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摘要 

本論文建立了傾斜槽系統，其中槽高無限高，並以側向加熱的方式進行物理模

型建構。其中，容器內液體存在著垂直濃度梯度，當 𝜃 = 0° 為典型垂直槽系統，

其中左壁為高溫、右壁為低溫，當角度 𝜃 > 0° 時，下板為加熱壁；反之，當 𝜃 <

0° 時，上板為加熱壁。本文是以垂直槽中的熱對流題目為啟發，加入傾角與模態

轉換定義，並將分析結果與過往論文進行交叉比對，進而得到新的結論。 

本論文旨在對自然對流系統進行線性穩定性分析。基於 Boussinesq 

approximation 的控制方程組，求解了基態解。隨後引入微小擾動，並透過正規模態

展開分析其隨時間的發展，進而探討系統的穩定性。數值求解採用切比雪夫配置法

計算特徵值。最終，根據所得中性穩定曲線繪製穩定性邊界圖，並與以往實驗結果

對比，歸納出相應結論。 

固定 Pr = 6.7、𝐿𝑒 = 100 來模擬海洋情形，並修正了前人論文的錯誤。本論

文引入了五個穩定模式，包含溫度浮力模式(TBM)、擴散浮力模式(DBM)、擴散剪

力模式(DSM)、鹽指剪力模式(SSM)以及鹽指浮力模式(SBM)。在引入模態後，本

文定義了穩定邊界圖的轉換點，並追尋了 Wu and Chen 所定義的模態轉換。本論文

使用 T2～T4 模態轉換點，並求得出漸進關係式，發現當穩定邊界圖過了最低點

後，會隨著角度越大越來越穩定，也就是論文中所探討的大濃度梯度區間。也求得

最低點臨界值與角度的漸進線關係式，然而本論文發現小濃度梯度與大濃度梯度

呈現相反現象，因此最後探討小濃度梯度與角度變化造成的影響。本研究找到了關

鍵角度 𝜃 = 65.8° ，當角度增加到 65.8° 時，系統會變得更加不穩定，也探討當

角度為 65.8° 時，跳動點會在 𝑅𝑠 = 33.9 時消失。 

 

關鍵字: 流體穩定學、雙擴散傾斜槽、模態轉換、切比雪夫配置法 
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Abstract 

This paper establishes a tilted slot system, in which the slot height is infinit

ely high, and a physical model is constructed using lateral heating. In this syste

m, there exists a vertical concentration gradient in the liquid inside the container.

 When 𝜃 = 0° , it represents a typical vertical slot system, with the left wall bei

ng high temperature and the right wall being low temperature. When the angle 

𝜃 > 0° , the bottom plate is the heated wall; conversely, when 𝜃 < 0° , the top 

plate is the heated wall. This paper is inspired by the topic of thermal convectio

n in vertical slots, adding the definition of inclination and mode transition, and c

omparing the analysis results with previous papers to obtain new conclusions. 

The purpose of this paper is to conduct linear stability analysis of natural c

onvection systems. Based on the control equations of the Boussinesq approximati

on, the base state solution is solved. Subsequently, small disturbances are introdu

ced, and their temporal development is analyzed through a normal mode expansi

on to explore the stability of the system. The numerical solution uses the Cheby

shev collocation method to calculate eigenvalues. Finally, based on the obtained 

neutral stability curve, a stability boundary diagram is drawn and compared with 

previous experimental results to summarize corresponding conclusions. 

The simulation of oceanic conditions is carried out with fixed Pr = 6.7、𝐿𝑒

= 100 , and errors in previous papers are corrected. This paper introduces five s

table modes, including temperature buoyancy mode (TBM), diffusion buoyancy m

ode (DBM), diffusion shear mode (DSM), salt finger shear mode (SSM), and sal

t finger buoyancy mode (SBM). After introducing the modes, this paper defines 

the transition points of the stable boundary diagram and explores the mode transi

tion defined by Wu and Chen. This paper uses the T2～T4 mode transition poin
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ts and obtains an asymptotic relationship, finding that as the stable boundary dia

gram passes its lowest point, it becomes increasingly stable with larger angles, w

hich corresponds to the interval of large concentration gradients discussed in the 

paper. The paper also derives an asymptotic line relationship between the critical 

value at the lowest point and the angle. However, it is found that small concent

ration gradients and large concentration gradients exhibit opposite phenomena, so 

the paper finally explores the effects of changes in angle on small concentration 

gradients. This study identifies a critical angle of 𝜃 = 65.8° , at which the syste

m becomes more unstable as the angle increases to 65.8° .It also discusses that 

when the angle is 65.8° , the jumping point disappears at 𝑅𝑠 = 33.9. 

 

Keywords: 

Fluid Stability, Double Diffusion Tilted Slot, Mode Transition, Chebyshev Colloc

ation Method 
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第1章 緒論 

 文獻回顧 

雙擴散對流是自然界重要的現象，許多科學家用數學模型理論、物理實驗來探

討此問題，而在 Chen [1] 論文以前，大部分的論文都是探討水平槽或是垂直槽，

而傾斜槽的論文鮮少科學家探討，因此本論文將採用 1980 年 Chen et al. [2] 所使

用的實驗模型，將用一個數學模型來近似實驗，並改變角度可得證以前水平、垂直

槽的結果，並將探討傾斜槽一系列的問題。 

西元 1975 年，Chen [1] 探討了一個含有快擴散和慢擴散兩種溶質的穩定分層

流體，在傾斜的狹縫內的對流行為。導出了此雙擴散系統在達到穩態時的解析解，

發現沿著斜面存在一個緩慢的上升流動。該流動是由於密度梯度在壁面處的微小

扭曲而產生的小浮力差所驅動。慢擴散溶質梯度的存在使得流速相對於單一溶質

情況減小了 
(1−𝜆)

(1−𝜆𝜏)
 倍，其中𝜆是密度梯度比， 𝜏是兩種溶質的擴散係數之比。流速

的大小隨著傾斜角度的增大而增大。通過數值模擬發現，當 𝜆 < 𝜏 時，類似於單

一溶質情況，即初期出現小的上升流動，之後逐漸趨於穩態解。然而，當 𝜆 > 𝜏 

時，初期出現向下的流動，其速率比穩態值大約一個數量級，之後該向下流動逐漸

減弱並反向成為向上的穩態流動。作者發現 𝜆 ≈ 𝜏 是一個臨界值，在此值附近系

統的初期流況發生改變。作者推測在 𝜆 > 𝜏 的情況下，初期的強向下流動可能扭

曲密度分佈，使得某些擾動在雙擴散效應下獲得浮力，從而引發對流不穩定性。 

西元 1977 年，Chen [3] 延續上一篇論文，為了驗證理論預測，作者進行了糖

鹽水溶液在傾斜槽內的實驗觀察。通過暗場照相技術,清晰地捕捉到了水平對流細

胞層的形成和發展過程，結果與理論分析吻合良好。當 𝜆 = 0.7 時，理論預測的臨

界波長與實驗觀測到的對流層寬度值非常接近，兩者相差不到10%，表明理論預測

是可靠的。總的來說，這項研究補足雙擴散對流在時間演化過程中穩定性問題的研
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究空白，揭示了影響穩定性的主要因素，並結合實驗數據驗證了理論分析的正確

性。 

西元 1980 年，Chen et al. [2] 建立 1.0 × 11.1 × 25.7 cm 的槽，傾斜角從

−75° 到  75°，其中，正角是下板加熱，而負角是上板加熱。將濃度瑞利數 𝑅𝑠 固

定的情形下，槽內溫度緩慢增加，來觀察不穩定的開始，也發現臨界熱瑞利數不是

對稱 𝜃 = 0°，由實驗得出下壁加熱會更穩定。 

同年 Chen et al. [4] 將數學模型建出，用線性穩定性的方法求出理論數值解

比對，其中，比對三種特殊案例 𝑅𝑠 = 0 、𝜃 = 0
° 和 𝜃 = 90° ，各項比對均和以往

論文結果相同，就此成功建立出傾斜槽模型，與前年實驗比較，該理論很好的預測

 𝑅𝑡𝑐/ 𝑘𝑐 和 𝜃 的曲線趨勢，且理論和實驗都表明，下壁加熱比上壁加熱更加穩定，

在𝑅𝑠 固定且很大的情形下。 

西元 1982 年， Hart 利用有限擾動理論研究了垂直層化流體在溫差條件下的

非線性雙擴散對流，結果表明非線性項的考慮可以顯著改變流線圖形。Paliwal 和

Chen et al. [2][4] 通過理論分析和實驗觀察了傾斜流體層的雙擴散不穩定性，得

到了線性穩定性門檻值與實驗結果符合良好，但線性結果預測的對流細胞與實驗

觀察不符。因此 S. Thangam et al. [5] 通過 Galerkin 方法求解傾斜流體層的完整

非線性控制方程組，以得到與實驗一致的對流胞演化過程，並與 𝑅𝑠𝑐 → ∞ ， 𝐿𝑒 →

0 的極限情況進行了比較，為解析雙擴散對流非線性演化提供了重要貢獻。 

西元 1989 年，Y. M. Chen and A. J. Pearlsein [6] 研究了在不同溫度下維持

的垂直或傾斜平板之間的變黏性牛頓流體的浮力驅動平行剪切流的熱對流穩定

性。論文探討傾斜槽黏滯力固定的熱對流穩定性，而此部份剛好可和本論文 𝑅𝑠 =

10 的情況相互比對，得出當 𝜃 = 65.7° 時 Neutral curve 的一系列變化，與本論文

結果能夠相互驗證之處。 

西元 1996 年， Chen and Liou [7] 在這篇論文中通過數值模擬和實驗觀測的

方式，研究側向加熱下鹽分層化流體的時間相依雙擴散對流，,論文是系統地變化
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了傾角範圍,從−75° 到  75°觀察傾角對流場、層結構、傳熱特性的影響。研究發現，

不穩定性的發生在正角度要慢於負角度，這是由於在不穩定發生前垂直鹽分梯度

的不同影響所致。正角度下對流更為活躍，當角度為 0° 時單元數量最多。層厚方

面，正角度也厚於負角度，因為有更猛烈的融合過程。文中通過平均 Nusselt 數的

時間曲線判斷了層的穩定期，這為測量最終層厚提供了一種更可靠的方法。為驗證

數值結果，作者還進行了自行設計的影像實驗，證明了模擬結果的可靠性。 

西元 1999 年，A. Bergeon et al. [8] 研究了在一個矩形黏性流體空腔中，當

溫度和濃度梯度沿著相反方向施加在兩個對壁上時所導致的雙擴散對流現象。作

者們專注於完全對抗的情況，即溫度和濃度造成的浮力對流體方向相反且等力量。

文中首先進行了線性穩定性分析，考察了無限層流體和有限長寬比空腔中靜止基

態的失穩臨界，以及空腔傾斜角度的影響。結果發現臨界雷諾數隨著傾斜角增大而

減小，說明了加熱自上的情況比加熱自下更不穩定。接著，作者們對穩態對流分支

進行了非線性分析和分歧追蹤。他們發現在較大長寬比下會出現額外的穩定對流

分支，包括不對稱的單環流和對稱的雙環流，這些都是通過二次分歧產生的。這篇

論文對雙擴散對流在矩形空腔中的基本物理過程和分歧行為有了系統深入的研

究，有助於更好地理解複雜的多元對流問題。同時，它也為進一步探索此類問題在

更加現實的參數範圍內的豐富現象提供了基礎。 

西元 2012 年，Zhi-Wu Chen et al. [9] 主要研究了在一個傾斜矩形空間中，

雙擴散浮力不穩定的振盪發生的情況。使用線性穩定性分析的方法，探討了在不同

傾斜角度、長寬比、Prandtl 數和 Lewis 數下，系統從穩定狀態向振盪對流過渡的

臨界條件。對於無限層流和有限層流的情況，當傾斜角從 0 度減小到 90 度時，引

發靜態不穩定所需的臨界 Grashof 數呈指數增加，而引發振盪不穩定所需的臨界 

Grashof 數則呈指數降低，這表明系統對振盪不穩定更為敏感。當傾斜角足夠小時，

第一次不穩定發生是振盪的，而非靜態的。隨著 Prandtl 數或 Lewis 數增加，這個

臨界傾斜角會減小。對於無限層流,振盪模式的臨界波數隨傾斜角先增加後減小，
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存在一個最大值，振盪頻率則隨傾斜角增加而單調增加。振盪流場的結構是兩個旋

渦沿層流移動。對於有限層流，隨長寬比增加，前兩個振盪模式的中性穩定曲線不

斷相交於一系列雙 Hopf 分岔點。沿著這些曲線,會出現突變點，在突變點之後，流

場中旋渦的對數增加 2 個，但模式的同心性質保持不變。臨界頻率隨長寬比增加

而降低，且在模式發生改變時會出現突變。作者還探究了 Prandtl 數和 Lewis 數對

中性穩定曲線和臨界頻率的影響。補充了之前一些研究,在那些研究中只考慮了穩

態發生的情況，而忽略了可能出現的振盪不穩定現象。 

西元 2013 年，A. Teamah et al. [10] 研究著重於帶有移動頂蓋的驅動腔體內

不同溫度垂直牆面間的熱量和質量傳輸雙擴散混合對流的數值模擬。腔體底面固

定，分析參數如 Richardson 數、Lewis 數、浮力比率和傾角對流場、熱量和質量傳

輸的影響，增加浮力比率或路易斯數可增強質量傳輸但對熱傳輸影響不大。傾角顯

著影響流場結構和熱/質量傳輸。頂蓋方向也改變了流場模式和熱/質量傳輸率，數

值方法通過與文獻結果比較表明了可靠性和準確性，這個研究增進了對雙擴散混

合對流傳輸機制的理解。 

西元 2016 年，N. Williamson et al. [11] 研究了在不同傾角下傾斜式正方形

腔體內的自然對流流動。熱壁和冷壁上的自然對流邊界層會沿著隔熱壁排出,形成

附著式激流。存在一個關鍵傾角,當傾角大於此角度時,流動會發生單模不穩定。這

是由於兩個具對流不穩定性的自然對流邊界層通過較少耗散的激流/入流而耦合導

致。關鍵傾角隨著雷諾數增加而減小。傾角會降低熱壁/冷壁附近的有效溫度和重

力分量。平均努塞爾數先增加後減少,提出了考慮這一效應的努塞爾數擴展關係。 

西元 2018 年，S. Hasnaoui et al. [12] 研究了矩形腔內雙擴散自然對流問題,考

慮了熱源項和 Soret 效應的影響。使用混合格子 Boltzmann-有限差分法(LBM-FD)

