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Chinese Abstract 

    預測模型是臨床醫學與公共衛生中不可或缺的重要工具，有助於疾病風險的

估計與決策的支持。傳統的評估方法，例如接收者操作特徵曲線及其下面積，主

要評估模型的區分能力，但在評估族群層級的風險分層方面提供的資訊有限。最

初為了評估生物標記而提出的預測曲線，能以視覺方式呈現預測風險在整體族群

中的分布情形，但在多變量預測模型的應用中仍較少被探討。  

    本研究將預測曲線的方法延伸至多變量風險預測模型的評估中，系統性地探

討其幾何特性，並導出三個互補的效能指標：Pietra 指標、Gini 指標，以及標準

化的 Brier 分數。這三個指標分別量化模型在解析中間風險個案、區分預測風險

層級，以及提高預測確定性方面的能力。為了確保預測風險的校正與不偏性，本

研究提出了一個三步驟流程，包括交叉驗證、保序迴歸校正，以及自助法平均。  

    透過說明性範例及一項涉及台灣 23,839 名肺癌患者的真實應用案例，研究

展示並驗證了此方法的可行性。Pietra 指標、Gini 指標，以及標準化的 Brier 分

數分別捕捉到風險分層表現的不同面向。即使某些模型在其中一項指標上表現相

同，其他指標仍可能呈現顯著差異，顯示這些指標具有互補性。在肺癌個案研究

中，最終調整後的預測模型能有效區分死亡風險，將 25.1% 的患者歸類為極低

風險（<10% 死亡率），50.1% 為高風險（>75% 死亡率），僅有 5.1% 的患者落

在接近平均風險的「灰色區域」。該調整後模型的 Pietra 指標為 0.6719，Gini 指

標為 0.7850，標準化的 Brier 分數為 0.5186。不同細胞類型的肺癌 (肺腺癌、鱗

狀細胞癌、小細胞癌和大細胞癌) 在預測表現上差異顯著，反映出不同細胞類型

的肺癌在風險分層能力上的差異。  

    預測曲線及其幾何效能指標提供一種強大、透明且以族群為導向的框架，用

以超越傳統指標來評估多變量風險預測模型的表現。這些方法能清楚地展現模型

如何進行風險分層及其影響到的族群比例，進而提升模型可解釋性，協助臨床醫

師與研究人員更有效地優化與應用預測模型於臨床與公共衛生實務中。 

關鍵字: 預測模型評估; 預測曲線; 風險分層; Gini 指標; Pietra 指標; 標準

化的 Brier 分數 
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English Abstract 

Prediction models are essential tools in clinical medicine and public health, 

facilitating disease risk estimation and supporting decision-making. Traditional 

evaluation methods such as the receiver operating characteristic (ROC) curve and its 

area under the curve (AUC) primarily assess discrimination but provide limited insight 

into population-level risk stratification. The predictiveness curve, originally proposed 

for biomarker evaluation, visually illustrates how predicted risks distribute across a 

population but has been underexplored in the context of multivariable prediction 

models.  

This study extends the predictiveness curve methodology to evaluate multivariable 

risk prediction models, systematically exploring its geometric properties and deriving 

three complementary performance indices: the Pietra index, Gini index, and scaled Brier 

score. These indices respectively quantify a model’s ability to resolve intermediate-risk 

cases, achieve separation among predicted risks, and enhance prediction certainty. A 

three-step procedure—cross-validation, isotonic regression calibration, and bootstrap 

averaging—was proposed to ensure calibration and unbiasedness of predicted risks. 

Illustrative examples and a real-world application involving 23,839 lung cancer patients 

from Taiwan were used to demonstrate and validate the methodology.  

The Pietra index, Gini index, and scaled Brier score captured distinct dimensions 

of risk stratification performance. Models with identical values of one index could differ 

markedly in the other indices, underscoring their complementary nature. In the lung 

cancer case study, the final adjusted prediction model effectively stratified patients 

across the fatality risk spectrum, identifying 25.1% of patients as very low-risk (<10% 

fatality) and 50.1% as high-risk (>75% fatality), with only 5.1% of patients falling 
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within a “gray zone” near the average fatality risk. The adjusted model achieved a Pietra 

index of 0.6719, a Gini index of 0.7850, and a scaled Brier score of 0.5186. Substantial 

variation in predictive performance was observed among adenocarcinoma, squamous 

cell carcinoma, small cell carcinoma, and large cell carcinoma subtypes, reflecting 

differential risk stratification capabilities by cell type.  

The predictiveness curve and its geometric summaries—the Pietra index, Gini 

index, and scaled Brier score—provide a powerful, transparent, and population-oriented 

framework for evaluating the performance of multivariable risk prediction models 

beyond traditional metrics. By clearly illustrating how a model stratifies risk and for 

which proportion of the population, these methods enhance interpretability, supporting 

clinicians and researchers in refining and applying predictive models effectively in 

clinical and public health practice.  

 

Keywords: prediction model evaluation; predictiveness curve; risk stratification; Gini 

index; Pietra index; scaled Brier score.  
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Chapter 1 Introduction 

    Prediction models are essential decision-support tools widely used in 

epidemiology, clinical medicine, and public health to estimate disease risk, inform 

clinical decisions, and guide population-level interventions.1,2 By integrating diverse 

variables—including demographic characteristics, socioeconomic factors, lifestyle 

behaviors, environmental exposures, biological markers, medical histories, and clinical 

data—these models effectively quantify an individual’s likelihood of developing 

specific diseases. Such risk information helps individuals better understand their health 

status, enables healthcare professionals to develop appropriate management strategies, 

and informs public health initiatives aimed at disease prevention and control.  

    To ensure prediction models are useful and accurate, it is essential to evaluate their 

calibration and discrimination performance.3 Calibration assesses how closely predicted 

risks align with actual observed outcomes, while discrimination measures the model’s 

ability to distinguish between individuals who do and do not develop the disease. The 

area under the receiver operating characteristic (ROC) curve (AUC), also known as the 

c statistic, is widely used to evaluate and compare the discrimination ability of 

diagnostic tests and prediction models.4 AUC values range from 0.5 (no better than 

random guessing) to 1.0 (perfect discrimination). However, when multiple models share 

the same AUC, relying solely on this measure makes it challenging to differentiate their 

relative predictive performances or to clearly identify why one model may outperform 

others.  

    Huang et al. introduced the predictiveness curve as a graphical tool to illustrate 

how predicted risks are distributed across population percentiles.5 Unlike the ROC 

curve, which depicts sensitivity and specificity at various thresholds without revealing 
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the actual underlying distribution of predicted risks, the predictiveness curve offers 

deeper insights into the predictive capacity, risk stratification, and discrimination 

capability of a marker or diagnostic test, particularly regarding its performance in 

identifying distinct high- and low-risk subgroups. Another key advantage of the 

predictiveness curve is its use of population percentiles as a standardized scale, which 

facilitates consistent and interpretable comparisons across different risk distributions 

and populations. However, despite these strengths, the original application of the 

predictiveness curve primarily focused on evaluating biomarkers or diagnostic tests; its 

utility in the context of assessing and comparing the performance of prediction models 

has not been extensively explored. Expanding the use of the predictiveness curve to 

prediction models could provide additional insights into model performance, beyond 

those available through traditional metrics such as the ROC curve.  

    This study aims to extend the application of the predictiveness curve from its 

traditional use with single biomarkers and diagnostic tests to the evaluation of 

multivariable prediction models. Specifically, we systematically explore the geometric 

properties of the predictiveness curve and derive three intuitive performance indices—

the Pietra index, the Gini index, and the scaled Brier score—that quantify 

complementary aspects of model performance. Through analytical derivation, 

illustrative examples, and empirical application to a large cohort of lung cancer patients, 

we demonstrate how these indices provide insights beyond conventional measures such 

as the area under the ROC curve. By focusing on risk stratification, gray-zone 

resolution, and certainty of prediction, this framework offers a more transparent and 

population-anchored evaluation of predictive effectiveness for public health researchers 

and clinical decision-makers.  
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Chapter 2 Predictiveness Curve: Construction, Geometry, and 

Performance Indices 

    This paper proposes constructing the predictiveness curve for evaluating prediction 

models as follows: the curve is generated by plotting the predicted risk 𝑟, derived from 

a prediction model, on the y-axis against the cumulative proportion of the population 

with predicted risk less than or equal to 𝑟 on the x-axis. Since both axes range from 0 

to 1, the curve lies entirely within the unit square. It is monotonically non-decreasing, as 

higher predicted risk values correspond to greater—or at least equal—proportions of 

subjects with predicted risk less than or equal to that value. Figure 1 illustrates example 

predictiveness curves for three models applied to the same population with a disease 

prevalence of 0.2: an informative but imperfect model (A), a null model (B), and a 

perfect model (C).  

