
doi:10.6342/NTU202503249

國立臺灣大學工學院環境工程學研究所 

碩士論文 

Graduate Institute of Environmental Engineering 

College of Engineering  

National Taiwan University 

Master’s Thesis 

 

以機器學習模型預測污水處理廠放流水中的化學需氧量 

Prediction of Effluent COD of Wastewater Treatment Plant Using 

Machine Learning 

 

 

劉軒成 

Xuan-Cheng Liu 

 

指導教授：林逸彬 博士 

Advisor: Yi-Pin Lin, Ph.D. 

 

中華民國 114年 7月 

July, 2025 



doi:10.6342/NTU202503249

  



doi:10.6342/NTU202503249

 i 

摘要  

隨著人口急速成長和都市化，生活污水量持續攀升，再加上工廠排放與農業灌

溉帶來的複雜污染物，污水處理廠（WWTPs）面臨更大處理量與更複雜污染物的

雙重挑戰。因此，如何有效監控並預測出流水水質成為當務之急。本研究結合現場

感測器數據與機器學習模型，對一工業區污水處理廠出流水 COD（COD.out）進行

預測。首先對感測器數據進行清洗以排除異常值，並加入時間延遲分析來捕捉污水

處理過程中的停留效應，接著比較隨機森林（Random Forest, RF）、梯度提升機

（Gradient Boosting Machine, GBM）與極限梯度提升（Extreme Gradient Boosting, 

XGB）三種模型，結果顯示 RF在預測 COD.out的表現最佳，平均絕對百分比誤差 

(Mean Absolute Percentage Error, MAPE) 為  6.22%。此外，以夏普利加成解釋 

(SHapley Additive exPlanations, SHAP) 分析各輸入參數包含進水 pH（pH.in）、進水

溫度（Temp.in）、氧化渠溫度（Temp.Ox.ditch）、出水 pH（pH.out）、出水溫度

（Temp.out）、出水懸浮固體濃度（SS.out）對模型輸出的影響程度，結果顯示，放

流池、氧化渠溫度（TEMP.out 和 TEMP.Ox.ditch）以及放流池懸浮固體濃度 (SS.out) 

對 COD.out的影響最為顯著。當 Temp.Ox.ditch與 Temp.out維持在 27~32°C之間、

SS.out低於 2.5 mg/L時，模型預測的 COD.out呈下降趨勢。透過重點監測並維持

這三個關鍵參數可以有效預測 COD.out。 

 

 

關鍵字：污水處理廠、出流水化學需氧量、機器學習、水質預測、模型可解釋性 
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ABSTRACT 

 

 As population grows rapidly and urbanization accelerates, the volume of domestic 

wastewater continues to increase. Coupled with complex pollutants from industrial 

discharges and agricultural irrigation, wastewater treatment plants (WWTPs) face the 

dual challenges of higher influent loads and greater pollutant complexity. Therefore, 

effective monitoring and prediction of effluent water quality in the WWTPs have become 

a crucial task. In this study, on-site sensor data from an industrial WWTP are combined 

with machine learning (ML) models to forecast effluent chemical oxygen demand 

(COD.out). First, sensor readings are cleaned to remove outliers, and time lag analysis is 

incorporated to capture the retention effects occurring throughout the treatment process. 

Subsequently, three models, random forest (RF), gradient boosting machine (GBM) and 

extreme gradient boosting (XGB), were trained and compared. RF delivered the best 

performance in predicting COD.out, achieving a mean absolute percentage error (MAPE) 

of 6.22%. SHapley Additive exPlanations (SHAP) analysis was employed to evaluate the 

influences of each input parameter, including influent pH (pH.in), influent temperature 

(Temp.in), oxidation ditch temperature (Temp.Ox.ditch), effluent pH (pH.out), effluent 

temperature (Temp.out), and effluent suspended solids concentration (SS.out) on the 

model output. The results indicate that the TEMP.Ox.ditch, TEMP.out, and SS.out have 

the most significant influences on COD.out. When Temp.Ox.ditch and Temp.out are 

maintained between 27 and 32 °C and SS.out is kept below 2.5 mg/L, the model predicts 

a declining trend in effluent COD. By focusing on monitoring these three key parameters, 

the COD.out can be effectively predicted. 

 



doi:10.6342/NTU202503249

 iii 

Keywords: Wastewater Treatment Plant, Effluent Chemical Oxygen Demand, Machine 

Learning, Water Quality Prediction, Model Interpretability 

 

 



doi:10.6342/NTU202503249

 iv 

CONTENTS 

 

摘要 ................................................................................................................................... i 

ABSTRACT ..................................................................................................................... ii 

CONTENTS .................................................................................................................... iv 

List Of Abbreviations ...................................................................................................... vi 

LIST OF FIGURES ........................................................................................................ vii 

LIST OF TABLES ........................................................................................................... ix 

Chapter 1 Introduction ....................................................................................................... 1 

1.1 Background ..................................................................................................... 1 

1.2 Research Objectives ........................................................................................ 2 

Chapter 2 Literature review ............................................................................................... 3 

2.1 Water Quality Monitoring in WWTPs ............................................................ 3 

2.2 Categories of ML ............................................................................................ 4 

2.3 Application of ML models in Water Quality Management in WWTPs.......... 5 

2.4 Challenges and Limitations of Water Parameters Predictions in WWTPs ..... 7 

Chapter 3 Materials and Methods ...................................................................................... 9 

3.1 Research Flowchart ........................................................................................ 9 

3.2 WWTP data collection .................................................................................. 11 

3.3 Data Preprocessing ....................................................................................... 12 

3.3.1 Data Cleaning ...................................................................................... 12 

3.3.2 Time Lag Calculation .......................................................................... 14 

3.4 Feature Selection and Data Extraction ......................................................... 15 

3.5 ML Model Selection ..................................................................................... 16 



doi:10.6342/NTU202503249

 v 

3.6 Model Performance Evaluation .................................................................... 18 

3.7 SHapley additive exPlanations (SHAP) ....................................................... 20 

Chapter 4 Results and Discussion ................................................................................... 21 

4.1 Analysis and Preprocessing of WWTP Data ................................................ 21 

4.2 Model Development and Performance Evaluation ....................................... 30 

4.2.1 Feature Selection ................................................................................. 30 

4.2.2 Model Construction and Hyperparameter Settings ............................. 30 

4.2.3 Model Performance Evaluation ........................................................... 35 

4.3 Feature Contribution Analysis for COD.out Prediction Using SHAP .......... 38 

Chapter 5 Conclusions and Recommendations ............................................................... 44 

5.1 Conclusions................................................................................................... 44 

5.2 Recommendations......................................................................................... 45 

Reference 47 

 

  



doi:10.6342/NTU202503249

 vi 

List Of Abbreviations 

Term Abbreviation 

adaptive boosting AdaBoost 

artificial neural network ANN 

backpropagation neural network BP-NN 

biochemical oxygen demand BOD 

chemical oxygen demand COD 

coefficient of determination R² 

continuous water monitoring system CWMS 

covariance matrix S 

decision trees DT 

deep neural network DNN 

dissolved oxygen DO 

electrical conductivity EC 

effluent quality index EQI 

extreme gradient boosting XGB 

gradient boosting machine GBM 

k-nearest neighbors KNN 

light gradient boosting machine Light GBM 

logistic regression LR 

long short-term memory LSTM 

mahalanobis distance MD 

machine learning ML 

mean absolute error MAE 

mean absolute percentage error MAPE 

minimum covariance determinant MCD 

multilayer perceptron MLP 

oxidation-reduction potential ORP 

random forest RF 

recurrent neural network RNN 

robust distance RD 

root mean square error RMSE 

SHapley Additive exPlanations SHAP 

support vector regression SVR 

suspended solids SS 

total dissolved solids TDS 

total nitrogen TN 

total phosphorus TP 

total suspended solids TSS 

visual studio code  VSCode 

wastewater treatment plants WWTPs 

 



doi:10.6342/NTU202503249

 vii 

LIST OF FIGURES 

Figure 1. Research Flowchart .......................................................................................... 10 

Figure 2. Treatment processed employed in the WWTP ................................................. 11 

Figure 3. RF structure (Bagherzadeh et al., 2021)........................................................... 17 

Figure 4. Water quality parameters at the oxidation ditch influent over a 9-month period. 