來數值模擬這一問題。其中考慮了多個影響參數 ,包括腔體傾角、外部和內部

Rayleigh 數之比(R)、Soret 數(Sr)等。通過分析這些參數對流場、溫度場和濃度場

的影響，當 R=0 時，流動呈現單循環結構，此時腔體傾角和索雷特參數的影響有
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限。增大 R 值會破壞單循環結構，使流場呈現雙循環，傾角 60°會顯著提高流體平

均溫度，不利於腔內散熱，傾角和 Soret 數對局部 Nusselt 數和 Sherwood 數的影響

很大，在某些情況下，傳熱或傳質量可能受到熱擴散或質量擴散效應的抑制。總的

來說，這項工作探討了熱源項、腔體傾角和 Soret 效應對雙擴散自然對流的綜合影

響，獲得了一些新的發現，對相關領域的研究具有重要參考價值。 

西元 1981 年，S. Thangam et al. [13] ，同樣以理論分析的方式，考慮位於兩

個不同溫度差的剛性垂直板之間的流體穩定運動的穩定性，其理論分析結果與前

人相比更精準了一些，以往找不到的區間，此論文有呈現出結果，然而，他們還依

據了 J. W. Elder 等相關論文，更定義出了不同的臨界濃度瑞利數形下，系統的穩

定性模式，為後續研究提供了相當清楚的參考依據。 

西元 1997 年，Chen and Chen [14] 實驗探討了側向加熱對於具垂直濃度梯

度分層溶液中雙擴散對流的影響。他們採用鹽水和乙醇水溶液為工作流體，並分別

應用快速製造和緩慢達到溫度差異的兩種方式。透過比對這兩種情況,他們順利觀

察到雙擴散對流胞的生成。除此之外,他們亦詳實記載並剖析了在不穩定發生時,系

統內溫度與濃度分佈的變遷情形。這項研究為後續相關工作奠定重要基礎,對於深

入瞭解雙擴散對流機制貢獻良多。 

西元 1999 年，Oliver S. Kerr and Tang [15, 16] 與以往論文不同，使用數學

推導的漸進線，找出 Thangam et al. 𝑅𝑠𝑐 在450到1000之間找不到的振蕩解，確

定了振蕩不穩定性的根源，並提出了四種參數狀態的漸近解，也建立四種漸進線關

係：熱不穩定性佔主導地位的小  𝑅𝑠 狀態，穩定性邊界垂直的大 𝑅𝑡 狀態， 𝑘𝑐 非

常接近零的小波數狀態，以及鹽指不穩定性佔主導地位的大  𝑅𝑠 狀態。 

西元 2002 年，Chan et al. [17] 以三維的角度出發，延續 Chen and Chen 的

實驗，但從三維的角度出發探討雙擴散對流現象。值得一提的是，他們採用了更為

精確的 PIV(Particle Image Velocimetry)例子成像測速技術，因此能獲得更準確的

流體速度數據。實驗結果成功觀測到對流胞的產生，印證了前人的發現。另外，他
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們還利用三維線性穩定性分析，將系統的穩定狀態區分為橫向模式和縱向模式，即

討論了不同方向的波數對應影響。該理論分析結果與他們的實驗觀測結果非常吻

合。這項研究不僅在實驗技術上有所創新，理論方法上也更加嚴謹全面，為深入理

解雙擴散對流機理做出了重要貢獻。 

西元 2006 年，Krishnamurti [18] ，探討了在具有水平溫度和鹽度梯度的雙擴

散系統中，由於側向內涌而導致的交錯層流現象。實驗針對三種垂直分層制度進行

了：鹽指有利（上面熱和鹹）；擴散對流有利（下方熱和鹹）；雙重穩定（下面冷

鹹）。這種內涌流在海洋中經常被觀測到，可能在全球熱鹽傳輸中扮演重要角色。 

西元 2018 年，Chang et al. [19] 接續 Chan et al. 的結果，之前的三維線性

穩定性分析研究,進行了更為完備的理論探討。他們發現 Chan 等人在分析橫向模

式時，遺漏了一個無因次參數,導致結果存在缺陷。因此，Chang 等人重新將不同

方向的波數分開討論，同樣可以將系統區分為兩種穩定模式。他們的分析結果表

明，在所研究的參數範圍內。縱向模式始終是最不穩定的，會引發旋渦卷流的形成。

這意味著二維分析就足以描述對流的穩定性特徵。最終，他們獲得了更為精確的三

維穩定性邊界圖。該研究不僅修正了前人工作中的缺陷，也為雙擴散對流的三維穩

定性分析提供了更為嚴謹和完整的理論基礎。 

西元 2021 年，S. Legare et al. [20] 通過直接數值模擬研究了在狹窄垂直通

道中雙擴散對流對流指紋的形成和演化，發現在水平尺寸小至 1-4 mm 的極端狹

窄情況下，當單擴散條件無法產生不穩定性時，雙擴散作用仍可驅動流動和混合。

觀察到寬度對不穩定性的結構和演化有顯著影響。作者根據觀察到的形態將不同

寬度情況分為四種流動模式:相 coherent 的不穩定性、部分 smeared 的 coherent 不

穩定性、局部的 smeared 不穩定性，以及高度 smeared 的局部不穩定性。隨著通道

寬度減小，擴散效應對流體流動的影響逐漸增強，使不穩定性結構趨於模糊，直至

在 1mm 情況下，熱擴散主導流動而無法觀察到明顯的對流細胞。揭示了不同水平

約束條件下，雙擴散效應能夠在毫米尺度驅動獨特的對流不穩定性和混合現象。 
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西元 2022 年，Huang and Chen [21] 以線性流體穩定性的方式分析了垂直槽

中，存在水平的溫度及濃度梯度的穩定性問題，在此情況下,穩定性可分為三種類

型:熱對流、鹽指對流和擴散對流,它們的特性受到普朗特數(𝑃𝑟)和路易斯數(𝐿𝑒)的

影響，而論文中也定義出 OBM、SSM 兩種模式，為接下來雙擴散論文建立基礎。 

西元 2023 年，Wu and Chen [22] 以線性流體穩定性的方式分析了垂直槽中，

存在水平的溫度及垂直濃度梯度的穩定性問題，他們將得到的結果與  Oliver S. Kerr

和 Hart 等人比較，發現前人未找到的震盪區間，與 Oliver S. Kerr 用數學推導的漸

進線比較，邊際穩定圖完整度更高，另外他們定義出 TBM、DBM、DSM、 

SSM、SBM 五種模式，與七種變換，使垂直槽雙擴散對流有更加精準的探討，也

使我的論文能將 𝜃 = 0° 比對後加以使用模式以及變換來分析。
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 研究動機 

雙擴散對流現象一直是流體力學研究的熱門主題。因兩種擴散速度差異下，與

自然對流之顯著差異，有諸多可能發生，其產生機制顯然更為錯綜複雜。為徹底剝

離其中隱秘面紗，無數學者竭盡全力採行任何實驗方法數值分析方法，來探究雙擴

散對流。 

雙擴散對流現象在工業應用領域中擁有廣泛的重要性。對於合金固化，雙擴散

對流可用於控制合金內部的組織和晶體結構。在合金凝固過程中，溫度和濃度梯度

的形成導致了雙擴散對流的發生。通過適當控制這些梯度，可以調節合金內部的相

變化和晶粒生長，從而改善合金的機械性能和化學性能。另外應用於同位素分離法

中，雙擴散對流可用於加速同位素的分離過程。在同位素分離過程中，通常需要將

不同濃度的同位素分離開來，這需要耗費大量的時間和能源。雙擴散對流可通過加

速濃度梯度的形成和物質的傳遞，從而提高同位素分離效率，降低分離成本。 

然而大多雙擴散對流都是以垂直槽或是水平槽作為研究模型，雖說有傾斜槽

的研究，不過內容都著重於實驗上的探討，尚未有人將邊際穩定圖完整畫出，加以

探討整個穩定情形，而先前傾斜槽論文使用的數值方式與現在不相同，也在許多文

獻上看到 Chebyshev collocation method(柴比雪夫配置法)較為準確快速，因此吾人

將使用此方法來解決此研究，而我們也找到 Chen et al. [2] 在 1980 年論文中所

沒有找到震盪解的區域，而本論文將傾斜槽所有角度都繪製出完整的邊際穩定圖，

其中正角為下板加熱，負角為上板加熱，若將角度設定為 0 度與趨近於 90 度時，

結果也能與重直槽與水平槽，因此本論文將使用的數學模型，能準確地將整個雙擴

散槽體做一個統整； Wu and Chen [22] 在 2023 年，將垂直槽雙擴散重以前到現

在的所有實驗和理論，完整統整以及找出前人未提過的，五種轉換七種模式，因此

本論文也採用 Chen et al. [4] 的理論，探討一系列轉換點與角度的變換，最後重

大發現關鍵角度 65.8° ，而關鍵角度會導致系統穩定性快速下降，導致系統不穩

定。 
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第2章 理論模型 

本研究研究了兩板之間不同角度的雙擴散對流在溫度梯度和垂直濃度梯度下

的穩定性問題。研究中考慮的流體是牛頓流體的二元混合物，例如水和海水的溶

液。建構出本研究之物理模型，相關邊界條件、初始狀態和基本假設等，再藉由數

學、流體力學，推導出不穩定前的基態解，完成流體穩定性分析。 

 研究方法 

本研究以 Chen et al. [4] 傾斜槽雙擴散實驗為基礎，運用時域穩定性(temporal 

instability)來分析，此系統的流場穩定性，描述此系統的統御方程式包含：質量守

恆 (conservation of mass)、動量守恆 (conservation of momentum)、能量守恆

(conservation of energy)，將統御方程式無因次化後滿足特定的初始狀態及邊界條

件，求得出本研究的基態解(Basic state solution)。接下來，在此基態解上添加微小

擾動，並對方程進行線性化 獲得線性微小擾動方程組(Linearized small perturbation 

equation)。為簡化複雜的偏微分方程組，採用正規模態展開(normal mode expansion)

的技巧將其化簡為較易求解的常微分方程組。接著，利用流線函數來將系統化簡成

二維。關鍵步驟是使用數值方法切比雪夫配置法(Chebyshev collocation method)，

求解特徵方程組中的特徵值，得出中性曲線圖，取得此系統的穩定性邊界圖，利用

所求結果可解釋傾斜槽角度對系統穩定性的影響，與實驗得到研究結果做比對，以

探討其中的物理機制。 
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 數學模型建立 

考慮寬度為 C、高度為 H 的三維垂直槽，將原點定義在槽的中心底處，x 軸以

及 z 軸分別平行與垂直於槽體，𝜁軸以及𝜉軸分別平行與垂直於底面，如 圖 2.1 所

示，槽體沿著順、逆時針旋轉，令逆時針角度為正角度(𝜃 > 0°)，順時針為負角度

(𝜃 < 0°)，未旋轉則為(𝜃 = 0°)。此外，假設 𝐻 ≫ 𝐶，在此情形下忽略上下邊界效

應，且令槽體側面兩壁可完全導熱以及完全隔絕溶質傳遞(
𝜕𝑆

𝜕𝑥
= 0)，槽內溶液在垂

直方向上，有著固定的濃度梯度分層，因此在初始狀態下 
𝜕𝑆

𝜕𝜁0
= 𝐾(常數)；在側向

兩壁面有溫度差，則是以 ±
1

2
∆𝑇 的邊界條件維持定溫，以 圖 2.1 表示。 

 

 

圖 2.1 二維物理模型示意圖 
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圖 2.2 三維邊界條件及初始狀態說明圖 

 

為了方便分析，在保有系統真實的物理行為前提，做以下假設簡化理論分析的

複雜度： 

(1) 三維不可壓縮流體 

(2) 牛頓流體 

(3) 流體物理常數為定值 

(4) Boussinesq approximation 

(5) 假設為高垂直槽，忽略上下邊界造成的影響 

而邊界條件與初始狀態則如下所示： 

左邊邊界： 

 𝑢 = v = 𝑤 = 0    ,    𝑇 =
1

2
ΔT     ,     

∂S

∂x
= 0   

右邊邊界： 

 𝑢 = v = 𝑤 = 0    ,    𝑇 = −
1

2
ΔT     ,     

∂S

∂x
= 0   

初始狀態： 

𝜕𝑆

𝜕𝜉𝜊
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (= 𝐾)   
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 Boussinesq approximation 

Boussinesq approximation 是一種廣泛應用於流體力學和對流熱傳遞中的重要

假設。它提供了一種簡化的模型，可以合理地描述熱流體中的密度變化對流行為，

同時仍保留了問題的主要物理特徵。Boussinesq approximation 認為，由於溫度或

組成的變化而引起的密度變化很小，因此可以忽略大部分流體動量方程中的密度

變化項，除了在計算浮力項時必須保留密度的微小變化。 

Boussinesq approximation 之所以可以應用於雙擴散對流，是因為雙擴散對流

同時涉及了溫度和濃度兩種傳輸，而這兩種都可能導致密度的變化，從而產生浮力

驅動的對流運動。在此情況下，Boussinesq approximation 可以將密度的微小變化

與溫度和濃度的變化聯繫起來，從而描述由於熱和質量傳遞而引起的自然對流現

象。 

當然，使用 Boussinesq approximation 也有其限制： 

(1) 適用於溫度或壓力場對密度影響不大的情況 

(2) 存在大密度差異或大溫度變化的情況，會產生較大誤差 

(3) 密度變化必須很小，才能忽略運動方程中的大部分密度項。 

(4) 在方程式當中，只有在與浮力有關的項中耦合時，密度變化才需考慮
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 統御方程式 