    The area under the predictiveness curve represents the mean predicted risk when 

the prediction model is applied to the population. For a well-calibrated and unbiased 

model—one for which approximately 100 × 𝑟 out of 100 individuals with a predicted 

risk of 𝑟 are actually diseased—this area corresponds to the disease prevalence in the 

population, denoted by 𝜋 (Appendix 1).  

    A horizontal line at 𝑟 = 𝜋 (dotted lines in Figure 1) divides the predictiveness 

curve into two segments: one below and one above the line. Together with this 

horizontal line, the curve forms two enclosed regions—one below the line (the below-

the-line, or BL, region) and one above (the above-the-line, or AL, region) (orange and 

red shaded regions in Figure 1). For a well-calibrated and unbiased prediction model, 

these two regions have equal area, denoted by 𝐴 (Appendix 2).  
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    A null prediction model (Figure 1B) assigns the same risk, 𝜋, to every subject in 

the population. Its predictiveness curve is a horizontal line at 𝑟 = 𝜋, with no BL or AL 

regions, meaning 𝐴 = 0. In contrast, a perfect prediction model (Figure 1C) assigns a 

risk of 1 to all subjects who eventually become diseased and a risk of 0 to all subjects 

who remain non-diseased. Its predictiveness curve remains at 𝑟 = 0 for 0 to (1 − 𝜋), 

then jumps to 𝑟 = 1 and stays constant from (1 − 𝜋) to 1. Its BL region is a rectangle 

with a width of (1 − 𝜋) and a height of 𝜋, while its AL region is a rectangle with a 

width of 𝜋 and a height of (1 − 𝜋). Thus, 𝐴 = 𝜋 × (1 − 𝜋).  

 We now demonstrate how three commonly used performance indices for prediction 

models—the Pietra index, the Gini index (both derived from the Lorenz curve), and the 

scaled Brier score—are mathematically linked to the geometric properties of the 

predictiveness curve. These indices are standardized: they equal 0 for a null prediction 

model, 1 for a perfect model, and lie between 0 and 1 for informative but imperfect 

models. 6,7 Notably, for well-calibrated and unbiased models, the Lorenz-based Gini and 

Pietra indices correspond to their ROC-based counterparts, with Gini = 2 × AUC − 1, 

and Pietra equal to the maximum vertical distance (MVD) from the ROC curve to the 

diagonal line.6,7 

 Appendix 3 shows that the Pietra index equals the area 𝐴 of the BL (or AL) region 

of the predictiveness curve, normalized by the maximum possible area from a perfect 

model:  

               Pietra = 𝐴 𝐴perfect model⁄ = 𝐴 [𝜋 × (1 − 𝜋)]⁄ .               (1) 

Let (𝑥BL, 𝑦BL) and (𝑥AL, 𝑦AL) represent the coordinates of the centers of gravity for 

the BL and AL region, respectively (orange and red dots in Figure 1). Appendix 4 shows 

that the Gini index is related to the horizontal separation between these centers of 
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gravity, given by:  

Gini = 2 × (𝑥AL − 𝑥BL) × Pietra.                      (2) 

Appendix 5 demonstrates that the scaled Brier score is connected to the vertical 

separation between these centers of gravity, expressed as:  

               scaled Brier = 2 × (𝑦AL − 𝑦BL) × Pietra.                  (3) 

Additionally, Appendix 6 establishes the following relationship among the indices: 0 ≤

scaled Brier ≤ Pietra ≤ Gini ≤ 1.  

    We now return to the example predictiveness curves in Figure 1. For the 

informative but imperfect model (Figure 1A), the BL and AL regions have equal areas 

of 0.0519, with centers of gravity at (0.2370, 0.1503) and (0.8536, 0.2794), as detailed 

in Appendix 7. From these values and Equations (1), (2), and (3), we calculate Pietra =

0.0519 [0.2 × (1 − 0.2)]⁄ = 0.3244, Gini = 2 × (0.8536 − 0.2370) × Pietra =

0.4001, and scaled Brier = 2 × (0.2794 − 0.1503) × Pietra = 0.0838. Note that the 

values of these performance indices fall within the expected range and maintain the 

correct order: 0 ≤ 0.0838 ≤ 0.3244 ≤ 0.4001 ≤ 1.  

    For the null model (Figure 1B), no BL or AL regions are formed (i.e., A = 0), 

resulting in a Pietra index of zero [Equation (1)]. Consequently, the Gini index and the 

scaled Brier score also equal zero [Equations (2) and (3)]. For the perfect model (Figure 

1C), the BL and AL regions form simple rectangles, allowing straightforward 

calculation of their areas and centers of gravity: 𝐴 = 0.16, (𝑥BL, 𝑦BL) = (0.4,0.1), and 

(𝑥AL, 𝑦AL) = (0.9,0.6). From Equations (1), (2), and (3), the three indices achieve the 

value of 1 as expected.  
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Chapter 3 Performance Indices and Their Role in Risk Stratification 

    Assuming the prediction models are well-calibrated and unbiased, we next show 

how the three geometric summary measures of the predictiveness curve—the Pietra 

index, Gini index, and scaled Brier score—each capture a distinct dimension of a 

model’s risk stratification performance.  

3.1 Gray-Zone Resolution: Pietra Index  

    The upper row of Figure 2 presents the predictiveness curves of three additional 

prediction models, I, II, and III, applied to the same population. These models share the 

same Gini index of 0.4000 and scaled Brier score of 0.1176, but their Pietra indices 

decrease in order: 0.4000 for model I, 0.3191 for model II, and 0.2381 for model III 

(Appendix 8). Model I classifies all individuals into either the high-risk or low-risk 

groups, leaving no individuals in the “gray zone” (average risk), whereas model II 

assigns a certain proportion (25.35%) and model III an even larger proportion (67.99%) 

of the population to the gray zone. This suggests that among prediction models with the 

same Gini index and scaled Brier score, a higher Pietra index reflects a stronger ability 

to resolve the gray zone, effectively reducing the number of individuals assigned near 

the average-risk level.  

3.2 Horizontal Risk Separation: Gini Index  

    The middle row of Figure 2 presents the predictiveness curves of three additional 

prediction models, IV, V, and VI, applied to the same population. These models share 

the same Pietra index of 0.3244 and the same scaled Brier score of 0.0840, but their 

Gini indices differ: 0.3889 for model IV and 0.3244 for models V and VI (Appendix 8). 

Model IV classifies the population into three distinct groups: equal proportions 
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(40.06%) in the high-risk and low-risk groups, with the remaining 19.88% in the 

average-risk group. In contrast, models V and VI classify individuals into only two 

groups—high-risk and low-risk—without leaving any in the average-risk category. This 

indicates that among prediction models with the same Pietra index and scaled Brier 

score, a higher Gini index reflects a stronger ability to separate predicted probabilities 

between individuals, while a lower Gini index suggests a tendency to assign similar 

probabilities to many individuals.  

3.3 Vertical Certainty of Prediction: Scaled Brier Score  

    The lower row of Figure 2 illustrates the predictiveness curves of three prediction 

models, VII, VIII, and IX, applied to the same population with a disease prevalence of 

0.2. Each model classifies individuals into high-risk (risk > 0.2), low-risk (risk < 0.2), 

or average-risk (risk = 0.2). As shown in Appendix 8, all three models have the same 

Gini index of 0.4000 and the same Pietra index of 0.3244, but their scaled Brier scores 

differ: 0.2835 for model VII, 0.0981 for model VIII, and 0.0878 for model IX. From 

Figure 2, model VII predicts high-risk individuals as diseased with certainty (risk = 1), 

model VIII predicts low-risk individuals as non-diseased with certainty (risk = 0), 

while model IX achieves neither—raising the risk of high-risk individuals to 0.3354 

(less than 1) and lowering the risk of low-risk individuals to 0.0646 (greater than 0). 

This demonstrates that among prediction models with the same Gini and Pietra indices, 

a higher scaled Brier score reflects a stronger ability to shift high-risk individuals 

toward more certain diseased predictions or low-risk individuals toward more certain 

non-diseased predictions.  