(a) pH, (b) TEMP, (c) EC, (d) SS, and (e) COD before data cleaning; (f) pH, 

(g) TEMP, (h) EC, (i) SS, and (j) COD after data cleaning .......................... 24 

Figure 5. Water quality parameters in the oxidation ditch over a 9-month period : (a) pH, 

(b) TEMP, (c) ORP, and (d) DO before data cleaning; (e) pH, (f) TEMP, (g) 

ORP, and (h) DO after data cleaning ............................................................ 25 

Figure 6. Water quality parameters for the effluent over a 9-month period: (a) pH, (b) 

TEMP, (c) EC, (d) SS, and (e) COD before data cleaning; (f) pH, (g) TEMP, 

(h) EC, (i) SS, and (j) COD after data cleaning ............................................ 26 

Figure 7. Data shifted by optimal time lag ...................................................................... 29 

Figure 8. Coefficient correlation heatmap ....................................................................... 30 

Figure 9. K-fold cross validation (K=5) .......................................................................... 31 

Figure 10. Scatter plots for the training dataset: (a) RF, (b) GBM, (c) XGB; and Scatter 

plots for the test dataset: (d) RF, (e) GBM, (f) XGB .................................... 36 

Figure 11. Trend charts for the test dataset: (a) RF, (b) GBM, (c) XGB ......................... 37 

Figure 12.(a) Distribution of SHAP values for each feature in predicting COD.out, (b) 

Feature contribution on COD.out prediction (measured by mean absolute 

SHAP values) ................................................................................................ 39 

Figure 13.(a) Interaction between SS.out and TEMP.out, (b) Interaction between SS.out 

and Temp.Ox.ditch ........................................................................................ 40 

file:///C:/Users/XuanChengLiu/Desktop/AI/碩論/碩論初稿_以機器學習模型預測污水處理廠放流水中的化學需氧量.docx%23_Toc204869915


doi:10.6342/NTU202503249

 viii 

Figure 14.(a) Interaction between Temp.Ox.ditch and SS.out, (b) Interaction between 

Temp.Ox.ditch and TEMP.out ...................................................................... 42 

Figure 15. (a) Interaction between TEMP.out and SS.out, (b) Interaction between 

TEMP.out and Temp.Ox.ditch ...................................................................... 43 

 



doi:10.6342/NTU202503249

 ix 

LIST OF TABLES 

 

Table 1. Sensor deployment in the WWTP ..................................................................... 12 

Table 2. Summary of Missing and Invalid Data Counts for Each Water Quality Parameter

 ...................................................................................................................... 22 

Table 3. The maximum, minimum, mean and standard deviations of each water quality 

after data cleaning ......................................................................................... 27 

Table 4. Optimal time lag between each parameter and COD.out .................................. 29 

Table 5. Hyperparameter settings for RF ......................................................................... 32 

Table 6. Hyperparameter settings for GBM .................................................................... 33 

Table 7. Hyperparameter settings for XGB ..................................................................... 34 

Table 8. Performance evaluation of RF, GBM, and XGB on the training/test dataset .... 36 

 

 

 

 

 

 

 

 

 

 

 

 

 



doi:10.6342/NTU202503249

 x 

 

 

 

 

 

 

 

 

 

 

 



doi:10.6342/NTU202503249

 1 

Chapter 1 Introduction 

1.1 Background 

With the rapid growth of the global population and accelerated urbanization, 

domestic wastewater generated has been continuously increasing. Moreover, the 

expansion of industrial activities and the rising demand for agricultural irrigation have 

further exacerbated water pollution (Moss, 2008). As a result, wastewater treatment plants 

(WWTPs) face the dual challenge of processing larger volumes of wastewater and dealing 

with increasingly complex pollutants. Ensuring the effectiveness of the treatment 

processes has become an indispensable responsibility of wastewater treatment industry, 

in which water quality monitoring and water quality prediction play important roles.  

Machine learning (ML) models which are developed using historical data collected 

from on-site sensors have been employed to uncover the complex relationships between 

water quality parameters and to predict effluent water quality in WWTPs (Müller and 

Guido, 2016). Since ML models rely entirely on sensor data, ensuring data integrity is 

critical. In addition, past studies often overlook the wastewater retention and transport 

between treatment units, which prevents the data from reflecting true water quality 

conditions and leads to incorrect patterns and poor accuracy (Wang et al., 2021). 

Moreover, ML models are frequently regarded as “black boxes” and unable to explain the 

contributions of input parameters to the final predictions. These challenges must be 

addressed to ensure the proper applications of ML models to assist water quality 

predictions and optimal operations of WWTPs.  
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1.2 Research Objectives 

The goal of this study is to apply ML models for effluent water quality predictions 

in WWTPs. Specific objectives include:  

1. To develop a data screening procedure to ensure the integrity of sensing data. 

2. To incorporate the “time lag” concept in data processing workflow to reflect the 

water retention in treatment units. 

3. To evaluate the performance of different ML models in predicting effluent water 

quality.  

4. To quantify and explain the impact of each input data feature on the ML predictions. 
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Chapter 2 Literature review 

 

2.1 Water Quality Monitoring in WWTPs 

In WWTPs, multiple key water quality parameters are monitored, including 

temperature for evaluating thermal contamination, biochemical oxygen demand (BOD) 

and chemical oxygen demand (COD) for assessing organic load; total suspended solids 

(TSS) for evaluating particle removal efficiency; electrical conductivity (EC) for 

assessing the concentration of dissolved ions, serving as an indirect measure of total 

dissolved solids, and total nitrogen (TN) and total phosphorus (TP) for evaluating nutrient 

removal performance (Tchobanoglous et al., 2014). If a WWTP fails to control its effluent 

quality to meet the standards required by environmental regulations, it can cause 

ecological damage to natural water bodies. For example, when wastewater with a high 

residual organic content is discharged into a natural water body, it consumes excess 

dissolved oxygen (DO), which adversely affects the survival of aquatic organisms (Von 

Sperling, 2007). 

Traditional laboratory analyses provide high accuracy measurements of water 

quality parameters but require a relatively long time (hours or days) to complete sampling 

and testing. Therefore, abnormal influent water quality, failures in water treatment 

processes, and violations of discharge standards could not be detected and responded 

immediately. In contrast, on-site sensors continuously monitor water quality, providing 

real time information to prompt corrective measures if the situations mentioned above 

occur. Currently in Taiwan, a continuous water monitoring system (CWMS) is 

implemented according to the Ministry of Environment’s regulations, in which 

temperature, pH, EC, COD and suspended solids (SS) in the effluent are continuously 
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monitored in industrial WWTPs (Ministry of Environment, 2024). 

