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摘要

由於深度學習的成功，愈來愈多基於強大深度模型的語音處理應用影響了我

們的生活。然而，這些強大的模型總是針對特定任務而特化，而難以泛化用在其

他的任務。因此，對於每個任務，我們都必須分別收集、設計、訓練以及調整所

有的資料及模型架構。如果有一種通用模型能夠同時學習並進行多種不同的語音

處理任務，那有些任務也許可以透過其他任務習得的技能而更加進步，而且透過

不同任務得來的資料也可以被加以利用。但是，這種通用模型需要能從語音訊號

中汲取不同種資訊（內容或語者），也能處理不同輸入或輸出模態（語音或文字）

的多種任務。因此本論文中，我們針對這兩種問題提出方法。我們藉由對抗式訓

練，解離並汲取語音訊號中不同種資訊。我們也提出方法能夠利用多任務訓練使

單一模型處理多種任務。
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Abstract

Owing to the success of deep learning, more and more applications built on powerful

deep models for speech processing tasks have influenced our lives. However, these pow-

erful models are always task-specific and have limited capability to generalize to other

tasks. Therefore, all the data and model architectures are collected, designed, trained, and

tuned separately for each task. If a universal model can simultaneously learn and perform

multiple speech processing tasks, some tasks might be improved with the related abilities

learned from other tasks, and more data from various tasks might be leveraged. However,

such universal model requires capabilities to extract different kinds of information from

speech signals (content or speaker) and handle various tasks with different input and output

modalities (speech or text). Hence, in this thesis, we propose approaches to address these

two problems. We disentangle and extract different kinds of information from speech sig-

nals with adversarial training. Then we propose approaches to handle various tasks using

one single model with multi-task learning.
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Chapter 1 Introduction

Deep neural networks (DNNs) have achieved huge success in many speech processing

tasks ranging from extracting content (e.g., automatic speech recognition (ASR)) or speaker

(e.g., automatic speaker verification (ASV)) information from speech signals to generating

speech signals (e.g., text-to-speech (TTS) synthesis). Some tasks both require information

extracted from speech signals and generate speech signals, such as voice conversion (VC).

For different tasks, model networks are usually designed and tuned separately. Although

these task-specificmodels may performwell on the corresponding tasks, they cannot utilize

data from or generalize to other tasks. If a universal model can simultaneously learn and

perform multiple speech processing tasks, some tasks might be improved with the related

abilities learned from other tasks, and more data from various tasks might be leveraged.

However, to make a universal speech processing model possible, we need to make

the model able to extract different kinds of information from speech signals (content or

speaker), and handle various tasks with different input and output modalities (speech or

text). To do so, we further divide the problem into two sub-problems, and propose ap-

proaches to address them respectively:

• To extract content or speaker information according to tasks, we encode and dis-

entangle input speech signals into two parts: content representations and speaker

representations.

• To handle different speech processing tasks, we train our model with multi-task

learning (MTL) optimization.

1
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1.1 Disentangled Representation Learning of Speech

Audio Word2Vec [1] has been proposed for speech representation learning, in which spo-

ken words (signal segments for words without knowing the underlying word it represents)

are transformed into vector representations of fixed dimensionality. These vector represen-

tations carry the phonetic structures of the spoken words learned from the signals within

the spoken words, and have been shown to be useful in spoken term detection, in which

the spoken terms are detected simply based on the phonetic structures.

However, speech representations learned by AudioWord2vec carry not only phonetic

information but also speaker information. We have to extract one kind of information and

exclude the other from speech signals in speech processing tasks because they may disturb

each other. For example:

• The word “good” spoken by a person should be considered close to the word “good”

spoken by another person with a very different voice in the task of ASR, while the

word “good” spoken by a person should not be considered close to the word “bad”

spoken by the same person.

• The word “good” spoken by a person should be considered close to the word “bad”

spoken by the same person in the task of ASV, while the word “good” spoken by a

person should not be considered close to the word “good” spoken by another person

with a very different voice.

In Chapter 3, we study the disentangled representation learning using adversarial

training. More specifically, in Section 3.1, we explore a two-stage framework to perform

phonetic-and-semantic embedding on spoken words considering the context of the spoken

2
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words, with the initial experiments on spoken document retrieval. In Section 3.2, we ex-

plore a pretraining framework AIPNet based on adversarial training for accent-invariant

representation learning and further finetune this model by connecting the accent-invariant

module with an attention-based encoder-decoder model for multi-accent speech recogni-

tion. In Section 3.3, we extend the disentangled speech representations learning from the

word level to the utterance level by proposing a new segmental audio word2vec in which

unsupervised spoken word boundary segmentation and disentangled representation learn-

ing are jointly learned and mutually enhanced.

1.2 Multi-task Learning and Universal Modeling of Speech

Processing Tasks

Traditionally, a separate neural network is trained for each task. However, although the

task-specific models may perform well on the corresponding tasks, they cannot utilize data

from or generalize to other tasks. MTL aims to improve such generalization by training

a shared model on various tasks and leveraging domain-specific information contained

in the training signals of related tasks. In MTL, a network capable of learning shared

representations from various tasks brings several advantages:

• Some layers can be shared by several tasks, so the total memory cost is reduced.

• The performance of related tasks could be improved if they share complementary

information or act as regularizers for one another.

In the areas of computer vision (CV) and NLP, general models trained byMTL approaches

can be evaluated on benchmarks that include various tasks. However, in speech, there has

3
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been little systematic study of MTL for various speech processing tasks.

In Chapter 4, we study multi-task learning and universal modeling of speech pro-

cessing tasks. More specifically, in Section 4.1, we use a state-of-the-art SSL pretrained

shared model and further finetune it with MTL on various discriminative speech process-

ing tasks, and then evaluate the model on a speech multi-task benchmark. In Section 4.2,

we design a universal modularized model for not only discriminative but also generative

speech processing tasks. In Section 4.3, we propose an ASR model explored with an ef-

ficient gradient-based architecture search on multilingual tasks, where we use a unified

model for extracting representations for data of different languages.

1.3 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we introduce the related work

of this thesis. In Chapter 3, we study the disentangled representation learning using ad-

versarial training. In Chapter 4, we study multi-task learning and universal modeling of

speech processing tasks, followed by the conclusion remarks in Chapter 5.
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Chapter 2 Related Work

We introduce the related work of this thesis in this chapter.

2.1 Audio Word Embedding

Word embedding or Word2Vec [2, 3, 4, 5] has been widely used in the area of natural lan-

guage processing [6, 7, 8, 9, 10, 11, 12], in which text words are transformed into vector

representations of fixed dimensionality [13, 14, 15]. This is because these vector repre-

sentations carry plenty of semantic information learned from the context of the considered

words in the text training corpus. Similarly, audioWord2Vec has also been proposed in the

area of speech signal processing, in which spoken words (signal segments for words with-

out knowing the underlying word it represents) are transformed into vector representations

of fixed dimensionality [16, 17, 1, 18, 19, 20, 21, 22, 23, 24, 25]. These vector representa-

tions carry the phonetic structures of the spoken words learned from the signals within the

spoken words, and have been shown to be useful in spoken term detection, in which the

spoken terms are detected simply based on the phonetic structures. Such AudioWord2Vec

representations do not carry semantics, because they are learned from individual spoken

words only without considering the context.

AudioWord2Vecwas recently extended to Segmental AudioWord2Vec [26], inwhich

an utterance can be automatically segmented into a sequence of spoken words [27, 28,

29, 30] and then transformed into a sequence of vectors of fixed dimensionality by Audio

Word2Vec, and the spoken word segmentation and AudioWord2Vec can be jointly trained

from an audio corpus. In this way the Audio Word2Vec was upgraded from word-level to
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utterance-level. This offers the opportunity for Audio Word2Vec to include semantic in-

formation in addition to phonetic structures, since the context among spoken words in

utterances bring semantic information.

2.2 Audio Segment Embedding

Audio word embedding requires segmented spoken words as input data. However, word

level segmentation is another challenging problem. Another line of research on audio

representation learning is audio segment embedding, where the audio segment boundaries

do not need to match the word boundaries.

Audio segment representation is still an open problem. It is common to use i-vectors

to represent utterances in speaker identification [31]. However, i-vectors are not designed to

precisely describe the sequential phonetic structure of audio segments. In previous work,

embedding approaches were developed primarily in heuristic ways, rather than learned

from data. Graph-based embedding approaches are also used to represent audio segments

as fixed-length vectors [20, 32]. Retrieval task efficiency is improved by searching audio

content using fixed-length vectors instead of using the original acoustic features [20, 32].

Recently, deep learning has been used to encode acoustic information as vectors [19,

33, 18, 16, 22, 34, 24, 35, 36]. This transformation successfully produces vector spaces

in which audio segments with similar phonetic structures are located in close proximity.

By training a recurrent neural network (RNN) with an audio segment as the input and

the corresponding word as the target, the outputs of the hidden layer at the last few time

steps can be taken as the representation of the input segment [33, 17]. However, this

approach is supervised and therefore necessitates a large amount of labeled training data.
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In [18], the authors train a neural network with side information to obtain embeddings that

separate same-word and different-word pairs. Since human annotated data is still required,

the scenario is weakly supervised. For non-speech audio, some approaches obtain labeled

paired data based on the nature of signals [37], but the approaches have not yet been applied

to speech.

In unsupervised pattern discovery, segmentation followed by clustering is typical [38,

39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49] Probabilistic Bayesian models are developed to

construct a model which learns segmentation and representation (or clustering) jointly [50,

30, 51]. Although Bayesian models yield successful results, they do not scale well to large

speech corpora; as such the embedded segmental K-means model has been proposed as an

approximation of the Bayesian model [29] – this however does not take advantage of deep

learning. Another approach to learn segmentation is using an autoencoder with a sample-

based algorithm [52]. First an LSTM is used to model a proposal distribution over se-

quences of segment boundaries for each utterance. Thenm sequences of boundaries from

the distribution are sampled to split the utterance into words and the reconstruction loss for

each sequence is obtained with an autoencoder. The losses and the distribution are used

to compute an importance weight for each sample and breakpoint. A breakpoint is more

likely if it appeared in samples with low reconstruction loss. In comparison, Segmental

Sequence-to-sequence Autoencoder [26] is a “whole network model” using reinforcement

learning, which scales well and can be trained in an end-to-end fashion.
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2.3 Modern Self-supervised Representation Learning of

Speech and SUPERB Benchmark

Many recently proposed self-supervised learning (SSL) approaches allow us to embed

speech signals into representations where the underlying structures in speech signals are

leveraging and can be generally useful for downstream tasks.

Modern SSL approaches can be categorized into three types [53]: generative ap-

proaches, discriminative approaches, and multi-objective approaches.

• Generative approaches: APC [54], VQ-APC [55], Mockingjay [56], TERA [57],

NPC [58], DeCoAR 2.0 [59] use language modeling pretraining approaches on a

sequence of acoustic features, generating future or masked frames conditioned on

past or unmasked frames.

• Disriminative approaches: CPC [60, 61], wav2vec [62], vq-wav2vec [63], andwav2vec

2.0 [64] adopt contrastive learning to discriminate the correlated positive samples

from negative samples with contrastive InfoNCE loss, which maximizes the mutual

information between raw data and representations. Instead of using contrastive loss,

HuBERT [65] uses a more direct predictive loss by predicting masked tokens via

off-line clustering on representations.

• Multi-objective approaches: PASE [66] and PASE+ [67] combine several pretrain-

ing objectives together, such as waveform generation, prosody features regression,

contrastive InfoMax objectives, and so on. Multiple perturbations are also applied

to input speech like reverberation and additive noise.
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To fairly evaluate the generalizability of SSL approaches without further heavy down-

stream task-specific finetuning, the SUPERB benchmark [53] is proposed. The SUPERB

benchmark measures the performance of a shared model across a wide range of speech

processing tasks without heavy finetuning. Ten tasks are included to investigate four as-

pects of speech: content, speaker, semantics, and paralinguistics. To evaluate a general

model trained with SSL, the pretrained model parameters are frozen, and the fixed repre-

sentations are extracted and fed into each task-specific prediction head (small downstream

model) for training. During the evaluation, the pretrained shared model and trained pre-

diction heads are used on all tasks. In the above scenario, some self-supervised models

show outstanding performances on all the ten tasks in SUPERB.

2.4 Adversarial Training

Speech representation learning always embed many kinds of information together in rep-

resentations, such as phonetic structures or speaker characteristics. One of our goal in this

thesis is to disentangle different features in speech signals. If we can properly define the

“domain” of inputs, adversarial training allows us to disentangle domain-invariant features

from raw inputs.

Gradient reversal training [68] was initially proposed to learn domain-invariant fea-

tures, which is separated from domain-related features. To be more specific, a gradient re-

versal layer is placed between the feature extractor and the domain classifier, which leaves

the input unchanged during forward propagation and reverses the gradient by multiplying it

by a negative scalar during the backpropagation. In this way, the feature distributions over

two domains are made similar (as indistinguishable as possible for the domain classifier),

9



doi:10.6342/NTU202302463

thus resulting in the domain-invariant features.

In Generative adversarial nets (GAN) [69], a generative module is used to generate

domain-invariant features from inputs, and a discriminative module is used to discriminate

whether the generated features belong to a specific domain. The generative and discrimi-

native modules are iteratively updated: in each iteration, the discriminator is trained to be

more discriminative about the domain, while the generator is trained to “fool” the discrim-

inator such that the discriminator cannot discriminate the domain of generated features.

Therefore, after the iterative training, the generator is able to generate domain-invariant

features.

In our case, we can define the “speaker identities” as “domains”. In this way, the

speaker-invariant phonetic information can be separated from the speaker characteristics.

For a realistic example, adversarial training can also be used in accented speech recogni-

tion, which is described in more details in Section 2.5.

2.5 Accented Speech Recognition

Accents are defined as variations in pronunciation within a language and are often pecu-

liar to geographical regions, individuals, social groups, etc. As one of the major sources in

speech variability, accents have posed a grand technical challenge to the robustness of ASR

systems. Due to the acoustic discrepancy among accents, an ASR system that is trained

on the speech data of one accent (e.g., native) often fails to recognize speech of another

unseen accent (e.g., non-native). In this thesis, we focus on learning accent-invariant rep-

resentations through adversarial training, aiming to build a universal ASR system that is

generalizable across accents.
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There is an extensive literature on multi-accent modeling for speech recognition [70]

[71]. The existing approaches can be categorized into two classes in general: accent-

independent and accent-dependent. Accent-independent modeling focuses on building a

universal model that generalizes well across accents. One popular baseline is to train a

model on all the data of different accents [72] [73] [74]. Elfeky et al. have attempted

to build a unified multi-accent recognizer from a pre-defined unified set of CD states by

learning from the ensemble of accent-specific models [72]. Yang et al. have proposed to

jointly model ASR acoustic model and accent identification classifier through multi-task

learning [75]. Accent-dependent approaches either take accent-related information, such

as accent embedding or i-vectors, as an complementary input in the modeling or adapt a

unified model on accent-specific data [76] [77] [78] [79] [80]. Accent-dependent mod-

els usually outperform the unified ones with known accent labels or on an accent-specific

dataset, while accent-independent models demonstrate better generalizability on average

when accent labels are unavailable during testing.

Generative adversarial nets (GAN) [69] or gradient reverse technique [68] has gained

popularity in learning a representation that is invariant to domains or conditions [81] [82]

[83] [84]. Serdyuk et al. have applied adversarial training to generate noise-invariant rep-

resentations for speech recognition [82]. Gradient reversal training has recently been used

for learning domain-invariant features to alleviate the mismatch between accents during

training [83]. Bousmalis et al. have proposed to a GAN-based pixel-level transformation

from one domain to the other and have shown great improvement over state-of-the-art on

a number of domain adaptation tasks [84].
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2.6 Multi-task Learning of Speech Processing Tasks

The goal of multi-task learning (MTL) is to leverage useful information contained in mul-

tiple related tasks to help improve the generalization performance of all the tasks.

It has been shown that a single deep learning model can jointly learn a number of

large-scale tasks from multiple domains [85]. [86] proposes a model to solve ten tasks in

natural language processing (NLP). The core idea of the T5 model [87], a unified frame-

work for a variety of text-based language problems, is to treat every text processing problem

as a ”text-to-text” problem, i.e., taking text as input and producing new text as output.

In the speech domain, some previous works train a model to solve two tasks or use

an auxiliary task to improve the primary task’s performance. [88] studies SE and ASR.

[89, 90] study the duality of ASR and TTS. Some papers [91, 92] use SC to improve ASR.

[93] studies ASR and SC. [94, 95] shows the effectiveness of SC to help TTS. [96] shows

the performance of VC can be improved with text supervision. [97] connects SC and VC.

[98] jointly trains TTS and VC. [99] uses TTS and SC to improve VC.

However, in these works, models are designed for some specific speech processing

tasks and not applicable for more speech processing tasks. Moreover, the rapid rate of

progress and diversity of techniques also make it difficult to compare different algorithms,

tease apart the effects of new contributions, and understand the effectiveness of learning

multiple speech processing tasks with one model.

Multilingual speech recognition can be treated as a multi-task learning scenario as

well, where the recognition of each language is regarded as one task. Many languages

have little data available. However, different languages may share some common knowl-

edge such as phonetic or semantics patterns. It has recently been shown that multilingual
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ASR [79, 100, 101, 102, 103, 104, 105, 106, 94] can improve ASR performance on many

low-resource languages. In the above previous works, the initial parameters or shared en-

coder learned from many source languages are used to build a better acoustic model for

the target language.

2.7 Architecture Search of Deep Neural Networks

A lot of empirical evidence has shown that network architecture matters significantly in

fields like image classification (from AlexNet [107] to ResNet [108]) or natural language

processing (NLP) (Transformer [109]). Despite the success of these DNNs, the architec-

ture is still hard to design. The popular architectures were usually invented and tuned by

experts through a long process of trial and error.

For example, convolutional neural networks (CNN) [107] have been proved to be

more effective in image recognition tasks than DNNs with fully-connected layers. CNNs

were inspired by biological processes where the connectivity pattern between neurons re-

sembles the organization of the animal visual cortex [110]. However, the birth of such

successful model architecture always relies on human wisdom and a flash of insight. Be-

sides, many hyperparameters in CNNs still have to be carefully tuned, such as channel

numbers, kernel sizes, strides, padding, pooling and activation functions for each layer.

Therefore, it is highly appealing to have an effective algorithm to discover and design ar-

chitectures of DNNs automatically.

Many researchers have focused on automatic neural architecture search (NAS) algo-

rithms, aiming to optimize not only parameter weights of a fixed-topology neural network

architecture, but also the design of architecture itself. Some approaches [111, 112] use
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reinforcement learning (RL) to search for building blocks used in CNN. Some other ap-

proaches [113] use evolutionary algorithms to find building blocks through mutation and

tournament selection. Some recent works also incorporate NAS into their approaches to

speech recognition [114] or keyword spotting [115, 116]. Although these approaches have

achieved convincing results on many benchmark datasets, a huge amount of computational

resources are needed to perform exploration in a search space.

Differentiable ARchiTecture Search (DARTS) [117] uses a gradient-based method

for efficient architecture search. Instead of searching over discrete architecture candi-

dates, with a continuous relaxation of architecture representation, the architecture can be

jointly optimized with parameter weights directly by gradient descent. On many bench-

mark datasets of image classification, more recent approaches [118, 119, 120] based on

DARTS have discovered model architectures that achieved state-of-the-art results with

similar parameter size to other models.
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Chapter 3 Disentangled Representation

Learning of Speech Signals

In this chapter, we propose approaches based on adversarial training to disentangle pho-

netic and speaker information from speech [81, 121, 92].