本節將應用流體力學質量、動量、能量守恆方程式，來模擬系統中流體的運動，

建立在 圖 2.1 之理論模型，搭配前章節所先行的假設，建構出本研究之統御方程

式。 

連續方程式(continuity equation)： 

𝛻 ∙ 𝑽 = 0 (2.1)  

動量方程式(momentum equation)： 

𝜕𝑽

𝜕𝑡
+ 𝑽 ∙ 𝛻𝑽 = −

1

𝜌0
𝛻𝑃 + 𝜈𝛻2𝑽 −

𝜌

𝜌0
𝑔⃑ (2.2)  

溫度方程式(energy equation)： 

𝜕𝑇

𝜕𝑡
+ 𝑽 ∙ 𝛻𝑇 = 𝑘𝑡𝛻

2𝑇 (2.3)  

濃度方程式(energy equation)： 

𝜕𝑆

𝜕𝑡
+ 𝑽 ∙ 𝛻𝑆 = 𝑘𝑆𝛻

2𝑆 (2.4)  

其中，𝐕 為速度，P 為水靜壓力，T 與 S 為溫度及濃度場，𝜌為流體密度，𝜌0為參考

溫度下的液體密度，𝜈 (=
𝜇

𝜌
)為運動黏滯係數，𝛼為熱膨脹係數，𝛽為鹽度膨脹係數，

𝑘𝑡為熱擴散係數，𝑘𝑆為溶質擴散係數。 

由 2.3 小節所述，將引入 Boussinesq approximation，密度可近似為： 

ρ = 𝜌0[1 − 𝛼(𝑇 − 𝑇0) + 𝛽(𝑆 − 𝑆0)] (2.5)  

並且代入(2.5)式，動量方程式因而變成： 

𝜕𝑽

𝜕𝑡
+ 𝑽 ∙ 𝛻𝑽 = −

1

𝜌0
𝛻𝑃 + 𝜈𝛻2𝑽  

       +𝑔 𝑠𝑖𝑛 𝜃 (𝛼(𝑇-𝑇0) − 𝛽(𝑆 − 𝑆0))𝑋̂ + 𝑔 𝑐𝑜𝑠 𝜃 (𝛼(𝑇-𝑇0) − 𝛽(𝑆 − 𝑆0))𝑍̂ (2.6)  

其中 𝑇0、𝑆0、𝑃0為參考溫度、濃度、壓力。 
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 統御方程式之無因次化 

在解前一節之統御方程式前，需先對其進行無因次化的工作，由流體統御方程

式可定義此研究適當的特徵尺度，而本論文將長度、速度、時間、壓力、溫度、濃

度無因次化，以利後續的討論及分析。參照 圖 2.1 的理論模型，本研究選取左右

壁寬(𝐷)為特徵長度、左右溫差(ΔT)為特徵溫度；上標星星為無因次。並定義以下

特徵參數： 

𝑥∗ =
𝑥

𝐷
 𝑦∗ =

𝑦

𝐷
 𝑧∗ =

𝑧

𝐷
 

𝑢∗ =
𝑢

𝑈
 𝑣∗ =

𝑣

𝑈
 𝑤∗ =

𝑤

𝑈
 𝑈 =

𝑘𝑡
𝐷

 

𝑡∗ =
𝑡

𝐷2

𝑘𝑡

 
𝑃∗ =

𝐷𝑃

𝜌0𝜈𝑈
 𝑇∗ =

𝑇 − 𝑇0
∆𝑇

 
𝑆∗ =

𝑆 − 𝑆0

𝐷 |
𝑑𝑆
𝑑𝜉
|
0

 

 

(2.7)  

此處，令參考溫度 𝑇0 與濃度 𝑆0 為兩板間的平均值 

將上述無因次特徵參數代入前一節統御方程式可得： 

連續方程式(continuity equation)： 

𝛻∗𝑽∗ = 0 (2.8)  

動量方程式(momentum equation)： 

1

𝑃𝑟
(
𝜕𝑽∗

𝜕𝑡∗
+ 𝑽∗ ∙ 𝛻∗𝑽∗) = 

 

       −𝛻∗𝑝∗ + 𝛻∗2𝑽∗ + 𝑠𝑖𝑛 𝜃 (𝑅𝑡𝑇
∗ −

𝑅𝑆
𝐿𝑒
𝑆∗) 𝑋̃ + 𝑐𝑜𝑠 𝜃 (𝑅𝑡𝑇

∗ −
𝑅𝑆
𝐿𝑒
𝑆∗) 𝑍̃ (2.9)  

能量方程式(energy equation)： 

𝜕𝑇∗

𝜕𝑡∗
+ 𝑽∗ ∙ 𝛻∗𝑇∗ = 𝛻∗2𝑇∗ (2.10)  

濃度方程式(energy equation)： 

𝜕𝑆∗

𝜕𝑡∗
+ 𝑽∗ ∙ 𝛻∗𝑆∗ =

1

𝐿𝑒
𝛻∗2𝑆∗  (2.11)  
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無因次化後之邊界條件為 

左壁邊界(𝑥 = −0.5)： 

𝑢∗ = 𝑣∗ = 𝑤∗ = 0 ,   𝑇∗ =
1

2
 ,   
∂𝑆∗

∂𝑥∗
= 0 (2.12)  

右壁邊界(𝑥 = 0.5)： 

 𝑢∗ = 𝑣∗ = 𝑤∗ = 0 ,   𝑇∗ = −
1

2
 ,   
∂𝑆∗

∂𝑥∗
= 0 (2.13)  

 

將方程式整理後，可得無因次參數為： 

𝑃𝑟 =
𝜈

𝑘𝑡
   ,   𝐿𝑒 =

𝑘𝑡
𝑘𝑠
  

𝑅𝑡 =
𝑔𝛼ΔT𝐷3

𝑘𝑡𝑣
   ,   𝑅𝑠 =

𝑔𝛽 |
𝑑𝑆
𝑑𝜉
|
0
𝐷4

𝑘𝑠𝑣
 

 

其中，𝑃𝑟為普朗特數(Prandtl number) 

      𝐿𝑒為路易斯數(Lewis number) 

      𝑅𝑡為熱瑞利數(thermal Rayleigh number) 

      𝑅𝑠為濃度瑞利數(salinity Rayleigh number) 
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 基態流場 

基態解在數學、物理中是一個重要的概念，它是指滿足某個微分方程組或偏微

分方程在特定條件下的最簡單穩定解。基態解的重要性在於它描述了系統處於最

穩定、最規則的狀態，是理解和分析該系統更複雜行為的基礎和出發點。一旦系統

受到擾動或參數改變，基態解可能會失去穩定性，出現分岔、紊流等新的流況。因

此，求解和研究基態解有助於把握系統的本質特徵，並預測和控制其演變行為。以

下推導將式(2.7) ~式(2.10)的星星省略(無因次記號)。 

針對 圖 2.1 理論模型，假設在不穩定發生之前存在一組穩定的基態流場： 

𝑽𝑏 = (0,0, 𝑤𝑏(𝑥))、𝑇𝑏 = 𝑇(𝑥)、𝑆𝑏 = 𝑆(𝑥) + 𝜏𝑧 (2.14)  

將(2.13)代入(2.7) ~ (2.10)可得： 

−
𝜕𝑃

𝜕𝑥
+𝑠𝑖𝑛 𝜃[ 𝑅𝑡𝑇𝑏 −

𝑅𝑆
𝐿𝑒
𝑆𝑏] = 0 (2.15)  

𝜕𝑃

𝜕𝑦
= 0 (2.16)  

−
𝜕𝑝

𝜕𝑧
+𝑊𝑏(𝑥)

(2) + cos 𝜃[ 𝑅𝑡𝑇𝑏 −
𝑅𝑆
𝐿𝑒
𝑆𝑏] = 0 (2.17)  

𝑇𝑏
(2)(𝑥) = 0 (2.18)  

𝑊𝑏(𝑥)
𝜕𝑆𝑏
𝜕𝑧

=
1

𝐿𝑒
𝑆𝑏
(2)(𝑥) (2.19)  

將(2.17)積分兩次，並代入邊界條件後可得溫度基態解為： 

𝑇𝑏(𝑥) = −𝑥 (2.20)  

將(2.16)式對 x 微分 − (2.14) 對 z 微分，可得： 

−
𝜕2𝑃

𝜕𝑧𝜕𝑥
+𝑊𝑏(𝑥)

(3) + 𝑐𝑜𝑠 𝜃[ 𝑅𝑡
𝜕𝑇𝑏
𝜕𝑥

−
𝑅𝑆
𝐿𝑒

𝜕𝑆𝑏
𝜕𝑥
] 

+
𝜕2𝑃

𝜕𝑥𝜕𝑧
−𝑠𝑖𝑛 𝜃[ 𝑅𝑡

𝜕𝑇𝑏
𝜕𝑧

−
𝑅𝑆
𝐿𝑒

𝜕𝑆𝑏
𝜕𝑧
] = 0 (2.21)  
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其中 

𝜕𝑇𝑏
𝜕𝑧

= 0   ,   
𝜕𝑆𝑏
𝜕𝑧

= −𝑐𝑜𝑠 𝜃 

將(2.20)式微分 x 

𝑊𝑏(𝑥)
(4) + 𝑐𝑜𝑠 𝜃[ 𝑅𝑡

𝑑2𝑇

𝑑𝑥2
−
𝑅𝑆
𝐿𝑒

𝜕2𝑆𝑏
𝜕𝑥2

] = 0 (2.22)  

其中 

𝑑2𝑇

𝑑𝑥2
= 0 

將(2.18)代入(2.21)可得： 

𝑊𝑏(𝑥)
(4) + (𝑅𝑠 𝑐𝑜𝑠

2 𝜃)𝑊𝑏 =0  (2.23)  

令 

4𝑀4 = 𝑅𝑠 𝑐𝑜𝑠
2 𝜃 

⇒ 𝑀 = (
1

4
𝑅𝑠 𝑐𝑜𝑠

2 𝜃)

1
4
 

由(2.22)可知，推導至此，所需求解的僅為一個 4 階 ODE，其中 D =
𝑑

𝑑𝑥
，根據 ODE

求解方法，找到四個根分別為±M(1 ± i)，因此可將解以下列形式假設 

𝑤𝑏 = 𝑐1 cos𝑀𝑥 cosh𝑀𝑥 + 𝑐2cos𝑀𝑥 sinh𝑀𝑥  

+𝑐3sin𝑀𝑥 sinh𝑀𝑥 + 𝑐4sin𝑀𝑥 cosh𝑀𝑥 (2.24)  

將(2.20)式代入邊界條件可得： 

𝑊𝑏(𝑥)
(3) + 𝑐𝑜𝑠 𝜃[−𝑅𝑡 −

𝑅𝑆
𝐿𝑒

𝜕𝑆

𝜕𝑥
]−
𝑅𝑆
𝐿𝑒
𝑠𝑖𝑛 𝜃 cos 𝜃 = 0 (2.25)  

𝑊𝑏(𝑥)
(3) = 𝐺 = (

𝑅𝑆
𝐿𝑒
𝑠𝑖𝑛 𝜃 + 𝑅𝑡) 𝑐𝑜𝑠 𝜃  
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將(2.23)以及(2.24)求解係數𝑐1~𝑐4 

𝑐1 = 𝑐3 = 0 (2.26)  

𝑐2 =
−𝐺

2𝑀3

𝐴

𝐵
、𝑐4 =

𝐺

2𝑀3

1

𝐵
 (2.27)  

將係數代回(2.23)可得： 

𝑊𝑏(𝑥) =
𝐺

2𝑀3
∙
1

𝐵
(𝑠𝑖𝑛𝑀𝑥 𝑐𝑜𝑠ℎ𝑀𝑥 − 𝐴 𝑐𝑜𝑠𝑀𝑥 𝑠𝑖𝑛ℎ𝑀𝑥)  (2.28)  

=
𝐺

2𝑀3(sin𝑀 + sinh𝑀)
(sinh (𝑀𝑥 +

𝑀

2
) sin (𝑀𝑥 −

𝑀

2
)

− sinh (𝑀𝑥 −
𝑀

2
) sin (𝑀𝑥 +

𝑀

2
)) 

將係數代回(2.24)可得： 

𝜕𝑆𝑏(𝑥)

𝜕𝑥
=
𝐿𝑒

𝑅𝑠
∙
𝐺

𝑐𝑜𝑠 𝜃
(
(𝐴 + 1)

𝐵
𝑐𝑜𝑠ℎ𝑀𝑥 𝑐𝑜𝑠𝑀𝑥 +

(𝐴 − 1)

𝐵
𝑠𝑖𝑛ℎ𝑀𝑥 𝑠𝑖𝑛𝑀𝑥 − 1) (2.29)  

= 𝐿𝑒 ∙ cos 𝜃
𝐺

2𝑀3(sin𝑀+sinh𝑀)
[
1

2𝑀
{𝑐𝑜𝑠ℎ (𝑀𝑥 −

𝑀

2
) 𝑠𝑖𝑛 (𝑀𝑥 +

𝑀

2
) −

𝑐𝑜𝑠 (𝑀𝑥 −
𝑀

2
) 𝑠𝑖𝑛ℎ (𝑀𝑥 +

𝑀

2
)} −

1

2𝑀
{𝑐𝑜𝑠ℎ (𝑀𝑥 +

𝑀

2
) 𝑠𝑖𝑛 (𝑀𝑥 −

𝑀

2
) −

𝑐𝑜𝑠 (𝑀𝑥 +
𝑀

2
) 𝑠𝑖𝑛ℎ (𝑀𝑥 −

𝑀

2
)}] −

𝐺

4𝑀4
𝐿𝑒 ∙ 𝑐𝑜𝑠 𝜃  

其中， 

A =
tan

1
2
𝑀

tanh
1
2𝑀

   ,   𝐵 =
sin
1
2
𝑀

sinh
1
2𝑀

+
cosh

1
2
𝑀

cos
1
2𝑀

 

 