There is an increasing demand to digitalize traditional WWTPs to improve water 

quality management. The application of ML models using historical data collected from 

on-site sensors has been considered to reveal complex relationships among different water 

quality parameters and to predict water quality under different scenarios, enabling 

WWTPs operators to take action before abnormality occurs (Safder et al., 2022). 

Although ML model is a powerful tool, its performance critically depends on the quality 

of the input data. Water quality sensors can be affected by malfunctions, connectivity 

errors, and other factors that degrade data quality (Szeląg et al., 2017). Consequently, it 

is essential to identify anomalous data before feeding them into ML models.  

 

2.2 Categories of ML 

ML can be categorized into supervised learning, unsupervised learning, semi-

supervised learning, and reinforcement learning (Mohammed et al., 2016). Among these, 

supervised learning relies on labeled datasets, meaning each input sample is paired with 

a known output. It encompasses traditional algorithms such as decision trees (DT), 

logistic regression (LR), multiple linear regression (MLR), support vector regression 

(SVR) and k-nearest neighbors (KNN), and extends to ensemble learning like random 

forests (RF), gradient boosting machines (GBM) and extreme gradient boosting (XGB), 

adaptive boosting (AdaBoost), light gradient boosting machine (Light GBM) (Murphy, 

2012). Ensemble learning combines multiple simple weak learners, typically DT, which 

can either function independently as a single model or serve as the fundamental units of 

a larger ensemble (Hastie et al., 2009). Ensemble learning trains models on different 

random subsets of data and averages their predictions to smooth out noise. It can also 

build models sequentially, with each new model focusing on correcting the remaining 
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errors to gradually reduce overall errors and boost accuracy. By aggregating many weak 

learners, ensemble learning can even surpass a single complex model, such as a deep 

neural network (Zhou, 2012). A deep neural network is inspired by the human brain and 

consists of layers of interconnected nodes that learn to recognize relationships in data. 

Supervised learning also incorporates deep learning models such as artificial neural 

network (ANN), multilayer perceptron (MLP), backpropagation neural network (BP-NN), 

deep neural network (DNN), recurrent neural network (RNN), and long short-term 

memory (LSTM) (Chollet, 2017).  

Unsupervised learning relies on unlabeled datasets, allowing models to discover 

internal data structures and perform clustering (James et al., 2013). Semi-supervised 

learning is between these two approaches: it initially trains a model with a small set of 

labeled datasets and then uses a large amount of unlabeled datasets for refinement 

(Mohammed et al., 2016). Reinforcement learning does not depend on labeled or 

unlabeled datasets but instead learns by interacting with the environment and receiving 

feedback (Alpaydin, 2006).  

 

2.3 Application of ML models in Water Quality Management in 

WWTPs 

In recent years, ML has been applied to WWTPs for water quality management. For 

instance, Qambar and Al Khalidy (2022) proposed a dynamic ML model for real time 

influent BOD prediction to optimize the operation of aeration tanks in WWTPs. Unlike 

the traditional use of DO control threshold, the ML model adjusts the DO concentration 

based on actual influent conditions, leading to a 23% reduction in energy consumption. 

Wang et al. (2022) used RF, XGB and LightGBM to predict effluent TSS at WWTP. The 
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results showed that XGB performed best among the three models and that influent 

temperature is a critical parameter. Nasir and Li (2024) used ANN, GBM, RF, XGB and 

a hybrid RF-GBM model to predict effluent BOD at WWTP. The ANN achieved the most 

accurate predictions, enabled real-time BOD monitoring, eliminating the 5-7 day waiting 

time for traditional lab tests and reducing labor costs. Mahanna et al. (2024) used ML 

models such as LR, RF, GBM, and SVR to predict the removal efficiencies of SS, COD, 

and BOD in WWTPs. The results showed that RF was the best model in predicting COD 

and SS removal efficiencies while GBM performed the best in predicting BOD removal 

efficiency. The importance of input parameters was also analyzed, revealing that influent 

COD and total dissolved solids (TDS) were the most influential parameters for both COD 

and BOD removal efficiencies, whereas influent SS and TDS were most critical for SS 

removal efficiency. Accordingly, operators should closely monitor these parameters. 

Manav-Demir et al. (2024) used XGB, LightGBM, SVR and RF to predict effluent COD 

and BOD at WWTP. The results indicated that SVR achieved the best accuracy. By 

integrating on-site sensors, the model can provide real-time predictions and alerts to 

support WWTP operations and decision-making. Cechinel et al. (2024) used SVM, LSTM, 

MLP and RF to predict effluent COD at WWTP. The results showed that LSTM 

performed best. The importance of input parameters was also analyzed, revealing that 

influent TSS was the most significant parameter affecting effluent COD. Ye et al. (2024) 

used MLR, BP-NN, SVR, DNN and XGB to predict effluent BOD at WWTP. The results 

showed that XGB outperformed other models. Effluent COD was identified as the most 

influential parameter affecting effluent BOD. Bo-Qi et al. (2025) used AdaBoost, BP-NN, 

SVR, XGB and GBM to predict a composite effluent quality index (EQI) at WWTP. EQI 

was defined as the weighted sum of effluent BOD, COD, TN, TP and SS concentrations. 

The results showed that XGB outperformed other models and can be used to forecast 
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effluent water quality in real time, enabling operators to adjust operational parameters, 

such as aeration rate, preventing pollutant concentrations from exceeding discharge 

stahdards. Wang et al. (2025) used RF, LSTM, RNN and SVM to predict N2O emissions 

at WWTP. The results showed that RF was the model with the highest accuracy. The study 

demonstrated that traditional monitoring methods are limited by high costs, time 

consuming and complex procedures, while ML can directly extract hidden relationships 

from historical sensor data for N2O level prediction, thereby enabling early warnings for 

possible abnormalities. 

 

2.4 Challenges and Limitations of Water Parameters Predictions in 

WWTPs 

Although ML models have been applied for water quality management in WWTPs, 

relatively poor prediction performances are also reported in some studies. For instance, 

Bagherzadeh et al. (2021) found that GBM reached an R² of 0.58 for influent TN 

prediction; Cechinel et al. (2024) showed that SVR attained an R² of 0.60 for effluent 

COD prediction; and Manav-Demir et al. (2024) reported that when predicting TN and 

TP in the effluent of a WWTP, RF and XGB predictions produced relatively high MAPE 

of 0.34 and 0.27, respectively. 

One possible reason for the poor predictions is that water retention in each treatment 

processes in WWTPs were not considered. Clarifying the impact of the retention or “time 

lag” in each treatment process is essential to correctly capture the relationship between 

the water quality parameters inside the WWTP and those in the effluent (Wang et al., 

2021). Toivonen and Räsänen (2024) found that the influent COD impacts the effluent 

COD after about 23.25 hr. They also showed that DO begins to affect COD removal 
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efficiency after roughly 100 hr. Therefore, incorporating time lag of data and 

understanding the appropriate time series between water quality parameters are important 

for ML application in WWTPs. Moreover, even the ML models demonstrate good 

performance, their results remain difficult to interpret due to the “black box” natures of 

the ML models. Therefore, search for a method that can be used to interpret the results 

from ML models is essential for the application of ML models to WWTP operations.  
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Chapter 3 Materials and Methods 

3.1 Research Flowchart 

The research flowchart of this study is shown in Figure 1. The water quality data 

acquired from different treatment processes in an industrial WWTP are collected and 

processed through a series of data cleaning steps to maintain data integrity. The cleaned 

data were analyzed using correlation analysis to identify the key water quality parameters 

affecting effluent COD. The data were then used as the input for various ML models to 

evaluate their prediction performance to determine the best ML model. Finally, SHAP is 

used to quantify the contribution of each important feature to the COD predictions, 

thereby identifying the most influential factors affecting water quality. 