    We also compared the risk stratification properties of these three indices across 

populations with varying disease prevalence. The results consistently confirm that the 
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Pietra index, Gini index, and scaled Brier score respectively reflect a model’s ability to 

resolve intermediate-risk cases, separate predicted risks, and enhance certainty in risk 

estimation.  
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Chapter 4 Ensuring Calibration and Unbiasedness in Prediction 

Models 

    The preceding development assumes that the prediction model is both well-

calibrated and unbiased. To ensure these conditions are met in practice, we propose a 

three-step adjustment procedure—cross-validation, calibration, and bootstrap 

averaging—as detailed below:  

4.1 Cross-Validation  

    The dataset is randomly partitioned into K subsets (folds). In K-fold cross-

validation, the model is trained on K−1 folds and tested on the remaining fold, rotating 

through all folds so that each data point is used for validation once. Variants include 

leave-one-out cross-validation (a special case where K equals the number of 

observations), repeated K-fold cross-validation, and stratified cross-validation8, which 

maintains the outcome distribution across folds. This process ensures that the predicted 

risks used in evaluation are derived from models not trained on the individuals being 

predicted, thereby mimicking predictions for unseen individuals and supporting valid 

model assessment.  

4.2 Calibration  

    To align predicted risks with observed outcomes, the cross-validated predictions 

are further calibrated using isotonic regression.9 This non-parametric method assumes a 

monotonic increasing relationship between predicted risk and true outcomes. 

Individuals are first sorted by predicted risk in ascending order. The Pool-Adjacent-

Violators Algorithm (PAVA) is then applied to enforce monotonicity by averaging 

adjacent segments where the observed outcomes violate this assumption. This process 
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yields calibrated risk estimates that better reflect the true probability of the outcome, 

ensuring that the resulting predictiveness curve remains monotonically non-decreasing.  

4.3 Bootstrap Averaging  

    When the sample size is limited, the predictiveness curve derived using the above 

PAVA-based calibration may appear jagged or step-like, as violations of the 

monotonicity assumption become more frequent, leading to more frequent averaging of 

adjacent segments. We propose bootstrap averaging to mitigate this problem. 

Specifically, multiple bootstrap samples10 are drawn from the original dataset along with 

the corresponding cross-validated risks. Each bootstrap sample undergoes isotonic 

regression via the PAVA procedure to produce a monotonic predictiveness curve. 

Averaging these bootstrap predictiveness curves preserves monotonicity while 

smoothing out the step-like jumps inherent in individual curves, resulting in a more 

stable and visually interpretable final curve.  
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Chapter 5 A Case Study: Five-Year Fatality Among Lung Cancer 

Patients in Taiwan 

    We used data from the Taiwan Cancer Registry11, 12 to evaluate the performance of 

a prediction model for five-year fatality among lung cancer patients. The dataset 

included 23,839 patients diagnosed between 2017 and 2018: 18,885 with 

adenocarcinoma, 3,247 with squamous cell carcinoma, 1,660 with small cell carcinoma, 

and 47 with large cell carcinoma; patients with other cell types were excluded from the 

analysis. The dataset provided detailed information on patients’ demographic 

characteristics, lifestyle behaviors, medical histories, and clinical data. To determine 

survival time, the cancer registry data were linked with mortality records, allowing 

calculation of time-to-death from the date of diagnosis.  

    We developed a five-year fatality risk prediction model using Cox proportional 

hazards regression, with the baseline hazard function estimated via the Breslow method 

to compute individual five-year fatality risks. The model included one continuous 

covariate (age) and twelve categorical covariates: sex, cancer histology, level of 

urbanization, hospital level, cancer stage, smoking status, and six treatment modalities 

(surgery, chemotherapy, radiotherapy, targeted therapy, immunotherapy, and palliative 

care).  

    To ensure calibration and unbiasedness of the predictions, we applied the three-step 

adjustment procedure described above to derive the adjusted five-year fatality risk for 

each patient. This involved five-fold cross-validation stratified by five-year survival 

status, followed by isotonic regression calibration. The final predicted risks—referred to 

as adjusted risks—were obtained by averaging across 50 bootstrap samples. These 

adjusted risks were then used to construct the predictiveness curves and compute the 
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associated geometric summary measures: scaled Brier score, Pietra index, and Gini 

index. To quantify uncertainty in both the predictiveness curves and summary measures, 

an outer loop of 100 bootstrap resamples was performed.  

    Figure 3A presents the predictiveness curve for five-year fatality among lung 

cancer patients (combining all four cell types). This curve reveals how patients are 

stratified across the risk spectrum. For example, 40.8% of patients have a predicted five-

year fatality risk below the population average of 0.5539 (indicated by the dotted line 

and reported in Table 1), while 59.2% exceed this average. The model also identifies 

25.1% of patients as very low risk (risk < 0.10) and 50.1% as high risk (risk > 0.75). In 

contrast, only 2.2% and 5.1% of patients fall into the gray zone, with predicted risks 

within ±0.05 and ±0.1 of the average, respectively.  

    Figures 3B and 3C display the corresponding Lorenz and ROC curves for 

comparison. Unlike the predictiveness curve, these plots do not offer direct insights into 

how patients are stratified by risk; instead, they serve primarily to produce summary 

indices. However, the same summary indices can be obtained from the predictiveness 

curve: Pietra = 0.6719 and Gini = 0.7850 (Table 1), and AUC = 0.8925 (via 

Gini = 2 × AUC − 1), and MVD = 0.6719 (noting that MVD equals Pietra). 

Moreover, the predictiveness curve also enables computation of the scaled Brier score 

(0.5186 in Table 1), a valuable performance measure not available from either the 

Lorenz or ROC curves.  

    Figure 4 presents the predictiveness curves for five-year fatality among lung cancer 

patients, stratified by cell type, with corresponding geometric summary measures shown 

in Table 1. The curves differ substantially across cell types, indicating variable risk 

stratification performance of the prediction model. The predictiveness curve for 
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adenocarcinoma (Figure 4A) shows the steepest slope near the average fatality risk line, 

consistent with its highest Pietra index, indicating fewer patients with risks clustered 

around the mean and greater resolution of intermediate-risk cases. Adenocarcinoma also 

achieves the highest Gini index, reflecting the strongest horizontal (patient-wise) 

separation of fatality risks. This is visually evident in its predictiveness curve, which 

shows a broader spread when moving along the x-axis. The scaled Brier score is 

likewise highest for adenocarcinoma, corresponding to its predictiveness curve showing 

more patients assigned to the extreme low- or high-risk ends, indicating greater 

certainty in risk predictions. In contrast, the curves for squamous cell carcinoma (Figure 

4B), small cell carcinoma (Figure 4C), and large cell carcinoma (Figure 4D) are flatter 

near the average risk line, less horizontal spread, and lower vertical certainty compared 

to adenocarcinoma.  
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Chapter 6 Discussion 

    The ROC curve has long been used to evaluate the performance of individual 

biomarkers and diagnostic tests, followed by the Lorenz curve; both have since been 

extended to assess risk-prediction models.6, 7,13-15 These curves primarily serve to 

generate summary indices—AUC and MVD for the ROC curve, and Gini and Pietra for 

the Lorenz curve.6 Among them, the AUC (and equivalently, the Gini index) has 

dominated the evaluation of prediction models. However, as demonstrated in this paper, 

these indices can also be derived from the predictiveness curve.16 Unlike ROC and 

Lorenz curves, the predictiveness curve offers an additional summary measure—the 

scaled Brier score—and, more importantly, the entire curve provides meaningful 

insights. It visually and quantitatively illustrates how a prediction model stratifies risk 

across a population, identifying what proportion falls into different risk categories. In 

contrast, the ROC and Lorenz curves serve only as intermediaries for computing their 

respective indices and offer little direct information about population-level risk 

stratification.  

    Prediction models require cross-validation to avoid overly optimistic estimates of 

discrimination performance; however, calibration is equally—if not more—crucial to 

ensure that predicted risks accurately reflect true outcome probabilities. This paper 

advocates integrating cross-validation and calibration into a unified development 

process, operationalized through a three-step adjustment procedure: cross-validation, 

calibration, and bootstrap averaging. Appendix 9 illustrates the predictiveness curves for 

the four lung cancer cell types, based on models incorporating increasing levels of 

adjustment: none, one step, two steps, and all three steps. For adenocarcinoma, 

squamous cell carcinoma, and small cell carcinoma, the curves from models with and 
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without cross-validation are nearly identical due to their large sample sizes. In contrast, 

for large cell carcinoma (n = 47), cross-validation (one-step adjustment) noticeably 

alters the curve, reflecting the impact of limited data. Calibration applied after cross-

validation (two-step adjustment) leads to substantial shifts in all four cell types, 

particularly at the extremes of the risk distribution. For instance, in large cell carcinoma, 

the uncalibrated model assigns 23.4% and 61.7% of patients predicted risks near 0 and 

1, respectively—an overconfident estimate corrected by calibration. Nevertheless, the 

two-step procedure results in step-like, unsmoothed curves in smaller samples (e.g., 

squamous, small cell, and large cell carcinoma), which are effectively smoothed by 

applying the full three-step adjustment.  