3.1 Phonetic-and-Semantic Embedding of Spoken Words

with Applications in Spoken Content Retrieval

AudioWord2vec [1] encode both phonetic structures and speaker characteristics of spoken

words but not semantics since they are learned from individual spoken words only without

considering the context. In this section, we propose an adversarial training approach to

disentangle phonetic structures and speaker characteristics from spoken words. Then we

further apply language modeling as in Word2vec [2] on the phonetic representations of

spoken words to encode semantics information.

In principle, the semantics and phonetic structures in words inevitably disturb each

other. For example, the words “brother” and “sister” are close in semantics but very dif-

ferent in phonetic structure, while the words “brother” and “bother” are close in phonetic

structure but very different in semantics. This implies the goal of embedding both phonetic

structures and semantics for spoken words is naturally very challenging. Text words can be

trained and embedded as vectors carrying plenty of semantics because the phonetic struc-

tures are not considered at all. On the other hand, because spoken words are just a different

version of representations for text words, it is also natural to believe they do carry some se-
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mantic information, except disturbed by phonetic structures plus some other acoustic fac-

tors such as speaker characteristics and background noise [122, 123, 124, 125, 126, 127].

So the goal of embedding spoken words to carry both phonetic structures and semantics

is possible, although definitely hard.

But a nice feature of such embeddings is that they may include both phonetic struc-

tures and semantics [128, 37]. A direct application for such phonetic-and-semantic em-

bedding of spoken words is spoken document retrieval [129, 130, 131, 132, 133]. This

task is slightly different from spoken term detection, in the latter case spoken terms are

simply detected based on the phonetic structures. Here the goal of the task is to retrieve

all spoken documents (sets of consecutive utterances) relevant to the spoken query, which

may or may not include the query. For example, for the spoken query of “President Donald

Trump”, not only those documents including the spoken query should be retrieved based on

the phonetic structures, but those documents including semantically related words such as

“White House” and “trade policy”, but not necessarily “President Donald Trump”, should

also be retrieved. This is usually referred to as “semantic retrieval”, which can be achieved

by the phonetic-and-semantic embedding discussed here.

This section proposes a two-stage framework of phonetic-and-semantic embedding

for spoken words. Stage 1 performs phonetic embedding but with speaker characteristics

disentangled using separate phonetic and speaker encoders and a speaker discriminator.

Stage 2 then performs semantic embedding in addition. We further propose to evaluate the

phonetic-and-semantic nature of the audio embeddings obtained in Stage 2 by parallelizing

with text embeddings [134, 135]. Encouraging results including those for an application

task of spoken document retrieval were obtained in the initial experiments
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Figure 3.1: Phonetic embedding with speaker characteristics disentangled.

3.1.1 Proposed Approach

The proposed framework of phonetic-and-semantic embedding of spoken words consists

of two stages:

Stage 1 - Phonetic embedding with speaker characteristics disentangled.

Stage 2 - Semantic embedding over phonetic embeddings obtained in Stage 1.

In addition, we propose an approach for parallelizing the audio and text embeddings

to be used for evaluating the phonetic and semantic information carried by the audio em-

beddings. These are described in the following subsections respectively.

Stage 1 - Phonetic Embedding with Speaker Characteristics Disentangled

A text word with a given phonetic structure corresponds to infinite number of audio signals

with varying acoustic factors such as speaker characteristics, microphone characteristics,

background noise, etc. All the latter acoustic factors are jointly referred to as speaker char-
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acteristics here for simplicity, which obviously disturbs the goal of phonetic-and-semantic

embedding. So Stage 1 is to obtain phonetic embeddings only with speaker characteristics

disentangled.

Also, because the training of phonetic-and-semantic embedding is challenging, in

the initial effort we slightly simplify the task by assuming all training utterances have been

properly segmented into spoken words. Because there exist many approaches for segment-

ing utterances automatically [26], and automatic segmentation plus phonetic embedding of

spoken words has been successfully trained and reported before [26], such an assumption

is reasonable here.

We denote the audio corpus as X = {xi}Mi=1, which consists of M spoken words,

each represented as xi = (xi1 ,xi2 , ...,xiT ), where xit is the acoustic feature vector for the

tth frame and T is the total number of frames in the spoken word. The goal of Stage 1 is

to disentangle the phonetic structure and speaker characteristics in acoustic features, and

extract a vector representation for the phonetic structure only.

Autoencoder As shown in the middle of Figure 3.1, a sequence of acoustic features xi =

(xi1 ,xi2 , ...,xiT ) is entered to a phonetic encoder Ep and a speaker encoder Es to obtain

a phonetic vector vp in orange and a speaker vector vs in green. Then the phonetic and

speaker vectors vp, vs are used by the decoderDec to reconstruct the acoustic features x′.

This phonetic vector vp will be used in the next stage as the phonetic embedding. The two

encodersEp, Es and the decoderDec are jointly learned by minimizing the reconstruction

loss below:

Lr =
∑
i

∥xi −Dec(Ep(xi), Es(xi))∥22. (3.1)
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It will be clear below how to makeEp andEs separately encode the phonetic structure and

speaker characteristics.

Training Criteria for Speaker Encoder The speaker encoder training requires speaker

information for the spoken words. Assume the spoken word xi is uttered by speaker si.

When the speaker information is not available, we can simply assume that the spokenwords

in the same utterance are produced by the same speaker. As shown in the lower part of

Figure 3.1, Es is learned to minimize the following loss:

Ls =
∑
si=sj

∥vsi − vsj∥22

+
∑
si ̸=sj

max(λ− ∥vsi − vsj∥22, 0).
(3.2)

In other words, if xi and xj are uttered by the same speaker (si = sj), we want their speaker

embeddings vsi and vsj to be as close as possible. But if si ̸= sj , we want the distance

between vsi and vsj larger than a threshold λ.

Training Criteria for Phonetic Encoder As shown in the upper right corner of Figure

3.1, a speaker discriminator Ds takes two phonetic vectors vpi and vpj as input and tries

to tell if the two vectors come from the same speaker. The learning target of the phonetic

encoder Ep is to ”fool” this speaker discriminator Ds, keeping it from discriminating the

speaker identity correctly. In this way, only the phonetic structure information is learned

in the phonetic vector vp, while only the speaker characteristics is encoded in the speaker

vector vs. The speaker discriminatorDs learns to maximizeLd in (3.3), while the phonetic

encoder Ep learns to minimize Ld,

Ld =
∑
si=sj

Ds(vpi,vpj)−
∑
si ̸=sj

Ds(vpi,vpj). (3.3)
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Figure 3.2: Semantic embedding over phonetic embeddings obtained in Stage 1.

where Ds(·, ·) is a real number.

Overall Optimization of Stage 1 The optimization procedure of Stage 1 consists of four

parts: (1) training Ep, Es and Dec by minimizing Lr, (2) training Es by minimizing Ls,

(3) training Ep by minimizing Ld, and (4) training Ds by maximizing Ld. Parts (1)(2)(3)

are jointly trained together, while iteratively trained with part (4) [136].

Stage 2 - Semantic Embedding over Phonetic Embeddings Obtained in Stage 1

As shown in Figure 3.2, similar to the Word2Vec skip-gram model [2], we use two en-

coders: semantic encoderEsem and context encoderEctx to embed the semantics over pho-

netic embeddings vp obtained in Stage 1. On the one hand, given a spoken word xi, we

feed its phonetic vector vpi obtained from Stage 1 into Esem as in the middle of Figure 3.2,

producing the semantic embedding (in yellow) of the spoken word vwi = Esem(vpi). On

the other hand, given the context window size c, which is a hyperparameter, if a spoken

word xj is in the context window of xi, then its phonetic vector vpj is a context vector
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of vpi. For each context vector vpj of vpi, we feed it into the context encoder Ectx in the

upper part of Figure 3.2, and the output is the context embedding vcj = Ectx(vpj).

Given a pair of phonetic vectors (vpi,vpj), the training criteria for Esem and Ectx

is to maximize the similarity between vwi and vcj if vpi and vpj are contextual, while

minimizing the similarity otherwise. The basic idea is parallel to that of text Word2Vec.

Two different spoken words having similar context should have similar semantics. Thus if

two different phonetic embeddings corresponding to two different spoken words have very

similar context, they should be close to each other after projected by the semantic encoder

Esem. The semantic and context encoders Esem and Ectx learn to minimize the semantic

loss Lsem as follows:

Lsem =
∑

(xi,xj) in context window

− log(sigmoid(vwi · vcj))

+
∑

(xi,xk) not in context window

− log(sigmoid(−vwi · vck)).

(3.4)

The sigmoid of dot product of vw and vc is used to evaluate the similarity. With (3.4),

if xi and xj are in the same context window, we want vwi and vcj to be as similar as

possible. We also use the negative sampling technique, in which only some pairs (xi,xk)

are randomly sampled as negative examples instead of enumerating all possible negative

pairs.

Parallelizing Audio and Text Embeddings for Evaluation Purposes

In this subsection we further propose an approach of parallelizing a set of audio embed-

dings (for spoken words) with a set of text embeddings (for text words) which will be useful

in evaluating the phonetic and semantic information carried by these embeddings.

Assumewe have the audio embeddings for a set of spokenwordsPW ={pw1, ...,pwi, ...,pwM},
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where pwi is the embedding obtained for a spoken word xi and M is the total number of

distinct spoken words in the audio corpus. On the other hand, assume we have the text

embeddings QW = {qw1, ...,qwj, ...,qwM}, where qwj is the embedding of the j-th text

word for the M distinct text words. Although the distributions of PW and QW in their

respective spaces are not parallel, that is, a specific dimension in the space for pw does

not necessarily correspond to a specific dimension in the space for qw, there should exist

some consistent relationship between the two distributions. For example, the relationships

among the words {France, Paris, Germany} learned from context should be consistent in

some way, regardless of whether they are in text or spoken form. So we try to learn a map-

ping relation between the two spaces. It will be clear below such a mapping relation can be

used to evaluate the phonetic and semantic information carried by the audio embeddings.

Mini-Batch Cycle Iterative Closest Point (MBC-ICP) [135] previously proposed as

described below is used here. Given two sets of embeddings as mentioned above, PW

and QW, they are first projected to their respective top K principal components by PCA.

Let the projected sets of vectors of PW and QW be A and B respectively. If PW can

be mapped to the space of QW by an affine transformation, the distributions of A and B

would be similar after PCA [135].

Then a pair of transformation matrices, Tab and Tba, is learned, where Tab trans-

forms a vector a in A to the space of B, that is, b̃ = Taba, while Tba maps a vector b

in B to the space of A. Tab and Tba are learned iteratively by the algorithm proposed

previously [135].

In our evaluation as mentioned below, labeled pairs of the audio and text embeddings

of each word is available, that is, we know ai and bi for each wordwi. So we can train the
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transformation matrices Tab and Tba using the gradient descent method to minimize the

following objective function:

Ltrans =
∑
i

∥bi −Tabai∥22 +
∑
j

∥aj −Tbabj∥22

+ λ′
∑
i

∥ai −TbaTabai∥22

+ λ′
∑
j

∥bj −TabTbabj∥22.

(3.5)

where the last two terms in (3.5) are cycle-constraints to ensure that both ai and bj are

almost unchanged after transformed to the other space and back. In this way we say the

two sets of embeddings are parallelized.

3.1.2 Experimental Setup

Dataset

We used LibriSpeech [137] as the audio corpus in the experiments, which is a corpus

of read speech in English derived from audiobooks. This corpus contains 1000 hours of

speech sampled at 16 kHz uttered by 2484 speakers. We used the “clean” and “others” sets

with a total of 960 hours, and extracted 39-dim MFCCs as the acoustic features.

Model Implementation

In Stage 1, The phonetic encoderEp, speaker encoderEs and decoderDecwere all 2-layer

GRUs with hidden layer size 128, 128 and 256, respectively. The speaker discriminatorDs

is a fully-connected feedforward network with 2 hidden layers with size 128. The value of

λ we used in Ls in (3.2) was set to 0.01.

In Stage 2, the two encoders Esem and Ectx were both 2-hidden-layer fully-connected
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feedforward networks with size 256. The size of embedding vectors was set to be 128.

The context window size was 5, and the negative sampling number was 5.

For parallelizing the text and audio embeddings, we projected the embeddings to the

top 100 principle components, so the affine transformation matrices were 100× 100. The

mini-batch size was 200, and λ′ in (3.5) was set to 0.5.

3.1.3 Experimental Results

Evaluation by Parallelizing Audio and Text Embeddings

Each text word corresponds to many audio realizations in spoken form. So we first took the

average of the audio embeddings for all those realizations to be the audio embedding for

the spoken word considered. In this way, each word has a unique representation in either

audio or text form.

We applied three different versions of audio embedding (AUD) on the top 1000, 3000

and 5000 words with the highest frequencies in LibriSpeech: (i) phonetic embedding only

obtained in Stage 1 (AUD-ph); (ii) phonetic-and-semantic embedding obtained by Stages

1 and 2, except the speaker characteristics not disentangled (AUD-(ph-+se)), or Ls, Ld in

(3.2), (3.3) not considered; (iii) complete phonetic-and-semantic embedding as proposed

in this section including Stages 1 and 2 (AUD-(ph+se)). So this is for ablation study.

On the other hand, we also obtained three different types of text embedding (TXT)

on the same set of top 1000, 3000 and 5000 words. Type (a) Phonetic Text embedding

(TXT-ph) considered precise phonetic structure but not context or semantics at all. This

was achieved by a well-trained sequence-to-sequence autoencoder encoding the precise

phoneme sequence of a word into a latent embedding. Type (b) Semantic Text embedding

24



doi:10.6342/NTU202302463

considered only context or semantics but not phonetic structure at all, and was obtained by

a standard skip-grammodel using one-hot representations as the input (TXT-(se,1h)). Type

(c) Semantic and Phonetic Text embedding (TXT-(se,ph)) considered context or semantics

as well as the precise phonetic structure, obtained by a standard skip-grammodel but using

the Type (a) Phonetic Text embedding (TXT-ph) as the input. So these three types of

text embeddings provided the reference embeddings obtained from text and/or phoneme

sequences, not disturbed by audio signals at all.

Now we can perform the transformation from the above three versions of audio em-

beddings (AUD-ph, AUD-(ph-+se), AUD-(ph+se)) to the above three types of text embed-

dings (TXT-ph, TXT-(se,1h), TXT-(se,ph)) by parallelizing the embeddings. The eval-

uation metric used for this parallelizing test is the top-k nearest accuracy. If the audio

embedding representation ai of a word wi is transformed to the text embedding bj by

Tab, and bj is among the top-k nearest neighbors of the text embedding representation

bi of the same word, this transformation for word wi is top-k-accurate. The top-k nearest

accuracy is then the percentage of the words considered which are top-k-accurate.

The results of top-k nearest accuracies for k=1 and 10 are respectively listed in Tables

3.1 and 3.2, each for 1000, 3000 and 5000 pairs of spoken and text words.

First look at the top part of Table 3.1 for top-1 nearest accuracies for 1000 pairs of

audio and text embeddings. Since column (a) (TXT-ph) considered precise phonetic struc-

tures but not semantics at all, the relatively high accuracies in column (a) for all three ver-

sions of audio embedding (i)(ii)(iii) implied the three versions of audio embedding were

all rich of phonetic information. But when the semantics were embedded in (ii)(iii) (AUD-

(ph-+se), AUD-(ph+se)), the phonetic structures were inevitably disturbed (0.519, 0.598
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Table 3.1: Top-1 nearest accuracies when parallelizing the different versions of audio and

text embeddings for different numbers of pairs of spoken and text words.

(a)TXT-ph (b)TXT-(se,1h) (c)TXT-(se,ph)

1000

pairs

(i)AUD-ph 0.637 0.124 0.550

(ii)AUD-(ph-+se) 0.519 0.322 0.750

(iii)AUD-(ph+se) 0.598 0.339 0.800

3000

pairs

(i)AUD-ph 0.465 0.028 0.279

(ii)AUD-(ph-+se) 0.330 0.032 0.254

(iii)AUD-(ph+se) 0.395 0.033 0.313

5000

pairs

(i)AUD-ph 0.362 0.012 0.190

(ii)AUD-(ph-+se) 0.263 0.022 0.173

(iii)AUD-(ph+se) 0.315 0.023 0.212

vs 0.637). On the other hand, column (b) (TXT-(se,1h)) considered only semantics but

not phonetic structure at all, the relatively lower accuracies implied the three versions of

audio embedding did bring some good extent of semantics, except (i) AUD-ph, but obvi-

ously weaker than the phonetic information in column (a). Also, the Stage 2 training in

rows (ii)(iii) (AUD-(ph-+se), AUD-(ph+se)) gave higher accuracies than row (i) (AUD-ph)

(0.339, 0.332 vs 0.124 in column (b)), which implied the Stage 2 training was success-

ful. However, column (c) (TXT-(se,ph)) is for the text embedding considering both the

semantic and phonetic information, so the two versions of phonetic-and-semantic audio

embedding for rows (ii)(iii) had very close distributions (0.750, 0.800 in column (c)), or

carried good extent of both semantics and phonetic structure. The above are made clearer
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Table 3.2: Top-10 nearest accuracies when parallelizing the different versions of audio and

text embeddings for different numbers of pairs of spoken and text words.

(a)TXT-ph (b)TXT-(se,1h) (c)TXT-(se,ph)

1000

pairs

(i)AUD-ph 0.954 0.355 0.898

(ii)AUD-(ph-+se) 0.897 0.653 0.986

(iii)AUD-(ph+se) 0.945 0.742 0.994

3000

pairs

(i)AUD-ph 0.854 0.120 0.654

(ii)AUD-(ph-+se) 0.758 0.146 0.671

(iii)AUD-(ph+se) 0.809 0.166 0.752

5000

pairs

(i)AUD-ph 0.774 0.050 0.518

(ii)AUD-(ph-+se) 0.658 0.109 0.544

(iii)AUD-(ph+se) 0.717 0.111 0.607

by the numbers in bold which are the highest for each row, and the numbers in red which

are the highest for each column. It is also clear that the speaker characteristics disentan-

glement is helpful, since row (iii) for AUD-(ph+se) was always better than row (ii) for

AUD-(ph-+se).

Similar trends can be observed in the other parts of Table 3.1 for 3000 and 5000

pairs, except the accuracies were lower, probably because for more pairs the parallelizing

transformation became more difficult and less accurate. The only difference is that in

these parts column (a) for TXT-ph had the highest accuracies, probably because the goal

of semantic embedding for rows (ii)(iii) (AUD-(ph-+se), AUD-(ph+se)) was really difficult,

and disturbed or even dominated by phonetic structures. Similar trends can be observed in
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Table 3.3: Some examples of top-10 nearest neighbors in AUD-(ph+se) (proposed), AUD-

ph (with phonetic structure) and TXT-(se,1h) (with semantics). The words in red are the

common words of AUD-(ph+se) and AUD-ph, and the words in bold are the common

words of AUD-(ph+se) and TXT-(se,1h).

words AUD-(ph+se) AUD-ph TXT-(se,1h)

owned
own, only, unknown, owner, land, owns, armed, owen, arm, own, visited, introduced, lived, related, learned,

armed, learned, homes, known, alone only, oughtnt, loaned, ode, owing discovered, met, called, think, known

didn’t
did, sitting, give, doesn’t, don’t, giving, bidden, given, getting, being, don’t, can’t, wouldn’t, doesn’t, won’t,

given, hadn’t, too, bidden, listen even, ridden, didnt, deane, givin i’m, you’re, shouldn’t, think, want

Table 3.2 for top-10 accuracies, obviously with higher numbers for top-10 as compared to

those for top-1 in Table 3.1.