將(2.27)、(2.28)結果代到程式裡面做運算，帶入不同角度和 M 值，即可得到

如速度、溫度、濃度微分一次的基態解，其中(2.27)、(2.28)皆有兩種表示，在 Chen 

et al [4] 理論的那篇論文中，是以第二種解做為表示，發現論文上的基態解是錯的，

不過最後結果是對的，以下是不同情況下基態圖，數值是使用 Chen et al [4]實驗所

做出來的數值。 
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圖 2.3 固定 𝑅𝑠 = 3 × 10
7、𝐿𝑒 = 83 下，此為速度基態解，虛線為𝑅𝑡 = 10

5、實線為𝑅𝑡 = 0 

 

圖 2.4 固定 𝑅𝑠 = 3 × 10
7、𝐿𝑒 = 83 下，此為基態的濃度梯度，其中虛線為𝑅𝑡 = 10

5、實線

為𝑅𝑡 = 0；假設邊界為沒有通量，因此邊界一次微分為 0 

圖 2.3 和 圖 2.4 是按照 Chen et al[2]實驗數據去求得基態解，其中當 𝜃 > 0°

時，為下板加熱，當 𝜃 < 0° 時，則為上板加熱，而 𝜃 = 0° 為 Wu and Chen[22]

等前人所研究的典型垂直槽雙擴散論文。因為實驗難以建立小濃度梯度，因此這裡

建立在大濃度梯度下，也與 Chen et al[4]做比對，得出相同結果(論文 [4] 基態解
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有打錯)。在圖 2.3 中，假設角度 30 度增加一次，且考慮 𝑅𝑡 = 10
5 和 𝑅𝑡 = 0 兩

種條件，其中後者為無加熱情況；速度基態圖得知，若為垂直槽情況且無加熱下，

整個基態流場沒有流動，而有加熱的條件下，由於熱壁會使始流體密度變小冷壁變

大，流動會是熱壁產生向上流動，冷壁向下流動，隨著傾斜角度增加，流動速度增

加；在圖 2.4 中，由於邊界沒有通量，因此邊界上 𝜕𝑆/𝜕𝑥 = 0，在沒有加熱的條件

下，在浮力層外 𝜕𝑆/𝜕𝑥 = −cos 𝜃 是垂直分層的分量，在浮力層中會使靠近壁面

達到峰值，在加熱條件下，對於正角或負角的影響是累加的，而從下方加熱比上方

加熱溶質梯度 𝜕𝑆/𝜕𝑥 大一些。 

 

 

 

 

 

 
圖 2.5 固定 𝐿𝑒 = 100、𝑅𝑠 = 10 下，代入各角度臨界 𝑅𝑡  值                               

左圖為速度基態圖，右圖為基態的濃度梯度                                           

(𝑅𝑡 = 55233.3、51233.6、50336.1、40759.3、1817.21)                                      

(𝜃 = 0°、20°、40°、60°、80°) 
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圖 2.6 固定 𝐿𝑒 = 100、𝑅𝑠 = 10
6 下，代入各角度臨界 𝑅𝑡  值                              

左圖為速度基態圖，右圖為基態的濃度梯度                                         

(𝑅𝑡 = 6290.3、7163.6、8516.3、10257.1、12026.5)                                         

(𝜃 = 0°、20°、40°、60°、80°) 

圖 2.5 與圖 2.6 與前兩張圖不同，前面是固定 𝑅𝑠 在很大情況時，且 𝑅𝑡 有

兩種情況：無加熱(𝑅𝑡 = 0)、有加熱(𝑅𝑡 = 10
5)；而這邊是固定 𝑅𝑠 有兩種情況：小

濃度梯度(𝑅𝑠 = 10)、大濃度梯度(𝑅𝑠 = 10
6)，且 𝑅𝑡 為每一個角度下的臨界值，而

本論文第五章將探討兩種梯度下的變化。圖 2.5 與 圖 2.6 發現，同樣的角度下，

濃度梯度的大小會造成趨勢的翻轉，在小濃度梯度下由於角度越大臨界 𝑅𝑡 愈來越

小，而我們可以得知 𝑅𝑡 是與溫度有關，因此浮力會因為角度越大越來越小，反之

在大濃度梯度下角度越大臨界 𝑅𝑡 愈來越大，導致速度是越來越快；由於臨界 𝑅𝑡

 會導致基態解變化，而大濃度梯度與小濃度梯度的臨界值在同樣角度下，有極大

差異，因此圖 2.7 與圖 2.8 本論文將固定 𝑅𝑡 = 1。圖 2.8 中當 𝑅𝑠 很大時，𝑅𝑡 極

小在圖 2.3 探討過垂直狀態下速度會趨近於 0，但圖 2.7 中 𝑅𝑠 很小時，卻形成相

反情況，一系列的變化有助於後續探討。 
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圖 2.7 固定 𝑅𝑡 = 1、𝐿𝑒 = 100、𝑅𝑠 = 10 下，左為速度基態圖，右為基態的濃度梯度 

 

圖 2.8 固定 𝑅𝑡 = 1、𝐿𝑒 = 100、𝑅𝑠 = 10
6 下，左為速度基態圖，右為基態的濃度梯度 
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第3章 線性穩定性分析 

線性穩定性分析是一種數學工具，用於研究複雜系統在特定條件下的穩定性

和動態行為。在傾斜槽雙擴散過程中，線性穩定性分析扮演著重要角色，幫助我們

理解引發對流的物理機制。本章節運用前章的理論模型，搭配限制的邊界條件，求

得此問題的穩定基態解(Steady basic state solution)，包括擴散方程、連續性方程和

能量方程。本章方法是在穩定基態解上加入一個無窮小之擾動量  (Small 

perturbation)，再以正規模態展開  (Normal mode expansion) 將偏微分方程式 

(Partial differential equations ,PDE) 轉換成常微分方程式  (Ordinary differential 

equations, ODE)，再利用數值方法求解出特徵值，由特徵值將可以預測在傾斜槽雙

擴散過程中是否會自發形成不穩定模式。 

 微小擾動方程式(Small Perturbation Equation) 

上節已將統御方程式無因次化，我們將無因次化方程式(2.7)-(2.10)中加入微小

擾動，搭配(2.11)及(2.12)無因次化邊界條件，假設此基態流場受到微小擾動後，其

流場型式可寫成基態流場(2.19)、(2.27)、(2.28)加上微小擾動量之影響。以下關係

式即為添加的微小擾動量，上標”prime”指微小擾動量，由於擾動量微小，故代入

方程式將消去微擾量互乘的高階非線性項(High order terms)。 

 

𝑢 = 𝑢′ v = v′ 𝑤 = 𝑤𝑏 + 𝑤
′ 

𝑝 = 𝑝𝑏 + 𝑝
′ 𝑇 = 𝑇𝑏 + 𝑇

′ S = 𝑆𝑏 + 𝑆
′ 

 

(3.1)  

 

上章節求得基態解可知，基態流場中速度(𝑤)、壓力(𝑝)、溫度(𝑇)及濃度(S)，有

z 方向上的變量，因此需加入原本的基態解。將上關係式代入無因次化方程式中即

可得線性化之微小擾動方程式。 
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代入結果如下： 

𝜕𝑢′

𝜕𝑥
+
𝜕v′

𝜕𝑦
+
𝜕𝑤′

𝜕𝑧
= 0 (3.2)  

1

𝑃𝑟
(
𝜕𝑢′

𝜕𝑡
+ 𝑤𝑏

𝜕𝑢′

𝜕𝑧
) = −

𝜕𝑝′

𝜕𝑥
+
𝜕2𝑢′

𝜕𝑥2
+
𝜕2𝑢′

𝜕𝑦2
+
𝜕2𝑢′

𝜕𝑧2
+𝑠𝑖𝑛 𝜃 [𝑅𝑡𝑇

′ −
𝑅𝑠
𝐿𝑒
𝑆′] (3.3)  

1

𝑃𝑟
(
𝜕𝑣′

𝜕𝑡
+ 𝑤𝑏

𝜕𝑣′

𝜕𝑧
) = −

𝜕𝑝′

𝜕𝑦
+
𝜕2𝑣′

𝜕𝑥2
+
𝜕2𝑣′

𝜕𝑦2
+
𝜕2𝑣′

𝜕𝑧2
 (3.4)  

1

𝑃𝑟
(
𝜕𝑤′

𝜕𝑡
+ 𝑢′

𝜕𝑤𝑏
𝜕𝑥

+ 𝑤𝑏
𝜕𝑤′

𝜕𝑧
)  

= −
𝜕𝑝′

𝜕𝑧
+
𝜕2𝑤′

𝜕𝑥2
+
𝜕2𝑤′

𝜕𝑦2
+
𝜕2𝑤′

𝜕𝑧2
+ 𝑐𝑜𝑠 𝜃 [𝑅𝑡𝑇

′ −
𝑅𝑠
𝐿𝑒
𝑆′] (3.5)  

(
𝜕𝑇′

𝜕𝑡
− 𝑢′ + 𝑤𝑏

𝜕𝑇′

𝜕𝑧
) =

𝜕2𝑇′

𝜕𝑥2
+
𝜕2𝑇′

𝜕𝑦2
+
𝜕2𝑇′

𝜕𝑧2
 (3.6)  

𝜕𝑆′

𝜕𝑡
+ 𝑢′

𝜕𝑆𝑏
𝜕𝑥

+ 𝑤𝑏
𝜕𝑆′

𝜕𝑧
− 𝑐𝑜𝑠 𝜃 𝑤′ =

1

𝐿𝑒
(
𝜕2𝑆′

𝜕𝑥2
+
𝜕2𝑆′

𝜕𝑦2
+
𝜕2𝑆′

𝜕𝑧2
) (3.7)  

邊界條件為： 

𝑢′ = v′ = 𝑤′ = 𝑇′ = 𝐷𝑆′ = 0   𝑎𝑡    𝑥 = ±0.5 
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 正規模態展開(Normal Modes Expansion) 

正規模態展開可用於解析線性偏微分方程組的初始成長狀態，它的核心思想

是將複雜的解展開為一組正交基底(稱為正規模態)的線性組合，優點在於將偏微分

方程問題轉化為常微分方程問題，簡化了求解難度。同時，每個模態都對應一種獨

立的空間模式和時間演化規律。本節將正規模態關係式代入上節求得的線性化微

小擾動方程式，以波的觀點探討微小擾動量是否會隨著時間而遞增，若特徵值的實

部為正值，則表示相應的模態將呈現指數增長，系統將趨向不穩定發展；相反，如

果特徵值的實部為負值，則對應的模態將呈現指數衰減，系統將越來越穩定，不會

出現紊流或波動的產生。 

 

正規模態關係式為： 

 

(

  
 

𝑢′

𝑣′

𝑤′

𝑝′

𝑇′

𝑆′)

  
 
∝

(

 
 
 
 

𝑢̂(𝑥)

v̂(𝑥)

𝑤̂(𝑥)

𝑝̂(𝑥)

𝑇̂(𝑥)

𝑆̂(𝑥))

 
 
 
 

𝑒𝑥𝑝(𝜎𝑡 + 𝑖𝑙𝑦 + 𝑖𝑘𝑧) (3.8)  

 

其中， 𝜎 為擾動的增長率(或衰減率)，決定了擾動隨時間的增長或衰減趨勢；

 𝑙 和 𝑘 分別為 𝑦 和 𝑧 方向上的波數,描述了擾動在空間上的週期性。對於整個系

統而言， 𝜎、𝑙 和 𝑘 都是需要求解的特徵值，它們共同決定了系統的穩定性。在

本研究中，我們分析的是時域穩定性問題，因此波數 𝑙 和 𝑘 被視為實數，而 𝜎 

則可能為複數。如果 𝜎 的實部為正值(𝜎𝑟 > 0)，表示擾動隨時間呈指數增長，系

統趨向不穩定發展；如果 𝜎 的虛部不為零(𝜎𝑖 ≠ 0)，則擾動還伴隨著振盪行為，振

盪頻率由 𝜎𝑖 決定。相反，如果 𝜎 的實部為負值(𝜎𝑟 < 0)，表示擾動將隨時間指數

衰減，系統越來越穩定，不會產生紊流或波動。因此，判斷系統的時域穩定性，關
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鍵在於求解特徵值 𝜎 並分析其正負性：當 𝜎𝑟 > 0 時,系統呈現時域不穩定性；而

當𝜎𝑟 < 0時,系統具有時域穩定性。 

將正規模態展開關係式(3.9)代入方程組(3.2) ~ (3.7)可得： 

𝐷𝑢̂ + 𝑖𝑙v̂ + 𝑖𝑘𝑤̂ = 0 (3.9)  

(𝐷2 − 𝑙2 − 𝑘2 − 𝑖𝑘
1

𝑃𝑟
𝑤𝑏) 𝑢̂ − 𝐷𝑝̂ +𝑠𝑖𝑛 𝜃[ [𝑅𝑡𝑇̂ −

𝑅𝑠
𝐿𝑒
𝑆̂] = 𝜎

1

𝑃𝑟
𝑢̂ (3.10)  

(𝐷2 − 𝑙2 − 𝑘2 − 𝑖𝑘
1

𝑃𝑟
𝑤𝑏) v̂ − 𝑖𝑙𝑝̂ = 𝜎

1

𝑃𝑟
v̂ (3.11)  

(𝐷2 − 𝑙2 − 𝑘2 − 𝑖𝑘
1

𝑃𝑟
𝑤𝑏) 𝑤̂ −

1

𝑃𝑟
(𝐷𝑤𝑏)𝑢̂  

+𝑐𝑜𝑠 𝜃 [𝑅𝑡𝑇̂ −
𝑅𝑠
𝐿𝑒
𝑆̂] − 𝑖𝑘𝑝̂ = 𝜎

1

𝑃𝑟
𝑤̂ (3.12)  

(𝐷2 − 𝑙2 − 𝑘2 − 𝑖𝑘𝑤𝑏)𝑇̂ + 𝑢̂ = 𝜎𝑇̂ (3.13)  

(𝐷2 − 𝑙2 − 𝑘2 − 𝑖𝑘𝐿𝑒𝑤𝑏)𝑆̂ − 𝐿𝑒(𝐷𝑆𝑏)𝑢̂ + 𝐿𝑒 𝑐𝑜𝑠 𝜃 𝑤̂ = 𝜎𝐿𝑒𝑆̂ (3.14)  