    Appendix 10 presents the adjustment curves for the four lung cancer cell types. 

These curves plot the final adjusted five-year fatality risks—obtained through the full 

three-step procedure—against the cross-validated risks from the first step, which 

emulate the raw predicted risks for prospective new patients. The 45-degree reference 

lines (dotted) represent perfect agreement between predicted and observed risks; 

deviations from these lines indicate areas where the model tends to over- or 

underestimate risk and thus requires adjustment. These adjustment curves should be 

considered integral components of the prediction model. Alongside conventional model 

outputs—such as the regression coefficients from the Cox model and the baseline 

hazard estimated via the Breslow method—they are essential for producing accurate 

risk estimates in new individuals.  

    In conclusion, this study extends the application of the predictiveness curve from 

single biomarkers and diagnostic tests to multivariable risk prediction models, 

introducing three intuitive geometric summaries—the Pietra index, Gini index, and 
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scaled Brier score—to comprehensively evaluate predictive performance. Demonstrated 

through analytical derivation, illustrative examples, and a case study using a large 

cohort of lung cancer patients, this framework provides deeper insights into critical 

aspects of risk stratification, such as gray-zone resolution, risk separation, and 

prediction certainty. The three-step adjustment procedure—cross-validation, calibration, 

and bootstrap averaging—ensures reliable and robust predictive models, complementing 

and enhancing conventional model evaluation methods. These tools and methods thus 

offer researchers and healthcare practitioners a transparent, population-oriented 

approach for refining and assessing prediction models to improve decision-making in 

clinical medicine and public health.  
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Table Note 

Table 1. Geometric summary measures of the predictiveness curves for five-year 

fatality prediction models among lung cancer patients, presented both overall 

(all four cell types combined) and stratified by cell type.  
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Table 1. 
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Figure Note 

Figure 1. Predictiveness curves and geometry: (A) informative but imperfect model, 

(B) null model, (C) perfect model (blue line: predictiveness curve; dotted 

line: disease prevalence in the population; orange shaded region: below-the-

line region; red shaded region: above-the-line region; orange dot: center of 

gravity of the below-the-line region; red dot: center of gravity of the above-

the-line region).  

Figure 2. Predictiveness curves for nine prediction models applied to the same 

population with a disease prevalence of 0.2 (solid lines: predictiveness 

curves; dotted line: disease prevalence). Models I, II, and III differ solely in 

their Pietra indices; models IV, V, and VI differ solely in their Gini indices; 

and models VII, VIII, and IV differ solely in their scaled Brier scores.  

Figure 3. Evaluation curves for five-year fatality among lung cancer patients: (A) 

Predictiveness curve, (B) Lorenz curve, and (C) Receiver Operating 

Characteristic (ROC) curve. In panel (A), the dotted line marks the average 

five-year fatality risk; in panels (B) and (C), it represents the diagonal 

reference line indicating no discriminatory power. Shaded regions denote 

95% bootstrap confidence intervals.  

Figure 4. Predictiveness curves for five-year fatality among lung cancer patients, 

stratified by cell type: (A) adenocarcinoma, (B) squamous cell carcinoma, (C) 

small cell carcinoma, and (D) large cell carcinoma. Dotted lines indicate the 

average five-year fatality risk for each subtype. Shaded regions represent 95% 

bootstrap confidence intervals.   
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Appendix Note 

Appendix 1. Relationship among the area under the predictiveness curve, mean 

predicted risk, and disease prevalence in the population.  

Appendix 2. Relationship between the areas of the below-the-line and the above-the-

line regions.  

Appendix 3. The Pietra index as a geometric summary of the predictiveness curve.  

Appendix 4. The Gini index as a geometric summary of the predictiveness curve.  

Appendix 5. The scaled Brier score as a geometric summary of the predictiveness 

curve.  

Appendix 6. Relationships among the Pietra index, the Gini index, and the scaled Brier 

score.  

Appendix 7. Example predictiveness curve calculations for an informative but 

imperfect model.  

Appendix 8. Prediction Models I to IX Calculations.  

Appendix 9. Predictiveness curves after stepwise application of cross-validation, 

calibration, and bootstrap smoothing for five-year fatality among lung 

cancer patients, stratified by cell type: (A) adenocarcinoma, (B) squamous 

cell carcinoma, (C) small cell carcinoma, and (D) large cell carcinoma. 

Curves are color-coded by adjustment level: blue = unadjusted, brown = 

cross-validation only, red = cross-validation with calibration, green = full 

three-step adjustment. Dotted lines indicate the average five-year fatality 

risk.  
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Appendix 10. Adjustment curves for five-year fatality prediction models among lung 

cancer patients, stratified by cell type: (A) adenocarcinoma, (B) squamous 

cell carcinoma, (C) small cell carcinoma, and (D) large cell carcinoma. 

Each solid curve plots the final adjusted risks—obtained through cross-

validation, calibration, and bootstrap averaging—against the cross-

validated risks prior to calibration, which emulate the raw predicted risks 

for prospective new patients. Dotted 45-degree reference lines indicate 

perfect agreement between predicted and true risks.  
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Appendix 1. Relationship among the area under the predictiveness curve, mean 

predicted risk, and disease prevalence in the population.  

    Let 𝑅 be a random variable representing the predicted risk of disease, ranging 

from 0 to 1, with probability density function 𝑓(𝑟). The area under the predictiveness 

curve is ∫ 𝑟𝑑𝐹(𝑟)
1

0
, where 𝐹(𝑟) is the cumulative distribution function of 𝑅. Since 

𝑑𝐹(𝑟) = 𝑓(𝑟)𝑑𝑟, this area equals ∫ 𝑟𝑓(𝑟)
1

0
𝑑𝑟, which is the mean predicted risk. For a 

well-calibrated and unbiased prediction model—where approximately 100 × 𝑟% of 

individuals with predicted risk 𝑟 are truly diseased—this value equals the disease 

prevalence 𝜋 in the population.  
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Appendix 2. Relationship between the areas of the below-the-line and the above-

the-line regions.  

    The area of the below-the-line (BL) region is ∫ (𝜋 − 𝑟)𝑑𝐹(𝑟)
𝐹(𝜋)

0
=

𝜋 ∫ 1
𝐹(𝜋)

0
𝑑𝐹(𝑟) − ∫ 𝑟

𝐹(𝜋)

0
𝑑𝐹(𝑟). The area of the above-the-line (AL) region is 

∫ (𝑟 − 𝜋)𝑑𝐹(𝑟) = ∫ 𝑟
1

𝐹(𝜋)
𝑑𝐹(𝑟)

1

𝐹(𝜋)
− 𝜋 × ∫ 1

1

𝐹(𝜋)
𝑑𝐹(𝑟). For a well-calibrated and 

unbiased prediction model, the sum of the integrals of 1 over the full domain is 1, and 

the total area under the predictiveness curve equals the disease prevalence, 𝜋. Thus, the 

difference between the areas of the AL and BL regions is ∫ 𝑟
1

0
𝑑𝐹(𝑟) − 𝜋 ×

∫ 1
1

0
𝑑𝐹(𝑟) = 𝜋 − 𝜋 = 0, which shows that the two regions have equal area.  
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Appendix 3. The Pietra index as a geometric summary of the predictiveness curve.  

    The Pietra index measures the average gain in information provided by the 

prediction model, defined as the absolute difference between the predicted risk 

(posterior probability) and the disease prevalence (prior probability). It is calculated as:  

Pietra =
the mean gain provided by the given prediction model

the mean gain provided by the perfect prediction model
 

=
∫ |𝑟 − 𝜋|𝑑𝐹(𝑟)

1

0

𝜋 × |1 − 𝜋| + (1 − 𝜋) × |0 − 𝜋|
 

=
∫ (𝜋 − 𝑟)𝑑𝐹(𝑟)

𝐹(𝜋)

0
+ ∫ (𝑟 − 𝜋)𝑑𝐹(𝑟)

1

𝐹(𝜋)

2 × 𝜋 × (1 − 𝜋)
 

=
area of BL region + area of AL region

2 × 𝜋 × (1 − 𝜋)
=

𝐴

𝜋 × (1 − 𝜋)
, 

 where the prediction model is assumed to be unbiased and well-calibrated such that the 

below-the-line (BL) and the above-the-line (AL) regions have equal area, 𝐴.   
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Appendix 4. The Gini index as a geometric summary of the predictiveness curve.  