This simulation was implemented using Python 3.10 and conducted within the 

Visual Studio Code (VSCode) development environment for programming and execution. 

The construction, training, optimization, and evaluation of all ML models were performed 

in VSCode. The simulation was conducted on a workstation equipped with an AMD 

Ryzen 9950X3D CPU, which is the main processor that runs the computer and handles 

most tasks; 32 GB of DDR5 RAM, which is the memory that helps the computer run 

programs faster by temporarily storing data; and an NVIDIA RTX 5080 GPU with 16 GB 

of dedicated memory, a special processor that helps speed up calculations, especially 

those used in ML. 
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Figure 1. Research Flowchart 
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3.2 WWTP data collection 

 The data were collected from an industrial WWTP located in central Taiwan. The 

treatment processes employed in the WWTP are shown in Figure 2. The wastewater first 

passes through physical treatment processes, including bar screens, grit chamber, and 

primary clarifier, to remove large particles. Then, the wastewater enters an oxidation ditch 

to break down organic matter, followed by the secondary clarifier, allowing sludge to 

settle and separate from the clarified supernatant. Finally, the supernatant undergoes 

coagulation, flocculation and sedimentation before discharge. 

 

 

 

 

 

Figure 2. Treatment processed employed in the WWTP 

 

Data collected from on-site sensors between January 1, 2024, and September 30, 

2024, were used for this study. The monitored water quality parameters include 

temperature (Temp), pH, EC, COD, SS, oxidation-reduction potential (ORP), and DO. 

The sensor deployment is shown in Table 1. All data points are collected at an hourly 

frequency, with a total of 6,430 data points. 
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Table 1. Sensor deployment in the WWTP 

Sensors Location Monitored Parameters 

Oxidation ditch inlet 

Temperature (TEMP.in), pH (pH.in), Conductivity 

(EC.in), Chemical Oxygen Demand (COD.in), 

Suspended Solids (SS.in) 

Oxidation ditch 

Temperature (TEMP.Ox.ditch), pH (pH.Ox.ditch), 

Oxidation Reduction Potential (ORP.Ox.ditch), 

Dissolved Oxygen (DO.Ox.ditch) 

Effluent unit 

Temperature (TEMP.out), pH (pH.out), Conductivity 

(EC.out), Chemical Oxygen Demand (COD.out), 

Suspended Solids (SS.out) 

 

3.3 Data Preprocessing 

3.3.1 Data Cleaning 

To ensure data validity, data preprocessing to remove missing data, invalid data, and 

outliers is required. For the monitored water quality parameters (Table 1), except 

ORP.Ox.ditch, should be greater than or equal to zero and any negative values found in 

the data must be removed. Additionally, if the data contain ten or more consecutive 

identical values, which may be caused by sensor malfunction or connection anomalies, 

these repeated values are considered invalid and removed from the dataset. 

To determine the outliers, multivariate analysis incorporating the correlation 

between parameters was employed. The covariance matrix (S, Equation (1)) was used to 

evaluate the correlation between two parameters and the mahalanobis distance (MD, 

(Equation (3)) was calculated. MD measures the distribution of univariate data points 

using standard deviations, taking the correlation between variables in a multivariate 

context into account. If the variables are highly correlated, the S value is large and the 

MD value is reduced, indicating that the point is close to the mean and is not seen as an 
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outlier. Conversely, if the variables are less correlated, the S value is small and the MD 

value is enlarged, reflecting that the point is an outlier. The covariance matrix and 

Mahalanobis Distance are integrated with the Chi-Square Distribution to identify outliers 

(Murphy, 2012).  

 

Equation (1) 

 

Equation (2) 

 

Equation (3) 

 

where, k is number of features, p and q ranges from 1 to 𝑘, n represents the total number 

of samples, xi represents a data point, 𝓍 ̅denotes the mean vector of the data, N is the 

sample index set, T denotes the transpose operator, which converts a column vector into 

a row vector and vice versa.   

The estimation of the covariance matrix is based on the entire dataset, and the 

presence of outliers may affect the accuracy of the covariance matrix. To reduce the 

interference of outliers on matrix estimation, the minimum covariance determinant (MCD, 

Equation (4)) was adopted (Yoon et al., 2019). This method randomly selects a subset of 

the dataset of size h = 0.75 n and calculates its covariance determinant. The selection is 

repeated until the subset with the smallest determinant is found. Based on this subset, the 

mean and covariance matrix are calculated, thereby improving the matrix's accurate 

reflection of the central tendency of the data. The distance calculated using the above 

matrix is referred to as the robust distance (RD, Equation (6)). When combined with the 
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Chi-Square Distribution, it can be used to identify outliers. Data points falling outside the 

range defined by the Chi-Square Distribution are regarded as outliers and removed. 

 

 Equation (4) 

 

Equation (5) 

 

Equation (6) 

 

where, h represents the number of samples in the subset, H is the sample index set. 

 

3.3.2 Time Lag Calculation 

In the WWTP, wastewater flows through different treatment units in sequence. The 

data synchronously collected by the sensors in different treatment units at the same time 

reflect the characteristics of different batches of wastewater. This fact results in time 

delays between the data collected by sensors in different treatment units and affects the 

correlations between water quality parameters. To address this time delay issue, 

correlation analysis is employed to explore the relationships between each parameter and 

effluent COD to calibrate the data collected at the same time. 

To quantitatively analyze the time delay effect, two correlation assessment methods 

were used, namely the Pearson product-moment correlation and Spearman’s rank 

correlation. Additionally, the Jackknife method was used to enhance their robustness 

(Stehlík et al., 2023). These two methods calculate the correlation coefficient between 

each water quality parameter and the target effluent COD at different time delays. The 
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Pearson product-moment correlation coefficient (r) measures the linear relationship 

between variables, while the Spearman’s rank correlation coefficient calculates the 

correlation after ranking the data to capture nonlinear relationships. The Jackknife method 

calculates the Pearson product-moment correlation and Spearman’s rank correlation 

coefficient by removing one data point at a time and averaging all the recalculated values. 

This method helps to assess the robustness of the results and reduces the influence of any 

single data point on the final correlation coefficient. The formula applies to Pearson 

product-moment correlation coefficient on raw data and to Spearman’s rank correlation 

coefficient after converting the raw data into ranks. 

 

Equation (7) 

 

 

where 𝑋𝒾  and 𝑌𝒾  represent the observations of two data sets, and  𝑋 ̅ and 𝑌 ̅ represent the 

respective mean values of these two data sets, and n is the total number of data points. 

 The results from the two statistical methods will be compared and the lag value 

corresponding to the largest absolute correlation coefficient will be selected as the best 

time delay. This captures the time delay effect in each parameter’s data and recovers the 

characteristics of different batches of wastewater, providing more accurate data for 

training models. 

 

3.4 Feature Selection and Data Extraction 

The water quality parameters that showed relatively higher Pearson product–

moment correlation coefficients with the target variable (COD.out) are designated as 

“features”. Only these features are selected for subsequent model training to prevent 
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potential interferences from model prediction and to avoid an excessive computational 

load that would prolong the training time.  