邊界條件為： 

𝑢̂ = v̂ = 𝑤̂ = 𝑇̂ = 𝐷𝑆̂ = 0   𝑎𝑡    𝑥 = ±0.5 (3.15)  
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 Squire’s Transformation 

在進行了小擾動分析和正規模態展開後，我們得到了描述系統行為的三維線

性穩定方程組。為了簡化計算並尋找最不穩定模式，我們將採用 Vest & Arpaci 中

引用的 Squire's 理論(1933)，通過一系列變換將三維問題轉化為等效的二維問題。

具體來說，Squire's 理論提出，對於一個三維擾動場，如果已知其中最不穩定的二

維模式，那麼可以通過適當的變換將這個二維模式對應到三維場中的最不穩定模

式。因此，我們只需要求解簡化的二維穩定性方程組，即可獲得整個三維系統中最

易發生的不穩定模式。 

轉換式如下： 

𝑘̃2 = 𝑙2 + 𝑘2   ,   𝑘̃𝑤̃ = 𝑙v̂ + 𝑘𝑤̂ 

𝑢̃ = 𝑢̂   ,     𝜎̃ = 𝜎 

𝑘̃𝑇̃ = 𝑘𝑇̂   ,     𝑘̃𝑆̃ = 𝑘𝑆̂ 

𝑝 = 𝑝̂       ,   
𝑘̃

𝑃𝑟̃
=
𝑘

𝑃𝑟
 

𝑅𝑠̃ = 𝑅𝑠   ,   𝐿𝑒̃ = 𝐿𝑒   ,   𝑅𝑡̃ = 𝑅𝑡 

將上述轉換式分別代入方程組(3.8)-(3.13) 

轉換式代入(3.8)可得： 

𝐷𝑢̂ + 𝑖𝑘̃𝑤̃ = 0 (3.16)  

轉換式代入(3.9)可得： 

(𝐷2 − 𝑘̃2)𝑢̃ − 𝐷𝑝 − 𝑖𝑘̃
1

𝑃𝑟̃
wb𝑢̃ +𝑠𝑖𝑛 𝜃 [𝑅𝑡̃𝑇̃ −

𝑅𝑠̃

𝐿𝑒̃
𝑆̃] = 𝜎̃

1

𝑃𝑟̃
𝑢̂ (3.17)  

將(3.10)× 𝑙 +(3.11)× 𝑘可得： 

(𝐷2 − 𝑙2 − 𝑘2)(𝑙v̂ + 𝑘𝑤̂) − 𝑖𝑘
1

𝑃𝑟
𝑤𝑏(𝑙v̂ + 𝑘𝑤̂) −

𝑘

𝑃𝑟
(𝐷𝑤𝑏)𝑢̂ 

+𝑐𝑜𝑠 𝜃 𝑘 [𝑅𝑡𝑇̂ −
𝑅𝑠
𝐿𝑒
𝑆̂] − 𝑖(𝑙2 + 𝑘2)𝑝̂ = 𝜎

1

𝑃𝑟
(𝑙v̂ + 𝑘𝑤̂) 
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將轉換式代入上式並各項消除𝑘̃可得： 

(𝐷2 − 𝑘̃2)𝑤̃ − 𝑖𝑘̃𝑝 − 𝑖𝑘̃
1

𝑃𝑟̃
wb𝑤̃ −

1

𝑃𝑟̃
(𝐷𝑤𝑏)𝑢̃  

+𝑐𝑜𝑠 𝜃 [𝑅𝑡̃𝑇̃ −
𝑅𝑠̃

𝐿𝑒̃
𝑆̃] = 𝜎̃

1

𝑃𝑟̃
𝑢̂ (3.18)  

轉換式代入(3.12)可得： 

(𝐷2 − 𝑘̃2)𝑇̃ − 𝑖𝑘̃𝑤𝑏𝑇̃ + 𝑢̂ = 𝜎𝑇̂ (3.19)  

轉換式代入(3.13)可得： 

(𝐷2 − 𝑘̃2)𝑆̃ − 𝑖𝑘̃𝐿𝑒̃𝑤𝑏𝑆̃ − 𝐿𝑒̃(𝐷𝑆𝑏)𝑢̃ + 𝐿𝑒̃ 𝑐𝑜𝑠 𝜃 𝑤̃ = 𝜎𝐿𝑒̃𝑆̃ (3.20)  

 

將方程組 (3.15)~(3.19)與方程組 (3.8)~(3.13)比較後可發現，經過 Squire’s 

Transformation 後的方程式與將原方程式 y 方向的變量(如速度項v̂(𝑥)及波數𝑙)消除

相等。經過這些變換和簡化後，我們最終得到一組僅包含二維橫向場的方程組。求

解這個二維穩定性方程後，就可以得到橫向場的最不穩定模式。根據 Squire's 理論,

對應到三維場時，這也將是整個三維場中最易發生的不穩定模式。採用這種將三維

問題降維到二維的方法，可以顯著降低求解的計算代價，同時不會失去對整體最不

穩定模式的捕捉能力。因此，在線性穩定性分析中，廣泛應用了 Squire's 變換理論

來簡化計算。  
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 二維線性穩定性分析 

在上一節利用 Squire's 變換理論將三維問題簡化為二維問題後，我們現在直接

考慮二維模型的線性穩定性分析。我們將從二維線性微小擾動方程式出發,壓力項

的存在一直是流場理論分析工作的一個麻煩，通常我們面對壓力項時，都會想辦法

將它轉化消除。此處我們的做法是對動量方程式，透過引入流線函數和正規模態展

開的步驟，將壓力像消除推導出描述系統行為的最終方程式組。 

將(3.2)對 z 偏微分可得： 

1

𝑃𝑟
(
𝜕

𝜕𝑡

𝜕𝑢′

𝜕𝑧
+ 𝑤𝑏

𝜕2𝑢′

𝜕𝑧2
) = −

𝜕

𝜕𝑥

𝜕𝑝′

𝜕𝑧
+ 𝛻2

𝜕𝑢′

𝜕𝑧
+ 𝑠𝑖𝑛 𝜃 [𝑅𝑡

𝜕𝑇′

𝜕𝑧
−
𝑅𝑠
𝐿𝑒

𝜕𝑆′

𝜕𝑧
] (3.21)  

將(3.4)對 x 偏微分可得： 

1

𝑃𝑟
(
𝜕

𝜕𝑡

𝜕𝑤′

𝜕𝑥
+
𝜕𝑢′

𝜕𝑥

𝜕𝑤𝑏
𝜕𝑥

+ 𝑢′
𝜕2𝑤𝑏
𝜕𝑥2

+
𝜕𝑤𝑏
𝜕𝑥

𝜕𝑤′

𝜕𝑧
+ 𝑤𝑏

𝜕

𝜕𝑥

𝜕𝑤′

𝜕𝑧
)  

= −
𝜕

𝜕𝑥

𝜕𝑝′

𝜕𝑧
+ 𝛻2

𝜕𝑤′

𝜕𝑥
+ 𝑐𝑜𝑠 𝜃 [𝑅𝑡

𝜕𝑇′

𝜕𝑥
−
𝑅𝑠
𝐿𝑒

𝜕𝑆′

𝜕𝑥
] (3.22)  

將(3.21)−(3.20)可得： 

1

𝑃𝑟
(
𝜕

𝜕𝑡
(
𝜕𝑤′

𝜕𝑥
−
𝜕𝑢′

𝜕𝑧
) + 𝑤𝑏

𝜕

𝜕𝑧
(
𝜕𝑤′

𝜕𝑥
−
𝜕𝑢′

𝜕𝑧
) + 𝑢′

𝜕2𝑤𝑏
𝜕𝑥2

+ (
𝜕𝑢′

𝜕𝑥
+
𝜕𝑤′

𝜕𝑧
)
𝜕𝑤𝑏
𝜕𝑥
)  

= 𝛻2 (
𝜕𝑤′

𝜕𝑥
−
𝜕𝑢′

𝜕𝑧
) + cos 𝜃 [𝑅𝑡

𝜕𝑇′

𝜕𝑥
−
𝑅𝑠
𝐿𝑒

𝜕𝑆′

𝜕𝑥
] − sin 𝜃 [𝑅𝑡

𝜕𝑇′

𝜕𝑧
−
𝑅𝑠
𝐿𝑒

𝜕𝑆′

𝜕𝑧
] (3.23)  

在此引入流線函數𝜑定義： 

𝑢′ = −
𝜕𝜑′

𝜕𝑧
 (3.24)  

𝑤′ =
𝜕𝜑′

𝜕𝑥
 (3.25)  

將(3.23)對 z 微分一次可得： 

𝜕𝑢′

𝜕𝑧
= −

𝜕2𝜑′

𝜕𝑧2
 (3.26)  
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將(3.24)對 x 微分一次可得： 

𝜕𝑤′

𝜕𝑥
=
𝜕2𝜑′

𝜕𝑥2
 (3.27)  

由(3.25)(3.26)可得到𝛻2𝜑′ 

𝛻2𝜑′ =
𝜕2𝜑′

𝜕𝑥2
+
𝜕2𝜑′

𝜕𝑧2
=
𝜕𝑤′

𝜕𝑥
−
𝜕𝑢′

𝜕𝑧
 (3.28)  

將(3.27)代入(3.22)可得速度項方程式： 

1

𝑃𝑟
(
𝜕

𝜕𝑡
𝛻2𝜑′ + 𝑤𝑏

𝜕

𝜕𝑧
𝛻2𝜑′ −

𝜕𝜑′

𝜕𝑧

𝜕𝑤𝑏
2

𝜕𝑥2
+ (

𝜕𝑢′

𝜕𝑥
+
𝜕𝑤′

𝜕𝑧
)
𝜕𝑤𝑏
𝜕𝑥
)  

= 𝛻2𝛻2𝜑′ + cos 𝜃 [𝑅𝑡
𝜕𝑇′

𝜕𝑥
−
𝑅𝑠
𝐿𝑒

𝜕𝑆′

𝜕𝑥
] − sin 𝜃 [𝑅𝑡

𝜕𝑇′

𝜕𝑧
−
𝑅𝑠
𝐿𝑒

𝜕𝑆′

𝜕𝑧
] (3.29)  

溫度方程式： 

(
𝜕𝑇′

𝜕𝑡
− 𝑢′ + 𝑤𝑏

𝜕𝑇′

𝜕𝑧
) =

𝜕2𝑇′

𝜕𝑥2
+
𝜕2𝑇′

𝜕𝑦2
+
𝜕2𝑇′

𝜕𝑧2
 (3.30)  

濃度方程式： 

𝜕𝑆′

𝜕𝑡
+ 𝑢′

𝜕𝑆𝑏
𝜕𝑥

+ 𝑤𝑏
𝜕𝑆′

𝜕𝑧
− 𝑐𝑜𝑠 𝜃 𝑤′ =

1

𝐿𝑒
(
𝜕2𝑆′

𝜕𝑥2
+
𝜕2𝑆′

𝜕𝑦2
+
𝜕2𝑆′

𝜕𝑧2
) (3.31)  

通過這一系列推導步驟，我們成功地將原本的三維問題轉化為對等的二維穩

定性分析問題，並獲得了描述系統最不穩定行為的關鍵方程式組。這不僅大幅降低

了計算複雜度，也為後續的數值求解和參數研究奠定了基礎。  
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 二維正規模態展開 

正規模態展開的技術，將流線函數的小擾動表示為正則模態的線性組合，每一

個模態滿足相應的特徵值方程,描述了不同的空間分布模式和時間演化行為。將模

態展開形式代入簡化後的控制方程，並施加適當的邊界條件，可以得到決定每一個

模態的特徵值方程，並且同樣以波的形勢觀察其穩定性發展趨勢。 

正規模態表示定義如下： 

(
𝜑′

𝑇′

𝑆′
) ∝ (

𝜑(𝑥)

𝑇(𝑥)

𝑆(𝑥)
)𝑒𝑥𝑝(𝜎𝑡 + 𝑖𝑘𝑧) (3.32)  

其中， 𝑘 為 z 方向波數。 

將(3.31)代入(3.23)(3.24)可得： 

𝑢′ = −
𝜕𝜑′

𝜕𝑧
= −𝑖𝑘𝜑(𝑥) exp(𝜎𝑡 + 𝑖𝑘𝑧) (3.33)  

𝑤′ = 
𝜕𝜑′

𝜕𝑥
= 𝜑′(𝑥) exp(𝜎𝑡 + 𝑖𝑘𝑧) (3.34)  

將代入可得： 

−
𝜎

𝑃𝑟
(𝐷2 − 𝑘2)𝜙(𝑥)+(𝐷2 − 𝑘2)2𝜙(𝑥) −

𝑖𝑘

𝑃𝑟
[(𝐷2 − 𝑘2)𝜙(𝑥)𝑤𝑏 − (𝐷

2𝑤𝑏)𝜙(𝑥)] 

+𝑐𝑜𝑠 𝜃 (𝑅𝑡𝐷𝛩(𝑥) −
𝑅𝑆
𝐿𝑒
𝐷𝛪(𝑥)) − 𝑖𝑘 𝑠𝑖𝑛 𝜃 (𝑅𝑡𝛩(𝑥) −

𝑅𝑆
𝐿𝑒
𝛪(𝑥)) = 0 (3.35)  

(𝐷2 − 𝑘2)𝛩(𝑥) − 𝑖𝑘𝑤𝑏𝛩(𝑥) − 𝑖𝑘𝜙(𝑥) − 𝜎𝛩(𝑥) = 0 (3.36)  

(𝐷2 − 𝑘2)𝛪(𝑥) + 𝐿𝑒 𝜙′(𝑥)  𝑐𝑜𝑠 𝜃 − 𝐿𝑒 𝑖𝑘 𝑤𝑏𝛪(𝑥) 

+𝐿𝑒 𝑖𝑘 𝜙(𝑥)𝐷𝑆𝑏 − 𝐿𝑒 𝜎 𝛪(𝑥) = 0 (3.37)  