    The Gini index measures separation, defined as the absolute difference between the 

predicted probabilities of two randomly selected individuals. It is calculated using the 

formula:   

Gini =
the mean separation provided by the given prediction model

the mean separation provided by the perfect prediction model
 

=
∫ ∫ |𝑟1 − 𝑟2|𝑑𝐹(𝑟1)𝑑𝐹(𝑟2)

1

0

1

0

|1 − 1| × 𝜋2 + |1 − 0| × 𝜋 × (1 − 𝜋) + |0 − 1| × (1 − 𝜋) × 𝜋 + |0 − 0| × (1 − 𝜋)2
 

=
∫ ∫ |𝑟1 − 𝑟2|𝑑𝐹(𝑟1)𝑑𝐹(𝑟2)

1

0

1

0

2 × 𝜋 × (1 − 𝜋)
=

∫ ∫ [max(𝑟1, 𝑟2) − min(𝑟1, 𝑟2)]𝑑𝐹(𝑟1)𝑑𝐹(𝑟2)
1

0

1

0

2 × 𝜋 × (1 − 𝜋)
 

=
1

2 × 𝜋 × (1 − 𝜋)

× {[∫ ∫ 𝑟1𝑑𝐹(𝑟1)𝑑𝐹(𝑟2) −
1

𝐹(𝑟2)

1

0

∫ ∫ 𝑟1𝑑𝐹(𝑟1)𝑑𝐹(𝑟2)
𝐹(𝑟2)

0

1

0

]

+ [∫ ∫ 𝑟2𝑑𝐹(𝑟1)𝑑𝐹(𝑟2) −
𝐹(𝑟2)

0

1

0

∫ ∫ 𝑟2𝑑𝐹(𝑟1)𝑑𝐹(𝑟2)
1

𝐹(𝑟2)

1

0

]} 

=
1

2 × 𝜋 × (1 − 𝜋)

× {[2 × 𝜋 × ∫ ∫ 1𝑑𝐹(𝑟1)𝑑𝐹(𝑟2)
1

𝐹(𝑟2)

1

0

− ∫ ∫ 𝑟2𝑑𝐹(𝑟1)𝑑𝐹(𝑟2)
1

𝐹(𝑟2)

1

0

+ ∫ ∫ 𝑟2𝑑𝐹(𝑟1)𝑑𝐹(𝑟2)
𝐹(𝑟2)

0

1

0

− ∫ ∫ 𝑟2𝑑𝐹(𝑟1)𝑑𝐹(𝑟2)
1

0

1

0

]

+ [2 × 𝜋 × ∫ ∫ 1𝑑𝐹(𝑟1)𝑑𝐹(𝑟2)
𝐹(𝑟2)

0

1

0

− ∫ ∫ 𝑟1𝑑𝐹(𝑟1)𝑑𝐹(𝑟2)
𝐹(𝑟2)

0

1

0

+ ∫ ∫ 𝑟1𝑑𝐹(𝑟1)𝑑𝐹(𝑟2)
1

𝐹(𝑟2)

1

0

− ∫ ∫ 𝑟1𝑑𝐹(𝑟1)𝑑𝐹(𝑟2)
1

0

1

0

]} 
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=
1

𝜋 × (1 − 𝜋)

× [2 × 𝜋 × ∫ ∫ 1𝑑𝐹(𝑟1)𝑑𝐹(𝑟2)
1

𝐹(𝑟2)

1

0

− ∫ ∫ 𝑟2𝑑𝐹(𝑟1)𝑑𝐹(𝑟2)
1

𝐹(𝑟2)

1

0

+ ∫ ∫ 𝑟2𝑑𝐹(𝑟1)𝑑𝐹(𝑟2)
𝐹(𝑟2)

0

1

0

− ∫ ∫ 𝑟2𝑑𝐹(𝑟1)𝑑𝐹(𝑟2)
1

0

1

0

] 

=
1

𝜋 × (1 − 𝜋)

× [2 × 𝜋 × ∫ ∫ 1𝑑𝐹(𝑟1)𝑑𝐹(𝑟2)
1

𝐹(𝑟2)

1

0

− 2 × ∫ ∫ 𝑟2𝑑𝐹(𝑟1)𝑑𝐹(𝑟2)
1

𝐹(𝑟2)

1

0

] 

=
1

𝜋 × (1 − 𝜋)

× {2 × ∫ [[1 − 𝐹(𝑟)] × 𝜋]
1

0

𝑑𝐹(𝑟) − 2 × ∫ [[1 − 𝐹(𝑟)] × 𝑟]
1

0

𝑑𝐹(𝑟)} 

=
∫ (𝜋 − 𝑟)

𝐹(𝜋)

0
𝑑𝐹(𝑟) + ∫ (𝑟 − 𝜋)

1

𝐹(𝜋)
𝑑𝐹(𝑟)

𝜋 × (1 − 𝜋)

× {
∫ [[1 − 𝐹(𝑟)] × 𝜋]

1

𝐹(𝜋)
𝑑𝐹(𝑟)

∫ (𝑟 − 𝜋)
1

𝐹(𝜋)
𝑑𝐹(𝑟)

+
∫ [[1 − 𝐹(𝑟)] × 𝜋]

𝐹(𝜋)

0
𝑑𝐹(𝑟)

∫ (𝜋 − 𝑟)
𝐹(𝜋)

0
𝑑𝐹(𝑟)

−
∫ [[1 − 𝐹(𝑟)] × 𝑟]

1

𝐹(𝜋)
𝑑𝐹(𝑟)

∫ (𝑟 − 𝜋)
1

𝐹(𝜋)
𝑑𝐹(𝑟)

−
∫ [[1 − 𝐹(𝑟)] × 𝑟]

𝐹(𝜋)

0
𝑑𝐹(𝑟)

∫ (𝜋 − 𝑟)
𝐹(𝜋)

0
𝑑𝐹(𝑟)

} 

= 2 × Pietra

× {
∫ (𝑟 − 𝜋)

1

𝐹(𝜋)
𝑑𝐹(𝑟) − ∫ [[1 − 𝐹(𝑟)] × (𝑟 − 𝜋)]

1

𝐹(𝜋)
𝑑𝐹(𝑟)

∫ (𝑟 − 𝜋)
1

𝐹(𝜋)
𝑑𝐹(𝑟)

− {
∫ (𝜋 − 𝑟)

𝐹(𝜋)

0
𝑑𝐹(𝑟) − ∫ [[1 − 𝐹(𝑟)] × (𝜋 − 𝑟)]

𝐹(𝜋)

0
𝑑𝐹(𝑟)

∫ (𝜋 − 𝑟)
𝐹(𝜋)

0
𝑑𝐹(𝑟)

}} 
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= 2 × {
∫ [𝐹(𝑟) × (𝑟 − 𝜋)]

1

𝐹(𝜋)
𝑑𝐹(𝑟)

∫ (𝑟 − 𝜋)
1

𝐹(𝜋)
𝑑𝐹(𝑟)

−
∫ [𝐹(𝑟) × (𝜋 − 𝑟)]

𝐹(𝜋)

0
𝑑𝐹(𝑟)

∫ (𝜋 − 𝑟)
𝐹(𝜋)

0
𝑑𝐹(𝑟)

} × Pietra 

= 2 × (𝑥AL − 𝑥BL) × Pietra, 

where 𝑥AL =
∫ [𝐹(𝑟)×(𝑟−𝜋)]

1
𝐹(𝜋) 𝑑𝐹(𝑟)

∫ (𝑟−𝜋)
1

𝐹(𝜋) 𝑑𝐹(𝑟)
 represents the x-coordinate of the center of gravity 

for the above-the-line (AL) region and 𝑥BL =
∫ [𝐹(𝑟)×(𝜋−𝑟)]

𝐹(𝜋)

0
𝑑𝐹(𝑟)

∫ (𝜋−𝑟)
𝐹(𝜋)

0 𝑑𝐹(𝑟)
 represents the x-

coordinate of the center of gravity for the below-the-line (BL) region.  
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Appendix 5. The scaled Brier score as a geometric summary of the predictiveness 

curve.  