 After feature selection, the data were split into a 70% training dataset (4,501 data 

points) and a 30% test dataset (1,929 data points). The training dataset is used to fit the 

ML models, allowing them to learn patterns and relationships between features and the 

target variable. The test dataset is used to evaluate the model performance on unseen data. 

 

3.5 ML Model Selection 

Three ML models, including Random Forest (RF), Gradient Boosting Machine 

(GBM), eXtreme Gradient Boosting (XGB), are employed in this study for effluent COD 

prediction.  

RF is an ensemble learning method that combines the predictions of multiple DT for 

judgment. This method uses Bagging to resample the dataset, ensuring that the training 

samples for each DT are different. During the node splitting process of each DT, random 

features are selected for splitting to reduce the correlation between the trees 

(Lakshmanaprabu et al., 2019). As shown in the Figure 3, for regression problems with 

predicted values, the final prediction of the RF is the average of the predictions from all 

DT. RF excels in handling high-dimensional data, capturing nonlinear relationships 

between variables. 
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Figure 3. RF structure (Bagherzadeh et al., 2021) 

GBM is an ensemble learning model based on boosting that employs gradient 

descent to minimize the loss function. The gradient can be seen as a direction for adjusting 

the model, guiding how the model should update in order to reduce prediction error. The 

gradient is calculated by taking the partial derivative of the loss function L(y, 

F)= 0.5(y − F(x))2  with respect to F(x), resulting in  −(y − F(x))  (Friedman, 2001). 

The gradient and the residual usually only differ by a negative sign. As a result, the 

gradient can be interpreted through the residual, with the negative gradient serving as the 

direction for adjustment. Typically, the residual, which is the difference between the 

predicted value and the actual value, i.e., y - F(x), is calculated from the prediction F(x) 

of the current model. Then, a weak learner is trained to fit this residual, such that h(x) ≈ 

y - F(x). The weak learner h(x) is added to the original model F(x) to obtain a new model 

F(x) + h(x). This process is repeated iteratively, with the residuals of the previous model 

training the new weak learner, until the predetermined number of training iterations is 

reached or the model's performance is satisfactory. The final model is the sum of all these 

terms: F(x) + h(x) + ⋯ . 

XGB is an ensemble learning algorithm that combines the advantages of both 
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Bagging and Boosting. XGB incorporates random feature selection when constructing 

each tree, while maintaining the learning characteristics of gradient boosting, enabling 

each tree to correct the errors made by the previous tree (Chen and Guestrin, 2016). 

Furthermore, XGB incorporates L1 regularization (alpha) and L2 regularization (lambda) 

on leaf weights to control model complexity and prevent overfitting. 

To prevent the model from overfitting (memorizing noise in the training data) or 

underfitting (failing to capture underlying trends), K-fold validation was employed to 

evaluate model performance, setting K = 5. In 5-fold cross-validation, the training set is 

evenly divided into 5 subset. In each fold, 4 subsets are used for training and the 

remaining subset is used for validation. This approach ensures that each data point serves 

as both a training and a validation example at different stages, preventing the model from 

focusing on only one portion of the dataset. 

 

3.6 Model Performance Evaluation 

Selecting the best model is a key step in the ML process. In regression models, the 

smaller the difference between the predicted results and the actual values, the better the 

model performance. To conduct a comprehensive and objective evaluation, four 

commonly used evaluation metrics, namely mean absolute error (MAE), mean absolute 

percentage error (MAPE), root mean square error (RMSE), and coefficient of 

determination (R²) were employed.  

MAE is the average absolute error between the predicted values and the actual values. 

Since the error is taken as the absolute value, it avoids the issue of positive and negative 

errors canceling each other, making it less sensitive to extreme values compared to other 

metrics. MAE is suitable for situations where extreme values are prevalent in the training 

data. MAPE is the absolute percentage error between the actual values and the predicted 
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values, averaged across all data points. The lower the MAPE, the more accurate the 

predictions. MAPE is useful because it converts the error into a percentage, avoiding the 

need to consider the unit of the data. However, it cannot be used when the target value (y) 

contains zero. RMSE is based on mean square error (MSE), which calculates the average 

of the squared differences between the actual values and the predicted values. The square 

feature penalizes extreme values (outliers), making RMSE more sensitive to them. RMSE 

is derived by taking the square root of MSE, with the primary goal of keeping the unit 

consistent with the actual values. Finally, R² measures the goodness-of-fit of the model 

by calculating the difference between the variation of the actual values and the squared 

errors of the predicted values. The closer R² is to 1, the higher the model's goodness-of-

fit. Through the comprehensive analysis of these evaluation metrics, the model 

performance can be fully evaluated. The equations for calculating MAE, MAPE, RMSE, 

and R² are shown in Equations (8)-(11). 

 

                           Equation (8) 

 

                             Equation (9) 

 

                              Equation (10) 

 

                         Equation (11) 

 

where  𝑦𝒾  represents the actual value, 𝑦̂𝒾  represents the model's predicted value, 𝑦̅ 

represents the mean value, N is the total number of data points. 
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3.7 SHapley additive exPlanations (SHAP) 

Because the ML models are regarded as “black boxes,” their internal computations 

are not transparent to users. To verify which features the model relies on, the SHAP is 

used. SHAP is a feature attribution method based on cooperative game theory (Lundberg 

and Lee, 2017). By comparing predictions with and without a given feature, SHAP 

computes each feature’s contribution to the final prediction, thereby quantifying its 

impact on the model’s output. 

 

𝜙𝒾 = ∑
|𝑆|!(𝑀−|𝑆|−1)!

𝑀!
[𝑓𝑥(𝑆⋃{𝒾}) − 𝑓𝑥(𝑆)]  𝑆∈𝐹∖{𝒾}   Equation (12) 

 

where 𝜙𝒾 is the SHAP value of feature 𝒾, F represents the set of features (with a total 

of M features), S represents any subset of features that does not include the 𝒾-th feature, 

fₓ() represents the model’s prediction function, 𝑆⋃{𝒾} is the subset S plus feature 𝒾. 
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Chapter 4 Results and Discussion 

4.1  Analysis and Preprocessing of WWTP Data 

Water quality data detected using 14 sensors (Table 1) in an industrial WWTP over 

a period of 9 months were used in this study to develop a ML model for effluent COD 

prediction. A total of 6,430 data were recorded. Since some of the data could be erroneous 

due to equipment malfunctions, connection interruptions, sensor fouling and other issues, 

direct use of these data in model training could introduce bias and deteriorate the model 

development. Therefore, these data must first undergo cleaning to remove missing data, 

invalid data, or outlier before model development. 

Blanks resulting from the “no response” of the sensors in the dataset are treated as 

missing data. Negative values, except the ORP in the oxidation ditch (ORP.Ox.ditch), and 

ten or more identical consecutive measurements are considered as invalid data. The 

numbers of missing and invalid data detected in the dataset are summarized in Table 2. 

For outlier detection, the RD for each sample based on the MCD was calculated and 

subjected to the chi-square distribution test (Section 3.3.1). At a significance level of 𝛼 

= 0.01 with 14 degrees of freedom, the corresponding chi-square critical value is 29.14. 