In Table 3.3, we list some examples of top-10 nearest neighbors in AUD-(ph+se)

(proposed), AUD-ph (with phonetic structure) and TXT-(se,1h) (with semantics). The

words in red are the common words for AUD-(ph+se) and AUD-ph, and the words in bold

are the common words of AUD-(ph+se) and TXT-(se,1h). For example, the word “owned”

has two common semantically related words “learned” and “known” in the top-10 nearest

neighbors of AUD-(ph+se) and TXT-(se,1h). The word “owned” also has three common

phonetically similar words “armed”, “own” and “only” in the top-10 nearest neighbors of

AUD-(ph+se) and AUD-ph. This is even clearer for the function word “didn’t”. These

clearly illustrate the phonetic-and-semantic nature of AUD-(ph+se).

Results of Spoken Document Retrieval

The goal here is to retrieve not only those spoken documents including the spoken query

(e.g. “President Donald Trump”) based on the phonetic structures, but those including
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words semantically related to the query word (e.g. “White House”). Below we show the

effectiveness of the phonetic-and-semantc embedding proposed here in this application.

We used the 960 hours of “clean” and “other” parts of LibriSpeech dataset as the

target archive for retrieval, which consisted of 1478 audio books with 5466 chapters. Each

chapter included 1 to 204 utterances or 5 to 6529 spoken words. In our experiments, the

queries were the keywords in the book titles, and the spoken documents were the chapters.

We chose 100 queries out of 100 randomly selected book titles, and our goal was to re-

trieve query-relevant documents. For each query q, we defined two sets of query-relevant

documents: The first setDq
1 consisted of chapters which included the query q. The second

set Dq
2 consisted of chapters whose content didn’t contain q, but these chapters belonged

to books whose titles contain q (so we assume these chapters are semantically related to

q). Obviously Dq
1 and Dq

2 were mutually exclusive, and Dq
2 were the target for semantic

retrieval, but couldn’t be retrieved based on the phonetic structures only.

For each query q and each document d, the relevance score of d with respect to q,

s(q, d), is defined as follows:

s(q, d) = max
w in d

−∥R(w)−R(q)∥2, (3.6)

where R(w) is the audio embedding of a word w in d. So (3.6) indicates the documents d

were ranked by the minimum distance between a word w in d and the query q. We used

mean average precision (MAP) as the evaluation metric for the spoken document retrieval

test.

We compared the retrieval results with two versions of audio embedding: AUD-

(ph+se) and AUD-ph. The results are listed in Table 3.4 for two definitions of groundtruth

for the query-relevant documents: the union ofD1 andD2 andD2 alone. As can be found
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Table 3.4: Spoken document retrieval performance using two different audio embeddings

(AUD-(ph+se) and AUD-ph).

groundtruth AUD-(ph+se) AUD-ph

D1 + D2 17.8% 15.6%

D2 2.8% 1.8%

Table 3.5: Some retrieval examples of chapters in D2 using AUD-(ph+se) show the ad-

vantage of semantics information in phonetic-and-semantic embeddings. The word in red

in each row indicates the word with the highest similarity to the query in the chapter.

(a) query q (b) title of a book b (c) chapter (d) rank (e) the word with the highest similarity to the query

nations Myths and Legends of All Nations Prometheus the Friend of Man 13/5273 ...and shall marry the king of that country...

Anne Anne of Green Gables Mrs. Rachel Lynde Is Surprised 25/5329 ...why the worthy woman finally concluded...

German In a German Pension Story 13: A Blaze 22/5232 ...through the heavy snow towards the town...

castle Montezuma’s Castle and Other Weird Tales THE STRANGE POWDER... 3/5141 ...what is its history asked doctor Farrington...

baron Surprising Adventures of Baron Munchausen Chapter 22 18/5375 ...at the palace and having remained in this situation...

from this table, AUD-(ph+se) offered better retrieval performance than AUD-ph in both

rows. Note that those chapters in D2 in the second row of the table did not include the

query q, so couldn’t be well retrieved using phonetic embedding alone. That is why the

phonetic-and-semantic embedding proposed here can help.

In Table 3.5, we list some chapters in D2 retrieved using AUD-(ph+se) embeddings

to illustrate the advantage of the phonetic-and-semantic embeddings. In this table, column

(a) is the query q, column (b) is the title of a book b which had chapters in Dq
2, column

(c) is a certain chapter chp in b, column (d) is the rank of chp out of all chapters whose

content didn’t contain q, and column (e) is a part of the content in chp where the word in

red is the word in chp with the highest similarity to q. For example, in the first row for the
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query “nations”, the chapter “Prometheus the Friend of Man” of the book titled “Myths

and Legends of All Nations” is in Dnations
2 . The word “nations” is not in the content of

this chapter. However, because the word “king” semantically related to “nations” is in the

content, this chapter was ranked the 13th among all chapters whose content didn”’t contain

the word “nations”. This clearly verified why the semantics in the phonetic-and-semantic

embeddings can remarkably improve the performance of spoken content retrieval.

3.1.4 Conclusion

In this section we propose a framework to embed spoken words into vector representa-

tions carrying both the phonetic structure and semantics of the word. This is intrinsically

challenging because the phonetic structure and the semantics of spoken words inevitably

disturbs each other. But this phonetic-and-semantic embedding nature is desired and at-

tractive, for example in the application task of spoken document retrieval. A parallelizing

transformation between the audio and text embeddings is also proposed to evaluate whether

such a goal is achieved.

However, the approach in this section require segmented spoken words as input data,

while word-level segmentation is another challenging problem in speech. In Section 3.2,

we apply the disentanglement approach on frame-level speech signals where word-level

segmentation is not required and use it for the accented speech recognition task. In Section

3.3, we study the joint learning of automatic word-level segmentation and disentanglement

of speech signals.
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3.2 AIPNet: Generative Adversarial Pretraining of Accent-

invariant Networks for End-to-end Speech Recogni-

tion

This section focuses on learning accent-invariance with the goal of building a unified

accent-independent system for end-to-end speech recognition. Pretraining has shown its

superiority in many computer vision and NLP tasks [107] [109] [2], while research ef-

forts on accent model pretraining thus far have been limited. We propose a novel pre-

training framework AIPNet based on GAN for accent-invariant representation learning:

Accent Invariant Pre-training Networks. Unlike most of the existing work that unites the

modeling of acoustics and accents in a single stage, our approach decouples accent mod-

eling from acoustic modeling and consists of two stages: pretraining and finetuning. In

the pretraining stage, AIPNet is built through adversarial training to disentangle accent-

invariant and accent-specific characteristics from acoustic features. As transcriptions are

not needed in pretraining, AIPNet allows us to make use of many possible accent resources

for which transcriptions are unavailable. In the finetuning stage, we adopt an attention-

based encoder-decoder model for sequence-to-sequence speech recognition. Specifically,

we plug in the accent-invariant embeddings in AIPNet into ASR model for further op-

timization. Experimental results on 9 English accents show significant WER reduction

compared to four popular baselines, indicating the effectiveness of AIPNet on accent-

invariance modeling. As a general framework for learning domain-invariance, AIPNet

can be easily generalized to model any variabilities, such as speakers or speech noise, in

addition to accents.
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Figure 3.3: The framework of AIPNet including both pretraining and finetuning stages.

3.2.1 AIPNet

In this subsection we describe AIPNet in details. Our approach consists of two stages:

pretraining and finetuning. In the pretraining stage, the model is built through adversarial

training with the goal of learning accent-invariant representations. In the finetuning stage,

we stack the pretrained model with downstream tasks for further optimization. In this sec-

tion, we use end-to-end ASR as a downstream application, focusing on improving accent

robustness for speech recognition. The framework of AIPNet is illustrated in Figure 3.3.

Suppose the input is an utterance X = (x1,x2, ...,xT ), where xt represents the fea-

ture vector at time step t. The speaker accent corresponding to xt is denoted as at ∈

{1, 2, ..., C}, where C is the number of accents in the training data.

Accent-Invariance Pretraining

The goal of pretraining is to learn accent-invariant representations from accented train-

ing data. We define three types of losses for this purpose, including adversarial loss to
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disentangle accent-invariant and accent-specific information, reconstruction loss to en-

force acoustic characteristics to be preserved in the disentangled representations, as well

as consistency regularization to detach linguistic information from accent-specific repre-

sentations.

Adversarial Loss To learn accent-invariant representations, we define two mappings

from speech data: accent-invariant generatorGAI(xt) and accent-specific generatorGAS(xt).

We also define two discriminators DAI(GAI) and DAS(GAS) that output probabilities of

accents to ensure that GAI and GAS encode the corresponding information. Specifically,

we train DAI and DAS to maximize the probability of assigning correct accent labels to

samples fromGAI andGAS respectively, i.e., minimizing cross-entropy lossLAI
CE andLAS

CE:

min
DAS ,GAS

LAS
CE =

T∑
t=1

− logP (at|GAS(xt)), (3.7)

min
DAI

LAI
CE =

T∑
t=1

− logP (at|GAI(xt)). (3.8)

To decouple accent-related information from GAI , we simultaneously train GAI such that

DAI is confused about accent labels of samples from GAI . The objective is to maximize

cross-entropy loss LAI
CE , equivalent to minimize the negative cross-entropy:

min
GAI

−LAI
CE =

T∑
t=1

logP (at|GAI(xt)). (3.9)

Reconstruction Loss The adversarial loss defined between DAI and GAI enforces that

accent-specific information is disentangled from GAI but preserved in GAS . To ensure

acoustics characteristics are encoded in the representations from both generators, we fur-

ther define a decoder with autoencoding structure to reconstruct speech feature xt as x′t

from the concatenation of GAI(xt) and GAS(xt). The decoder is trained by minimizing
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the reconstruction error LR:

min
decoder,GAI ,GAS

LR =
T∑
t=1

∥ x′t − xt ∥22 . (3.10)

Consistency Regularization Accent-specific attributes are generally stable within an

utterance while linguistic-related acoustics have larger intra-utterance variance across time

frames. Inspired by the utterance-level stability of accent-specific attributes, we impose a

consistency regularization forGAS(xt) such that accent-specific representations fromGAS

are consistent across time frames within an utterance:

min
GAS

LCR =
T−1∑
t=1

∥ GAS(xt+1)−GAS(xt) ∥22 . (3.11)

This regularization reinforces the preservation of accent-specific information inGAS mean-

while implicitly encourages linguistic content to be disentangled from GAS . The multi-

scale nature of information in speech data has also been applied in voice conversion and

speech denoising [123].

Iterative Training Given the minmax two-player game between DAI and GAI , AIPNet

pretraining is designed of repeating the following two steps in an iterative manner.

• Update the discriminator DAI by minimizing LD,

• Freeze the discriminatorDAI and update the rest of the network by minimizing LG,

LD = LAI
CE, (3.12)

LG = −LAI
CE + λ1L

AS
CE + λ2LR + λ3LCR, (3.13)

where λs are hyper-parameters.
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Finetuning for End-to-End Speech Recognition

In the finetuning stage, the outputs of GAI which encode accent-invariant linguistic con-

tent can be plugged in as inputs of any downstream speech tasks that aim to improve accent

robustness, as shown in Figure 3.3. In this section, we focus on multi-accent speech recog-

nition and adopt Listen, attend and spell (LAS), a popular attention-based encoder-decoder

model [138] for sequence-to-sequence speech recognition. LAS consists of an encoder

encoding an input sequence into high-level representations as well as an attention-based

decoder generating a sequence of labels from the encoded representations. The encoder is

typically a unidirectional or bidirectional LSTM and the decoder is a unidirectional LSTM.

The label inventory for LAS modeling consists of 200 word pieces and is further aug-

mented with two special symbols<sos> and<eos> indicating the start of a sentence and

the end of a sentence respectively. LAS models the posterior probability of a label sequence

y given the input feature sequence GAI(X) and the previous label history y1:j−1:

P (y|GAI(X)) =
∏
j=1

P (yj|GAI(X),y1:j−1). (3.14)

Both encoder and decoder can be trained jointly for speech recognition by maximizing the

log probability or minimizing LASR:

LASR =
∑
j=1

− logP (yj|GAI(X),y1:j−1). (3.15)

There are two ways of finetuning: 1) finetune GAI and LAS with LASR. This requires

only transcriptions in the training data; 2) continue with adversarial training with L′G =

LG + λ4LASR. This requires both transcriptions and accent labels in the training data. In

the experiments, we report results of using both ways.
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3.2.2 Experiments

Dataset

The dataset used in experiments contains utterances in a variety of domains, such as

weather or music, collected through crowdsourced workers. There are 9 English accents

in total in the dataset, including United States (US), Korea (KR), Philippines (PH), Canada

(CA), India (IN), France (FR), Britain (GB), Vietnam (VN) and Latin America (LA). The

training set contains 4M (3.8K hours) utterances among which 1% is split as validation

data. Particularly, there are 1M and 780K utterances in US and LA respectively and about

330K data in each of the remaining accents. The testing set has 10.8K utterances with 1.2K

utterances in each accent. In both training and testing sets, we extract acoustic features us-

ing 80-dimensional log Mel-filterbank energies that are computed over a 25ms window

every 10ms.

Experimental Setup

The architecture of each module in AIPNet is a multi-layer LSTM. Specifically, we rep-

resent GAI , GAS and decoder using 2 LSTM layers with a hidden size of 768, 256 and

1024 respectively. DAI and DAS are represented by a LSTM layer with softmax out-

puts. The configuration of LAS includes a 4-layer LSTM encoder and a 2-layer LSTM

decoder, each with a hidden size of 1024. The hyperparameters (λ1, λ2, λ3, λ4) are swept

within the range [0.1, 30]. Our experiments have shown that the final results are gener-

ally stable across different hyperparameter settings. For simplicity, we report results with

(λ1, λ2, λ3, λ4) = (1, 10, 10, 10) in this section. We use batch size of 16, 000 tokens with

32 GPUs for training. We use Adam with learning rate of 5 × 10−4 in pretraining and
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2.5× 10−4 in finetuning, β1 = 0.9, β2 = 0.999. A dropout rate of 0.1 is applied to all the

layers. We pretrain AIPNet for 15 epochs and finetune LAS for 20 epochs. During infer-

ence, speech features are fed into GAI that is absorbed as part of LAS encoder and outputs

of LAS are decoded using beam size of 20 without any external language model.

Baselines

We compare our approach against four popular baselines B1-B4 for multi-accent speech

recognition in the experiments. B1 is an accent-independent model which is trained on

the data from all the accents. B2 and B3 have shown strong performance on multi-accent

speech recognition in [76]. Specifically, we append accent labels at the end of each label

sequence and B2 is trained on the updated sequences from all accents. As accent infor-

mation is not required at inference, B2 is accent-independent. When training B3 which is

accent-dependent, we transform accent 1-hot vector into an embedding through a learnable

linear matrix and feed the learned embedding into LAS encoder. During B1-B3 training,

GAI is part of LAS encoder containing 6 LSTM layers. B4 is the most similar to our ap-

proach in spirits, aiming to learn accent-invariant features through gradient reversal [83].

The gradient reversal approach keeps modules ofGAI ,DAI and ASR model in Figure 3.3.

Instead of using iterative training in Subsection 3.2.1, we add a gradient reversal layer be-

tween GAI and DAI to reverse the backpropagated gradient for GAI training. For more

details about B4, we refer readers to [83].

Experimental Results

As described in Subsection 3.2.1, AIPNet pretraining requires only accent labels in the

training data. This approach hence becomes especially useful when there is a large num-
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Table 3.6: WER (%) of different approaches in each accent in supervised setting. F1

indicates finetuning with LASR; F2 indicates finetuning with L′G; AI indicates accent-

independent model; AD indicates accent-dependent model.

Approach Ave. US Non-US CA FR IN KR PH LA GB VN

Baselines

B1 AI 8.7 5.7 9.0 6.4 8.4 11.2 9.9 7.2 7.8 8.0 13.0

B2 AI 8.8 5.0 9.1 6.6 9.3 11.0 10.3 6.7 8.1 8.1 12.9

B3 AD 8.6 5.4 8.9 6.7 8.5 10.9 10.0 6.8 8.6 7.9 12.0

B4 AI 8.8 5.8 9.1 6.1 8.5 11.7 10.7 7.4 8.4 7.8 12.0

AIPNet
F1 AI 8.4 5.6 8.7 6.0 8.1 9.9 10.3 6.9 8.0 7.8 12.4

F2 AI 10.1 6.2 10.5 7.9 10.1 12.8 12.1 8.2 9.5 9.4 13.9

ber of accented data without available transcriptions. We design experiments in two set-

tings, i.e., supervised setting where transcriptions are available in all accents and semi-

supervised setting where transcriptions are available only in US accent.

Results in Supervised Setting Table 3.6 summarizes the results of different approaches

in supervised setting. In our approach, we report results of finetuning GAI and LAS with

LASR using transcriptions (F1), as well as those of finetuning the entire network with L′G

using both transcriptions and accent labels (F2). We can see that finetuning withLASR (F1)

outperforms the baselines by 2.3 ∼ 4.5% relative reduction on average WER. Compared

to all the baselines, F1 has achieved improvement in CA, FR, GB, and especially IN (9.1 ∼

15.3% reduction) but has shown a mediocre performance in each of the remaining accents.

Results in Semi-supervised Setting In semi-supervised setting where transcriptions are

available only in US accent, we compare the performance between B1 and F1. The results
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Table 3.7: WER (%) of different approaches in each accent in semi-supervised setting.

F1 indicates finetuning with LASR; F2 indicates finetuning with L′G; PL indicates pseudo

labeling; AI indicates accent-independent model; AD indicates accent-dependent model.

Approach Ave. US Non-US CA FR IN KR PH LA GB VN

w/o PL
Baseline B1 AI 29.9 10.6 31.8 22.0 33.1 41.0 33.1 28.2 28.7 28.3 40.6

AIPNet F1 AI 27.9 9.4 29.8 20.1 30.8 39.0 32.8 25.5 26.4 25.3 39.2

w/ PL Baselines

B1 AI 26.2 10.3 27.8 18.6 28.3 36.1 29.6 24.8 25.1 24.4 35.8

B2 AI 25.9 9.4 27.6 19.0 27.7 36.5 29.6 24.2 23.8 25.1 34.9

B3 AD 25.9 9.6 27.5 19.5 28.0 36.4 29.1 23.7 24.2 24.8 35.0

B4 AI 25.0 9.7 26.5 18.1 26.7 34.9 28.3 23.7 23.4 23.7 33.6

w/ PL AIPNet
F1 AI 25.7 12.1 27.0 19.7 27.4 34.7 28.9 23.0 23.6 24.5 34.6

F2 AI 24.6 11.8 25.9 19.0 26.0 32.6 28.0 22.2 22.8 23.1 33.5

are presented in the first two rows of Table 3.7. As B2, B3, B4 and F2 require the availabil-

ity of pairs of transcriptions and accent labels for training, the results of these approaches

are not available in such scenario. The results have shown that our approach significantly

outperforms the baseline model in all accents, achieving 3.4 ∼ 11.3% relative WER re-

duction.

One popular and effective method for semi-supervised learning is to generate target

pseudo labels for unlabeled data using an initial model [139]. To achieve better perfor-

mance, we generate pseudo transcriptions for non-US training data using the US model.

As a result, we are able to follow all the experiments in supervised setting. The results

with pseudo labeling (PL) are presented in the last six rows of Table 3.7. By comparing

the performance between models with and without pseudo labeling, we can observe that

pseudo labeling has shown significant gains for all the approaches and almost in each ac-

cent, exhibiting its effectiveness on improving generalization performance using unlabeled
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(a) GAI embedding from B1. (b) GAI embedding from F2.