    The scaled Brier score measures squared gain, defined as the squared difference 

between the predicted probability and the disease prevalence. It is calculated using the 

formula:  

scaled Brier =
the mean squared gain provided by the given prediction model

the mean squared gain provided by the perfect prediction model
 

=
∫ (𝑟 − 𝜋)2𝑑𝐹(𝑟)

1

0

(1 − 𝜋)2 × 𝜋 + (0 − 𝜋)2 × (1 − 𝜋)
=

∫ (𝑟 − 𝜋)2𝑑𝐹(𝑟)
1

0

𝜋 × (1 − 𝜋)
 

=
1

2 × 𝜋 × (1 − 𝜋)

× {
∫ (𝑟 − 𝜋)2𝑑𝐹(𝑟)

1

𝐹(𝜋)

∫ (𝑟 − 𝜋)𝑑𝐹(𝑟)
1

𝐹(𝜋)

× [∫ (𝜋 − 𝑟)𝑑𝐹(𝑟)
𝐹(𝜋)

0

+ ∫ (𝑟 − 𝜋)𝑑𝐹(𝑟)
1

𝐹(𝜋)

]

+
∫ (𝑟 − 𝜋)2𝑑𝐹(𝑟)

𝐹(𝜋)

0

∫ (𝜋 − 𝑟)𝑑𝐹(𝑟)
𝐹(𝜋)

0

× [∫ (𝜋 − 𝑟)𝑑𝐹(𝑟)
𝐹(𝜋)

0

+ ∫ (𝑟 − 𝜋)𝑑𝐹(𝑟)
1

𝐹(𝜋)

]} 

=
∫ (𝜋 − 𝑟)𝑑𝐹(𝑟)

𝐹(𝜋)

0
+ ∫ (𝑟 − 𝜋)𝑑𝐹(𝑟)

1

𝐹(𝜋)

2 × 𝜋 × (1 − 𝜋)

× [
∫ (𝑟 − 𝜋)2𝑑𝐹(𝑟)

1

𝐹(𝜋)

∫ (𝑟 − 𝜋)𝑑𝐹(𝑟)
1

𝐹(𝜋)

+
∫ (𝑟 − 𝜋)2𝑑𝐹(𝑟)

𝐹(𝜋)

0

∫ (𝜋 − 𝑟)𝑑𝐹(𝑟)
𝐹(𝜋)

0

] 

= Pietra

× {
∫ (𝑟 − 𝜋)2𝑑𝐹(𝑟)

1

𝐹(𝜋)
+ 2 × 𝜋 × ∫ (𝑟 − 𝜋)𝑑𝐹(𝑟)

1

𝐹(𝜋)

∫ (𝑟 − 𝜋)𝑑𝐹(𝑟)
1

𝐹(𝜋)

− [
2 × 𝜋 × ∫ (𝜋 − 𝑟)𝑑𝐹(𝑟)

𝐹(𝜋)

0
− ∫ (𝑟 − 𝜋)2𝑑𝐹(𝑟)

𝐹(𝜋)

0

∫ (𝜋 − 𝑟)𝑑𝐹(𝑟)
𝐹(𝜋)

0

]} 
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= 2 × [

1
2 × ∫ (𝑟2 − 𝜋2)𝑑𝐹(𝑟)

1

𝐹(𝜋)

∫ (𝑟 − 𝜋)𝑑𝐹(𝑟)
1

𝐹(𝜋)

−

1
2 × ∫ (𝜋2 − 𝑟2)𝑑𝐹(𝑟)

𝐹(𝜋)

0

∫ (𝜋 − 𝑟)𝑑𝐹(𝑟)
𝐹(𝜋)

0

] × Pietra 

= 2 × {
∫ [

𝜋 + 𝑟
2 × (𝑟 − 𝜋)] 𝑑𝐹(𝑟)

1

𝐹(𝜋)

∫ (𝑟 − 𝜋)𝑑𝐹(𝑟)
1

𝐹(𝜋)

−
∫ [

𝜋 + 𝑟
2 × (𝜋 − 𝑟)] 𝑑𝐹(𝑟)

𝐹(𝜋)

0

∫ (𝜋 − 𝑟)𝑑𝐹(𝑟)
𝐹(𝜋)

0

}

× Pietra 

= 2 × (𝑦AL − 𝑦BL) × Pietra, 

where 𝑦AL =
∫ [

𝜋+𝑟

2
×(𝑟−𝜋)]𝑑𝐹(𝑟)

1
𝐹(𝜋)

∫ (𝑟−𝜋)𝑑𝐹(𝑟)
1

𝐹(𝜋)

 represents the y-coordinate of the center of gravity 

for the above-the-line (AL) region and 𝑦BL =
∫ [

𝜋+𝑟

2
×(𝜋−𝑟)]𝑑𝐹(𝑟)

𝐹(𝜋)

0

∫ (𝜋−𝑟)𝑑𝐹(𝑟)
𝐹(𝜋)

0

 represents the y-

coordinate of the center of gravity for the below-the-line (BL) region.  
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Appendix 6. Relationships among the Pietra index, the Gini index, and the scaled 

Brier score.  

    Let 𝑟L and 𝑟H represent the lowest and highest risks on the predictiveness curve, 

respectively (0 ≤ 𝑟L ≤ 𝜋 ≤ 𝑟H ≤ 1). The horizontal line at 𝑟 = 𝜋 divides the 

predictiveness curve into three segments: one (𝑟BL) below the line, spanning from (0, 

𝑟L) to (𝐹BL(𝜋), 𝜋), one extending along it, spanning from (𝐹BL(𝜋), 𝜋) to (𝐹AL(𝜋), 𝜋), 

and one (𝑟AL) above it, spanning from (𝐹AL(𝜋), 𝜋) to (1, 𝑟H), where 0 ≤ 𝐹BL(𝜋) ≤

𝐹AL(𝜋) ≤ 1.  

    Note that 𝑟BL is a monotonically non-decreasing function for 0 ≤ 𝐹(𝑟) ≤

𝐹BL(𝜋), which implies 0 ≤ (𝜋 − 𝑟BL) ≤ 𝜋 − 𝑟L over this range. Similarly, 𝑟AL is a 

monotonically non-decreasing function for 𝐹AL(𝜋) ≤ 𝐹(𝑟) ≤ 1, implying 0 ≤

(𝑟AL − 𝜋) ≤ 𝑟H − 𝜋. As a result, the areas of the BL and AL regions are constrained as: 

0 ≤ 𝐴BL = ∫ (𝜋 − 𝑟BL)𝑑𝐹(𝑟)
𝐹BL(𝜋)

0
≤ (𝜋 − 𝑟L) × 𝐹BL(𝜋), and 0 ≤ 𝐴AL =

∫ (𝑟AL − 𝜋)𝑑𝐹(𝑟)
1

𝐹AL(𝜋)
≤ (𝑟H − 𝜋) × [1 − 𝐹AL(𝜋)]. Since the prediction model is 

assumed to be well-calibrated and unbiased, 𝐴BL and 𝐴AL must be equal. Thus, the 

Pietra index is bounded as: 0 ≤ Pietra =
𝐴BL

𝜋×(1−𝜋)
=

𝐴AL

𝜋×(1−𝜋)
≤

(𝜋−𝑟L)×𝐹BL(𝜋)

𝜋×(1−𝜋)
=

(𝑟H−𝜋)×[1−𝐹AL(𝜋)]

𝜋×(1−𝜋)
. For a perfect prediction model, 𝑟L = 0, 𝑟H=1, and 𝐹BL(𝜋) =

𝐹AL(𝜋) = 1 − 𝜋, making the upper bound equal to 1. Therefore, the Pietra index 

satisfies the constraint: 0 ≤ Pietra ≤ 1.  

    The x-coordinate of the center of gravity for the BL region is given by 𝑥BL =

∫ [𝐹(𝑟)×(𝜋−𝑟BL)]
𝐹BL(𝜋)

0 𝑑𝐹(𝑟)

∫ (𝜋−𝑟BL)𝑑𝐹(𝑟)
𝐹BL(𝜋)

0

, and it is constrained by 𝑥BL ≤
𝐹BL(𝜋)

2
. Similarly, the x-

coordinate of the center of gravity for the AL region is given by 𝑥AL =
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∫ [𝐹(𝑟)×(𝑟AL−𝜋)]
1

𝐹AL(𝜋) 𝑑𝐹(𝑟)

∫ (𝑟AL−𝜋)
1

𝐹AL(𝜋) 𝑑𝐹(𝑟)
, and it is constrained by 𝑥AL ≥

1+ 𝐹AL(𝜋)

2
. Thus, the difference 

between the two x-coordinates satisfies (𝑥AL − 𝑥BL) ≥  
1+ 𝐹AL(𝜋)−𝐹BL(𝜋)

2
≥

1

2
. From 

Appendix 4, the Gini index is expressed as Gini = 2 × (𝑥AL − 𝑥BL) × Pietra. This 

relationship implies that the Gini index is bounded below by the Pietra index. For a 

perfect prediction model, Pietra = 1, 𝑥BL =
1−𝜋

2
, and 𝑥AL = 1 −

𝜋

2
. Consequently, the 

Gini index is bounded above by 1.  