Therefore, when the RD of a sample exceeds 29.14, it is classified as an outlier at the 99% 

confidence level. Multivariate detection was performed to compute the RD value for each 

data point. Among the 6,430 data points, a total of 262 were classified as outliers. Values 

obtained from linear interpolation were used to replace the removed data points as data 

continuity is required for model development. 
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Table 2. Summary of Missing and Invalid Data Counts for Each Water Quality 

Parameter 

 Missing data 

Invalid data 

Negative 

values 

Consecutive identical 

values 

Q 0 0 0 

pH.in 5 6 0 

TEMP.in 5 0 0 

EC.in 5 0 0 

SS.in 5 0 124 

COD.in 5 0 0 

pH.Ox.ditch 0 54 0 

TEMP.Ox.ditch 0 0 88 

ORP.Ox.ditch 0 -- 665 

DO.Ox.ditch 0 53 1509 

pH.out 37 0 10 

TEMP.out 37 0 0 

EC.out 37 0 0 

SS.out 59 0 0 

COD.out 59 0 60 

 

Figure 4, Figure 5, and Figure 6 illustrate the data for the water quality parameters 

over the 9-month period before and after data cleaning in oxidation ditch influent, 

oxidation ditch, and effluent, respectively. Using the pH in oxidation ditch effluent as an 

example, before data cleaning several pH values dropped into negative ranges or far 

below the normal pH range (Figure 4(a)). After cleaning, all negative values and 

anomalous spikes were removed and linear interpolation restored the pH values to a 

reasonable range (Figure 4(f)). Similar for water temperature, the readings occasionally 

approached 0 °C or deviated significantly from the reasonable range (Figure 4(b)). After 

cleaning, these erroneous points were removed and replaced to restore the temperature to 

a reasonable range of approximately 17 °C to 35 °C to reflect the realistic temperature 

condition in central Taiwan (Figure 4(g)).  

 After data cleaning, the maximum, minimum, mean, and standard deviation for each 

water parameter are presented in Table 3. For the target variable COD.out, the maximum, 
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minimum, mean and standard deviations are 97.4 mg/L, 9.8 mg/L, 27.0 mg/L, and 7.8 

mg/L, respectively. 
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Figure 4. Water quality parameters at the oxidation ditch influent over a 9-month 

period. (a) pH, (b) TEMP, (c) EC, (d) SS, and (e) COD before data cleaning; (f) pH, 

(g) TEMP, (h) EC, (i) SS, and (j) COD after data cleaning 
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Figure 5. Water quality parameters in the oxidation ditch over a 9-month period : 

(a) pH, (b) TEMP, (c) ORP, and (d) DO before data cleaning; (e) pH, (f) TEMP, (g) 

ORP, and (h) DO after data cleaning 

 

 

 

 

(d) 

(e) 

(f) 

(g) 

(h) 

(a) 

(b) 

(c) 



doi:10.6342/NTU202503249

 26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Water quality parameters for the effluent over a 9-month period: (a) pH, 

(b) TEMP, (c) EC, (d) SS, and (e) COD before data cleaning; (f) pH, (g) TEMP, (h) 

EC, (i) SS, and (j) COD after data cleaning 

 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

(j) 

(a) 

(b) 

(c) 



doi:10.6342/NTU202503249

 27 

 

Table 3. The maximum, minimum, mean and standard deviations of each water 

quality after data cleaning 

Parameters Units Max Min Average SD 

Q M3/day 7092.0 459.0 3760.2 1426.0 

pH.in - 8.0 6.2 6.9 0.3 

TEMP.in °C 34.2 16.1 27.7 3.9 

EC.in μS/cm 12662.7 576.4 5312.5 2578.7 

SS.in mg/L 45450.0 7.3 12757.9 12088.6 

COD.in mg/L 974.8 69.7 614.5 276.7 

pH.Ox.ditch - 7.5 4.8 6.5 0.8 

TEMP.Ox.ditch °C 33.3 17.2 27.4 4.0 

ORP.Ox.ditch mV 335.3 -1032.3 25.9 330.5 

DO.Ox.ditch mg/L 6.0 0.1 1.4 1.3 

pH.out - 7.7 6.7 7.3 0.1 

TEMP.out °C 34.6 17.1 27.6 4.4 

EC.out μS/cm 9671.8 3610.9 6821.4 1207.6 

SS.out mg/L 12.1 0.8 3.0 1.8 

COD.out mg/L 97.4 9.8 27.0 7.8 
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 Since all water quality parameter sensors record data simultaneously, a time lag must 

be introduced to reflect the fact that different batches of water are detected by these 

sensors. The optimal time lag for each of the 14 water quality parameters relative to 

COD.out was calculated using the method described in Section 3.3.2. and the results are 

shown in Table 4. The optimal time lag varies across water quality parameters, likely due 

to factors such as hydraulic retention times and the reaction kinetics affecting each water 

quality parameters in different treatment units before the parameter’s association with 

COD.out becomes evident. For example, Influent COD must experience all treatment 

units with a cumulative time lag of 20 hr to be associated with COD.out. Similarly, ORP 

and DO in the oxidation ditch reflect the redox status in the ditch that affect microbial 

activity, which require a sufficient retention time to reveal their impact on COD removal 

that ultimately affect COD.out. Figure 7 shows an example of the water quality 

parameters are shifted according to the optimal time lag in Table 4. In the subsequent 

model training, the shifted data (marked by the red box in Figure 7) are used as the input. 
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Table 4. Optimal time lag between each parameter and COD.out 

Parameters Best time Lag 

pH.in 0 

TEMP.in 4 

EC.in 10 

SS.in 0 

COD.in 20 

pH.Ox.ditch 3 

TEMP.Ox.ditch 12 

ORP.Ox.ditch 12 

DO.Ox.ditch 13 

pH.out 14 

TEMP.out 14 

EC.out 0 

SS.out 1 

 

 

 

 

 

 

 

 

 

 

Figure 7. Data shifted by optimal time lag 
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4.2 Model Development and Performance Evaluation 

4.2.1 Feature Selection 

To investigate the relationship between each water quality parameter (feature) and 

COD.out, the Pearson correlation coefficient between each feature and COD.out was 

calculated (see section 3.4) and plotted as a heatmap as shown in Figure 8. The red color 

indicates positive correlation and the blue color indicates negative correlation. Among the 

14 features, only those with a higher correlation with COD.out were selected for the 

following model development as irrelevant features could increase computational load 

and interfere with the model performance. Based on the heatmap, pH.in, Temp.in, 

Temp.Ox.ditch, pH.out, Temp.out, and SS.out were selected.  

 

 

 

 

 

 

 

 

 

 

Figure 8. Coefficient correlation heatmap 

4.2.2 Model Construction and Hyperparameter Settings 

After feature selection, the data were divided into a 70% training set (4,501 data 

points) and a 30% testing set (1,929 data points). To prevent overfitting that will result in 

noise memory in the training data or underfitting that will hinder the model to capture the 
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underlying trends, the K-fold cross validation (K=5) as shown in Figure 9 was employed. 

In the 5-fold cross validation, the 4,501 training data points are divided equally into 5 

subsets. In each fold, 4 subsets (3,601 data points) are used for model training, and the 

remaining subset (900 data points) serves as the validation set. This process is repeated 5 

times to reduce the risk that a single partition excessively influences the evaluation 

metrics. After completing the 5 folds, the evaluation metrics from each fold are averaged 

for each hyperparameter combination. These averaged metrics are then compared across 

all configurations to identify the best hyperparameters. 

Different models require different types of hyperparameters which are critical in the 

model training and ultimately the model performance. The best hyperparameters used for 

training the RF, GBM, and XGB models are summarized in Table 5-7, respectively. Each 

model was retained using the entire training set (4,501 samples) according to the best 

hyperparameters and their performances were evaluated using the test set for unseen data 

(1,929 data points).  