Figure 3.4: t-SNE 2-D plots of GAI embedding from B1 and F2 (w/ PL) in each accent.

Each color represents each accent.

data. In the scenario with pseudo labeling, finetuning with L′G (F2) outperforms the base-

lines by 1.6 ∼ 6.1% relative reduction on average WER and consistently achieves the best

performance in all non-US accents except for CA.

Analysis

In this subsection, we analyze the properties of AIPNet to better understand its superiority

for multi-accent speech recognition. Without loss of generality, we use B1 and F2 (w/ PL)

in semi-supervised setting in the analysis.

Learning accent-invariance To comprehend the effectiveness of AIPNet on learning

accent-invariant representations, we extract embedding (outputs) of GAI from B1 and F2

respectively for 300 data samples in each accent. Figure 3.4 shows t-SNE 2-D visualization

ofGAI embedding from B1 (Figure 3.4a) and F2 (Figure 3.4b) respectively for each accent

[140]. As can be seen,GAI outputs from the baseline B1 tend to be clustered in each accent

while those from our approach F2 are mixed across different accents. The visualization
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Figure 3.5: Word piece validation accuracy of ASR model in B1 and F2.

demonstrates the validity of the accent-invariant features learned through AIPNet and fur-

ther explains the better generalization performance that our approach has achieved across

accents.

Reducing overfitting We further investigate the trend of word piece validation accu-

racy of the ASR model in B1 and F2, as shown in Figure 3.5. Compared to B1, F2 learns

more slowly and reaches a better local optimal. The learning objective of F2 consists of

both LASR and accent-related regularizers (see Subsection 3.2.1). This observation cor-

roborates the effectiveness of the regularization in our approach on reducing the risk of

overfitting. It is worth noting that such benefit from the accent-related regularization in

finetuning is not observed in supervised setting (see Table 3.6). One possible reason could

be that the sufficient labeled training data in supervised setting empowers the ASR model

a strong learning capability that might be even weakened by additional regularizations.

3.2.3 Conclusion

In this section, we proposed AIPNet, a GAN-based pretraining network, for learning accent-

invariant representations, aiming to build a unified speech recognition system that general-

izes well across accents. As transcriptions are not needed in pretraining, AIPNet provides
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the flexibility of making use of many possible accent resources for which transcriptions

are unavailable. Experiments have shown promising results on 9 English accents com-

pared to the baselines, especially in the case when transcriptions are not available in all

accents. Experimental results have demonstrated the effectiveness of AIPNet on learning

accent-invariance.

In Section 3.3, in addition to disentangled representation learning, we further deal

with another big challenge in speech, word boundary segmentation.

3.3 Sequence-to-Sequence Autoencoding for Unsupervised

Learning of Audio Segmentation and Representation

Human infants acquire languages with little formal teaching; machines, however, must

learn from a large amount of annotated data, which makes the development of speech

technology for a new language challenging. For typical spoken language understanding,

one can simply convert spoken content into word sequences using an off-the-shelf speech

recognizer. However, to train a high-quality speech recognition system, huge quantities of

annotated audio data are needed. Therefore, for low-resource languages with scarce an-

notated data, or languages without written forms, sufficiently accurate speech recognition

is difficult to achieve. Some previous work [141, 142] focus on speech recognition with

mismatched crowdsourcing and probabilistic transcriptions.

Annotating audio data for speech recognition is expensive, but unannotated audio data

is relatively easy to collect. If the machine can acquire the word patterns behind speech

signals from a large collection of unannotated speech data without speech recognition, it
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would be able to learn a new language in a novel linguistic environment with little super-

vision. Imagine a Hokkien-speaking family buying an intelligent device: although at first

the machine does not understand Hokkien, by hearing people speak it, it automatically

learns the language. This section is one step toward this dream [143, 144, 145].

In this section, a sequence-to-sequence autoencoder (SA) is used to represent variable-

length audio segments using fixed-length vectors [1, 146]. SA consists of an RNN encoder

and decoder. The RNN encoder reads an audio segment represented as an acoustic feature

sequence and maps it to a vector representation with a fixed length of z; the RNN de-

coder maps the vector z to another sequence. The RNN encoder and decoder are trained

to minimize the reconstruction error of the input acoustic sequence.

Because the representation z extracted by the RNN encoder must reconstruct the in-

put signals, it includes not only phonetic information but also speaker, environment, and

channel information in various dimensions. That is, audio segments corresponding to the

same terms with the same phonetic structure may have different z if produced by dif-

ferent speakers. Therefore, it is necessary to disentangle the phonetic information in z

from other information, so the phonetic information can be further used in downstream

applications. As in Section 3.1, we use an adversarial classifier. The classifier learns to

distinguish whether two segments were uttered by the same speaker or not based on the

representations. To confuse the classifier, the encoder learns to extract speaker-invariant

representations.

Word segmentation of speech is critical but challenging for zero-resource speech tech-

nology because word boundaries are usually not available for given speech utterances or

corpora [143, 30, 147, 148]. Although there are approaches to estimating word bound-
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aries [30, 149, 150, 151, 50], we hypothesize that the audio segmentation and SA can be

integrated and jointly learned, so that they can enhance each other. This means that the

machine learns to segment the utterances into a sequence of spoken words while at the

same time transforming these spoken words into a sequence of vectors.

We propose the segmental sequence-to-sequence autoencoder (SSAE) [26], a new

model to jointly train the segmenter while extracting the representation. The SSAE con-

tains a segmentation gate jointly learned with SA from an unlabeled corpus in a com-

pletely unsupervised way. During training, the SSAE learns to convert the utterances into

sequences of embeddings, and then reconstructs the utterances with these embedding se-

quences. The only thing needed during training is a guideline for the proper number of vec-

tors (or words) within an utterance of a given length, to ensure that the machine segments

the utterances into word-level segments. Since the model is not completely differentiable,

standard backpropagation is not applicable [152, 153]; thus we use reinforcement learning

to train SSAE.

In this section, we employ query-by-example spoken term detection (QbE STD),

a real-world application, to evaluate the phonetic structure information of the original

utterances contained in these generated word vector sequences. When based on audio

word2vec, QbE STD is much more efficient than conventional dynamic time warping

(DTW) based approaches, because only the similarities between two single vectors are

needed; this is in addition to the significantly better retrieval performance that it yields.

The audio word2vec framework is summarized in Figure 3.6. Given a large collection

of annotated audio, it is first segmented into word-level segments. Then the SA model

generates an embedding for each audio segment, as described in Subsection 3.3.2. In
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Subsection 3.3.3, we also describe how to disentangle speaker and speech content from

the embedding. In Subsection 3.3.4, we describe the proposed SSAE model, which jointly

learns segmentation and embedding. In Subsection 3.3.5 the embedding is evaluated on

QbE STD.

Subsec 
3.3.2 

Subsec 
3.3.3 

Subsec 
3.3.4 

Subsec 3.3.5 

Figure 3.6: Audio word2vec framework

3.3.1 Audio Representation

The goal for the audio word2vec model is to identify the phonetic patterns in sequences of

acoustic features such as MFCCs. Given a word-level audio segment x = (x1, x2, ..., xT )

where xt is the acoustic feature at time t, and T is the length, audio word2vec transforms

the features into a fixed-length vector z ∈ Rd with dimension d. In this subsection, we

assume the word boundaries are ready available. In the next subsection we describe how
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to jointly learn segmentation and representation.

3.3.2 Sequence-to-sequence Autoencoder

Recurrent neural networks (RNNs) have shown great success in many NLP tasks with

their ability to capture sequential information. The hidden neurons form a directed cy-

cle and perform the same task for every element in a sequence. Given a sequence x =

(x1, x2, ..., xT ), the RNN updates its hidden state ht according to the current input xt and

the previous ht−1. The hidden state ht acts as an internal memory at time t that enables the

network to capture dynamic temporal information, and also allows the network to process

sequences of variable length.

The RNN encoder-decoder architecture [23, 13] consists of an RNN encoder and an

RNN decoder. The encoder reads the input sequence x = (x1, x2, ..., xT1) sequentially,

and the hidden state ht of the RNN is updated accordingly. After the last symbol xT1 is

processed, the hidden state hT1 is interpreted as the learned representation of the whole

input sequence. Then, taking hT1 as input, the RNN decoder generates the output sequence

y = (y1, y2, ..., yT2) sequentially, where T1 and T2 can be different, or the length of x and y

can be different. This RNN encoder-decoder framework is able to handle variable-length

input and output.

Figure 3.7 depicts the structure of the sequence-to-sequence autoencoder (SA), which

integrates the RNN encoder-decoder framework with an autoencoder for the unsupervised

learning of audio segment representations. The SA consists of an RNN encoder (the left

part of Figure 3.7) and decoder (the right part). Given an audio segment represented as

an acoustic feature sequence x = (x1, x2, ..., xT ) of any length T , the RNN encoder reads
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Figure 3.7: Sequence-to-sequence autoencoder (SA), consisting an RNN encoder (ER) and

an RNN decoder (DR). The encoder reads an audio segment represented as an acoustic

feature sequence x = (x1, x2, ..., xT ) and maps it to a fixed-length vector representation

with dimension z; the decoder maps the vector z to another sequence y = (y1, y2, ..., yT ).

The RNN encoder and decoder are jointly trained such that the output sequence y is as

close to the input sequence x as possible.

each acoustic feature xt sequentially and the hidden state ht is updated accordingly. After

the last acoustic feature xT has been read and processed, the hidden state hT of the encoder

is taken as the learned representation z of the input sequence (the vector in the middle of

Figure 3.7).

The RNN decoder takes hT as the initial state, and generates a sequence y. Based on

autoencoder principles [154, 155], the target of the output sequence y = (y1, y2, ..., yT )

is the input sequence x = (x1, x2, ..., xT ). In other words, the RNN encoder and decoder
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are jointly trained by minimizing the reconstruction error Lmse,

Lmse =
∑

x

Tx∑
t=1

∥xt − yt∥2, (3.16)

whereLmse is the sum over all the audio segments x in the data collection, andTx represents

the length of the segment x. Because the input sequence is taken as the learning target,

the training process requires no labeled data. The fixed-length vector representation z is

thus a meaningful representation for the input audio segment x because the whole input

sequence x can be reconstructed from z with the RNN decoder. Although in Figure 3.7

both the RNN encoder and decoder have only one hidden layer, this does not preclude the

use of multiple layers.

In Figure 3.7, after generating output y1, instead of taking y1 as the input of the next

time step, a zero vector is used as input to generate y2, and so on, in contrast to the typical

encoder-decoder architecture. This use of historyless decoding is critical here. We found

that if a typical decoder is used (that is, RNN takes y1 as input to generate y2, and so on),

despite the resultant low reconstruction error, the SA-learned vector representations do not

include useful information. This is because a strong decoder focuses less on includingmore

information in the vector representation. Historyless decoding yields a weakened decoder

because the input of the decoder is removed, which forces the model to rely more on the

vector representation. Historyless decoding is also used in some NLP applications [156,

157, 158].

3.3.3 Feature Disentanglement

Because the representation z extracted by the RNN encoder in Figure 3.7 must reconstruct

the input signals, it includes not only phonetic information but also speaker, environment,
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Figure 3.8: Feature disentanglement. (A) Adding speaker encoder for reconstruction. (B)

Additional training criteria for the speaker encoder. (C) Speaker classifier learns to dis-

tinguish whether two z’s are from the same speaker or not; phonetic encoder attempts to

confuse the classifier with z.

and channel information in various dimensions. Therefore, it is necessary to disentangle

the phonetic information from other information.

As shown in Figure 3.8, the idea of disentanglement is the same as Section 3.1, where

we add an additional speaker encoder and use adversarial training to disentangle phonetic

and speaker information. The original encoder in Figure 3.7 is the phonetic encoder, which

takes the audio segment x as input and outputs embedding vector z. The speaker encoder
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has the same RNN architecture as the phonetic encoder. Its output embedding is denoted

as e. The input of the RNN decoder is the concatenation of vectors z and e. The phonetic

encoder, speaker encoder, and RNN decoder are jointly learned to minimize the recon-

struction error Lmse in (3.16).

Ensuring that z contains phonetic information and e contains speaker information,

we require additional training criteria as in Section 3.1. The speaker encoder learns to

minimize the distance between the e of audio segments uttered by the same speaker, and

enlarge the distance between the e of different speakers past a threshold. This assumes that

speaker labels are available. If speaker information is not available, the speaker encoder

can still be learned by assuming that segments from the same utterance are produced by

the same speaker. Although we only consider the speaker information here, it is possible

to use the same approach to consider other information such as the channel.

As in Section 3.1, we also adopt an adversarial speaker classifier to discriminate if

an input pair of two phonetic vectors come from the same speaker. The phonetic encoder

tries its utmost to generate z vectors that confuse the speaker classifier. If it successfully

achieves this after training, it produces a z that contains no speaker information, and an e

that contains all the speaker information. The complete procedure for feature disentangle-

ment is shown in Algorithm 1.

3.3.4 Jointly Learning Segmentation and Representation

Segmental Sequence-to-Sequence Autoencoder (SSAE)

The proposed structure for SSAE is depicted in Figure 3.9, in which the segmentation gate

is inserted into the SA. The input of SSAE is an utterance x′ = {x1, x2, ..., xT ′}, where xt
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Algorithm 1 Feature Disentanglement
Input: Audio segment collection X , total update iterations Ttrain, Speaker classifier update iterations Tdis

Output: Phonetic encoder parameters θp

1: Initialize phonetic encoder parameters θp

2: Initialize speaker encoder parameters θs

3: Initialize RNN decoder parameters θd

4: Initialize speaker classifier parameters θc

5: for t = 1 to Ttrain do

6: Sample M audio segments Xr from X

7: Sample M audio segment pairs Xp from X in which the paired segments are from the same speakers

8: Sample M audio segment pairs Xn from X in which the paired segments are from different speakers

9: % Train phonetic classifier

10: Compute phonetic classifier loss Lc based on the 2M segment pairs {Xp,Xn}

Lc =
∑

(xi,xj)∈Xp

C(zi, zj)−
∑

(xi,xj)∈Xn

C(zi, zj), (3.17)

whereC(zi, zj) is the speaker classifier output score given the phonetic embedding of the segment pair (xi, xj)with parameters

θc

11: % Phonetic classifier parameters updated with additional iterations as in typical GAN framework

12: for t′ = 1 to Tdis do

13: θc ← θc − η▽Lc + gradient penalty

14: end for

15: % Minimize reconstruction error

16: Compute reconstruction loss Lmse in (3.16) over segments in Xr

17: % Extra training criteria for speaker encoder

18: Compute loss Ls

Ls =
∑

xi,xj∈Xp

∥ei − ej∥2 +
∑

xi,xj∈Xn

max(λd − ∥ei − ej∥2, 0), (3.18)

where ei and ej are output of speaker encoder given xi and xj .

19: % Compute the total loss Ltot for updating the whole model

Ltot = Lmse + Ls − Lc (3.19)

20: θp ← θp − η▽Ltot

21: θs ← θs − η▽Ltot

22: θd ← θd − η▽Ltot

23: end for
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Figure 3.9: Segmental sequence-to-sequence autoencoder (SSAE). In addition to the RNN

encoder (ER blocks) and RNN decoder (DR blocks), a segmentation gate (S blocks) is

included in the model to estimate word boundaries.

represents the t-th acoustic feature, and T ′ is the length of the utterance. In general, an

utterance x′ is much longer than an audio segment xwith length T in Subsection 3.3.1, that

is, T ′ ≫ T . Given an input utterance, themodel learns to determine theword boundaries in

the utterance, and generatesN audio segments. The model then produces the embeddings

for the N generated audio segments, z = {z1, z2, ..., zN}, where zn is the n-th embedding

and N ≤ T ′. As with the conventional autoencoder, the proposed SSAE consists of an

RNN encoder and an RNN decoder. The encoder includes an extra segmentation gate,

controlled by another RNN (shown in Figure 3.9 as the sequence of blocks labeled S). The

segmentation gate can be considered an “agent” in the parlance of typical reinforcement

learning. At each time t, the segmentation gate agent performs an action at, according
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to a given input feature st (or state per reinforcement learning). The action at is either

“segment” or “pass”. If “segment”, then xt is regarded as a word boundary.

For the segmentation gate, the input state at time t, st, is defined as the concatenation

of the input acoustic feature xt, the gate activation signal (GAS) gt, and the previous taken

action at−1,

st =
[
xt||gt||at−1

]
. (3.20)

The GAS feature gt is an unsupervised feature for segmentation. This feature is extracted

from the values of the update gates of the GRU of another pretrained RNN autoencoder,

which is trained simply to minimize the reconstruction loss. We use GAS as extra input

formation here because it has been verified that the temporal structure of such signals is

correlated with the phoneme boundaries [149]. Here the same set of audio data is used to

train the SSAE and learn GAS features. The policy πt at time t is modeled by the output

ht of the layers of the segmentation gate RNN (S blocks in Figure 3.9) followed by a linear

transform (W π,bπ) and a softmax nonlinearity:

ht = RNN(s1, s2, ..., st), (3.21)

πt = softmax(W πht + bπ). (3.22)

This πt gives two probabilities respectively for “segment” and “pass”. An action at is then

sampled from this distribution during training to encourage exploration. During testing,

the action with the highest probability is taken.

When at is “segment”, the time t is viewed as a word boundary, after which the

segmentation gate passes the output of the RNN encoder. If this is the n-th time the action

“segment” is taken, and last time action “segment” is taken at the t′-th time step, yielding

the n-th audio segment, when t′ and t refer to the beginning and ending time for the n-th
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audio segment. The output of the RNN encoder at time step t is the vector representation

of the n-th audio segment zn:

zn = Encoder(xt′ , xt′+1, ..., xt). (3.23)

After “segment” is taken, the internal state of the RNN encoder is reset to its initial value,

so zn is generated based only on the acoustic features of the n-th audio segment.

Then the input utterance x is reconstructedwith the embedding sequence z= {z1, z2, ..., zN}.

Given an embedding zn for the n-th input segment in (3.23) above, the RNN decoder gen-

erates {yt′ , yt′+1, ..., yt} to reconstruct the input acoustic features {xt′ , xt′+1, ..., xt}. When

the RNN decoder begins decoding each audio segment, its state is also reset.

In Figure 3.9, each audio segment in the boxes with dotted lines can be viewed as

performing the sequence-to-sequence training from Figure 3.7 individually. Note that the

sequence-to-sequence training in Figure 3.9 reconstructs the target sequence in reverse or-

der, in contrast to that shown in Figure 3.7. In preliminary experiments, we found that the

order of reconstruction does not significantly influence the performance of the represen-

tation. We use the reverse order here because it can be implemented more efficiently.

SSAE Training

Although all the parameters in the SSAEmodel can be trained simultaneously, we actually

train our model using an iterative process consisting of two phases. In the first phase, the

RNN encoder and decoder parameters are updated, while in the second phase, only the

segmentation gate parameters are updated. The two phases are performed iteratively.

First Phase - RNN Encoder and Decoder In the first phase, we train only the RNN

encoder and decoder to minimize reconstruction error while fixing the parameters of the
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segmentation gate. Because the segments are already provided by the segmentation gate,

the first phase training is parallel to training a typical SA as in Subsection 3.3.2. That is,

the encoder and decoder learn to minimize the reconstruction error Lmse in (3.16). Each

time in phase one, the encoder and decoder are learned from random initialized parameters,

instead of starting off with the parameters learned in the previous iteration – this was found

to offer better training stability.