    The y-coordinate of the center of gravity for the BL region is given by 𝑦BL =

∫ [
𝜋+𝑟

2
×(𝜋−𝑟)]

𝐹BL(𝜋)
0 𝑑𝐹(𝑟)

∫ (𝜋−𝑟)
𝐹BL(𝜋)

0 𝑑𝐹(𝑟)
, and it is constrained by 𝑦BL ≥

𝜋+𝑟L

2
. Similarly, the y-coordinate 

of the center of gravity for the AL region is given by 𝑦AL =
∫ [

𝜋+𝑟

2
×(𝑟−𝜋)]

1
𝐹AL(𝜋) 𝑑𝐹(𝑟)

∫ (𝑟−𝜋)
1

𝐹AL(𝜋) 𝑑𝐹(𝑟)
, and 

it is constrained by 𝑦AL ≤
𝜋+𝑟H

2
. Thus, the difference between the two y-coordinates 

satisfies (𝑦AL − 𝑦BL) ≤  
𝑟H−𝑟L

2
≤

1

2
. From Appendix 5, the scaled Brier score is 

expressed as scaled Brier = 2 × (𝑦AL − 𝑦BL) × Pietra. This relationship implies that 

the scaled Brier score is bounded above by the Pietra index. For a null prediction model, 

Pietra = 0, and 𝑦BL = 𝑦AL = 𝜋. Consequently, the scaled Brier score is bounded below 

by 0.  

    Taken together, we obtain 0 ≤ scaled Brier ≤ Pietra ≤ Gini ≤ 1.  
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Appendix 7. Example predictiveness curve calculations for an informative but 

imperfect model.  

    Consider a prediction model with a predictiveness curve defined by the following 

function:  

𝑟 = {

[𝐹(𝑟) + 0.01]4 + 0.0859       when   0 ≤ 𝐹(𝑟) < 0.5712,

√𝐹(𝑟) + 0.0798 − 0.6068      when   0.5712 ≤ 𝐹(𝑟) ≤ 1.

 

The area under the predictiveness curve, which represents the disease prevalence in the 

population, is calculated as follows:  

𝜋 = ∫ 𝑟
1

0

𝑑𝐹(𝑟) 

= ∫ {[𝐹(𝑟) + 0.01]4 + 0.0859}
0.5712

0

𝑑𝐹(𝑟)

+ ∫ {√𝐹(𝑟) + 0.0798 − 0.6068}
1

0.5712

𝑑𝐹(𝑟) 

= 0.2. 

The area of the BL region is calculated as follows:  

∫ (𝜋 − 𝑟)
𝐹(𝜋)

0
𝑑𝐹(𝑟) = ∫ {0.1141 − [𝐹(𝑟) + 0.01]4}

0.5712

0
𝑑𝐹(𝑟) = 0.0519,  

and the area of the AL region is calculated as follows:  

∫ (𝑟 − 𝜋)
1

𝐹(𝜋)

𝑑𝐹(𝑟) = ∫ [√𝐹(𝑟) + 0.0798 − 0.8068]
1

0.5712

𝑑𝐹(𝑟) = 0.0519, 

which are equal as expected.  

The Pietra index is calculated as follows:  
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Pietra =
𝐴

𝜋×(1−𝜋)
=

0.0519

0.2×(1−0.2)
= 0.3244. 

The coordinates of the center of gravity for the BL region are calculated as follows:  

𝑥BL =
∫ [𝐹(𝑟)×(𝜋−𝑟)]

𝐹(𝜋)

0
𝑑𝐹(𝑟)

∫ (𝜋−𝑟)
𝐹(𝜋)

0 𝑑𝐹(𝑟)
  

=
∫ {𝐹(𝑟)×[0.1141−[𝐹(𝑟)+0.01]4]}

0.5712
0 𝑑𝐹(𝑟)

0.0519
   

=
0.0123

0.0519
= 0.2370,  

𝑦BL =
∫ [

𝜋+𝑟

2
×(𝜋−𝑟)]

𝐹(𝜋)

0 𝑑𝐹(𝑟)

∫ (𝜋−𝑟)
𝐹(𝜋)

0 𝑑𝐹(𝑟)
  

=
1

2
×{∫ {{[𝐹(𝑟)+0.01]4+0.2859}×{0.1141−[𝐹(𝑟)+0.01]4}}

0.5712
0 𝑑𝐹(𝑟)}

0.0519
  

=
0.0078

0.0519
= 0.1503.  

The coordinates of the center of gravity for the AL region are calculated as follows:  

𝑥AL =
∫ [𝐹(𝑟)×(𝑟−𝜋)]

1
𝐹(𝜋) 𝑑𝐹(𝑟)

∫ (𝑟−𝜋)
1

𝐹(𝜋) 𝑑𝐹(𝑟)
  

=
∫ {𝐹(𝑟)×[√𝐹(𝑟)+0.0798−0.8068]}

1
0.5712

𝑑𝐹(𝑟)

0.0519
  

=
0.0443

0.0519
= 0.8536, 

𝑦AL =
∫ [

𝜋+𝑟

2
×(𝑟−𝜋)]

1
𝐹(𝜋) 𝑑𝐹(𝑟)

∫ (𝑟−𝜋)
1

𝐹(𝜋) 𝑑𝐹(𝑟)
  

=
∫ {𝐹(𝑟)×[√𝐹(𝑟)+0.0798−0.8068]}

1
0.5712 𝑑𝐹(𝑟)

0.0519
  

=
0.0145

0.0519
= 0.2794. 



doi:10.6342/NTU202504305

40 

 

The Gini index and the scaled Brier score are calculated as follows:  

 

Gini = 2 × (𝑥AL − 𝑥BL) × Pietra = 2 × (0.8536 − 0.2370) × 0.3244 = 0.4001, 

scaled Brier = 2 × (𝑦AL − 𝑦BL) × Pietra = 2 × (0.2794 − 0.1503) × 0.3244 

= 0.0838. 
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Appendix 8. Prediction Models I to IX Calculations  

Model I 

    The predictiveness curve for the prediction model is defined by the following 

functions:  

𝑟 = {
0.10588      when   0.00000 ≤ 𝐹(𝑟) < 0.68000,

0.40000      when   0.68000 ≤ 𝐹(𝑟) ≤ 1.00000.
 

The Pietra index is calculated as follows:  

Pietra =
AreaBL

𝜋×(1−𝜋)
=

AreaAL

𝜋×(1−𝜋)
=

(0.2−0.10588)×(0.68−0)

0.2×(1−0.2)
=

(0.4−0.2)×(1−0.68)

0.2×(1−0.2)
= 0.4. 

The Gini index is calculated as follows:  

Gini = 2 × (𝑥AL − 𝑥BL) × Pietra 

= 2 × {
2 × [1 + 0.68]

4
−

2 × [0.68 + 0]

4
} × 0.4 

= 0.4. 

The scaled Brier score is calculated as follows:  

sBrier = 2 × (𝑦AL − 𝑦BL) × Pietra 

= 2 × [
2 × (0.4 + 0.2)

4
−

2 × (0.10588 + 0.2)

4
] × 0.4 

= 0.1176. 

Model II 

The predictiveness curve for the prediction model is defined by the following 

functions:  
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𝑟 = {
0.10928      when   0.00000 ≤ 𝐹(𝑟) < 0.56281,
0.20000      when   0.56281 ≤ 𝐹(𝑟) < 0.81631,
0.47796      when   0.81631 ≤ 𝐹(𝑟) ≤ 1.00000.

 

The Pietra index is calculated as follows:  

Pietra =
AreaBL

𝜋×(1−𝜋)
=

AreaAL

𝜋×(1−𝜋)
=

(0.2−0.10928)×(0.56281−0)

0.2×(1−0.2)
=

(0.47796−0.2)×(1−0.81631)

0.2×(1−0.2)
=

0.3191. 

The Gini index is calculated as follows:  

Gini = 2 × (𝑥AL − 𝑥BL) × Pietra 

= 2 × {
2 × [1 + 0.81631]

4
−

2 × [0.56281 + 0]

4
} × 0.3191 

= 0.4. 

The scaled Brier score is calculated as follows:  

scaled Brier = 2 × (𝑦AL − 𝑦BL) × Pietra 

= 2 × [
2 × (0.47796 + 0.2)

4
−

2 × (0.10928 + 0.2)

4
] × 0.3191 

= 0.1176. 

