.2

0.2

subsample

Determines what fraction of
training samples to draw at
each iteration.

. Too low : underfitting

. Too high : overfitting

0.8, 1.0

1.0
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Table 7. Hyperparameter settings for XGB

Hyperparameters

Meaning of Hyperparameters

Value Settings

Best value

n_estimators

Specifies how many weak
learners (decision trees) the
model uses to iteratively reduce
error.

Too low : underfitting

Too high : overfitting

50, 100, 200

200

max_depth

Defines how deep each decision
tree can grow.
Too low : underfitting
Too high : overfitting

3,57

learning_rate

Scales each weak learner’s
contribution at every iteration.
+  Too low : underfitting

Too high : overfitting

0.01,0.1,0.2

0.2

subsample

Determines what fraction of
training samples to draw at each
iteration.

Too low : underfitting

Too high : overfitting

0.8, 1.0

0.8

colsample bytree

Specifies what fraction of
features each tree randomly uses
when building.
Too low : underfitting
Too high : overfitting

0.6,0.8,1.0

1.0

gamma

Specifies the minimum loss
reduction required to split a
node.
* A loss function is the error
between predicted and actual
values.

+  Too low : overfitting

. Too high : underfitting

0,0.1,0.2,0.3,
0.4,0.5,0.6

0.1

alpha

Controls how strongly the
model applies an L; penalty to
leaf outputs.

* It sets the outputs of noisy
leaves to zero.

+  Too low : overfitting

. Too high : underfitting

0.05,0.1,1,2,3

Lambda

Controls how strongly the
model applies an L, penalty to
leaf outputs.

*It shrinks all leaf outputs
without making them zero.

+  Too low : overfitting

Too high : underfitting

0.05,0.1,1,2,3
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4.2.3 Model Performance Evaluation

Figure 10 shows the scatter plots using training and test datasets for RF, GBM, and
XGB and the obtained performance evaluation metrics including R?, RMSE, MAE, and
MAPE are shown in Table 8. For the training dataset, RF, GBM, and XGB all perform
very well, with the R? of 0.98, 1.00, and 0.99, respectively; while for the test dataset, the
R2 are 0.83, 0.79, and 0.82 respectively. R? reflects how closely predicted values match
actual values, so higher values indicate better fit; whereas RMSE, MAE, and MAPE are
used to evaluate the deviation between the model predictions and the true values, so lower
values indicate more accurate performance. In addition to the scatter plots, Figure 11
shows the trend charts comparing predicted and actual values for RF, GBM, and XGB on
the test datasets. These trend charts help visualize how well each model captures the
overall patterns. Considering both the evaluation metrics and the trend charts, RF and

XGB slightly outperform GBM on the test dataset, although the differences are not large.
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Figure 10. Scatter plots for the training dataset: (a) RF, (b) GBM, (¢) XGB; and
Scatter plots for the test dataset: (d) RF, (e) GBM, (f) XGB

Table 8. Performance evaluation of RF, GBM, and XGB on the training/test dataset

Training Dataset

Test Dataset

Model Training
R® RMSE MAE MAPE | po pmse  MaE  MAPE | Time (sec)
(%) (%)

RFE 098 122 063 233 | 0.83 3.4 1.68 6.22 128
GBM  1.00 039 029 .14 | 079 357 1.85 6.91 48
XGB 099 062  0.44 1.71 082 332 1.68 6.22 2645
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From the perspective of computational efficiency, XGB requires tuning more
hyperparameters (Table 7), which often leads to a longer training time. Therefore, XGB
was not considered further. In contrast, RF builds independent decision trees
simultaneously and averages their predictions for the final output. Since each tree works
separately, errors in one tree do not influence other trees, making the model more robust
to overfitting. RF also needs fewer hyperparameters and trains faster. Considering these

factors, RF was considered as the best model in this study.