 

 

 

 

 

 

 

 

 

Figure 9. K-fold cross validation (K=5) 
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Table 5. Hyperparameter settings for RF 

Hyperparameters 
Meaning of 

Hyperparameters 
Value Settings Best value 

n_estimators 

Specifies how many 

decision trees the model 

will build. 

• Too low：

underfitting 

• Too high：

overfitting 

50, 100, 200 200 

max_depth 

Defines how deep each 

decision tree can grow. 

• Too low：

underfitting 

• Too high：

overfitting 

None (No Limit), 10, 20, 30 20 

min_samples_split 

Determines how many 

samples must exist in a 

node before the algorithm 

attempts to split it. 

• Too low：overfitting 

• Too high：

underfitting 

2, 5, 10 2 

min_samples_leaf 

Indicates how many 

samples each leaf node 

must contain. 

• Too low：overfitting 

• Too high：

underfitting 

1, 2, 4 1 

max_features 

Specifies how many 

features to consider when 

searching for the best split 

at each node. 

• Too low：

underfitting 

• Too high：

overfitting 

Sqrt(√Number of features ), 
log2(𝑙𝑜𝑔2𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

3 
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Table 6. Hyperparameter settings for GBM 

Hyperparameters 
Meaning of 

Hyperparameters 
Value Settings Best value 

n_estimators 

Specifies how many weak 

learners (decision trees) the 

model uses to iteratively reduce 

error. 

• Too low：underfitting 

• Too high：overfitting 

50, 100, 200 200 

max_depth 

Defines how deep each 

decision tree can grow. 

• Too low：underfitting 

• Too high：overfitting 

3, 5, 7 7 

learning_rate 

Scales each weak learner’s 

contribution at every iteration. 

• Too low：underfitting 

• Too high：overfitting 

0.01, 0.1, 0.2 0.2 

subsample 

Determines what fraction of 

training samples to draw at 

each iteration. 

• Too low：underfitting 

• Too high：overfitting 

0.8, 1.0 1.0 
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Table 7. Hyperparameter settings for XGB 

Hyperparameters Meaning of Hyperparameters Value Settings Best value 

n_estimators 

Specifies how many weak 

learners (decision trees) the 

model uses to iteratively reduce 

error. 

• Too low：underfitting 

• Too high：overfitting 

50, 100, 200 200 

max_depth 

Defines how deep each decision 

tree can grow. 

• Too low：underfitting 

• Too high：overfitting 

3, 5, 7 7 

learning_rate 

Scales each weak learner’s 

contribution at every iteration. 

• Too low：underfitting 

• Too high：overfitting 

0.01, 0.1, 0.2 0.2 

subsample 

Determines what fraction of 

training samples to draw at each 

iteration. 

• Too low：underfitting 

• Too high：overfitting 

0.8, 1.0 0.8 

colsample_bytree 

 

Specifies what fraction of 

features each tree randomly uses 

when building. 

• Too low：underfitting 

• Too high：overfitting 

0.6, 0.8, 1.0 1.0 

gamma 

Specifies the minimum loss 

reduction required to split a 

node. 

* A loss function is the error 

between predicted and actual 

values. 

• Too low：overfitting 

• Too high：underfitting 

0, 0.1, 0.2, 0.3, 

0.4, 0.5, 0.6 
0.1 

alpha 

Controls how strongly the 

model applies an L1 penalty to 

leaf outputs. 

* It sets the outputs of noisy 

leaves to zero. 

• Too low：overfitting 

• Too high：underfitting 

0.05, 0.1, 1, 2, 3 3 

Lambda 

 

Controls how strongly the 

model applies an L2 penalty to 

leaf outputs. 

*It shrinks all leaf outputs 

without making them zero. 

• Too low：overfitting 

• Too high：underfitting 

0.05, 0.1, 1, 2, 3 3 
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4.2.3 Model Performance Evaluation 

Figure 10 shows the scatter plots using training and test datasets for RF, GBM, and 

XGB and the obtained performance evaluation metrics including R2, RMSE, MAE, and 

MAPE are shown in Table 8. For the training dataset, RF, GBM, and XGB all perform 

very well, with the R2 of 0.98, 1.00, and 0.99, respectively; while for the test dataset, the 

R² are 0.83, 0.79, and 0.82 respectively. R2 reflects how closely predicted values match 

actual values, so higher values indicate better fit; whereas RMSE, MAE, and MAPE are 

used to evaluate the deviation between the model predictions and the true values, so lower 

values indicate more accurate performance. In addition to the scatter plots, Figure 11 

shows the trend charts comparing predicted and actual values for RF, GBM, and XGB on 

the test datasets. These trend charts help visualize how well each model captures the 

overall patterns. Considering both the evaluation metrics and the trend charts, RF and 

XGB slightly outperform GBM on the test dataset, although the differences are not large. 
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Figure 10. Scatter plots for the training dataset: (a) RF, (b) GBM, (c) XGB; and 

Scatter plots for the test dataset: (d) RF, (e) GBM, (f) XGB 

 

 

Table 8. Performance evaluation of RF, GBM, and XGB on the training/test dataset 

 

Model 

Training Dataset Test Dataset 
Training 

Time (sec) R2 RMSE MAE 
MAPE 

(%) 
R2 RMSE MAE 

MAPE 

(%) 

RF 0.98 1.22 0.63 2.33 0.83 3.24 1.68 6.22 128 

GBM 1.00 0.39 0.29 1.14 0.79 3.57 1.85 6.91 48 

XGB 0.99 0.62 0.44 1.71 0.82 3.32 1.68 6.22 2645 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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From the perspective of computational efficiency, XGB requires tuning more 

hyperparameters (Table 7), which often leads to a longer training time. Therefore, XGB 

was not considered further. In contrast, RF builds independent decision trees 

simultaneously and averages their predictions for the final output. Since each tree works 

separately, errors in one tree do not influence other trees, making the model more robust 

to overfitting. RF also needs fewer hyperparameters and trains faster. Considering these 

factors, RF was considered as the best model in this study.  

 

4.3 Feature Contribution Analysis for COD.out Prediction Using SHAP 

SHAP analysis (Figure 12) was applied to quantify each feature’s contribution to RF 

model predictions. Figure 12(a) shows the distribution of SHAP values for each feature 

across all instances, in which each instance represents a complete set of feature values. 

The color from blue to red represents the feature value from low to high. When the SHAP 

value is positive, the feature increases the model’s predicted value. For example, the red 

dots for SS.out lie at SHAP > 0, indicating that higher values of SS.out increase the 

model’s predicted values for COD.out, while the blue dots lie at SHAP < 0, indicating 

that lower SS.out values decrease the predicted COD.out values. 

Moreover, to compare each feature’s overall contribution to the model’s predictions, 

the absolute SHAP values for all instances for each feature were averaged and plotted as 

a bar chart as shown in Figure 12(b). The bar chart shows that the top three most 

influential features for predicting COD were SS.out, Temp.Ox.ditch, and Temp.out. 



doi:10.6342/NTU202503249

 39 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.(a) Distribution of SHAP values for each feature in predicting COD.out, 

(b) Feature contribution on COD.out prediction (measured by mean absolute 

SHAP values) 

 

Based on the feature contribution ranking shown in Figure 12(b), Figure 13 presents 

SHAP interaction plots of SS.out vs.Temp.Ox.ditch and SS.out vs. Temp.out. The x-axis 

shows the SS.out value, the left y-axis displays the SS.out’s SHAP value, and the right y-

axis shows the corresponding Temp.Ox.ditch or Temp.out values. As shown in Figure 

13(a) and 13(b), it is observed that when SS.out is below 2.5 mg/L, the corresponding 

SHAP values are negative, indicating that the model predicts a lower COD.out. Once 

SS.out exceeds 2.5 mg/L, SHAP values become positive and increase almost linearly, 

showing that a higher SS.out leads to a higher predicted COD.out. In particular, when 

SS.out is between 11 and 12.5 mg/L and both water temperatures (Temp.Ox.ditch and 

(a)

(b)
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Temp.out) are between 20 and 22 ℃, the SHAP values are the highest, indicating that 

under these conditions, COD.out rises significantly and requires attention.  