Second Phase – Segmentation Gate In the second phase, we update the parameters of

the segmentation gate while fixing the parameters of the encoder and decoder. Although

the encoder and decoder are not updated in this phase, they are involved in computing the

reward for training the segmentation gates by reinforcement learning.

The segmentation gate is trained using reinforcement learning. After the gate per-

forms the segmentation for each utterance, it receives a reward r and a reward baseline rb

for updating the parameters. r and rb are defined later. We can express the expected reward

for the gate under policy π as J(θ) = Eπ[r], where θ is the parameter set. To maximize

the expected reward J(θ), policy gradient [159] is used to update the parameters of the

segmentation gate using the parameter update formulation below.

∇θJ(θ) = Ea∼π[∇θ(r − rb)
T ′∑
t=1

logπ
(θ)
t (at)], (3.24)

where π(θ)
t (at) is the probability for the action at taken per (3.22).

The reconstruction error is an effective indicator of whether the segmentation bound-

aries are good, since the embeddings are generated based on the segmentation. We hypoth-

esize that good boundaries, for example those close to word boundaries, result in smaller

reconstruction errors because the audio segments for words appear more frequently in the

56



doi:10.6342/NTU202302463

corpus and thus the embeddings are trained better with lower reconstruction errors. There-

fore, one proper choice for the first term in the reward function may be rmse, which is the

negative reconstruction error, rmse = −Lmse.

At the same time, it is important to have a guideline for the proper number of segments

N in an utterance of a given length T ′. Without this guideline, the segmentation gate

generates as many segments as possible in order to minimize the reconstruction error.

Therefore, we design the reward such that the smaller number of segments N normalized

by the utterance length T ′, the higher the reward:

rnum = −N

T ′
, (3.25)

where N and T ′ are respectively the numbers of segments and frames for the utterance as

in Figure 3.9.

The total reward r is obtained by choosing the minimum between rmse and rnum:

r = min(rmse, λrnum) (3.26)

where λ is a hyperparameter to be tuned for a reasonable guideline to estimate the proper

number of segments for an utterance of length T . λ is determined tomake the values of rmse

roughly equivalent to λrnum. rmse and rnum are unknown before the model training, but it

is possible to estimate their average values. Here we assume the average length of spoken

words is known as the prior knowledge (this is the only language specific prior knowledge

we used), so the average value of rnum can be roughly estimated. rmse is estimated by

randomly segmenting the utterances first and then training a sequence-to-sequence auto-

encoder. Interpolating rmse and rnum as total reward r is also possible, but in our pre-

liminary experiments, we found that the minimum function yielded better results than

interpolation.
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For the reward baseline rb, we further use an utterance-wise reward baseline to remove

the bias between utterances. For each utterance, M different sets of segment boundaries

are sampled by the segmentation gate, each of which is used to evaluate a reward rm with

(3.26). The reward baseline rb for the utterance is then their average:

rb =
1

M

M∑
m=1

rm. (3.27)

3.3.5 Example Application: Unsupervised Query-by-Example Spo-

ken Term Detection

Here we consider unsupervised query-by-example spoken term detection (QbE STD) as an

example application to evaluate the quality of the embeddings. The task of unsupervised

QbE STD here is to verify the existence of the input spoken query in an utterance or audio

file without performing speech recognition [32]. With SSAE in Subsection 3.3.4, this is

achieved as illustrated in Figure 3.10. Given the acoustic feature sequences of a spoken

query and a spoken document, SSAE represents these sequences as embeddings, q = {

q1, q2, ..., qnq} for the query and d = { d1, d2, ..., dnd
} for the document. Here q and d

are sequence z obtained by SSAE in Subsection 3.3.4 with a spoken query or a spoken

document as input, respectively. With the embeddings, simple subsequence matching is

used to evaluate the relevance score S(q, d) between q and d. First, we compute Sn for

each position in d.

Sn =

nq∏
m=1

Sim(qm, dm+n−1). (3.28)

Cosine similarity can be used in the similarity measure in (3.28). As shown in the right

part of Figure 3.10, S1 = sim(q1, d1) · sim(q2, d2), S2 = sim(q1, d2) · sim(q2, d3) and so

on. The relevance score S(q,d) between the query q and document d is then the sum of
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Figure 3.10: Unsupervised query-by-example spoken term detection (QbE STD) with

SSAE.

the highest k scores among Sn obtained in (3.28).

3.3.6 Experiment: Audio Representation

Experimental Setup

In this subsection, we used Librispeech [137] as the speech corpus. The dataset was seg-

mented according to the word boundaries obtained by forced alignment to the reference

transcriptions. We used the 100 hours clean speech audio data set for model training. For

evaluation, another 3000 utterances were used. Thirty-nine-dimension MFCCs were used

as the acoustic features. The phonetic encoder was a 2-layer GRU with a 256-node hidden

layer; the speaker encoder uses the same architecture. In the case without disentangle-

ment, the RNN decoder was also a 2-layer GRU with a 256-node hidden layer. However,

in the disentanglement model, because the RNN decoder takes as input the concatenation

of the phonetic and speaker encoders, we set its size to 512. The speaker classifier was a

59



doi:10.6342/NTU202302463

fully-connected feedforward network with two 256-node hidden layers. The models were

trained with the Adam optimizer with a batch size of 64. Algorithm 1’s Tdis was set to 3.

Experimental Results

We trained the SA models on the training set to encode the segments in the evaluation set,

which were never seen during training, and then computed the cosine similarity between

each segment pair. We computed the average cosine similarity of the vector representa-

tions for each pair of audio segments in the testing set, and compared it with the phoneme

sequence edit distance (PSED). Shown in Figure 3.11 are the average and variance (the

length of the black line on each bar) of the cosine similarity for groups of pairs clustered

by the PSED (PSED = 0,1,2,3 and > 3) between the two words.

Figure 3.11: Average cosine similarity and variance (length of black line on each bar)

between vector representations for all segment pairs in the evaluation set, clustered by

phoneme sequence edit distance (PSED).

In Figure 3.11, the cosine similarities of the RNN encoder and phonetic encoder de-
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crease as the edit distances increase; that is, the vector representations for words with

similar pronunciations are in close proximity to each other. This means that both the RNN

encoder and the phonetic encoder indeed encode the sequential phonetic structures into

fixed-length vectors. Clearly, the speaker encoder output includes little phonetic informa-

tion because speaker encoder similarities are almost independent of the PSED.We also find

from the means of similarities that the RNN encoder clearly distinguishes word segments

with different phonemes even without disentangling features. For example, the similarity

for word segments whose phonemes are exactly the same (PSED= 0) is 0.63, while the

similarity for word segments with one different phoneme (PSED= 1) is only 0.40. How-

ever, their similarities have very large variances. For example, the variances of the group

with one different phoneme is 0.24, which leads to ambiguity between different groups.

This is reasonable because it is well-known that even with exactly identical phoneme se-

quences, acoustic realizations can differ greatly for different speakers. For the phonetic

encoder, the mean similarities between different groups are not as remarkable as for the

RNN encoder; however, the variances in each group are much smaller (0.018–0.029). This

shows that disentangling features separate the values of the similarities of different groups.

In addition, we performed an ablation study to verify the effectiveness of different

components in Figure 3.8 to help disentangle the features. Similar to the setting used

before [144], we used ABX metric to evaluate the performance. In all triplet minimal

pairs, only words with three phonemes were considered. A and X corresponded to the

same text word, andA andB only differed in the central phoneme. For the within-speaker

task, A,B andX belonged to the same speaker (e.g. A = begT1, B = bagT1, X = beg′T1);

for the across-speaker task, A and B belonged to the same speaker, and X to a different
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Loss Within Speaker Across Speaker

Same as Alg. 1 12.5 19.2

No Lc 14.0 19.8

No Ls 13.1 20.2

No Lc & Ls 15.2 20.0

Table 3.8: Within- and across-speaker ABX scores for the learned vector representations.

Here an ablation study was performed by removing some loss terms in Algorithm 1, or

some parts of Figure 3.8.

one (e.g. A = begT1, B = bagT1, X = begT2). Then we calculated the cosine similarities

of the (A,X) pair and (B,X) pair to obtain the discriminability. We converted the results

into error rates listed in Table 3.8. The first row in the table shows the result of the original

Algorithm 1, and the results in other rows reflect the degradation of performance because

some loss terms in Algorithm 1 or components of Figure 3.8 were removed. The results

clearly show that each of the components in Figure 3.8 is helpful for disentanglement of

features.

In the following experiments, we further compare the performance of the RNN en-

coder without feature disentanglement and the phonetic encoder on QbE STD.

Visualization

In this subsection, we visualize the representations of the audio segments in the evaluation

set for further analysis.

Figures 3.12 and 3.13 show the difference between the outputs of the phonetic and
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Figure 3.12: Output of phonetic encoder and speaker encoder for six different words.

Figure 3.13: Output of phonetic encoder and speaker encoder for two different speakers.

speaker encoders. In Figure 3.12, we show the representations of the audio segments of

six different words (“eat”, “sit”, “stand”, “run”, “walk”, and “talk”) from a number of

male and female speakers. Each point in Figure 3.12 corresponds to a representation of

an audio segment; different words are represented using different colors. The points in the

left and right parts of Figure 3.12 are the representations of the same sets of segments but

with different encoders. The left part is the output of the phonetic encoder z, while the

right part is the output of the speaker encoder e. The representations were reduced to two
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dimensions using PCA. It is clear that the phonetic representations distinguish different

words, while the speaker representations from the six words are mixed together. We also

find that the speaker representations are clustered into two groups corresponding to males

and females. The setup of Figure 3.13 is parallel to that of Figure 3.12; here we show the

representations of the audio segments from two speakers. The segment representations

of the two speakers correspond to the red and blue points. The phonetic representations

do not distinguish the audio segments of the two speakers because their utterances show

no remarkable differences. The audio segments of the two speakers, however, show very

different speaker representations.

Figure 3.14: Averaged representations for four sets of words

For another test, we selected four sets of words that differ only in the last few phonemes.

We averaged the phonetic representations z of the audio segments corresponding to the

same word, and reduced the dimensionality of the averaged presentations to 2 using PCA.

The averaged representation of wordw is denoted as V (w). From the results, shown in Fig-
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Loss +ing +ed +s +er

Same as Alg. 1 0.09 0.26 0.13 0.09

No Lc & Ls 0.08 0.19 0.09 0.08

Table 3.9: Mean reciprocal rank (MRR) scores for retrieval results of vector representations

of words plus four kinds of suffixes.

ure 3.14, we see that the representations z constitute very good descriptions for the sequen-

tial phonemic structures of the acoustic segments. For example, in the leftmost figure of

Figure 3.14, we observe that V (SIT )−V (SITTING) ≈ V (STAND)−V (STANDING).

Several similar examples are found in Figure 3.14.

For quantitative analysis, we conducted an experiment to evaluate whether the differ-

ence vector between the phonetic representation of a certain word w and that of the word

plus a suffix, such as w− ing, would be consistent regardless of what w was. More specif-

ically, for a certain pair (V (w1), V (w2), we calculated V (w2) + V (w1 − ing) − V (w1),

and used mean reciprocal rank (MRR) (harmonic mean of the retrieval ranks) to serve as

the retrieval evaluation measure of V (w2− ing). The retrieval results of four sets of words

plus suffixes (w − ing, w − ed, w − s and w − er) are listed in Table 3.9. Here we also

compared the performance of representations with or without disentanglement. It can be

observed that the difference vectors mentioned above were consistent to an extent, and

again disentanglement of features improved the retrieval results.
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(A) Precision (B) Recall

Figure 3.15: SSAE learning curves on TIMIT validation set. Red curves are for N/T ′

(−rnum in (3.25)), where N is the number of segments, and T ′ is the number of acoustic

features. Blue curves are (A) precision and (B) recall.

(A) Precision (B) Recall

Figure 3.16: SSAE learning curves on Czech validation set.

3.3.7 Experiment: Segmentation

Experimental Setup

We conducted segmentation experiments on TIMIT and GlobalPhone [160], specifically

Czech, French, and German. For TIMIT the ground truth word boundaries were provided,

while for GlobalPhone we used the forced-aligned word boundaries. In this subsection,

both the RNN encoder and decoder of the SSAE consist of one hidden layer with 100

LSTM units. Feature disentanglement does not apply in the experiments of this subsec-

tion. That is, here we do not have a speaker encoder and speaker classifier. The seg-

mentation gate consists of two 256-node LSTM layers. All parameters were trained with
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Figure 3.17: An example of segmentation by SSAE. The blue dashed lines were the oracle

boundaries and the red lines were produced by SSAE.

Adam [161]. We setM in (3.27) for estimating the reward baseline rb to be 5, and λ = 5 in

(3.26). The word boundaries were initialized randomly. The proximal policy optimization

algorithm [162] was used in the policy gradient. The tolerance window for word segmen-

tation evaluation was taken as 40 ms. The acoustic features used were 39-dim MFCCs

with utterance-wise CMVN.

Experimental Results

Figure 3.15 shows the SSAE learning curves on the TIMIT validation set. Figure 3.16 is

the results for the Czech validation set; we do not show the French and German results

because their trends mirror that of Figure 3.16. We see that SSAE gradually learns to

segment utterances into spoken words because both the precision and recall (blue curves

in Figure 3.15 and Figure 3.16 respectively) increase during training. The reward rnum in

(3.25) (red curves) fluctuates initially during training and tends to converge at the end.

Table 3.10 shows the spoken word segmentation performance of the proposed SSAE

in terms of precision, recall, and F1 score. We compared the SSAE results with three base-

lines: random segments, gate activation signals (GAS) [149], and hierarchical agglomer-
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ative clustering (HAC) [151, 163]. We observe that SSAE significantly outperforms the

other baselines on all languages other than German GAS, to which it is comparable. An

example of segmentation by SSAE is shown in Figure 3.17.

TIMIT Czech French German

Method Precision Recall F1 F1

Random 24.60 41.08 30.77 22.56 32.66 25.41

HAC 26.84 46.21 33.96 30.84 33.75 27.09

GAS 33.22 52.39 40.66 29.53 31.11 32.89

SSAE 37.06 51.55 43.12 37.78 48.14 31.69

Table 3.10: Spoken word segmentation performance compared to different methods.

3.3.8 Experiment: QbyE STD

In this subsection, we evaluate the performance of audio word2vec on QbyE STD. We use

mean average precision (MAP) as the evaluation measure.

The first set of experiment is conducted on English (TIMIT), Czech, French and Ger-

man. The testing set utterances were used as spoken documents [148]. We randomly se-

lected as the query words five words for each language containing a variety of phonemes;

from the training set we used several occurrences of each of these phoneme-rich words

as spoken queries. For English, Czech, French, and German, we used 29, 21, 25, and 23

spoken queries for evaluation, respectively. The number of the highest scores among Sn

obtained in (3.28), k, in Subsection 3.3.5 and Figure 3.10 was set to be 1.

We compared the quality of the SSAE embeddingswith other kinds of audioword2vec
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Embeddings (different seg.)

Lang. Ran. DTW GAS HAC SSAE Oracle

TIMIT 0.74 12.02 8.29 0.91 23.27 30.28

Czech 0.38 16.59 0.68 1.13 19.41 22.56

French 0.27 11.72 0.40 0.92 21.70 29.66

German 0.18 6.07 0.27 0.26 13.82 21.52

Table 3.11: Spoken term detection performance in mean average precision (MAP) for

proposed SSAE as compared to audio word2vec embeddings trained with spoken words

segmented with other methods for different languages. Random baseline (Ran.) assigns

a random score to each query-document pair. Standard frame-based DTW is the primary

baseline; oracle segmentation is the upper bound.

embeddings trainedwith the segments generated using the different segmentationmethods.

Although the spoken queries are single words, the models do not know this. The spoken

queries are also segmented into segments using different segmentation approaches. The

results are listed in Table 3.11. The performance for embeddings trained with the ground

truth word boundaries (oracle) in the last column serves as the upper bound. For the ran-

dom baseline in the first column, a random score was assigned to each query-document

pair. In the second column we also report the performance of standard frame-based dy-

namic time warping (DTW) [148] as a primary baseline. From the table we observe that

the oracle method outperforms all other methods on all corpora. SSAE outperforms the

DTW baseline because DTW cannot identify spoken words if the speaker or gender char-

acteristics are very different; such varying signal characteristics are better absorbed in the
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audio word2vec training. These experimental results confirm that the SSAE embeddings

do carry the sequential phonetic structure information from the utterances, leading to the

better STD performance. In most cases, the performance of the GAS and HAC embed-

dings are not too far from random. It appears that audio word2vec does not train well if the

performance of spoken word segmentation does not exceed some minimum level. That is,

spoken word segmentation boundaries made the biggest impact on STD performance. We

also note that although the GAS segmentation performance was slightly better than that of

SSAE for German, SSAE clearly outperformed GAS on German QbyE STD.

Training Testing k = 1 k = 40

Set Set NoDis PE NoDis PE

Oracle SSAE 16.41 17.24 17.27 21.79

SSAE SSAE 15.54 17.09 17.60 19.60

Table 3.12: MAP performance of query-by-example spoken term detection (QbE STD).

NoDis and PE are the results without feature disentanglement and using the phonetic

encoder respectively. The segmentation of training and testing sets can be either oracle

or by SSAE. Different k for the search algorithm in Subsection 3.3.5 and Figure 3.10 are

tested.

Thenwe conducted experiments withmore spoken queries based on Librispeech. The

audio word2vec models were trained on the 100 hour clean data set. The spoken archive

to be retrieved is the clean testing data set. The chapters are considered as the unit to

be retrieved. We have 361 spoken queries also from Librispeech, but not included in the

training set or retrieved utterances. All the spoken queries correspond to a single word in
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the experiments.

The experimental results are shown in Table 3.12. NoDis and PE are the results

without feature disentanglement and using the phonetic encoder respectively. Oraclemeans

we segmented the audio using the word boundaries obtained by forced alignment with the

reference transcriptions. SSAE in Table 3.12 means the segments were obtained by SSAE.

Different k (k = 1 or 40) for the search algorithm in Subsection 3.3.5 and Figure 3.10 are

tested. Clearly, the output of the phonetic encoder outperformed the features without dis-

entanglement because it reduces the speaker dependence (PE v.s. NoDis) .

3.3.9 Concluding Remarks

In this section, we extend the research of audio word2vec. We use domain adversarial train-

ing to automatically learn encoders that encode different information. The experimental

results show that this thus disentangles the phonetic and speaker information. We further

propose an SSAE trained with reinforcement learning, in which word-level segmentation

and segment representation are jointly learned.

Audio embedding has many possible applications beyond STD. For example, audio

embedding can be considered as better audio representation for speech recognition. It is

possible to use a large amount of unlabeled audio to learn the embeddings to improve low-

resource speech recognition. The learned embeddings can also be used in the applications

related to spoken language understanding of low-resource language like spoken question

answering, spoken content summarization, and speech translation. These spoken language

understanding systems can take the learned audio embedding as input, instead of the tran-

scriptions of spoken content.
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Chapter 4 Multi-task Learning and Universal

Modeling of Speech Processing Tasks

In this chapter, we study multi-task learning and universal modeling of various speech

processing tasks [164, 165, 166].

4.1 Speech Representation Learning Through Self-supervised

Pretraining And Multi-task Finetuning

Recently many SSL approaches have been proposed for pretraining models for speech pro-

cessing tasks [54, 56, 57, 59, 60, 62, 63, 64, 65, 66, 67]. After a shared model is pretrained

with SSL to extract general representations, it can then be specialized on downstream tasks

with task-specific head models and simple finetuning. This method achieves state-of-the-

art performance in many applications.

