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English Abstract

Prediction models are essential tools in clinical medicine and public health,
facilitating disease risk estimation and supporting decision-making. Traditional
evaluation methods such as the receiver operating characteristic (ROC) curve and its
area under the curve (AUC) primarily assess discrimination but provide limited insight
into population-level risk stratification. The predictiveness curve, originally proposed
for biomarker evaluation, visually illustrates how predicted risks distribute across a
population but has been underexplored in the context of multivariable prediction

models.

This study extends the predictiveness curve methodology to evaluate multivariable
risk prediction models, systematically exploring its geometric properties and deriving
three complementary performance indices: the Pietra index, Gini index, and scaled Brier
score. These indices respectively quantify a model’s ability to resolve intermediate-risk
cases, achieve separation among predicted risks, and enhance prediction certainty. A
three-step procedure—cross-validation, isotonic regression calibration, and bootstrap
averaging—was proposed to ensure calibration and unbiasedness of predicted risks.
[llustrative examples and a real-world application involving 23,839 lung cancer patients

from Taiwan were used to demonstrate and validate the methodology.

The Pietra index, Gini index, and scaled Brier score captured distinct dimensions
of risk stratification performance. Models with identical values of one index could differ
markedly in the other indices, underscoring their complementary nature. In the lung
cancer case study, the final adjusted prediction model effectively stratified patients
across the fatality risk spectrum, identifying 25.1% of patients as very low-risk (<10%

fatality) and 50.1% as high-risk (>75% fatality), with only 5.1% of patients falling
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within a “gray zone” near the average fatality risk. The adjusted model achieved a Pietra
index of 0.6719, a Gini index of 0.7850, and a scaled Brier score of 0.5186. Substantial
variation in predictive performance was observed among adenocarcinoma, squamous
cell carcinoma, small cell carcinoma, and large cell carcinoma subtypes, reflecting

differential risk stratification capabilities by cell type.

The predictiveness curve and its geometric summaries—the Pietra index, Gini
index, and scaled Brier score—provide a powerful, transparent, and population-oriented
framework for evaluating the performance of multivariable risk prediction models
beyond traditional metrics. By clearly illustrating how a model stratifies risk and for
which proportion of the population, these methods enhance interpretability, supporting
clinicians and researchers in refining and applying predictive models effectively in

clinical and public health practice.

Keywords: prediction model evaluation; predictiveness curve; risk stratification; Gini

index; Pietra index; scaled Brier score.
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Chapter 1 Introduction

Prediction models are essential decision-support tools widely used in
epidemiology, clinical medicine, and public health to estimate disease risk, inform
clinical decisions, and guide population-level interventions.'* By integrating diverse
variables—including demographic characteristics, socioeconomic factors, lifestyle
behaviors, environmental exposures, biological markers, medical histories, and clinical
data—these models effectively quantify an individual’s likelihood of developing
specific diseases. Such risk information helps individuals better understand their health
status, enables healthcare professionals to develop appropriate management strategies,

and informs public health initiatives aimed at disease prevention and control.

To ensure prediction models are useful and accurate, it is essential to evaluate their
calibration and discrimination performance.® Calibration assesses how closely predicted
risks align with actual observed outcomes, while discrimination measures the model’s
ability to distinguish between individuals who do and do not develop the disease. The
area under the receiver operating characteristic (ROC) curve (AUC), also known as the
¢ statistic, 1s widely used to evaluate and compare the discrimination ability of
diagnostic tests and prediction models.* AUC values range from 0.5 (no better than
random guessing) to 1.0 (perfect discrimination). However, when multiple models share
the same AUC, relying solely on this measure makes it challenging to differentiate their
relative predictive performances or to clearly identify why one model may outperform

others.

Huang et al. introduced the predictiveness curve as a graphical tool to illustrate
how predicted risks are distributed across population percentiles.’ Unlike the ROC

curve, which depicts sensitivity and specificity at various thresholds without revealing
1
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the actual underlying distribution of predicted risks, the predictiveness curve offers
deeper insights into the predictive capacity, risk stratification, and discrimination
capability of a marker or diagnostic test, particularly regarding its performance in
identifying distinct high- and low-risk subgroups. Another key advantage of the
predictiveness curve is its use of population percentiles as a standardized scale, which
facilitates consistent and interpretable comparisons across different risk distributions
and populations. However, despite these strengths, the original application of the
predictiveness curve primarily focused on evaluating biomarkers or diagnostic tests; its
utility in the context of assessing and comparing the performance of prediction models
has not been extensively explored. Expanding the use of the predictiveness curve to
prediction models could provide additional insights into model performance, beyond

those available through traditional metrics such as the ROC curve.

This study aims to extend the application of the predictiveness curve from its
traditional use with single biomarkers and diagnostic tests to the evaluation of
multivariable prediction models. Specifically, we systematically explore the geometric
properties of the predictiveness curve and derive three intuitive performance indices—
the Pietra index, the Gini index, and the scaled Brier score—that quantify
complementary aspects of model performance. Through analytical derivation,
illustrative examples, and empirical application to a large cohort of lung cancer patients,
we demonstrate how these indices provide insights beyond conventional measures such
as the area under the ROC curve. By focusing on risk stratification, gray-zone
resolution, and certainty of prediction, this framework offers a more transparent and
population-anchored evaluation of predictive effectiveness for public health researchers

and clinical decision-makers.
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Chapter 2 Predictiveness Curve: Construction, Geometry, and

Performance Indices

This paper proposes constructing the predictiveness curve for evaluating prediction
models as follows: the curve is generated by plotting the predicted risk r, derived from
a prediction model, on the y-axis against the cumulative proportion of the population
with predicted risk less than or equal to r on the x-axis. Since both axes range from 0
to 1, the curve lies entirely within the unit square. It is monotonically non-decreasing, as
higher predicted risk values correspond to greater—or at least equal—proportions of
subjects with predicted risk less than or equal to that value. Figure 1 illustrates example
predictiveness curves for three models applied to the same population with a disease
prevalence of 0.2: an informative but imperfect model (A), a null model (B), and a

perfect model (C).