4.3 Feature Contribution Analysis for COD.out Prediction Using SHAP

SHAP analysis (Figure 12) was applied to quantify each feature’s contribution to RF
model predictions. Figure 12(a) shows the distribution of SHAP values for each feature
across all instances, in which each instance represents a complete set of feature values.
The color from blue to red represents the feature value from low to high. When the SHAP
value is positive, the feature increases the model’s predicted value. For example, the red
dots for SS.out lie at SHAP > 0, indicating that higher values of SS.out increase the
model’s predicted values for COD.out, while the blue dots lie at SHAP < 0, indicating
that lower SS.out values decrease the predicted COD.out values.

Moreover, to compare each feature’s overall contribution to the model’s predictions,
the absolute SHAP values for all instances for each feature were averaged and plotted as
a bar chart as shown in Figure 12(b). The bar chart shows that the top three most

influential features for predicting COD were SS.out, Temp.Ox.ditch, and Temp.out.
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Figure 12.(a) Distribution of SHAP values for each feature in predicting COD.out,
(b) Feature contribution on COD.out prediction (measured by mean absolute

SHAP values)

Based on the feature contribution ranking shown in Figure 12(b), Figure 13 presents
SHAP interaction plots of SS.out vs.Temp.Ox.ditch and SS.out vs. Temp.out. The x-axis
shows the SS.out value, the left y-axis displays the SS.out’s SHAP value, and the right y-
axis shows the corresponding Temp.Ox.ditch or Temp.out values. As shown in Figure
13(a) and 13(b), it is observed that when SS.out is below 2.5 mg/L, the corresponding
SHAP values are negative, indicating that the model predicts a lower COD.out. Once
SS.out exceeds 2.5 mg/L, SHAP values become positive and increase almost linearly,
showing that a higher SS.out leads to a higher predicted COD.out. In particular, when

SS.out is between 11 and 12.5 mg/L and both water temperatures (Temp.Ox.ditch and
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Temp.out) are between 20 and 22 °C, the SHAP values are the highest, indicating that
under these conditions, COD.out rises significantly and requires attention.

SS consists of both organic and inorganic particles. When organic particles dominate,
SS and COD are positively correlated, while when inorganic particles dominate, they are
only weakly correlated. Figure 13(a) and 13(b) show that a higher SS.out leads to a higher
COD.out, illustrating that organic particles resulting from microbial biomass dominates.
To reduce COD.out, SS.out should be controlled below 2.5 mg/L to minimize the organic

loading to COD.out.
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Figure 13.(a) Interaction between SS.out and TEMP.out, (b) Interaction between
SS.out and Temp.Ox.ditch
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Figure 14 presents the SHAP interaction plots of Temp.Ox.ditch vs. SS.out and
Temp.Ox.ditch vs. Temp.out. The x-axis shows the Temp.Ox.ditch value, the left y-axis
displays the Temp.Ox.ditch’s SHAP value, and the right y-axis shows the corresponding
SS.out or Temp.out. As shown in Figure 14(a) and 14(b), when Temp.Ox.ditch is below
approximately 27 °C, the SHAP value is positive, indicating that a lower temperature in
the oxidation ditch is associated with an increased COD.out. When Temp.Ox.ditch ranges
from 27-32 °C, the SHAP value becomes negative, showing that Temp.Ox.ditch in this
range contributes to a lower COD.out. When the Temp.Ox.ditch exceeds 32 °C, the SHAP
value rises again to positive, implying that an excessively high temperature in
Temp.Ox.ditch also leads to a higher COD.out. Overall, the results in Figure 14(b) can be
divided into three categories: blue for Temp.Ox.ditch = 18-24 °C, purple for
Temp.Ox.ditch = 24-28 °C, and red for Temp.Ox.ditch > 28 °C. When Temp.Ox.ditch is
between 27 °C and 32 °C, the corresponding Temp.out also lies in the high temperature
region above 27 °C, indicated by purple and red colors in Figure 14(b). In this range of
Temp.Ox.ditch, the SHAP values are negative, indicating that the model predicts a lower
COD.out under these conditions. Thus, this range represents an optimal temperature in