To fairly evaluate the generalizability of SSL approaches without further heavy down-

stream task-specific finetuning, the SUPERB benchmark [53] is proposed to measure the

performance of a shared model across a wide range of discriminative speech processing

tasks without heavy finetuning.

Supervised multi-task learning (MTL) is to train a shared model on various down-

stream tasks [167, 168, 169, 170, 171]. This section wants to investigate if MTL on various

downstream tasks can further improve the representations from SSL. In CV [172, 173] and

NLP [86, 174], general models trained by MTL approaches can be evaluated on bench-

marks that include various tasks. However, in speech, there has not been a systematic
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study of general representation learning models trained by MTL of various speech pro-

cessing tasks.

In this section, we investigate two MTL training scenarios and also one task transfer

learning scenario. For the two MTL scenarios, we select a state-of-the-art SSL pretrained

shared model in the SUPERB benchmark as the starting point for MTL. Then we train the

shared model with MTL in two different scenarios:

• All-task MTL Finetuning: Finetune the SSL pretrained shared model with all tasks

in SUPERB. It serves as a strong baseline for SSL approaches and the following

scenarios.

• Leave-one-out MTL Finetuning: Finetune the SSL pretrained shared model with all

but one tasks in SUPERB. We can observe the influence of removing one task on

the learned representations and their performance on the other tasks.

To further examine if the representations learned with supervised MTL can generalize to

an unseen new task, we have an additional Task Transfer Learning scenario.

• We take a shared model from the Leave-one-out MTL scenario and freeze its pa-

rameters. We extract the representations with this shared model for training the

prediction head of the remaining task that is not involved in MTL finetuning.

Through the different training scenarios above, we perform a preliminary study of the

generalizability of representation learning by MTL of various discriminative speech pro-

cessing tasks on a standard benchmark.
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SSL Pretrained
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(frozen)

Head 1

Head 2

Head 3

SSL Pretrained
Shared Model 

(finetuned) 

Head 1

Head 2

Head 3

SSL Pretrained
Shared Model 

(finetuned) 

Head 1

Head 2

Head 3

MTL Finetuned
Shared Model 

from (b-2) 

(frozen)

Head 1

Head 2

Head 3

(a) SSL Pretraining

1. The shared model is pretrained with SSL. 
2. The shared model is frozen when the heads
are trained.

(b-1) All-task MTL Finetuning

The shared model is pretrained with SSL and
then further finetuned with MTL on all tasks.

The shared model is pretrained with SSL and then
further finetuned with MTL on all but one tasks.

(c) Task Transfer Learning

1. The shared model is pretrained with SSL and
then further finetuned with MTL on all but one tasks. 
2. The shared model is frozen when the head of the
remaining task is trained. 

(b-2) Leave-one-out MTL Finetuning

Figure 4.1: Four different training scenarios. Scenarios (b-1) and (b-2) require the pre-

trained shared model from (a). Scenario (c) requires the finetuned shared model from

(b-2). The parameters of the shared model in scenarios (a) and (c) are frozen.

4.1.1 Training Scenarios

In this subsection, we describe four related training scenarios in the following subsec-

tions: SSL Pretraining, All-task MTL Finetuning, Leave-one-out MTL Finetuning, and

Task Transfer Learning. The two MTL finetuning scenarios require the SSL pretrained

shared model, and the Task Transfer Learning scenario requires the shared model from the

Leave-one-out MTL Finetuning scenario.

SSL Pretraining

Many SSL approaches are evaluated and compared on the ten tasks in SUPERB [53]. For

each SSL approach, we first pretrain a model with SSL objectives. Then we use this pre-

trained model as the shared model to extract representations for all downstream tasks. The

parameters of the pretrained model are frozen. Then we train each task-specific prediction

head (small downstream model) with the fixed representations, as illustrated in Figure 4.1
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(a).

All-task MTL Finetuning

We take the shared model pretrained with SSL as the starting point. Then we further

finetune the shared model with MTL by jointly training it with downstream task-specific

heads of all tasks in SUPERB, as illustrated in Figure 4.1 (b-1). In this way, the shared

model can be updated by the gradients of all tasks to fit the respective objectives of each

task. Therefore, the representations extracted from the shared model can perform well

on the tasks involved in MTL. It serves as a strong baseline for SSL approaches and the

following scenarios. To further examine the generalizability of representation learning by

supervised MTL, we have two additional training scenarios below.

Leave-one-out MTL Finetuning

Similarly, we take the shared model pretrained with SSL as the starting point. Then we

further finetune the shared model with MTL by jointly training it with downstream task-

specific heads of all but one tasks in SUPERB, as illustrated in Figure 4.1 (b-2). Compared

to the finetuned shared model with All-taskMTL Finetuning, we can observe the influence

of removing one task on the learned representations and their performance on the other

tasks.

Task Transfer Learning

We take the finetuned shared model with Leave-one-out MTL Finetuning as the pretrained

shared model in this scenario. Then we freeze the shared model, and only train the down-

stream head model of the remaining task that is not used in MTL finetuning, as illustrated
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in Figure 4.1 (c).

Comparing the representations in this scenario with those learned with only SSL ap-

proaches, we can observe the generalizability of the representations learned with MTL on

a new task compared to SSL only. On the other hand, in comparison with the represen-

tations learned with All-task MTL Finetuning, we can observe how the performance of a

task is influenced if this task is not involved in the MTL finetuning.

4.1.2 Experimental Setup

Tasks In SUPERB

Ten tasks in SUPERB can be used to investigate four aspects of speech: content (Phoneme

Recognition (PR), Automatic Speech Recognition (ASR), Keyword Spotting (KS), and

Query by Example Spoken TermDetection (QbE)), speaker (Speaker Identification (SID),

Automatic Speaker Verification (ASV), and Speaker Diarization (SD)), semantics (In-

tent Classification (IC) and Slot Filling (SF)), and paralinguistics (Emotion Recognition

(ER)). Since no downstream model training is required in QbE, we only perform MTL

experiments and compare the results on the other nine tasks.

• PR converts an utterance into a sequence of phonemes. Alignment modeling is

included in the PR task to avoid the potential inaccurate forced alignment. The

evaluation metric is the phone error rate (PER).

• ASR transcribes an utterance into a sequence of words. While PR analyzes the

performance of modeling phonetics, ASR reflects the performance of recognizing

more common text units in a real-world scenario. The evaluation metric is the word

error rate (WER).
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• KS identifies preregistered keywords in an utterance by classifying the utterance into

a predefined set of words. The task is important for on-device speech processing and

requires low response time. The evaluation metric is the accuracy (ACC).

• SID classifies the speaker identity of an utterance in a multi-class classification set-

ting, where the set of speakers are the same for both training and testing. The eval-

uation metric is the accuracy (ACC).

• ASV verifies whether the speakers of a pair of utterances match in a binary classi-

fication setting. Different from SID, the speakers in the testing set may not appear

in the training set. Therefore, ASV is more challenging than SID. The evaluation

metric is the equal error rate (EER).

• SD segments an utterance and classifies the segments into speaker identities, i.e.,

who is speaking when. Multiple speakers can speak simultaneously. Rich and var-

ious speaker characteristics should be encoded in the extracted representations for

each frame to represent mixtures of signals. The evaluation metric is the diarization

error rate (DER).

• IC classifies an utterance into predefined classes of speaker intents. The evaluation

metric is the accuracy (ACC).

• SF converts an utterance into a sequence of semantic slot-type classes. For example,

FromLocation can be a slot-type for a spoken word Taipei, which is known as a slot-

value. Both slot-types and slot-values are essential for an SLU system. Therefore, we

use two evaluation metrics for slot-types and slot-values respectively: the slot-type

F1 score (F1) and the slot-value character error rate (CER).
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• ER predicts an emotion class for each utterance. The evaluation metric is accuracy

(ACC).

As for the datasets and splits used for each task, we follow the original settings in

SUPERB (PR [137], ASR [137], KS [175], SID [176], ASV [176], SD [177], IC [178],

SF [179], and ER [180]).

The SSL Pretraining Approach In Experiments

Many SSL approaches are evaluated and compared on the tasks in SUPERB. Among them,

HuBERT [65] achieves the overall best performance. Therefore, we select HuBERT as the

SSL pretraining approach across all of our experiments.

HuBERT utilizes an offline clustering algorithm on hidden representations to provide

aligned target labels for a BERT-like [109] prediction. The clustered labels at the masked

locations serve as the prediction targets. We use a weighted sum of hidden representations

of all layers in the HuBERT model as the representations for downstream heads, as in

SUPERB.

Model Architecture and Implementation Details

Since MTL requires more computational resources than single-task training, we adopt Hu-

BERT Base rather than Large in SUPERB as our shared model architecture. For task-

specific head architectures, we simply follow the settings in SUPERB. We use a batch size

of 2 for two MTL finetuning training scenarios, and a batch size of 8 for downstream head

training in the Task Transfer Learning scenario. Each model is trained with an Adam opti-

mizer with a linearly warmup learning rate from 0 to 1e-5 for the first 5000 steps and then
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Table 4.1: Experimental Results of training scenarios described in Subsection 4.1.1. We

have the numbers in Scenario (b-2) be bold or underlined if they are better or worse than

(b-1) respectively.

Scenario
Tasks for MTL ASR PR SF SD ER IC KS ASV SID

Finetuning WER↓ PER↓ F1↑ CER↓ DER↓ ACC↑ ACC↑ ACC↑ EER↓ ACC↑

(a) SSL N/A 6.42 5.41 88.53 25.20 5.88 64.24 98.34 96.30 5.11 81.42

(b-1) SSL+MTL all 6.22 3.61 87.56 26.76 4.93 67.28 99.60 97.34 6.76 90.86

(b-2): SSL+MTL

all but ASR X 3.63 87.28 27.11 4.89 65.07 99.63 97.57 7.78 90.69

all but PR 6.79 X 86.94 27.66 4.81 66.73 99.66 97.44 7.94 91.16

all but SF 6.10 3.39 X X 4.73 65.71 99.58 97.18 7.61 90.70

all but SD 6.28 3.54 87.94 26.31 X 66.73 99.63 97.11 7.49 90.79

all but ER 6.17 3.40 87.45 26.90 4.77 X 99.55 97.27 7.19 90.51

all but IC 6.13 3.34 87.65 26.94 4.78 66.08 X 97.27 6.74 90.55

all but KS 6.17 3.55 87.83 26.88 4.91 66.27 99.71 X 7.86 90.67

all but ASV 5.90 2.79 87.88 26.52 3.61 64.88 99.58 97.44 X 85.06

all but SID 5.95 3.25 87.33 27.39 4.50 68.66 99.55 97.27 9.00 X

(c) Task Transfer N/A 6.27 5.79 88.14 26.24 5.80 64.24 97.42 96.33 7.55 62.05

a linearly decaying learning rate to 0 for 195000 steps.

4.1.3 Experimental Results

All experimental results are presented in Table 4.1. An up-/down-arrow beside an evalua-

tion metric means that better performance results in a higher/lower number of that metric.

The results are grouped according to four different training scenarios corresponding to the

subsections in Subsection 4.1.1 respectively.
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The Performance Of All-task MTL Finetuning

From the comparison between Scenario (a) and Scenario (b-1), we observe that the per-

formance of the shared model finetuned with All-task MTL is better in the tasks ASR, PR,

SD, ER, IC, KS, SID, and worse only in the tasks SF and ASV than SSL pretraining. It

indicates that MTL is a strong baseline for SSL pretraining or other representation learning

approaches.

One thing worth noting is that all tasks except for ASV do not suffer from overfitting

in terms of the validation scores during training. However, the model is prone to overfit on

ASV. In Scenario (a), the model checkpoint of a downstream head can be determined by

the best validation score during training for each task respectively. Yet in Scenario (b-1),

since the shared model is jointly trained with the downstream heads of all tasks, it is hard

to select the model checkpoint based on the validation scores of all tasks. In this section,

we simply select the last model checkpoint after 200,000 training steps for all tasks. It may

be a reason for the worse performance of MTL finetuning on ASV. We leave exploring a

better method to select the model checkpoint with MTL in future work.

The Influence Of Removing One Task In MTL Finetuning

The rows in Scenario (b-2) show the results of finetuning the shared model with Leave-

one-out MTL. To compare these results with Scenario (b-1) more clearly, we have the

numbers in Scenario (b-2) be bold or underlined if they are better or worse than (b-1)

respectively. Furthermore, we calculate the relative score increases/decreases of Scenario

(b-2) compared to Scenario (b-1), and plot two relation graphs in Figure 4.2 accordingly.

For SF, we use CER to plot the edges because the relative changes are small in terms of
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Figure 4.2: Two relation graphs of tasks. If a task A performs worse/better after removing a

task B inMTL, we connect an edge fromB to A in the improvement/hurt graphs, indicating

B can improves/hurts the performance of A. The width of an edge is thin/medium/thick if

the relative score change is in the range [0.5%, 2%), [2%, 8%), or larger than 8%. If the the

relative score change is less than 0.5%, we consider it negligible and no edge is connected.

F1. If a task A improves/regresses after removing another task B in MTL, it means that B

can hurt/help A in MTL.

• For ASR, PR is an important auxiliary task for ASR, and SD helps a little. ASR

performs better after removing any of the other tasks.

• For PR, ASR helps in MTL while the other tasks hurt the performance of PR. We

can observe that content recognition tasks such as ASR and PR are hurt the most by

speaker recognition tasks such as ASV and SID.

• For SF, ASR, PR, ER, and SID help in MTL. IC and KS help a little in terms of F1

but hurt in terms of CER. SD and ASV hurt SF.

• For SD, all of the other tasks hurt SD. SD is also hurt themost by speaker recognition

tasks such as ASV and SID. Although SD, ASV and SID are all related to speaker
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characteristics, SID and ASV focus on the utterance-level embedding, while SD

aims to distinguish frame-level speaker characteristics. Therefore, the fine-grained

information needed by SD may be lost when jointly trained with ASV or SID.

• For ER, all of the other tasks except for SID help ER.

• For IC and KS, the influences of the other tasks are negligible.

• For ASV, all of the other tasks except for IC helpASV.As discussed previously, ASV

suffers from severe overfitting. Therefore, jointly learning ASV with other tasks can

mitigate this issue, especially with SID.

• For SID, all of the other tasks except for PR help SID. ASV especially helps a lot

while the others help a little.

From another perspective, the results may provide a different insight in addition to

the evaluation of supervised MTL as a representation learning. If we focus on a certain

primary task, we may select proper auxiliary tasks to assist the primary task based on these

MTL experimental results. For example, if we want to have a better performance on ER,

we can jointly train ER with all of the other tasks except for SID.

The transitive relations of tasks in MTL need to be further verified. For example,

supposewe know jointly training a taskAwith another task B can improve the performance

of A; and we also know jointly training Awith another task C can improve the performance

of A. Yet, we cannot conclude that jointly training A with B and C simultaneously can

improve A’s performance. We leave more in-depth research of MTL and its optimization

on speech processing tasks in future work.
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The Performance Of Task Transfer Learning

To further examine the generalizability of representation learning by MTL, we present the

results of the Task Transfer Learning scenario in Table 4.1 (c). Compared to Table 4.1

(a), all of the tasks except for ASR and KS in Scenario (c) perform worse. It indicates

SSL pretraining is still a more generalizable representation learning approach for a new

downstream task. On the other hand, compared to Table 4.1 (b-1), all of the tasks except

for SF in Scenario (c) perform worse. It indicates whether a task is involved in MTL is

crucial to the performance of this task.

To obtain better generalizability, it is worth trying to train the shared model with both

SSL and MTL simultaneously as semi-supervised MTL representation learning. We leave

this exploration in future work.

4.1.4 Conclusion And Discussion

In this section, we investigate different training scenarios of supervised MTL as a speech

representation learning approach along with SSL pretraining on a benchmark with various

discriminative speech processing tasks. We analyze the generalizability of representations

learned with supervised MTL empirically.

This section is only a preliminary study of MTL with various discriminative speech

processing tasks. The performance of MTL is dependent on many factors, such as the

amount of data, task relationships, noise and so on. These factors should be isolated and

investigated with more theoretical analyses and empirical experiments in the future.

In the next section, we further propose a universal modularized model for not only

discriminative but also generative speech processing tasks.
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4.2 SpeechNet: A Universal Modularized Model for Speech

Processing Tasks

In the previous section, we explore multi-task learning of discriminative speech processing

tasks, where input speech is encoded into representations by a shared model for various

discriminative downstream tasks. In this section, we propose a more flexible universal

model for various discriminative and generative speech processing tasks, where the task

input or output can be either speech or text.

There is a wide variety of speech processing tasks, for example, automatic speech

recognition (ASR), speech enhancement (SE), speaker classification (SC), text-to-speech

(TTS) synthesis, and voice conversion (VC), etc. These tasks involve different capabili-

ties related to speech processing ranging from extracting content information from speech

signals to generating speech signals. In literature, model networks are usually designed

and tuned separately for different tasks, and each aims to expert a specific ability for pro-

cessing speech. However, when we only focus on one task, we may ignore some useful

abilities that can be shared across tasks to make the tasks better. Human can learn different

speech tasks and transfer the knowledge of different abilities between tasks. Can we train

a universal model that can learn all the different speech processing abilities jointly in one

model?

In this section [165], we propose SpeechNet, a universal model for various speech

processing tasks. Inspired by T5 [87], we treat all speech processing tasks as the format: a

task that takes speech/text input and produces speech/text output. In SpeechNet, there are

basic modules to handle different modalities, as illustrated in Figure 4.3 and introduced
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below:

• Speech input: We use Prosody Encoder, Speaker Encoder and Content Encoder to

extract prosody, speaker and content embeddings from speech.

• Speech output: We use Audio Decoder to synthesize audio.

• Text input: We use Text Encoder to map the input text to the content embedding

space (which is the same output space of Content Encoder).

• Text output: We use Text Decoder to produce text according to content embedding.

Most of the speech processing tasks can be done by concatenating the modules above,

making multi-task learning (MTL) for a wide variety of speech processing tasks possible.

It has been shown that the universal models trained to solve multiple tasks can benefit

from multi-task learning (MTL) [181, 182, 183], improving the generalizability and per-

formance of models in NLP and computer vision. During MTL, the tasks share the same

modules, and the gradients computed from different objective functions of these tasks are

accumulated to update the shared modules.

This section shows that SpeechNet can simultaneously learn five common and im-

portant speech processing tasks: ASR, SE, SC, TTS, and VC. We conduct experiments

with commonly used datasets for the five tasks. Based on the results of MTL, we know

which combinations of speech tasks are effective. SpeechNet is modularized and flexible

for incorporating more modules, tasks, and training criteria in the future.
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Figure 4.3: The architecture of SpeechNet is on the left. The six core modules in Speech-

Net are Prosody Encoder, Speaker Encoder, Content Encoder, Audio Decoder, Text En-

coder, and Text Decoder. More details about Audio Decoder, Text Encoder and Text De-

coder are shown in a corresponding block on the right, with the same index and the same

background color as that on the left of the figure.

4.2.1 SpeechNet: a universal modularized model for speech process-

ing tasks

Any speech processing task can be treated as taking speech or text as input or output.

SpeechNet contains six core modules for speech and text, respectively, to handle different

modalities. In this subsection, the six modules are introduced. How to concatenate the

modules to do the five tasks used in this section is described. At the end of this subsection,

we discuss two problems of TTS and VC in this framework and further propose a modified

version of SpeechNet by adding one additional module, Prosody Predictor.
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Modules in SpeechNet

Here we discuss the detailed formulation of each module presented in Figure 4.3 respec-

tively, while describing the model architecture details in Subsection 4.2.2.