對應的邊界條件： 

𝜑 = 𝐷𝜑 = 𝑇 = 𝐷𝑆 = 0   𝑎𝑡    𝑥 = ±0.5 

本章方程式為本研究理論模型最終要的四條方程式，接下來將以數值方法求

解特徵值，以特徵值的實部、虛部來分析其穩定性。 



doi:10.6342/NTU202401112

 

32 

第4章 數值分析 

前一章得到本研究模型的最後四條方程式，由於這套方程組的基態解是非線

性的，數學上沒有解析解存在。鑒於數學的複雜性，必須訴諸數值方法才能解出特

徵值。在此，我們採用 Chebyshev-collocation method 去求解。該法不像 Weighted-

residual (如 Galerkin 或 Tau method) 般需要利用函數的正交性去做積分運算來定義

頻譜，而是直接對變數以 Chebyshev 多項式做展開，並強制讓變數在指定的配置點

處滿足方程式，如此形成一套矩陣方程而得解。 

 

 數值方法 

如上所述，由方程式(3.34) ~ (3.36)以及邊界條件所組成的，是一個典型的特徵

值問題： 

 

𝑓(𝑘 , 𝑅𝑡 , 𝑃𝑟 , 𝜎 , 𝑅𝑠 , 𝐿𝑒) = 0 (4.1)  

 

在探討不同案例時，常會給定一組無因次參數,包括雷諾數 Re、普朗特數 Pr 

及其他相關參數。可以利用數值方法求解，找出一組特徵值,使得系統的解不為全

零解。接著，針對這些特徵值是實數或虛數、零或非零的性質，可以衍生出該案例

的物理意義。關於這一部分的詳細探討，將在第五章中進行深入討論。 

在開始探討本章的重點 Chebyshev collocation 方法之前，先介紹頻譜分析法

(Spectral method)。頻譜分析法係運用波的概念，將目標函數 u(𝑥) 展開成不同波長

的波進行線性疊加，如下所示， 

𝑢(𝑥) = ∑𝑎𝑛

∞

𝑛=0

𝜙𝑛(𝑥) (4.2)  
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頻譜分析法是一種數值方法,旨在求解偏微分方程。該方法的基本思路是將未

知解函數使用一組基函數(如三角函數或特徵函數)進行展開，將偏微分方程轉化為

代數方程組，再求解該代數方程組以獲得解的近似。在這種展開形式中，所使用的

基本波狀函數被稱為「基底函數」，而對應每一個基底函數的係數則被視為該波的

「振幅大小」，亦即加權係數。不同的數值方法會選擇不同的基底函數族，以傅立

葉級數為例，它採用的基底函數就是三角函數族。 

作為頻譜分析法的一種，Chebyshev collocation 方法選擇 Chebyshev 多項式

作為基函數,利用 Chebyshev 節點(一組特殊的離散點)來構造代數方程組。該方法

要求在 Chebyshev 節點上精確滿足原始偏微分方程，從而將連續問題離散化為代

數問題，再用數值方法求解。Chebyshev collocation 方法由於離散化簡單、高精度

等優點，在解偏微分方程時具有重要應用價值，將在本章中對其進行詳細介紹。 

 

 切比雪夫配置法(Chebyshev Collocation Method) 

至於本章要探討的 Chebyshev collocation 方法，它所使用的基底函數則是切

比雪夫多項式(Chebyshev polynomial)族。切比雪夫多項式是一族在區間[−1,1]上定

義的特殊多項式，具有一些良好的數學性質，如正交性或是經過變換可在任意區間

上使用等，使其成為構建高精度多項式逼近的理想選擇。在 Chebyshev collocation 

方法中，未知解函數將被逼近為一個切比雪夫多項式的有限線性組合，其中每一項

的係數就是相應切比雪夫多項式的加權係數，待求解。針對本研究的模型，由於涉

及非週期性的物理條件，且邊界條件屬於齊性(homogeneous)，即在邊界處函數值

為零。在這種情況下，採用切比雪夫配置法(Chebyshev collocation method)作為數值

求解方法，相較於傅立葉級數(Fourier series)更為便捷且高效。因此，綜合考慮本研

究模型的物理條件及邊界條件，採用切比雪夫配置法作為數值求解工具，不僅能獲

得高精度結果,且計算效率也更為優越，這正是我們選擇該方法的主要原因。 
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以下詳細介紹 Chebyshev collocation method 使用過程，此方法的基底函數是

Chebyshev 多項式，定義為： 

𝑇𝑛 = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠
−1𝑥)   𝑥𝑗 = 𝑐𝑜𝑠

𝑗𝜋

𝑁
，𝑗 = 0、1⋯𝑁   範圍 [1, −1]  (4.3)  

其中，𝑥𝑗稱為配置點(節點)，會均勻分布在吾人在需計算的計算區間中，通常選擇

越多的配置點會越精準，但相對地也需要更多的計算時間與空間。 

求解過程中，由於方程式需求，須先計算基底函數的各階微分，計算如下： 

令 𝑇𝑛 = 𝑐𝑜𝑠(𝑛𝑦)，其中，y = cos−1 𝑥 (或 𝑥 = cos 𝑦)， 
𝑑𝑦

𝑑𝑥
= −

1

𝑠𝑖𝑛 𝑦
 。 

因此，可得各階微分為： 

𝑇𝑛
′(𝑥) =

𝑛𝑠𝑖𝑛(𝑛𝑦)

𝑠𝑖𝑛𝑦
 (4.4)  

𝑇𝑛
′′(𝑥) = −

𝑛2𝑐𝑜 𝑠(𝑛𝑦)

𝑠𝑖𝑛2 𝑦
+
𝑛𝑠𝑖𝑛(𝑛𝑦)𝑥

𝑠𝑖𝑛3𝑦
 (4.5)  

𝑇𝑛
′′′(𝑥) = −

𝑛3 sin(𝑛𝑦)

𝑠𝑖𝑛3 𝑦
+
𝑛𝑠𝑖𝑛 (𝑛𝑦)

𝑠𝑖𝑛3 𝑦
− 3

𝑛2𝑥𝑐𝑜𝑠 (𝑛𝑦)

𝑠𝑖𝑛4 𝑦
+ 3

𝑛𝑠𝑖𝑛(𝑛𝑦)𝑥2

𝑠𝑖𝑛3𝑦
 (4.6)  

𝑇𝑛
′(1) = 𝑛2            𝑇𝑛

′(−1) = 𝑛2(−1)𝑛+1 (4.7)  

令 𝑥̃ = 2𝑥 即 𝑥̃ ∈ [−1,1] 來滿足使用Chebyshev polynomial的條件。由於經過

變數變換，故微分將產生連鎖率如下： 

𝐷𝑥 → 2𝐷𝑥̃，𝐷𝑥
2 → 4𝐷𝑥̃

2，𝐷𝑥
3 → 8𝐷𝑥̃

2 (4.8)  

另外，在將 Chebyshev collocation method 套用到(3.34)~(3.36)之前，吾人須先

將(3.34)做降階，以達到整體方程式數目符合邊界條件階數的結果，以利後續程式

計算。降階過程如下所示： 

𝑌 = (𝐷2 − 𝑘2)𝜙 (4.9)  

−
𝜎

𝑃𝑟
(𝐷2 − 𝑘2)𝜙(𝑥) + (𝐷2 − 𝑘2)𝑌 −

𝑖𝑘

𝑃𝑟
[𝑤𝑏𝑌 − (𝐷

2𝑤𝑏)𝜙(𝑥)] 

+𝑐𝑜𝑠 𝜃 (𝑅𝑡𝐷𝛩(𝑥) −
𝑅𝑆
𝐿𝑒
𝐷𝛪(𝑥)) − 𝑖𝑘 𝑠𝑖𝑛 𝜃 (𝑅𝑡𝛩(𝑥) −

𝑅𝑆
𝐿𝑒
𝛪(𝑥)) = 0 (4.10)  
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(𝐷2 − 𝑘2)𝛩(𝑥) − 𝑖𝑘𝑤𝑏𝛩(𝑥) − 𝑖𝑘𝜙(𝑥) − 𝜎𝛩(𝑥) = 0 (4.11)  

(𝐷2 − 𝑘2)𝛪(𝑥) + 𝐿𝑒 𝜙′(𝑥)  𝑐𝑜𝑠 𝜃 − 𝐿𝑒 𝑖𝑘 𝑤𝑏𝛪(𝑥) 

+𝐿𝑒 𝑖𝑘 𝜙(𝑥)𝐷𝑆𝑏 − 𝐿𝑒 𝜎 𝛪(𝑥) = 0 (4.12)  

將 Chebyshev polynomial 以 𝑇𝑛(𝑥) 表示，代解函數的振幅函數展開如下： 

𝜙 = ∑𝑎𝑛𝑇𝑛

𝑁

𝑛=0

        𝑌 = ∑𝑏𝑛𝑇𝑛

𝑁

𝑛=0

 (4.13)  

𝑇 = ∑𝑐𝑛𝑇𝑛

𝑁

𝑛=0

         𝑆 = ∑𝑑𝑛𝑇𝑛

𝑁

𝑛=0

 (4.14)  

 

將上兩式分別代入方程式(4.8)~(4.11) 

4∑𝑎𝑛𝑇𝑛
′′

𝑁

𝑛=0

− 𝑘2∑𝑎𝑛𝑇𝑛

𝑁

𝑛=0

−∑𝑏𝑛𝑇𝑛

𝑁

𝑛=0

= 0 (4.15)  

4∑𝑏𝑛𝑇𝑛
′′ − 𝑘2∑𝑏𝑛𝑇𝑛

𝑁

𝑛=0

𝑁

𝑛=0

−
𝑖𝑘

𝑃𝑟
𝑤𝑏∑𝑏𝑛𝑇𝑛 + 

𝑖𝑘

𝑃𝑟

𝑁

𝑛=0

(𝐷2𝑤𝑏)∑𝑎𝑛𝑇𝑛

𝑁

𝑛=0

 

+2𝑐𝑜𝑠 𝜃 (𝑅𝑡∑𝑐𝑛𝑇𝑛
′ −

𝑁

𝑛=0

𝑅𝑆
𝐿𝑒
∑𝑑𝑛𝑇𝑛

′

𝑁

𝑛=0

) − 𝑖𝑘 𝑠𝑖𝑛 𝜃 (𝑅𝑡∑𝑐𝑛𝑇𝑛

𝑁

𝑛=0

−
𝑅𝑆
𝐿𝑒
∑𝑑𝑛𝑇𝑛

𝑁

𝑛=0

) 

=
1

𝑃𝑟
𝜎∑𝑏𝑛𝑇𝑛

𝑁

𝑛=0

 (4.16)  

4∑𝑐𝑛𝑇𝑛
′′

𝑁

𝑛=0

− 𝑘2∑𝑐𝑛𝑇𝑛

𝑁

𝑛=0

− 𝑖𝑘𝑤𝑏∑𝑐𝑛𝑇𝑛

𝑁

𝑛=0

− 𝑖𝑘∑𝑎𝑛𝑇𝑛

𝑁

𝑛=0

 

= 𝜎∑𝑐𝑛𝑇𝑛

𝑁

𝑛=0

 (4.17)  

4∑𝑑𝑛𝑇𝑛
′′

𝑁

𝑛=0

− 𝑘2∑𝑑𝑛𝑇𝑛

𝑁

𝑛=0

− 𝑖𝑘𝑤𝑏𝐿𝑒∑𝑑𝑛𝑇𝑛

𝑁

𝑛=0

+ 2𝐿𝑒  𝑐𝑜𝑠 𝜃∑𝑎𝑛𝑇𝑛
′

𝑁

𝑛=0
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+𝑖𝑘𝐿𝑒(𝐷𝑆𝑏)∑𝑎𝑛𝑇𝑛

𝑁

𝑛=0

= 𝜎𝐿𝑒∑𝑑𝑛𝑇𝑛

𝑁

𝑛=0

 (4.18)  

 

 

 

代入邊界條件，可得： 

∑𝑎𝑛𝑇𝑛

𝑁

𝑛=0

=∑𝑏𝑛𝑇𝑛
′

𝑁

𝑛=0

=∑𝑐𝑛𝑇𝑛 =∑𝑑𝑛𝑇𝑛
′

𝑁

𝑛=0

= 0

𝑁

𝑛=0

          @ 𝑥̃ = ±1 (4.19)  

其中，𝑎𝑛 = 𝑞𝑛+1，𝑏𝑛 = 𝑞𝑁+1+𝑛+1，𝑐𝑛 = 𝑞2𝑁+2+𝑛+1，𝑑𝑛 = 𝑞3𝑁+3+𝑛+1 

運用Matlab程式，可寫成一個 (4𝑁 + 4) × (4𝑁 + 4) 的方陣，並組成一個矩陣

方程式 [𝐴]𝒒 = 𝜎[𝐵]𝒒  

[ A ] [

𝑞1
⋮

𝑞4𝑁+4
] = 𝜎 [ B ] [

𝑞1
⋮

𝑞4𝑁+4
] (4.20)  

最後，參考 Moler et.al[23]引入QZ法則優化矩陣，將其化簡成三角矩陣，並搭

配(4.18)的邊界條件運用割線法(scant method)計算其特徵值。在Wu and Chen[22]的

論文中，得出雙擴散系統，隨著階數N的增加，欲求解的目標值會逐漸收斂至某一

特定值。當階數N約等於50時，目標值的數值相較於持續增加階數至更高值時，其

誤差已低於0.1%。由此可推定，在接下來的計算中，選擇𝑁 = 50作為計算階數即

可獲得滿意的精確度。 
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第5章 結果與討論 

 程式碼驗證 

在進入結果與討論前，我們先比對簡單的案例，來確保程式碼的可信度，本論

文先與 Chen et al[4] 進行比對，論文中找出各角度 (−75°~75°) 的臨界 𝑅𝑡、𝑘𝑐 ，

因為是實驗數據，因此與基態解一樣將固定 𝑅𝑠 = 3 × 10
7、𝐿𝑒 = 83 ，由於 Chen 

et al[4] 論文使用  Galerkin Method ，而本論文使用  Chebyshev Collocation 

Method ，數值方法與程式編寫都不相同，因此本章節先將結果做比對，算出誤差

值證明程式的可靠信。如下表： 

 