the oxidation ditch.
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Figure 15 presents the SHAP interaction plots of Temp.out vs. SS.out and Temp.out
vs. Temp.Ox.ditch. The x-axis shows the Temp.out value, the left y-axis displays the
Temp.out’s SHAP value, and the right y-axis shows the corresponding SS.out or
Temp.Ox.ditch. As shown in Figure 15(a) and 15(b), when Temp.out is below
approximately 27 °C, the SHAP value is positive, indicating that a lower Temp.out is
associated with an increased COD.out. Once Temp.out exceeds 27 °C, the SHAP value

becomes negative, meaning that a higher temperature leads to a decreased COD.out.
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Based on the above SHAP analysis, it is recommended the following to achieve a

lower effluent COD: 1. maintain a relatively high temperature in the oxidation ditch and

effluent to boost the microbial activity to degrade organics and 2. keep SS in the effluent

below 2.5 mg/L by enhancing the performance of clarifies after the oxidation ditch.
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Chapter 5 Conclusions and Recommendations

5.1 Conclusions

In this study, ML models were used to predict the effluent COD in an industrial
WWTP. For the ML model development, a data screening procedure was employed to
ensure the integrity of historical sensing data and a “time lag” concept was incorporated
to reflect the water retention in treatment units in the data processing workflow. The
performance of different ML models for predicting effluent COD was then evaluated.
Finally, the impacts of each input data feature on the ML predictions were quantified and
explained. The conclusions are summarized as follows:

1. Among the 6,430 data points collected from the industrial WWTP, missing data,
invalid data and outliers were identified and removed. To preserve the continuity
required for subsequent model development, these removed points were imputed
using the values determined from linear interpolation.

2. Optimal time lags for 14 water quality parameters relative to effluent COD were
determined by Pearson product-moment and Spearman’s rank correlations. It was
found that the optimal time lag varied across parameters. Accounting for time delays
is essential for reflecting the water retention in treatment units.

3. Three ML models, including RF, GBM, and XGB, were tested. For the test dataset,
RF and XGB were found to slightly outperform GBM. However, XGB was not
considered due to its longer training time. Moreover, RF is less prone to overfitting
and requires less training time. Consequently, RF was selected as the optimal model,
achieving a MAPE of 6.22%, indicating close alignment between predicted and real
values.

4. SHAP analysis identified effluent SS, temperature in the oxidation ditch and effluent
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temperature as the most influential parameters for RF predictions of effluent COD.
It is recommended to maintain high temperatures in both the oxidation ditch and
effluent and to keep effluent SS below 2.5 mg/L to achieve a low effluent COD in

the WWTP.

5.2 Recommendations

Sensor readings for influent SS (up to 40,000 mg/L) and influent COD (up to 900
mg/L) were not removed from ML development since they meet the data screening
criteria. However, these values could not reflect true water quality and indictive for
probable sensor failures. Although these variables were not important features for the
effluent COD prediction using RF model, they highlight the importance of acquiring
accurate data for ML models. Below are some recommendations for future study.

1. Develop sensors with automatic cleaning and self-calibration to prevent fouling and
thus improve data quality.

2. Currently, only water quality monitoring data from the oxidation ditch influent,
oxidation ditch, and the effluent are available. However, parameters for the influent,
grit chamber, and secondary sedimentation tank are unavailable, and operational
parameters like aeration rate and sludge retention time have not been recorded. It is
recommended to install sensors at each treatment unit and record operational
parameters to gain a comprehensive understanding of the WWTP’s conditions,
thereby enhancing the model’s ability to predict effluent COD.

3. There are no instances of effluent COD violations in the historical dataset. Without
including any exceedance data, the model can not provide early warnings. It is
recommended to continuously collect data during any exceedance events at the

WWTP and incorporate these records into the dataset to strengthen the model’s
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capability to detect abnormal conditions.

The RF model is currently being used for effluent COD prediction and achieves an
R? of 0.83. This indicates fairly high accuracy, yet there remains an opportunity for
improvement. It is recommended to simulate the performance of deep learning
models not yet tested, such as LSTM and RNN, and carry out comparative

evaluations with the RF model to determine the optimal ML model for this WWTP.
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