Prosody Encoder: EP When speech X = {x1, ...,xT} with frame length T serves as

the input, it can be passed through Prosody Encoder EP to obtain a frame-level prosody

embedding vector sequence

Vp = EP (X), (4.1)

Here we want to encode all the speaker and prosody characteristics in speech into Vp.

Speaker Encoder: ES The prosody embedding vectors can be further passed through

Speaker Encoder ES to obtain an utterance-level speaker embedding vector

vs = ES(Vp), (4.2)

which represents the speaker characteristics in speech.

Content Encoder: EC The speech input can also be passed through Content Encoder

EC to get a sequence of frame-level content embedding vectors

Vc = {vc1 , ...,vcT′} = EC(X), (4.3)

which contain content information in speech. T ′ is the length of content embedding vec-

tors, which can be equal to the original frame length of speech T or be shorter for more

compact embeddings.

87



doi:10.6342/NTU202302463

Audio Decoder: DA When the output is speech, Audio Decoder DA takes a sequence

of prosody embeddingsVp and a sequence of content embeddingsVc as input and output

the desired speech. Specifically, the content embedding is firstly transformed by Content

Decoder DC , concatenated with the prosody embeddings, and then passed into Merge

Decoder DM to output the speech

X′ = DA(Vp,Vc) = DM([Vp;DC(Vc)]). (4.4)

Text Encoder: ET When textY = {y1, ..., yL}with length L serves as input, it is firstly

encoded into unit token vectors

Vu = {vu1 , ...,vuL
} = EU(Y), (4.5)

through Unit Encoder EU .

The number of input text tokens is usually much smaller than the frame length of

output speech. To match the content embedding encoded from text and speech, we need to

predict the frame length of each unit token, and replicate the unit token vectors accordingly

to obtain the frame-level content embedding vectors with the same length from speech. It

is called the length regulation technique originally proposed in TTS [184]. Specifically,

we use Duration Predictor DP to predict the frame lengths of each text units according to

the speaker characteristics

l′u = {l′u1
, ..., l′uL

} = DP ([Vu;vs]), (4.6)

and replicates unit token vectors according to frame lengths through Length Regulator LR

to obtain frame-level content embedding vectors

Vc = {vc1 , ...,vcT} = LR(Vu, l
′
u),where T = ΣL

i=1l
′
ui
. (4.7)
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For example, if the text input sequence and corresponding unit token vectors are {a, b, c},

{va,vb,vc} respectively and the predicted frame lengths {1, 2, 1}, the content embedding

vectors are Vc = {va,vb,vb,vc}.

It is worth noting that although the speaker embedding vector vs is used during the

generation of content embedding vectors, it is only used for duration prediction accord-

ing to speaker characteristics and replication of text vectors. Therefore, each content em-

bedding vector does not contain speaker information. Overall, the generation of content

embedding vectors through Text Encoder ET can be described as

Vc = ET (Y,vs) = LR(EU(Y), DP ([EU(Y);vs])). (4.8)

Text Decoder: DT When the output is text, Text Decoder DT takes the content embed-

ding vectors as input and output the text sequence. In recent state-of-the-art sequence-

to-sequence ASR models, two text sequences are decoded as output by two decoders:

sequence-to-sequence (S2S) and connectionist temporal classification (CTC) decodersDS2S

andDCTC . During the inference, we can simply select the text with the better decoder dur-

ing training.

[Y′CTC;Y
′
S2S] = DT (Vc) = [DCTC(Vc);DS2S(Vc)]. (4.9)

Five tasks for MTL

In this subsection, we describe how to combine the modules in SpeechNet into different

speech tasks, which are also depicted in Figure 4.4.
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Figure 4.4: This figure shows how to combine the modules in SpeechNet into five dif-

ferent speech tasks. Each module block in this figure shares the same color and index in

Figure 4.3.

Automatic Speech Recognition (ASR) In ASR, the input is speechX and the output is

the corresponding transcription text Y′CTC and Y′S2S:

[Y′CTC;Y
′
S2S] = DT (EC(X)). (4.10)

The objective function is similar to those used in previous works [185, 186], which is a

weighted sum of a S2S loss and a CTC loss:

LASR = −αASR logPCTC(Y
′
CTC|X)− (1− αASR) logPS2S(Y

′
S2S|X), (4.11)
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wherePS2S andPCTC are the S2S and CTC frame-wise posterior distributions ofY′S2S and

Y′CTC given corresponding source X respectively, and αASR is a scalar hyperparameter.

In MTL, an auxiliary reconstruction objective function is also applied for aligning

content vector space with other tasks:

Lrecon = ∥ DA(EP (X), EC(X))−X ∥2 . (4.12)

The final loss for ASR is

LASR_total = LASR + Lrecon. (4.13)

Speech Enhancement (SE) In SE, the model takes noisy speech as input and outputs

clean speech. Here we encode the input noisy speech Xnoisy into two parts, prosody em-

beddings and content embeddings, and decode back the denoised speech X′:

X′ = DA(EP (Xnoisy), EC(Xnoisy)). (4.14)

The objective function is the mean absolute error (MAE) between the predicted and clean

speech, X′ and Xclean, for more sensitivity to noise than mean square error (MSE):

LSE = |X′ −Xclean|. (4.15)

Speaker Classification (SC) In SC, the model takes speech as input and outputs the

speaker identity. Here we encode the input speechX into a speaker embedding vector, and

use a speaker classifier CS to recognize the speaker S ′:

S ′ = CS(ES(EP (X))). (4.16)

The objective function is the cross entropy loss with regard to speaker labels:

LSC = − logP (S ′|X). (4.17)

91



doi:10.6342/NTU202302463

Text-to-speech Synthesis (TTS) In TTS, we want to output a speech X′ according to a

text sequence Y conditioned on speaker characteristics. Specifically, we maintain a train-

able speaker embedding table, where every speaker in the training data corresponds to

exactly one embedding vector in the table. During training, we hope the speaker embed-

ding output by Speaker Encoder to be as close as possible to the embedding in the table.

Therefore we have a MSE speaker loss:

Lspeaker =∥ ES(EP (X))− v′s ∥, (4.18)

where v′s is the corresponding speaker embedding of X in the table.

Then the overall TTS process becomes:

X′ = DA(EP (X), ET (Y,v′s)). (4.19)

The objective function in training is the sum of (a) the mean square error (MSE) between

the predicted and target speechX′ andX, (b) theMAE between the logarithms of predicted

and original frame durations of text units, log(l′u) and log(lu) and (c) Lspeaker:

LTTS =∥ X′ −X ∥2 +| log(l′u)− log(lu)|+ Lspeaker. (4.20)

There are two problems with this setting. Firstly, during training, there is no additional

constraint, so Prosody Encoder and Audio Decoder alone may become an autoencoder,

and the content embeddings can be ignored. Secondly, during inference, since the target

speech is not available as input of Prosody Encoder, the input speechX has to be any other

speech sentence uttered by the same speaker. However, the prosody of a speech is closely

related to the content and duration of the speech. Because the prosodies of input speech of

Prosody Encoder and target speech do not match, the generated speech cannot be produced

well. We will address these two issues later.
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Voice Conversion (VC) In VC, we try to convert the voice of an audio clip from one

speaker to another while preserving the content. Specifically, we input two speech utter-

ances X1 and X2 with the same content but different speakers, and output the converted

speech utterance X′12 with the content of X1 and speaker characteristics of X2

X′12 = DA(EP (X2), EC(X1)). (4.21)

Besides, to make the training more stable and easier, we also train the network to recon-

struct the original utterances X1 and X2:

X′1 = DA(EP (X1), EC(X1)). (4.22)

X′2 = DA(EP (X2), EC(X2)). (4.23)

The objective function is the sum of MSE losses of conversion and reconstruction:

LV C =∥ X′12 −X2 ∥2 + ∥ X′1 −X1 ∥2 + ∥ X′2 −X2 ∥2 . (4.24)

During inference of this setting, since the target converted speech is not available as input

of Prosody Encoder, the input speechX2 has to be any other speech sentence uttered by the

same speaker. Similar to TTS, because the prosodies of input speech of Prosody Encoder

and target converted speech do not match, the generated speech cannot be produced well.

We are now going to address this issue.

Adding one more module for TTS and VC: Prosody Predictor

We point out the issues of TTS and VC in the previous two paragraphs. Here we ad-

dress them by proposing a modified version of SpeechNet by simply adding one additional

module, Prosody Predictor, to generate the estimated prosody embeddings of target speech
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Figure 4.5: The modified architecture of SpeechNet by adding Prosody Predictor.

according to content and speaker embeddings

V′p = PP (Vc,vs). (4.25)

During training, there is one additional loss to make the estimated prosody V′p as close as

possible to the original target prosody Vp generated by Prosody Encoder:

(In TTS) Lprosody_TTS =∥ EP (X)− PP (ET (Y,v′s),v
′
s) ∥2 . (4.26)

(In VC) Lprosody_V C =∥ EP (X12)− PP (EC(X1), ES(EP (X2))) ∥2 . (4.27)

Then the Audio Decoder takes V′p as input in TTS and VC. The modified version of

SpeechNet is shown in Figure 4.5.

With Prosody Predictor, during inference, the generation of speech does not need to

rely on the prosody from the speech input. The overall TTS process becomes:

X′ = DA(PP (ET (Y,v′s),v
′
s), ET (Y,v′s)). (4.28)
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And the overall VC process becomes:

X′12 = DA(PP (EC(X1), ES(EP (X2))), EC(X1)). (4.29)

For the experiments in Subsection 4.2.5, we use SpeechNet with Prosody Predictor. We

also present experiments with SpeechNet without Prosody Predictor.

4.2.2 Experimental setup

This subsection introduces the model architecture, input/output formats of data, datasets,

and evaluation metrics used in this section.

Model architecture

Transformers [187] have achieved state-of-the-art performances on many NLP tasks [109,

174]. More recently, many tasks in the speech domain started to use transformer-based

models, such as ASR [188, 189, 185], SE [190, 191, 192], SC [193, 194, 195], TTS [196,

197, 198] and VC [199, 200, 201].

In this section, we adopt Conformer [188] layers as the architectures for Prosody En-

coder, Content Encoder, Audio Decoder and Prosody Predictor. The convolution blocks

in Conformer make it empirically better than Transformer for speech data. Speaker En-

coder is a self-attention pooling model [202, 203]. For Unit Encoder, Duration Predictor

and Length Regulator in Text Encoder, we use similar Transformer-based architectures as

those in FastSpeech 2 [196]. In the original FastSpeech 2, since it performs single-speaker

TTS, no additional speaker embedding is required. In our SpeechNet, we concatenate the

unit token vectors and speaker embedding vector as the input of Duration Predictor for the

length regulation. Finally, the ordinary Transformer layers are adopted for S2S Decoder
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in Text Decoder, and CTC Decoder in Text Decoder is a single-layer fully-connected net-

work. We insert 1D-convolution blocks right before Content Encoder for down-sampling.

It is commonly used in ASR to obtain more compact content information [188, 189, 185].

Accordingly, we apply a similar down-sampler on content embedding vectors produced

by Text Encoder. We also use 1D-convolution blocks right after Prosody Predictor and

Content Decoder in Audio Decoder for up-sampling.

4.2.3 Implementation details

The batch size of each task is 16. We adopt AdamW optimizer [204] with learning rate

3.0e-4, epsilon 1.0e-12 and betas [0.9, 0.999]. The dropout rate is set to 0.1 except for

the dropout rate 0.5 in Duration Predictor in Text Encoder. All the model parameters have

decaying factor 0.01 except for those with names containing ”bias”, ”norm-ff.weight”,

”norm-mha.weight”, ”norm-conv.weight” and ”norm-final.weight”. The numbers of Con-

former layers in each module are: Content Encoder 6, Speaker Encoder 3, Content De-

coder in Audio Decoder 3, Merge Decoder in Audio Decoder 3, Unit Encoder in Text

Encoder 4 and S2S Decoder in Text Decoder 4. The CNN down- and up-samplers have 2

1d-convolution blocks with sample rate 4. The α for ASR in (4.11) is 0.3. The σ’s for the

multi-task objective loss are initialized as 1.

The hidden dimension size is 256, and the linear unit size is 1024. The head number

is 4 except for the head number 2 in Unit Encoder in Text Encoder. We use a linear learning

rate warmup with 10000 steps and a linear decay with 100000 steps.

All the experiments are conducted on NVIDIA V100 GPUs. Each trial requires 2

GPUs with memory size 32GB.
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Datasets and evaluation metrics

We use the commonly adopted dataset and evaluation metric for each task.

For ASR, LibriSpeech [137] is a corpus of read English speech from audiobooks of

the LibriVox project. We perform ASR on the “train-clean-100” set for training, which

contains 100-hour speech uttered by 251 speakers, and on the “test-clean” set for evalua-

tion. For easier comparison in our experiments, we use greedy decoding and do not use

beam-search decoding and additional language model rescoring during the inference. We

measure the performance of ASR by the word error rate (WER).

For SE, Nonspeech [205] is a widely used noise dataset containing 100 types of

noises. We choose LibriSpeech [137] as clean speech and randomly augment with noises

fromNonspeech with various SNRs to create paired data for both training and testing. Dur-

ing the training stage, the “train-clean-100” set is augmented with SNR ∈ {3, 6, 9}, while

in the testing stage, the “test-clean” set is augmentedwithSNR ∈ {−8,−6,−4,−2, 0, 2, 4, 6, 8},

providing amore severe condition to test whether the model can generalize. For evaluation,

we report SiSDR, PESQ[206], and STOI [207]. The first one measures the scale-invariant

signal-to-distortion ratio, and the others align well with human’s perspective. We select

the checkpoint of the best SiSDR on validation set for testing.

For SC, VoxCeleb1 [208] contains speech uttered by 1,251 celebrities extracted from

videos uploaded to YouTube. We take 100 speakers from the official training and testing

sets in this section. The speaker classification accuracy is used as the evaluation metric of

SC.

For TTS, LibriTTS [209] is a multi-speaker English corpus of read English speech

from the audiobooks of the LibriVox project. Utterances with significant background noise
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are excluded in LibriTTS. Montreal Forced Aligner [210] is used to obtain the durations of

phonemes. We randomly select 200 utterances from the “train-clean-100” set for testing

and the remaining ones for training. The MSE between the output and groundtruth mel-

spectrograms serves as the evaluation metric of TTS.

For VC, CMU Arctic [211] is a corpus which consists of speech utterances by 18

speakers recorded under studio conditions. Every speaker utters the same set of sentences.

In this section, 1133 pairs of data are selected as testing data, and the remaining are for

training. Each training instance is a pair of speech utterances by different speakers. The

MSE between the output and groundtruthmel-spectrograms serves as the evaluationmetric

of VC.

For further evaluation of TTS and VC, we apply a linear transformation to recover

linear-scale spectrograms and the Griffin-Lim vocoder [212] to convert spectrograms back

to wav files for listening.

For all speech, we use 16kHz sample rate and extract the 80-dimmel-spectrogram fea-

tures with 25 ms window size and 10 ms hop size. Then we add the first- and second-order

derivatives and apply the cepstral mean and variance normalization (CMVN) commonly

used for ASR and SC in previous works. The text input units for TTS are phonemes, and

the output text units for ASR are subword units by the Byte Pair Encoding (BPE) [213],

so the cross entropy loss is computed on the subword units.

The 100 speakers in VoxCeleb1 selected for SC are from id10001 to id10099. The

testing sets in CMU Arctic are aew and slt.
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4.2.4 Optimization Strategies

During MTL, some tasks may share some modules, and the gradients computed from

different objective functions of these tasks are accumulated to update the shared modules.

However, there are two problems: (1) how to balance these objective functions with differ-

ent types and scales, and (2) how to deal with conflicting gradients of parameters between

different tasks. We experiment with two popular MTL optimization strategies, tackling

these two problems respectively.

Loss balancing for MTL

We adopt an automatic loss balancing technique (which we denote as “AutoLoss” in the

experiments) based on the task-dependent data-independent uncertainty measurement of

each task [167]. It has been shown effective to capture the relative confidence between

tasks and learn loss weights for tasks.

The overall objective function of n objective functions can be defined as:

Σn
i=1L

′
i = Σn

i=1(
1

σ2
i

Li + log σi), (4.30)

where L′i is the scaled version of the original loss Li with the introduction of learnable

scalar variables σ’s.

Eliminating gradient conflicts in MTL

PCGrad [170] is a gradient manipulation approach to handle conflicting gradients on the

same set of parameters. Specifically, for parameters in every layer of themodel, we perform

PCGrad: If the gradients between two tasks have negative cosine similarity, the gradient
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of one task is projected onto the normal plane of the gradient of the other task. In this way,

the conflicting component of the gradient no longer exists.

4.2.5 Experiments

We conduct single-task, two-task, and five-task learning experiments with the five tasks

described in Subsection 4.2.1. Moreover, We experiment with two popular optimization

strategies for MTL, “AutoLoss” and “PCGrad”, which are described in Subsection 4.2.4,

for all of the two-task learning experiments. We also have the ablation study of two opti-

mization strategies for five-task learning.

Single-task and two-task learning results

The single-task and two-task experiment results are shown in Table 4.2. Each column

shows the evaluation performance with a specific metric of a task. The first row is the

name of the evaluation task, and the second row is the evaluation metric. The down-/up-

arrow beside the evaluation metric means the better performance results in lower/higher

numbers of that metric. The diagonal cells with pink shadow are the single-task results.

The off-diagonal cells represent the results of joint training with a specific auxiliary task1.

The best number on each metric is highlighted with bold font. If the numbers of multi-task

are better than the single-task ones, the numbers are underlined.

We also plot an ”improvement graph” based on two-task learning results, as shown

in Figure 4.6, to illustrate the beneficial relationship between all task pairs. For example,

if the model trained with ASR and SE improves the ASR WER compared to single-task

ASR, we connect a directed edge from SE to ASR to denote the former benefits the latter.
1The columns are for the evaluated tasks, while the rows for the auxiliary tasks
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Table 4.2: The results of single-task (pink cells) and two-task learning of five tasks.

ASR SE SC TTS VC

Auxiliary WER↓ PESQ↑ SISDR↑ STOI↑ ACC↑ MSE↓ MSE↓

ASR 0.329 2.46 5.62 0.880 0.746 3.06 5.93

SE 0.320 2.44 5.90 0.877 0.820 3.08 6.06

SC 0.307 2.15 4.02 0.850 0.860 2.98 6.04

TTS 0.322 2.29 4.96 0.865 0.879 2.94 6.02

VC 0.316 2.02 4.80 0.847 0.703 3.57 5.95

ASR

TTS

SE

SC

VC
2.7%

6.7% 2.1%

4.0%

PESQ 0.8%
SISDR -4.7%
STOI 0.3%

2.2%

0.3%

Figure 4.6: The improvement graph based on two-task learning results. We show the

relative improvement beside the edge. The dashed line represents that PESQ and STOI are

improved but SISDR is not.

We can observe ASR can be improved by all of the other tasks in two-task learning

from the results. It indicates the related information provided by the other tasks can help

Content Encoder to generate content embeddings for Text Decoder to produce text tran-

scriptions. SE is improved slightly by ASR in terms of the PESQ and STOI metrics. The
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Table 4.3: The ablation study of two optimization strategies with five-task learning of five

tasks.