Model III 

The predictiveness curve for the prediction model is defined by the following 

functions:  

𝑟 = {
0.00013      when   0.00000 ≤ 𝐹(𝑟) < 0.19061,
0.20000      when   0.19061 ≤ 𝐹(𝑟) < 0.87051,
0.49422      when   0.87051 ≤ 𝐹(𝑟) ≤ 1.00000.

 

The Pietra index is calculated as follows:  
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Pietra =
AreaBL

𝜋×(1−𝜋)
=

AreaAL

𝜋×(1−𝜋)
=

(0.2−0.00013)×(0.19061−0)

0.2×(1−0.2)
=

(0.49422−0.2)×(1−0.87051)

0.2×(1−0.2)
=

0.2381. 

The Gini index is calculated as follows:  

Gini = 2 × (𝑥AL − 𝑥BL) × Pietra 

= 2 × {
2 × [1 + 0.87051]

4
−

2 × [0.19061 + 0]

4
} × 0.2381 

= 0.4. 

The scaled Brier score is calculated as follows:  

scaled Brier = 2 × (𝑦AL − 𝑦BL) × Pietra 

= 2 × [
2 × (0.49422 + 0.2)

4
−

2 × (0.00013 + 0.2)

4
] × 0.2381 

= 0.1176. 

Model IV 

The predictiveness curve for the prediction model is defined by the following 

functions:  

𝑟 = {
0.07045      when   0.00000 ≤ 𝐹(𝑟) < 0.40059,
0.20000      when   0.40059 ≤ 𝐹(𝑟) < 0.59941,
0.32955      when   0.59941 ≤ 𝐹(𝑟) ≤ 1.00000.

 

The Pietra index is calculated as follows:  

Pietra =
AreaBL

𝜋×(1−𝜋)
=

AreaAL

𝜋×(1−𝜋)
=

(0.2−0.07045)×(0.40059−0)

0.2×(1−0.2)
=

(0.32955−0.2)×(1−0.59941)

0.2×(1−0.2)
=

0.3244. 

The Gini index is calculated as follows:  
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Gini = 2 × (𝑥AL − 𝑥BL) × Pietra 

= 2 × {
2 × [1 + 0.59941]

4
−

2 × [0.40059 + 0]

4
} × 0.3244 

= 0.3889. 

The scaled Brier score is calculated as follows:  

scaled Brier = 2 × (𝑦AL − 𝑦BL) × Pietra 

= 2 × [
2 × (0.32955 + 0.2)

4
−

2 × (0.07045 + 0.2)

4
] × 0.3244 

= 0.0840. 

Model V 

The predictiveness curve for the prediction model is defined by the following 

functions:  

𝑟 = {
0.01268      when   0.00000 ≤ 𝐹(𝑟) < 0.27705,

0.27179      when   0.27705 ≤ 𝐹(𝑟) ≤ 1.00000.
 

The Pietra index is calculated as follows:  

Pietra =
AreaBL

𝜋×(1−𝜋)
=

AreaAL

𝜋×(1−𝜋)
=

(0.2−0.01268)×(0.27705−0)

0.2×(1−0.2)
=

(0.27179−0.2)×(1−0.27705)

0.2×(1−0.2)
=

0.3244. 

The Gini index is calculated as follows:  

Gini = 2 × (𝑥AL − 𝑥BL) × Pietra 

= 2 × {
2 × [1 + 0.27705]

4
−

2 × [0.27705 + 0]

4
} × 0.3244 

= 0.3244. 

The scaled Brier score is calculated as follows:  
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scaled Brier = 2 × (𝑦AL − 𝑦BL) × Pietra 

= 2 × [
2 × (0.27179 + 0.2)

4
−

2 × (0.01268 + 0.2)

4
] × 0.3244 

= 0.0840. 

Model VI 

The predictiveness curve for the prediction model is defined by the following 

functions:  

𝑟 = {
0.12821      when   0.00000 ≤ 𝐹(𝑟) < 0.72295,

0.38732      when   0.72295 ≤ 𝐹(𝑟) ≤ 1.00000.
 

The Pietra index is calculated as follows:  

Pietra =
AreaBL

𝜋×(1−𝜋)
=

AreaAL

𝜋×(1−𝜋)
=

(0.2−0.12821)×(0.72295−0)

0.2×(1−0.2)
=

(0.38732−0.2)×(1−0.72295)

0.2×(1−0.2)
=

0.3244. 

The Gini index is calculated as follows:  

Gini = 2 × (𝑥AL − 𝑥BL) × Pietra 

= 2 × {
2 × [1 + 0.72295]

4
−

2 × [0.72295 + 0]

4
} × 0.3244 

= 0.3244. 

The scaled Brier score is calculated as follows:  

scaled Brier = 2 × (𝑦AL − 𝑦BL) × Pietra 

= 2 × [
2 × (0.38732 + 0.2)

4
−

2 × (0.12821 + 0.2)

4
] × 0.3244 

= 0.0840. 

Model VII 



doi:10.6342/NTU202504305

46 

 

The predictiveness curve for the prediction model is defined by the following 

functions:  

𝑟 = {
0.12606      when   0.00000 ≤ 𝐹(𝑟) < 0.70194,
0.20000      when   0.70194 ≤ 𝐹(𝑟) < 0.93513,
1.00000      when   0.93513 ≤ 𝐹(𝑟) ≤ 1.00000.

 

The Pietra index is calculated as follows:  

Pietra =
AreaBL

𝜋×(1−𝜋)
=

AreaAL

𝜋×(1−𝜋)
=

(0.2−0.12606)×(0.70194−0)

0.2×(1−0.2)
=

(1−0.2)×(1−0.93513)

0.2×(1−0.2)
= 0.3244. 

The Gini index is calculated as follows:  

Gini = 2 × (𝑥AL − 𝑥BL) × Pietra 

= 2 × {
2 × [1 + 0.93513]

4
−

2 × [0.70194 + 0]

4
} × 0.3244 

= 0.4. 

The scaled Brier score is calculated as follows:  

scaled Brier = 2 × (𝑦AL − 𝑦BL) × Pietra 

= 2 × [
2 × (1 + 0.2)

4
−

2 × (0.12606 + 0.2)

4
] × 0.3244 

= 0.2835. 

Model VIII 

The predictiveness curve for the prediction model is defined by the following 

functions:  

𝑟 = {

0.00000      when   0.00000 ≤ 𝐹(𝑟) < 0.25949,

0.20000      when   0.25949 ≤ 𝐹(𝑟) < 0.49268,
0.30229      when   0.49268 ≤ 𝐹(𝑟) ≤ 1.00000.

 

The Pietra index is calculated as follows:  
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Pietra =
AreaBL

𝜋×(1−𝜋)
=

AreaAL

𝜋×(1−𝜋)
=

(0.2−0)×(0.25949−0)

0.2×(1−0.2)
=

(0.30229−0.2)×(1−0.49268)

0.2×(1−0.2)
= 0.3244. 

The Gini index is calculated as follows:  

Gini = 2 × (𝑥AL − 𝑥BL) × Pietra 

= 2 × {
2 × [1 + 0.49268]

4
−

2 × [0.25949 + 0]

4
} × 0.3244 

= 0.4. 

The scaled Brier score is calculated as follows:  

scaled Brier = 2 × (𝑦AL − 𝑦BL) × Pietra 

= 2 × [
2 × (0.30229 + 0.2)

4
−

2 × (0 + 0.2)

4
] × 0.3244 

= 0.0981. 

Model IX 

The predictiveness curve for the prediction model is defined by the following 

functions:  

𝑟 = {
0.06464      when   0.00000 ≤ 𝐹(𝑟) < 0.38340,
0.20000      when   0.38340 ≤ 𝐹(𝑟) < 0.61659,
0.33536      when   0.61659 ≤ 𝐹(𝑟) ≤ 1.00000.

 

The Pietra index is calculated as follows:  

Pietra =
AreaBL

𝜋×(1−𝜋)
=

AreaAL

𝜋×(1−𝜋)
=

(0.2−0.06464)×(0.3834−0)

0.2×(1−0.2)
=

(0.33536−0.2)×(1−0.61659)

0.2×(1−0.2)
=

0.3244. 

The Gini index is calculated as follows:  

Gini = 2 × (𝑥AL − 𝑥BL) × Pietra 
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= 2 × {
2 × [1 + 0.61659]

4
−

2 × [0.3834 + 0]

4
} × 0.3244 

= 0.4. 

The scaled Brier score is calculated as follows:  

scaled Brier = 2 × (𝑦AL − 𝑦BL) × Pietra 

= 2 × [
2 × (0.33536 + 0.2)

4
−

2 × (0.06464 + 0.2)

4
] × 0.3244 

= 0.0878. 
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Appendix 9.  
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Appendix 10.  

 

 