表 5.1 與 Chen et al[4] 比對結果 

𝑷𝒓 = 𝟔. 𝟕, 𝑳𝒆 = 𝟖𝟑, 𝑹𝒔 = 𝟑 × 𝟏𝟎
𝟕 

Angle 𝑹𝒕𝒄(Chen) 𝒌𝒄(Chen) 𝑹𝒕𝒄 𝒌𝒄 error 

𝜃 = −75° 169219 5.195 169689 5.1 0.278% 

𝜃 = −60° 139922 11.203 139136 11.1 0.562% 

𝜃 = −45° 127234 16.537 126781 16.5 0.356% 

𝜃 = −30° 121219 20.586 121851 20.5 0.521% 

𝜃 = −15° 122375 22.405 121630 22.5 0.609% 

𝜃 = 0° 124563 22.502 125339 22.5 0.623% 

𝜃 = 15° 133805 20.621 133097 20.6 0.529% 

𝜃 = 30° 148203 17.062 145888 17.0 1.562% 

𝜃 = 45° 169219 12.88 166243 12.4 1.759% 

𝜃 = 60° 205625 7.689 200975 7.4 2.261% 

𝜃 = 75° 283438 2.781 274042 2.8 3.315% 
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 不同角度的穩定性分析 

據先前相關領域的實驗及數值模擬研究顯示，在特定參數設定下𝑃𝑟 = 6.7、𝐿𝑒

= 100 所得到的數據結果，與使用鹽水溶液於室溫條件下進行實驗時的計算值相

當吻合，而該參數設定是在模擬室溫海水的熱流行為。由於海水的主要成分為鹽溶

於水中，因此在室溫下以鹽水進行實驗，可較實際反映海水的熱流特性。鑒於模擬

與實驗數據的良好一致性，多數研究均採用此一標準參數組合，以推導出具有代表

性的模擬結果，應用於分析海洋熱傳導的相關議題，本論文使用此參數。 

5.2.1 穩定性邊界圖(Stability Boundary Curve)與比較 

 

圖 5.1 𝑃𝑟 = 6.7、𝐿𝑒 = 100、𝜃 ≥ 0 下的穩定邊界，曲線下為穩定區域，其中實線表式 

Stationary mode，虛線表示 Oscillatory mode 為波動不穩定；○ 為 TBM 轉 DBM(T2) 、■ 為 DBM

轉 SSM(T3)、● 為 DBM 轉 DSM(T4)、▲ 為 DSM 轉 SSM(T5)、× 為每條穩定線的最低點 

 



doi:10.6342/NTU202401112

 

39 

 

圖 5.1 中最低點左邊區域是實驗能做出來的區域，因為小濃度梯度難以在真

實實驗中建立，因此前人論文都是討論此區域，從未有求得完整穩定邊界圖，也因

如此沒有發現小 𝑅𝑠 是越來越不穩定，後面將會探討兩種狀態下，臨界點的變化；

其中當角度為 65.8° 時，穩定邊界圖有個跳動點在 𝑅𝑠 = 33.8 ，其原因為中性曲

線圖在 65.8° 開始底下會出現新的胞，而詳細探討後會發現，在 𝑅𝑠 = 33.9 此胞

會消失造成跳動；而圖中模態轉換點也有一系列的變化，後續會加以討論。 

 

 

圖 5.2 𝑃𝑟 = 6.7、𝐿𝑒 = 100、𝜃 ≤ 0 下的穩定邊界，曲線下為穩定區域，其中實線表式 Stationary

 mode，虛線表示 Oscillatory mode 為波動不穩定；負角度為上板加熱 

 

 

圖 5.1 和圖 5.2 是本論文整理出完整的穩定邊界圖，而此圖是將各角度的中

性曲線圖畫出後，將不同 𝑅𝑠 值求得最低的 𝑅𝑡 值將其連線，可畫出一張橫軸為 
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𝑅𝑠 ，縱軸為 𝑅𝑡 的穩定性邊界圖(Stability boundary curve)，此圖意義，在本論文所

設定 Pr = 6.7、Le = 100 參數條件下，該理論模型的臨界穩定狀態，其中實線表

式 Stationary mode，虛線表示 Oscillatory mode 為波動不穩定，曲線下為穩定區域，

𝜃 = 0° 為垂直槽，正角為下板加熱，負角為上板加熱，兩圖比較能得知穩定邊界

線沒有以 𝜃 = 0° 對稱角度。其中關於模態轉換的定義 Wu and Chen [22] 在垂直

槽中有詳細介紹，本論文加以推廣至傾斜槽，詳細探究各角度模態轉變情形。 

5.2.2 波數圖(Wave Number) 

 

圖 5.3 𝑃𝑟 = 6.7、𝐿𝑒 = 100 下的波數圖，曲線下為穩定區域，其中實線表式 Stationary mode，虛

線表示 Oscillatory mode 為波動不穩定 

圖 5.3 為各正角度的臨界波數與 𝑅𝑠 的關係圖，當 𝑅𝑠𝑐 小於 Oscillatory mode 

時，各角度的波數大約都落在 𝑘𝑐 ≅ 2.7，當 𝑅𝑠𝑐 大於Oscillatory mode 時，角度越

大 𝑘𝑐 ≅ 0.01 的區域越來越大，當 𝑘𝑐 開始有值時，波數會隨著角度越大而變小。 
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5.2.3 模態轉換和最低點探討 

(i) TBM 轉 DBM (T2) 

⚫ 溫度浮力模式(Thermal Buoyancy Mode)： 

發生在當垂直溶液梯度較小的情況下，即圖 5.1 中 T2 之前。在這種模式

中，密度梯度相對較小，熱對流是主導不穩定性的主要因素。當加熱板和冷卻

板之間的水平溫差足夠大時，由於熱膨脹效應，就會產生不連續的熱對流運動，

這些對流運動形成一系列垂直堆疊的對流細胞結構。在每個對流細胞中，較暖

的流體由於浮力作用向上運動，而較冷的流體則向下運動。這種熱對流模式的

特點是，不穩定性的發生是靜態的(非振盪的)，這意味著擾動不會沿著垂直方

向傳播，其中典型的流場模式是一系列水平對流卷的堆疊結構。 

 

⚫ 擴散浮力模式(Diffusive Buoyancy Mode)： 

擴散浮力模式發生在密度梯度開始變大，但仍然不足以完全主導系統的不

穩定性時。在這種模式下，雖然熱對流效應仍然扮演主導角色，但濃度擴散效

應也開始產生影響。擴散浮力模式的主要特徵是，不穩定性的發生不再是靜態

的，而呈現出振盪的行為。這意味著所激發的擾動會沿著垂直方向以波傳播的

形式前行，而不僅僅是局部的對流運動。這種振盪行為的起因，是由於濃度擴

散所產生的密度梯度，開始與熱對流效應相互作用。當溫度梯度驅動對流胞上

升時，同時也會促使較冷且濃濃度的流體下沉；而當濃濃度流體下沉時，又會

帶動溫暖流體上升。這種交替的熱與濃度傳遞過程，使得對流胞不再是單純的

上升或下降，而呈現出前後波動的振盪行為。因此，在擴散浮力模式下，不穩

定性的驅動機制已經不僅僅是單純的熱浮力效應，濃度梯度帶來的浮力效應也

開始發揮作用，這導致對流胞在垂直方向上呈現出類似行波的振盪行為。 
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圖 5.4 𝑃𝑟 = 6.7、𝐿𝑒 = 100 下 T2 的穩定邊界圖，將穩定邊界圖中各角度 TBM 轉 DBM (T2) 

的值畫出， ● 為各角度轉換點 

 

 

 

圖 5.5 𝑃𝑟 = 6.7、𝐿𝑒 = 100 下 T2 與 𝜃 的關係圖， ●為 𝑅𝑡𝑐 與  𝜃 的關係圖，● 為 𝑅𝑠𝑐  與  𝜃 的關

係圖 

圖 5.4 與圖 5.5 是 TBM 轉 DBM (T2)在各角度下的關係圖，由圖中也可觀察

到 𝑅𝑡𝑐 的數量級是 𝑅𝑠𝑐 的倍數之多，因此在此區域溫度對穩定性是具有影響力相

較於小數倍的濃度，而在波數圖中也可得知此區域臨界波數 𝑘𝑐 ≅ 2.7 ，在此雙擴
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散系統的參數範圍內，Wu and Chen [22] 論文觀察到對流胞呈現相對扁平的橢圓形

狀。這種扁平化的現象源自於基態流場中添加的微小擾動，會利用對流胞上下端的

密度差作為驅動力，激發出浮力驅動的不穩定模式(Buoyancy mode)。因此，在此

參數區域內，本論文將對流胞的發展模式歸類為一種"浮力模態"(Buoyancy mode)，

意指系統的不穩定性主要是由於密度差異引起的浮力效應所驅動的。這與純熱對

流中"熱浮力模態"的概念類似，但在雙擴散系統中，密度差異同時包含了溫度和濃

度兩個效應的貢獻。 

 

 

(ii) DBM 轉 DSM (T4) 

 

⚫ 擴散剪力模式(Diffusive Shear Mode)： 

擴散剪力模式(DSM)是指在一定條件下，雙擴散對流系統會發生的一種不

穩定模式。在這種模式下，溫度梯度和濃度梯度的相互作用會導致流體不穩定，

並產生振盪性的對流模式。擴散剪力模式的發生條件是當濃度的瑞利數 𝑅𝑠 介

於一個特定範圍時。在這個範圍內，系統中既有足夠大的垂直濃度梯度傳遞能

量給擾動，又有明顯的基本剪切效應。因此，擴散剪力模式的主要不穩定機制

來自擴散和剪切作用的結合。 

擴散剪力模式是一種振盪模式，意味著在這種不穩定下，流體中的擾動呈

現出波動傳播的行為。擾動的波長比較長，對流紋路的形狀呈現出細長的特徵。

這種特點體現了擴散剪力模式中剪切作用的顯著影響。擴散剪力模式描述了在

一定參數範圍內，雙擴散對流系統由於擴散和剪切共同作用而發生的一種振盪

對流模式，是分析該類系統複雜不穩定行為的一個重要組成部分。 
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圖 5.6 𝑃𝑟 = 6.7、𝐿𝑒 = 100 下 T4 的邊際穩定圖，將邊際穩定圖中各角度 DBM 轉 DSM (T4) 

的值畫出， ● 為各角度轉換點，運用關係式可求得近似值 

 

𝑅𝑡𝑐 = {

6.0506𝑅𝑠𝑐
2 − 2885𝑅𝑠𝑐 + 411100, 𝜃 ≤ 20

−5.07 ∙ 10−5𝑅𝑠𝑐
3
+ 0.062𝑅𝑠𝑐

2 − 25.89𝑅𝑠𝑐 + 7034.66,
20 ≤ 𝜃 ≤ 65.8

 (5.1)  

 

圖 5.7 𝑃𝑟 = 6.7、𝐿𝑒 = 100 下 T4 與  𝜃  的關係圖， ● 為 𝑅𝑡𝑐 與  𝜃 的關係圖，● 為 𝑅𝑠𝑐  與  𝜃 

的關係圖 

 

𝑅𝑠𝑐 = 0.005𝜃
3 − 0.19𝜃2 + 4.34𝜃 + 201.35 (5.2)  
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(5.1)式與(5.2)式為 DBM 轉 DSM (T4) 的漸進線，由於在圖 5.1 可知，T4 轉

換與 T2 轉換不同之處在於，T4 只有在角度 65.8 以內才有此變化，而超過角度 

65.8 之後是 DBM 轉 SSM (T3) ；為了更好的擬和曲線，本論文將用兩條方程式

來表示，當遇到角度在 0° ~ 65.8° 此區間時，可將角度帶入(5.2)式求得 𝑅𝑠𝑐 ，再

將臨界濃度瑞利數帶入(5.1)式，即可獲得 𝑅𝑡𝑐 ，不用花費大量時間進行數值計算，

即可得知臨界值以及各角度模態轉換值。 

 

圖 5.6 所示相較於 DBM 區間(圖 5.4 與圖 5.5 )，在相同角度下，DSM 的濃度

瑞利數比 DBM 還大些，因此在本段區間垂直濃度梯度所產生的影響更加顯著了，

且系統仍然為震盪狀態( 𝜎𝑖 ≠ 0 )，推斷此區域為擴散形式的穩定模式。另外，在圖

5.3 中能發現臨界波數在這模態轉換，臨界波數 𝑘𝑐 從 2.9 跳到了 0.6，在 Wu and 

Chen [22] 論文中發現，對流胞厚度明顯變厚，也就是基態流場中的微小擾動不穩

定性其能量主要來自壁面中的剪切力，也稱為剪力模式。 
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(iii) DSM 轉 SSM (T5) 

 

⚫ 鹽指剪力模式(Salt-Finger Shear Mode) 

鹽指剪力模式是在一定條件下，雙擴散對流系統會出現的一種不穩定模

式。這種模式的主要特點是 salt fingers 和基本流剪切作用的交互影響。當濃

度的瑞利數 𝑅𝑠 足夠大時，系統中就存在強烈的垂直濃度梯度。這種強梯度會

誘發出 salt finger 形成，這是指濃度較濃和較稀的流體互相交替形成的細長結

構。在 SSM 模式下，由於溶質濃度梯度極高，會在基本流動中誘發出極大的

水平濃度梯度。同時，高濃度梯度也會抑制基本流動中的垂直流動，使得垂直

流速變小。 

在這種情況下，決定系統是否發生不穩定的主導因素，已經不再是熱梯度

或濃度梯度本身，而是由於極大的濃度梯度，以及基本流動中的剪切作用所引

起的。不穩定的能量是通過剪切效應，從基本流動轉移到擾動中的，因此稱為

"鹽指剪切模式"。這種模式下的不穩定通常是靜止的，不會有振盪現象發生。 

另一個 SSM 模式的特徵是，在起始不穩定時，流場呈現類似平行流的形

態，與基本流動有很大的重疊區域。同時，臨界波數 𝑘𝑐 接近 0，意味著不穩

定模式沿管道方向擁有極長的波長。 

⚫ 鹽指浮力模式(Salt-Finger Buoyancy Mode) 