ASR SE SC TTS VC

Optim Strategy WER↓ PESQ↑ SISDR↑ STOI↑ ACC↑ MSE↓ MSE↓

AutoLoss + PCGrad 0.511 1.99 3.71 0.837 0.451 3.36 6.01

AutoLoss 0.600 2.04 3.68 0.833 0.101 3.26 5.88

PCGrad 0.839 2.00 3.91 0.838 0.466 3.19 5.96

No Strategy 0.538 2.12 3.82 0.838 0.044 3.18 5.86

performance of SC is improved with the aid of TTS. VC is also slightly improved by ASR.

Five-task learning results and ablation study of optimization strategies

The ablation study of two optimization strategies with five-task learning is shown in Ta-

ble 4.3. The optimization of five-task learning is much more difficult than single-task or

two-task learning, as we can see, all of the performances degrade except for VC. Specifi-

cally, without PCGrad strategy, i.e. “AutoLoss” and “No Strategy” in the Table, SC can-

not even be learned effectively. However, VC can be improved in these cases compared to

single-task learning. With only “PCGrad” strategy, ASR performs the worst. The model

can learn all of the tasks only when using both AutoLoss and PCGrad strategies. But the re-

sults are still worse than single-task learning. This ablation study shows that optimization

strategies influence the training of MTL significantly. The two popular MTL optimiza-

tion strategies in our experiments cannot help five-task learning outperform single-task

learning.
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Table 4.4: The results of single-task learning of TTS and VC with SpeechNet without

Prosody Predictor.

TTS VC

MSE↓ MSE↓

23.21 16.07

Experiments with SpeechNet without Prosody Predictor

We show the single-task learning results of TTS and VC using SpeechNet without Prosody

Predictor. The results are shown in Table 4.4. We can observe that the testing MSEs

cannot be decreased because the prosodies of input speech of Prosody Encoder and target

speech do not match. It validates our motivation and the necessity to generate the estimated

prosody of target speech based on content and speaker embeddings.

Analysis and discussion

In this section, we exhibit five important speech processing tasks that can be learned with

SpeechNet and conduct experiments of single-task, two-task, and five-task learning with

two popular MTL optimization strategies. However, many important research directions

can be further extended from SpeechNet. (1) As shown in the last subsection, suitable

optimization strategies for MTL of speech processing tasks are important and desirable.

SpeechNet can be a testbed for developing MTL optimization strategies on speech pro-

cessing tasks. (2) Besides MTL, other training schemes involving multiple tasks can be

investigated in the future, such as transfer learning or meta learning. Different sizes of

data are also worth investigating. (3) SpeechNet is flexible and easy to modify or add
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new modules. Therefore many other speech or text processing tasks can be joined for re-

search. For example, in our experiment results, ASR benefits from MTL the most. It may

indicate other speech processing tasks that take speech input and produce text output can

also benefit from MTL with SpeechNet, such as speech translation or multilingual speech

recognition.

4.2.6 Conclusion

In this section, we propose a universal modularized model for speech processing tasks. We

select five common and important tasks for multi-task learning experiments.

So far we have investigated the optimization of model parameters under a fixed net-

work architecture with MTL of speech processing tasks. In the next section, we further

investigate nueral architecture search during MTL training.

4.3 DARTS-ASR: Differentiable Architecture Search for

Multilingual Speech Recognition and Adaptation

In previous sections, we have investigated the optimization of model parameters under

a fixed network architecture with MTL of speech processing tasks. In this section, we

further investigate nueral architecture search duringMTL training. Inspired byDARTS, we

propose an ASR approach with efficient gradient-based architecture search, DARTS-ASR.

In order to examine the generalizability of DARTS-ASR, we apply our approach not only

on many languages to perform monolingual ASR, but also on a multilingual ASR setting,

where the architecture and parameter weights are pretrained on some source languages,
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and then adapted on the target language. It has recently been shown that multilingual

ASR [79, 100, 101, 102, 103, 104, 105, 106, 94] can improve ASR performance on many

low-resource languages. In the above previous works, the initial parameters or shared

encoder learned from many source languages are used to build a better acoustic model

for the target language. Different from previous works, DARTS-ASR further learns better

network architecture from the source languages.

Following the previous works [101, 103, 106, 94], we conducted experiments on the

multilingual dataset, IARPA BABEL [214]. The experiment results show that our ap-

proach outperformed the baseline fixed-topology architecture by 10.2% and 10.0% rel-

ative reduction on character error rates (CER) under monolingual and multilingual ASR

settings respectively. Furthermore, we perform some analysis on the searched architectures

by DARTS-ASR.

4.3.1 Proposed Approach: DARTS-ASR

In previous works of ASR, network architectures were manually designed with human ex-

perience, and parameter weights can only be optimized under the fixed topology. Although

those networks work well in previous works, they are very likely not the optimal architec-

tures for ASR. In this section, we propose DARTS-ASR, where the network architecture

can be automatically learned jointly with parameter weights.

Search Space and Continuous Relaxation of Architecture Representation

To search for the network architecture, we first define the search space. As shown in Fig-

ure 4.7, the search space is a directed acyclic graph consisting ofK nodes {n0, n1, ..., nK},
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Figure 4.7: Differentiable ARchiTecture Search (DARTS) for ASR.

wheren0 is the input featureX and the other nodes represent latent featuresH1,H2, ...,HK.

In the scenario of ASR, the input feature X is a segment of acoustic features such as Mel-

filterbanks, and latent features Hi have the shape like CNN feature maps. For each node

ni, there are i directed input edges {ei,0, ei,1..., ei,i−1}, where each edge ei,j transforms

Hj with some operation gi,j . The feature Hi of each node ni is the summation of the

operations of all its previous nodes as below.

Hi = Σj<i gi,j(Hj), (4.31)

where gi,j(Hj) = Σf∈F
exp(αf

i,j)

Σf ′∈F exp(α
f ′

i,j)
f(Hj). (4.32)

The operation gi,j is the weighted sum of a set of transformations F. Each transformation

acts as a typical network layer like 3x3Conv, MaxPool2d or skip connection. Some of the

transformations have parameter weights to be learned (for example, 3x3Conv), while some

of them do not (for example, MaxPool2d, skip connection). The transformation weights

in an operation are parameterized by a vector αi,j of dimension |F|. The final output of
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searched architecture is the concatenation of all the latent features:

O = Concat(H1,H2, ...,HK). (4.33)

These variables αi,j is jointly trained with parameter weights directly by gradient

descent. If the weights αi,j are sparse, (4.32) can be regraded as the selection of trans-

formations used to connect node ni and nj , so αi,j can be considered as controlling the

network architecture. Therefore, architecture search can be performed through learning

the continuous variables {αi,j}. With continuous relaxation of architecture representation

by variables {αi,j}, the transformation components and connections of the model can be

softly designed by gradient descent optimization.

Multilingual Pretraining and Adaptation

To examine the generalizability of DARTS-ASR, we apply DARTS-ASR on not only

monolingual but also multilingual ASR to check if it works on ASR of different lan-

guages. For monolingual ASR, each language data is separately trained with respective

training data, and the model is not shared across languages. For multilingual ASR, some

source languages are used for pretraining and some target languages for adaptation. For

each source language in pretraining, the input is encoded by the shared model, and then

fed into the language-specific head of the corresponding language to output the prediction

sequence. During adaptation of target languages, the pretrained shared model is used for

finetuning, but the head is trained from scratch.

We apply three types of finetuning approaches:

• Adapt only param.: the continuous variables {αi,j} from pretraining are fixed, and

only parameter weights in the transformations are trained. That is, the network ar-
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chitecture is learned from the source languages, and with the learned architecture,

its network parameters are learned from the target language.

• Adapt arch.+param.: the continuous variables {αi,j} keep being trained with pa-

rameter weights in the transformations. That is, both the network architecture and

network parameters learned from source languages are further fined-tuned on the

target language.

• Adapt pruned arch.+param.: the architecture learned from the source languages is

pruned by removing some transformations with low {αf
i,j} values. Then the pruned

{αi,j} keeps being trained with remaining parameter weights.

4.3.2 Experiments

Data and Features

Weconducted experiments on the Full Language Pack from themultilingual dataset, IARPA

BABEL [214]. Three source languages were selected for multilingual pretraining: Bengali

(Bn), Tagalog (Tl) and Zulu (Zu), and four target languages for adaptation: Vietnamese

(Vi), Swahili (Sw), Tamil (Ta) and Kurmanji (Ku). We followed the ESPnet recipe [215]

for data preprocessing and final score evaluation. The acoustic features are 80-dimensional

Mel-filterbanks that are computed over a 25ms window every 10ms, plus 3-dimensional

pitch features.

Implementation Details

Following the previous works [106, 94], we used a CNN-BiLSTM-Head structure as the

multilingual ASR model, as shown in Figure 4.8(a), and adopted Connectionist Temporal
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(a) The framework of ASR model. (b) CNN module as VGG.

Figure 4.8: Multilingual ASR model with CTC.

Classification (CTC) [216] loss as the objective function. The baseline model architec-

ture followed the previous work [94], where the CNN module was a 6-layer VGG block

as shown in Figure 4.8(b), and the BiLSTM module was a 3-layer bidirectional LSTM

network with 360 cells in each direction. We experimented with the channel number of

convolutions in VGG as 128 or 512, and the results of these two settings in the following

subsection were named as VGG-Small and VGG-Large. The head used for each language

was a linear matrix with softmax activation.

In this section, we applied DARTS-ASR on the CNN module to search for a better

architecture for extracting useful features from input. To match the depth and the param-

eter size of VGG-Large, the number of nodes K in the search space of DARTS-ASR, as

mentioned in Subsection 4.3.1, was set to 5, and the channel number of convolutions were

32. The transformation candidates in F were {3x3 convolution, 5x5 convolution, 3x3 di-

lated convolution, 5x5 dilated convolution, 3x3 average pooling, 3x3 max pooling, skip
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connection}.

In addition to standard convolution blocks and pooling, we also added dilated con-

volutions and skip connection into the transformation candidate set. Dilated convolutions

have generally improved the performance of semantic segmentation, as reported in a pre-

vious work [217]. The improvement comes from the fact that dilated convolutions expand

the receptive field without loss of resolution or coverage. Although convolutions with

strides larger than one and pooling are similar concepts, both reduce the resolution. Skip

connection forwards the input to the next layer with an identity function and has been

proved to avoid the problem of vanishing gradients. It has become very popular in re-

cent CNN models such as DenseNet [218] or ResNet [108]. Therefore, these two types of

transformations were also chosen as candidates during architecture search.

All transformations were of stride one (if applicable), and the convolved feature maps

were padded to preserve their spatial resolution. All convolutions were followed by ReLU

activation and batch normalization [219]. The operation parametrization vectors αi,j de-

scribed in Subsection 4.3.1 were initialized as zero vectors to ensure equal amount of atten-

tion over all possible transformations, so parameter weights in every candidate transforma-

tion could receive sufficient gradients to learn at the beginning. Adam [161] (lr=0.0001,

betas=[0.5, 0.999], decay=0.001) was used as the optimizer for operation parametrization

vectors αi,j, and SGD (lr=0.01, momentum=0.9, decay=0.0003) was used as the optimizer

for parameter weights. The learning rate was reduced by a factor of 0.2 if no improvement

for 3 epochs. All of the training processes were terminated after the validation loss had

converged. The performances on the test sets were evaluated with greedy search decoding

and 5-gram language model re-scoring.
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Results

Table 4.5: CER (%) results of monolingual ASR using different CNN modules.

Language

CNN Module

VGG- VGG- DARTS-ASR

Small Large Full Only Conv3x3

Vietnamese 46.0 48.3 40.9 45.7

Swahili 39.6 38.3 35.9 36.8

Tamil 57.9 60.1 48.0 51.6

Kurmanji 57.2 56.8 55.5 56.5

Monolingual ASR For monolingual ASR on four languages, we evaluated diiferent

kinds of CNN modules, VGG-Small and VGG-Large, as listed in Table 4.5. The results

of DARTS-ASR using all the seven kinds of transformations mentioned in the last sub-

section are listed in the third column. We can observe DARTS-ASR significantly outper-

formed both VGG-Small and VGG-Large, showing that the connection pattern of nodes in

DARTS-ASR contributed a lot to the huge performance boosting. It is worth noting that

even though the parameter size of VGG-Large was four times as many as VGG-Small, the

CERs of Vietnamese and Tamil became worse due to overfitting and the CERs of Swahili

and Kurmanji improved only a little. In comparison, the parameter size of DARTS-ASR

was alsomuch larger than VGG-Small. However, DARTS-ASR outperformedVGG-Small

by 10.2% relative reduction on average CER. It indicates the role of architecture for train-

ing DNN is very important.

To further understand the importance of the connection pattern and transformation

candidates between nodes, in addition to the search space described before, we constructed
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Figure 4.9: Validation loss vs training step with VGG-Small or DARTS-ASR for mono-

lingual ASR on four languages.

another search space for DARTS-ASR: instead of having seven transformation candidates

in the search space as described before, there was only {3x3 convolution} in the search

space. The channel number of the convolution was set to 256 to match the parameter

size of the original search space. The results with only 3x3 convolution are listed in the

fourth column. DARTS-ASR outperformed VGG models even with limited search space.

It indicates the connection pattern of DARTS-ASR alone contributed a lot to performance

improvement. Furthermore, the performance of the full search space outperformed the

{3x3 convolution} search space. It proves that diversity of transformation candidates can

provide the model an opportunity to find a better architecture.

In Figure 4.9, the validation losses of VGG-Small and DARTS-ASR on different lan-

guages are presented. The solid lines are the results of VGG-Small and the dashed lines

are those of DARTS-ASR. Different colors stand for different languages. From the lines,

we can observe the convergence of VGG-Small was generally faster than DARTS-ASR.
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But DARTS-ASR could reach much lower validation losses in the end. The training of

VGG-Small suffered from serious overfitting, causing the losses to increase again after

some training steps. In comparison, the validation losses of DARTS-ASR could decrease

more steadily.

Table 4.6: CER (%) results of multilingual ASR using DARTS-ASR under different fine-

tuning approaches.

Language

Finetuning of DARTS-ASR

Adapt Adapt Adapt pruned

only param. arch.+param. arch.+param.

Vietnamese 40.9 40.9 41.1

Swahili 33.2 32.3 35.3

Tamil 46.4 45.9 47.5

Kurmanji 53.6 53.5 53.2

Table 4.7: CER (%) results of multilingual ASR using different CNN modules.

Language
CNN Module

VGG-Small VGG-Large DARTS-ASR

Vietnamese 45.3 43.2 40.9

Swahili 36.3 36.1 32.3

Tamil 55.7 55.0 45.9

Kurmanji 54.5 55.1 53.5

Multilingual ASR For multilingual ASR, the model was first pretrained on three source

languages, and then adapted on the same four different target languages as in the mono-

113



doi:10.6342/NTU202302463

lingual ASR experiments, respectively.

We first conducted experiments to compare the three finetuning approaches described

in Subsection 4.3.1, as shown in Table 4.6. Especially for “Adapt pruned arch.+params”,

the architecture was pruned by removing all transformations but the top three ones with

the highest {αf
i,j} values in each edge. Then the pruned {αi,j} kept being finetuned jointly

with remaining parameter weights.

From Table 4.6, we can observe “Adapt arch.+param.” finetuning approach obtained

the best performance on average CER. However, “Adapt only param.” and “Adapt pruned

arch.+param.” were only a little worse than “Adapt arch.+param.”. It indicates after pre-

training, DARTS-ASR can find a generally good architecture and parameter weights for

different languages. And the pruned architecture can reduce computational cost while

suffering little performance drop. We used “Adapt arch.+param.” finetuning approach for

DARTS-ASR in the following experiments.

Then we compared DARTS-ASR with VGG-Small and VGG-Large. The results are

listed in Table 4.7. All three kinds of CNN modules got much better performance on mul-

tilingual ASR than monolingual ASR. On multilingual ASR, VGG-Large achieved better

results than VGG-Small on average CER. Among those, DARTS-ASR still outperformed

both VGG-Small and VGG-Large by a significant margin. It indicates DARTS-ASR can

also benefit from multilingual learning to build a shared acoustic pretrained model with a

better architecture and parameter weights.

Analysis of Searched Architectures We further plot and analyze the searched archi-

tectures by DARTS-ASR. Similar to the original DARTS paper [117], to simplify the

illustration of architecture, for each node ni, we plot the most dominant transformation
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(a) Vietnamese. (b) Swahili. (c) Tamil. (d) Kurmanji.

Figure 4.10: Architectures for different languages found by DARTS-ASR in monolingual

ASR.

(a) Vietnamese and Kurmanji. (b) Swahili and Tamil.

Figure 4.11: Architectures for different languages found by DARTS-ASR in multilingual

ASR.

fj among all transformations in all entering edges. The selection of the most dominant

transformation can be formulated as below.

fj = argmax
j′<i

α
fj′
i,j , (4.34)

where fj′ = argmax
f ′∈F

αf ′

i,j. (4.35)

The searched architecture for each language on monolingual ASR is shown in Fig-

ure 4.10. The architectures of Vietnamese and Swahili were similar, while those of Tamil

and Kurmanji were quite different from one another. For multilingual ASR, we plot

the searched architectures under the “Adapt arch.+params.” finetuning approach. The

searched architectures ofVietnamese andKurmanji were the same as shown in Figure 4.11(a),

and those of Swahili and Tamil were the same as shown in Figure 4.11(b). We can observe

all of the four searched architectures on multilingual ASR were quite similar, where the
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patterns for nodes n3 to n5 in the bottom were all the same. Only the patterns for n1 and n2

were slightly different. It shows that this kind of network architecture shown in Figure 4.11

is the architecture generally suitable for a wide range of languages.

4.3.3 Conclusion

In this section, we propose an ASR approach with efficient gradient-based architecture

search, DARTS-ASR. In order to examine the generalizability of DARTS-ASR, we apply

our approach not only on many languages to perform monolingual ASR, but also on a

multilingual ASR setting. The experiment results show that our approach outperformed the

baseline fixed-topology architecture significantly under both monolingual and multilingual

ASR settings. Furthermore, we perform some analysis on the searched architectures by

DARTS-ASR.
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Chapter 5 Conclusion

Different speech processing tasks require different kinds of information from speech sig-

nals, and have different input and output modalities. In this thesis, we explore approaches

to disentangle and extract different kinds of information from speech signals with adver-

sarial training, and approaches to handle various speech processing tasks using one single

model with multi-task learning.

In Chapter 3, we study the disentangled representation learning using adversarial

training. More specifically, in Section 3.1, we explore a two-stage framework to perform

phonetic-and-semantic embedding on spoken words considering the context of the spoken

words, with the initial experiments on spoken document retrieval. In Section 3.2, we ex-

plore a pretraining framework AIPNet based on adversarial training for accent-invariant

representation learning and further finetune this model by connecting the accent-invariant

module with an attention-based encoder-decoder model for multi-accent speech recogni-

tion. In Section 3.3, we extend the disentangled speech representations learning from the

word level to the utterance level by proposing a new segmental audio word2vec in which

unsupervised spoken word boundary segmentation and disentangled representation learn-

ing are jointly learned and mutually enhanced.

In Chapter 4, we study multi-task learning and universal modeling of speech pro-

cessing tasks. More specifically, in Section 4.1, we use a state-of-the-art SSL pretrained

shared model and further finetune it with MTL on various discriminative speech process-

ing tasks, and then evaluate the model on a speech multi-task benchmark. In Section 4.2,

we design a universal modularized model for not only discriminative but also generative

speech processing tasks. In Section 4.3, we propose an ASR model explored with an ef-
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ficient gradient-based architecture search on multilingual tasks, where we use a unified

model for extracting representations for data of different languages.

If there is artificial general intelligence in the future, I think it should be a generalized

and universal model for various tasks with different modalities. This thesis is one step

towards the exploration of that dream.
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