SS consists of both organic and inorganic particles. When organic particles dominate, 

SS and COD are positively correlated, while when inorganic particles dominate, they are 

only weakly correlated. Figure 13(a) and 13(b) show that a higher SS.out leads to a higher 

COD.out, illustrating that organic particles resulting from microbial biomass dominates. 

To reduce COD.out, SS.out should be controlled below 2.5 mg/L to minimize the organic 

loading to COD.out. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.(a) Interaction between SS.out and TEMP.out, (b) Interaction between 

SS.out and Temp.Ox.ditch 
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Figure 14 presents the SHAP interaction plots of Temp.Ox.ditch vs. SS.out and 

Temp.Ox.ditch vs. Temp.out. The x-axis shows the Temp.Ox.ditch value, the left y-axis 

displays the Temp.Ox.ditch’s SHAP value, and the right y-axis shows the corresponding 

SS.out or Temp.out. As shown in Figure 14(a) and 14(b), when Temp.Ox.ditch is below 

approximately 27 °C, the SHAP value is positive, indicating that a lower temperature in 

the oxidation ditch is associated with an increased COD.out. When Temp.Ox.ditch ranges 

from 27-32 ℃, the SHAP value becomes negative, showing that Temp.Ox.ditch in this 

range contributes to a lower COD.out. When the Temp.Ox.ditch exceeds 32 ℃, the SHAP 

value rises again to positive, implying that an excessively high temperature in 

Temp.Ox.ditch also leads to a higher COD.out. Overall, the results in Figure 14(b) can be 

divided into three categories: blue for Temp.Ox.ditch = 18-24 ℃, purple for 

Temp.Ox.ditch = 24-28 ℃, and red for Temp.Ox.ditch > 28 °C. When Temp.Ox.ditch is 

between 27 ℃ and 32 ℃, the corresponding Temp.out also lies in the high temperature 

region above 27 ℃, indicated by purple and red colors in Figure 14(b). In this range of 

Temp.Ox.ditch, the SHAP values are negative, indicating that the model predicts a lower 

COD.out under these conditions. Thus, this range represents an optimal temperature in 

the oxidation ditch. 
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Figure 14.(a) Interaction between Temp.Ox.ditch and SS.out, (b) Interaction 

between Temp.Ox.ditch and TEMP.out 

 

Figure 15 presents the SHAP interaction plots of Temp.out vs. SS.out and Temp.out 

vs. Temp.Ox.ditch. The x-axis shows the Temp.out value, the left y-axis displays the 

Temp.out’s SHAP value, and the right y-axis shows the corresponding SS.out or 

Temp.Ox.ditch. As shown in Figure 15(a) and 15(b), when Temp.out is below 

approximately 27 ℃, the SHAP value is positive, indicating that a lower Temp.out is 

associated with an increased COD.out. Once Temp.out exceeds 27 ℃, the SHAP value 

becomes negative, meaning that a higher temperature leads to a decreased COD.out.  

 

 

(a)

(b)
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Figure 15. (a) Interaction between TEMP.out and SS.out, (b) Interaction between 

TEMP.out and Temp.Ox.ditch 

 

Based on the above SHAP analysis, it is recommended the following to achieve a 

lower effluent COD: 1. maintain a relatively high temperature in the oxidation ditch and 

effluent to boost the microbial activity to degrade organics and 2. keep SS in the effluent 

below 2.5 mg/L by enhancing the performance of clarifies after the oxidation ditch.  

(a)

(b)
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Chapter 5 Conclusions and Recommendations 

5.1 Conclusions 

In this study, ML models were used to predict the effluent COD in an industrial 

WWTP. For the ML model development, a data screening procedure was employed to 

ensure the integrity of historical sensing data and a “time lag” concept was incorporated 

to reflect the water retention in treatment units in the data processing workflow. The 

performance of different ML models for predicting effluent COD was then evaluated. 

Finally, the impacts of each input data feature on the ML predictions were quantified and 

explained. The conclusions are summarized as follows: 

1. Among the 6,430 data points collected from the industrial WWTP, missing data, 

invalid data and outliers were identified and removed. To preserve the continuity 

required for subsequent model development, these removed points were imputed 

using the values determined from linear interpolation. 

2. Optimal time lags for 14 water quality parameters relative to effluent COD were 

determined by Pearson product-moment and Spearman’s rank correlations. It was 

found that the optimal time lag varied across parameters. Accounting for time delays 

is essential for reflecting the water retention in treatment units. 

3. Three ML models, including RF, GBM, and XGB, were tested. For the test dataset, 

RF and XGB were found to slightly outperform GBM. However, XGB was not 

considered due to its longer training time. Moreover, RF is less prone to overfitting 

and requires less training time. Consequently, RF was selected as the optimal model, 

achieving a MAPE of 6.22%, indicating close alignment between predicted and real 

values. 

4. SHAP analysis identified effluent SS, temperature in the oxidation ditch and effluent 
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temperature as the most influential parameters for RF predictions of effluent COD. 

It is recommended to maintain high temperatures in both the oxidation ditch and 

effluent and to keep effluent SS below 2.5 mg/L to achieve a low effluent COD in 

the WWTP. 

 

5.2 Recommendations 

Sensor readings for influent SS (up to 40,000 mg/L) and influent COD (up to 900 

mg/L) were not removed from ML development since they meet the data screening 

criteria. However, these values could not reflect true water quality and indictive for 

probable sensor failures. Although these variables were not important features for the 

effluent COD prediction using RF model, they highlight the importance of acquiring 

accurate data for ML models. Below are some recommendations for future study. 

1. Develop sensors with automatic cleaning and self-calibration to prevent fouling and 

thus improve data quality. 

2. Currently, only water quality monitoring data from the oxidation ditch influent, 

oxidation ditch, and the effluent are available. However, parameters for the influent, 

grit chamber, and secondary sedimentation tank are unavailable, and operational 

parameters like aeration rate and sludge retention time have not been recorded. It is 

recommended to install sensors at each treatment unit and record operational 

parameters to gain a comprehensive understanding of the WWTP’s conditions, 

thereby enhancing the model’s ability to predict effluent COD.  

3. There are no instances of effluent COD violations in the historical dataset. Without 

including any exceedance data, the model can not provide early warnings. It is 

recommended to continuously collect data during any exceedance events at the 

WWTP and incorporate these records into the dataset to strengthen the model’s 
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capability to detect abnormal conditions.  

4. The RF model is currently being used for effluent COD prediction and achieves an 

R2 of 0.83. This indicates fairly high accuracy, yet there remains an opportunity for 

improvement. It is recommended to simulate the performance of deep learning 

models not yet tested, such as LSTM and RNN, and carry out comparative 

evaluations with the RF model to determine the optimal ML model for this WWTP. 
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