Salt-finger buoyancy mode (SBM)是當溶液中的垂直濃度梯度非常大時，

雙擴散對流的一種不穩定模式。在這種模式下，溫度梯度和濃度梯度同時導致

不穩定，產生盤旋的 salt finger 對流結構。這種對流是靜止的，不會沿著垂直

方向傳播波動。SBM 出現在非常大的濃度的瑞利數的區域，在這種情況下，

垂直濃度梯度對流體的穩定性有顯著的影響。溫度和濃度梯度的競爭作用導致

了這種特殊的對流模式，體現了雙擴散系統中熱和質量傳輸過程的交互作用。 
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圖 5.8 𝑃𝑟 = 6.7、𝐿𝑒 = 100 下 T5 的邊際穩定圖，將邊際穩定圖中各角度 DSM 轉 SSM (T5) 的

值畫出， ● 為各角度轉換點，運用關係式可求得近似值 

 

𝑅𝑡𝑐 = {

−10−7𝑅𝑠𝑐
4 + 0.0004𝑅𝑠𝑐

3 − 0.592𝑅𝑠𝑐
2+404.59𝑅𝑠𝑐 − 77046,

𝜃 ≤ 50

2 ∙ 10−6𝑅𝑠𝑐
3 − 0.013𝑅𝑠𝑐

2 + 19.255𝑅𝑠𝑐 + 20832,
50 ≤ 𝜃 ≤ 65.8

 (5.3)  

 

圖 5.9 𝑃𝑟 = 6.7、𝐿𝑒 = 100 下 T5 與  𝜃  的關係圖， ● 為 𝑅𝑡𝑐 與  𝜃 的關係圖，● 為 𝑅𝑠𝑐  與  𝜃 

的關係圖 

𝑅𝑠𝑐 = 0.023𝜃
3 − 1.35𝜃2 + 24.45𝜃 + 434.91 (5.4)  
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(5.3)式與(5.4)式為 DSM 轉 SSM (T5) 的漸進線，如同上面所述。由於我們在

圖 5.1 可知 65.8 之後角度是 DBM 轉 SSM (T3) ，為了更好的擬和曲線，如前

述將用兩條方程式來表示，比較圖能發現，相較於 T2 或 T4 兩種模態圖，與先前

不同的圖形樣式，因此這裡是 50° 作為兩式的邊界，將角度帶入(5.4)式求得 𝑅𝑠𝑐，

再將臨界濃度瑞利數帶入(5.3)式，即可獲得 𝑅𝑡𝑐 。 

 

進入鹽指剪力模式 𝜎𝑖 值已等於零，隨著濃度的瑞利數 𝑅𝑠 的持續增加，原本

支配系統的振盪狀態漸趨消失。取而代之的是溫度梯度和濃度梯度間的相互競爭

關係。當 𝑅𝑠 達到一定水平時，這種競爭變得勢均力敵，對流胞結構及實驗觀測中

就會呈現出典型的 salt fingers 現象。然而，在 𝑅𝑠 處於一個特定區間時，數值模

擬結果顯示臨界波數相當小，這意味著對流胞的厚度極為龐大。當對流胞尺度如此

之大時，一般實驗室的設備和儀器幾乎無法捕捉到這類對流結構的生成和發展。這

可以解釋為什麼在大多數實驗論文中，所觀測到的現象與數值模擬結果對應的區

間，多半都落在鹽指剪力模式(SSM)的參數範圍之後。也就是，實驗數據更有可能

對應於下一個將要討論的穩定模式(SBM)。 
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(iv) 穩定邊界最低點 

圖 5.10 與圖 5.11 是將邊際穩定圖中，各角度的最低臨界點來擬和出漸進線，

如圖所呈現，當濃度瑞利數超越最低點時，角度越大整體系統越來越穩定，(5.5)式

可得知最低點是條漂亮的斜直線，這是前人從未發現的關係，有助於準確快速的求

得最低臨界點，對於系統來說此關係式極為重要；而圖中也能發現濃度瑞利數相較

於溫度瑞利數是越來越大的，而當濃度越大，下板密度越高，系統越穩定。 

 

 

圖 5.10 𝑃𝑟 = 6.7、𝐿𝑒 = 100 下 最低點的邊際穩定圖， ● 為各角度的最低點，由圖中可知，當

角度越大(正角度)系統會越來越穩定，運用關係式可求得近似值 

 

𝑅𝑡𝑐 = 0.03068𝑅𝑠𝑐 + 1.879 (5.5)  
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圖 5.11 𝑃𝑟 = 6.7、𝐿𝑒 = 100 下 最低點的邊際穩定圖， ● 為各角度的最低點              

(𝜃 = 0°、10°、20°、30°、40°、50°、60°、65.8°、70°、80°) 

 

𝑅𝑠𝑐 = 0.012𝜃
4 − 1.53𝜃3 + 59.62𝜃2 − 687.82𝜃 + 1698.7 (5.6)  
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5.2.4 中性曲線圖(Neutral Curve) 

本小節將探討中性曲線圖，而本論文將討論兩個問題，其因在圖 5.1 中發現在

特定角度下(𝜃 = 65.8°)其穩定邊界圖有跳動情況發生，本論文首先先固定 𝑅𝑠 = 10

 以找尋跳動點是哪一個角度發生，而後探討探討在 𝜃 = 65.8° 跳動消失點；本論

文在中性曲線圖的探討當中，是以 𝜎r 作為依據，當 𝜎r → 0 時，就為穩定邊界圖

上的邊界線對應特定一組的臨界值，而將這些不同的臨界值所形成的最低點集合

連線，便是中性曲線圖(Neutral curve)。以下將討論兩種情形： 

(i) 𝑷𝒓 = 𝟔. 𝟕、𝑳𝒆 = 𝟏𝟎𝟎、𝑹𝒔 = 𝟏𝟎 

 
圖 5.12 𝑃𝑟 = 6.7、𝐿𝑒 = 100、𝑅𝑠 = 10 下的中性曲線                                       

((𝑎)𝜃 = 65°、(𝑏)𝜃 = 66°、(𝑐)𝜃 = 68°、(𝑑)𝜃 = 72°、(𝑒)𝜃 = 75°、(𝑓)𝜃 = 80°、(𝑔)𝜃 = 89.9°) 

 

圖 5.12 是將濃度梯度固定在 𝑅𝑠 = 10 也就是小濃度梯度的情況下，而大濃

度梯度與最低點相似都是越來越穩定，因此本論文鎖定在小濃度梯度；其中在 𝜃

= 65.7° 時在中性曲線圖下方產生新的胞，再將槽體繼續傾斜，當角度繼續增加到

 𝜃 = 68° 時，原先下方的胞與主線相連，右方則產生另一個新的胞，當角度繼續
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增加到 𝜃 = 75° 時右方曲線與主線連起來，而本論文在數學模型假設下，無法將

角度設定為 𝜃 = 90° ，因此若要探討水平槽體的問題，本論文將角度增加到 𝜃 =

89.9°，因為正角度為下方加熱，因此與典型 Rayleigh-Benard 結果相似，下方有詳

細數值能比對，也畫出角度與臨界波數與 𝑅𝑡 關係圖。

圖 5.13 𝑃𝑟 = 6.7、𝐿𝑒 = 100、𝑅𝑠 = 10 下的臨界波數 𝑘𝑐 與 𝜃 的關係圖

圖 5.14 𝑃𝑟 = 6.7、𝐿𝑒 = 100、𝑅𝑠 = 10 下 𝑅𝑡𝑐 與 𝜃 關係圖
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而圖 5.13 與圖 5.14 是將前面中性曲線圖的臨界點連成線，當 𝜃=65.7∘ ∼ 

65.8∘ 時，中性曲線圖會長出新的胞，導致最低點跳動的發生，而在 Y. M. Chen et 

al. [6] 論文中是假設 𝑅𝑠 = 0 時，而論文中也發現 𝜃=65.7∘ ∼ 65.8∘ 會有新的胞出

現，由於本區間是 TBM 所以主要是熱對流主導不穩定因素，也因如此本研究能與

Y. M. Chen et al. [6] 比較；而 𝜃=65.7∘ ∼ 65.8∘ 其 𝑘𝑐 從 3.12 跳至2.937， 𝑅𝑡𝑐 從 

23205 跳至 3797，由此可知，𝜃=65.8∘ 是一個關鍵角度，會使得系統更加快速變

得不穩定；當 𝜃=89.9∘ 時， 𝑘𝑐 ≈ 3.1164、𝑅𝑡𝑐 ≈ 1707.8，與典型 Rayleigh-Benard

來做比較 𝑘𝑐 ≈ 3.117、𝑅𝑡𝑐 ≈ 1707.762 ，由此更加確信本論文數學模型以及數值

分析的準確性。 
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(ii) 𝑷𝒓 = 𝟔. 𝟕、𝑳𝒆 = 𝟏𝟎𝟎、𝜽 = 𝟔𝟓. 𝟖° 

 

圖 5.15 𝑃𝑟 = 6.7、𝐿𝑒 = 100、𝜃 = 65.8° 下的中性曲線                                    

發現當 𝑅𝑠 = 33.9 時 最低點發生跳動，原先的胞也消失                                                                               

((𝑎)𝑅𝑠 = 10、(𝑏)𝑅𝑠 = 20、(𝑐)𝑅𝑠 = 33.8、(𝑑)𝑅𝑠 = 33.9、(𝑒)𝑅𝑠 = 50) 

 

最後本論文將探討 𝜃 = 65.8° 這一個不穩定角度，雖然 Y. M. Chen et al. [6]

與本論文都有找出中性曲線跳動點的角度，但卻沒有找出有沒有消失的可能，因此

本小節固定 𝜃 = 65.8° ，探討臨界 𝑅𝑠 變化下，中性曲線圖的改變，而本論文在

𝑅𝑠 = 33.9 時發現下面的胞消失，而 𝑘 從原先 2.94 跳到 3.12，則 𝑅𝑡 從 3980.8 跳

到 23482.2，因此圖 5.1 穩定邊界圖上，𝜃 = 65.8° 這條線有明顯跳動點。 

而本論也發現，不管是固定角度或是固定濃度梯度(小濃度梯度)，每當跳動發

生也就是中性曲線出現胞或是消失胞，波數值變化 𝑘𝑐 ≅2.94、3.12 來做變化。 
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第6章  結論與未來展望 

本論文是傾斜槽的理論分析，根據面臨的問題，結合數學以及物理觀念，搭配

合理的邊界條件以及假設，改變無因次參數進入數值運算，可以了解預測機制在問

題何時發生、哪裡發生，並且與實驗比較能得出為什麼發生。  

本論文建立於 Chen et al. [2, 4]、Y. M. Chen et al. [6]、S. Kerr et al. [15, 16]、Wu 

and Chen [22]等論文，將從前錯誤更正，並且進行一系列比較，納入五種模態：溫

度浮力(TBM)、擴散浮力(DBM)、擴散剪力(DSM)、鹽指剪力(SSM)以及鹽指浮力

模式(SBM)進行更多元之探討以及研究，而本論文理論模型為傾斜槽中存在一垂直

濃度梯度之液體，將其進行側向加熱，假設當 𝜃 = 0° 為典型垂直槽系統，其中左

壁為高溫、右壁為低溫，當角度 𝜃 > 0° 時為逆時針旋轉也就是下板為加熱壁，反

之 𝜃 < 0° 為順時針旋轉是上板為加熱壁，其對應真實物理條件即接近於冰山附近

的溫鹽環流所造成的雙擴散對流，本論文討論不同傾角下臨界穩定，意即雙擴散對

流造成對流胞生長發生之臨界條件。 

其中上述所定義的五種模式，也是先利用特徵值求得特徵函數的方法，得到對

流胞生長情形。然而特徵值有分實部、虛部，靜態區域(stationary regime)對應實部

和虛部均為零的情況，代表系統以靜態對流胞成長。振盪區域(oscillatory regime)

則對應實部為零但虛部不為零，這些對流胞呈現振盪運動。而我們在本論文中使用

數值解去繪製雙擴散的穩定邊界圖，探討角度變化下臨界點與最低點的變化。 

本論文發現當穩定邊界圖過了最低點後，會隨著角度越大越來越穩定，也就是

論文中所探討的大濃度梯度區間，而此區間在以往實驗中 Chen et al.[2]也證明，

當角度越大越穩定，本論文求得最低點臨界值與角度的漸進線關係式，另外在 T2

～T4 模態轉換點，也求得出漸進關係式，由於本論文發現小濃度梯度與大濃度梯

度呈現相反現象，論文最後探討小濃度梯度與角度變化造成的影響，而本研究找到

關鍵角度 𝜃 = 65.8° ，當角度增加到 65.8° 系統會變得更加不穩定，溫度瑞利數

將會下降 7 倍，其中性曲線圖會在主線下生長出新的胞，導致波數也產生跳動，而
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本論文也探討當角度為 65.8° 時，跳動點會在 𝑅𝑠 = 33.9 時消失，因此當小濃度

梯度時，若角度到達此角時會造成系統很不穩定，當超過 𝑅𝑠 = 33.9 時系統會恢

復正常且溫度瑞利數會上升 7 倍。 

本論文目前將正傾角的理論推導、數值分析完整呈現，不過尚未運用實驗來證

實小濃度梯度的變化情形，因受制於實驗上目前難以建立此條件的限制，要如何做

出相關實驗條件的實驗設置，還有待努力。另外，未來希望可以在探討傾斜槽與角

關係下，縱向模式的穩定性分析，由於目前主要是探討橫向模式，在 Y. M. Chen 

et al. 論文中有探討縱向模式穩定性比橫向模式更低，雖然只有溫度梯度條件沒有

濃度梯度條件，不過尚未有人做過，會是新的發現。最後本研究目標是模擬冰山附

近的溫鹽環流所造成的雙擴散對流，以往研究是垂直座標系統下的研究，雖然本實

驗將系統改為傾角更符合自然情況，但圓柱座標更加接近真實情形，因次未來有機

會將會改成傾斜圓柱來探討。 
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