The area under the predictiveness curve represents the mean predicted risk when
the prediction model is applied to the population. For a well-calibrated and unbiased
model—one for which approximately 100 X r out of 100 individuals with a predicted
risk of r are actually diseased—this area corresponds to the disease prevalence in the

population, denoted by m (Appendix 1).

A horizontal line at r = m (dotted lines in Figure 1) divides the predictiveness
curve into two segments: one below and one above the line. Together with this
horizontal line, the curve forms two enclosed regions—one below the line (the below-
the-line, or BL, region) and one above (the above-the-line, or AL, region) (orange and
red shaded regions in Figure 1). For a well-calibrated and unbiased prediction model,

these two regions have equal area, denoted by A (Appendix 2).
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A null prediction model (Figure 1B) assigns the same risk, m, to every subject in
the population. Its predictiveness curve is a horizontal line at r = m, with no BL or AL
regions, meaning A = 0. In contrast, a perfect prediction model (Figure 1C) assigns a
risk of 1 to all subjects who eventually become diseased and a risk of 0 to all subjects
who remain non-diseased. Its predictiveness curve remains at ¥ = 0 for 0to (1 — ),
then jumps to r = 1 and stays constant from (1 — ) to 1. Its BL region is a rectangle
with a width of (1 — m) and a height of m, while its AL region is a rectangle with a

width of m and a height of (1 —m). Thus, A = X (1 —m).

We now demonstrate how three commonly used performance indices for prediction
models—the Pietra index, the Gini index (both derived from the Lorenz curve), and the
scaled Brier score—are mathematically linked to the geometric properties of the
predictiveness curve. These indices are standardized: they equal 0 for a null prediction
model, 1 for a perfect model, and lie between 0 and 1 for informative but imperfect
models. %’ Notably, for well-calibrated and unbiased models, the Lorenz-based Gini and
Pietra indices correspond to their ROC-based counterparts, with Gini = 2 X AUC — 1,
and Pietra equal to the maximum vertical distance (MVD) from the ROC curve to the

diagonal line.%’

Appendix 3 shows that the Pietra index equals the area A of the BL (or AL) region
of the predictiveness curve, normalized by the maximum possible area from a perfect

model:
Pietra = A/Aperfect model = 4/[m % (1 —m)]. (1)

Let (xgr, ¥pL) and (xar,Var) represent the coordinates of the centers of gravity for
the BL and AL region, respectively (orange and red dots in Figure 1). Appendix 4 shows

that the Gini index is related to the horizontal separation between these centers of
4
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gravity, given by:

Gini = 2 X (xa1, — xg1) X Pietra. (2)

Appendix 5 demonstrates that the scaled Brier score is connected to the vertical

separation between these centers of gravity, expressed as:

scaled Brier = 2 X (ya, — ¥g) X Pietra. 3)

Additionally, Appendix 6 establishes the following relationship among the indices: 0 <

scaled Brier < Pietra < Gini < 1.

We now return to the example predictiveness curves in Figure 1. For the
informative but imperfect model (Figure 1A), the BL and AL regions have equal areas
0f 0.0519, with centers of gravity at (0.2370, 0.1503) and (0.8536, 0.2794), as detailed
in Appendix 7. From these values and Equations (1), (2), and (3), we calculate Pietra =
0.0519/[0.2 X (1 — 0.2)] = 0.3244, Gini = 2 X (0.8536 — 0.2370) X Pietra =
0.4001, and scaled Brier = 2 X (0.2794 — 0.1503) X Pietra = 0.0838. Note that the
values of these performance indices fall within the expected range and maintain the

correct order: 0 < 0.0838 < 0.3244 < 0.4001 < 1.

For the null model (Figure 1B), no BL or AL regions are formed (i.e., A =0),
resulting in a Pietra index of zero [Equation (1)]. Consequently, the Gini index and the
scaled Brier score also equal zero [Equations (2) and (3)]. For the perfect model (Figure
1C), the BL and AL regions form simple rectangles, allowing straightforward
calculation of their areas and centers of gravity: A = 0.16, (xg,ygL) = (0.4,0.1), and
(xaL, ¥aL) = (0.9,0.6). From Equations (1), (2), and (3), the three indices achieve the

value of 1 as expected.
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Chapter 3 Performance Indices and Their Role in Risk Stratification

Assuming the prediction models are well-calibrated and unbiased, we next show
how the three geometric summary measures of the predictiveness curve—the Pietra
index, Gini index, and scaled Brier score—each capture a distinct dimension of a

model’s risk stratification performance.
3.1 Gray-Zone Resolution: Pietra Index

The upper row of Figure 2 presents the predictiveness curves of three additional
prediction models, I, I, and III, applied to the same population. These models share the
same Gini index of 0.4000 and scaled Brier score of 0.1176, but their Pietra indices
decrease in order: 0.4000 for model I, 0.3191 for model II, and 0.2381 for model III
(Appendix 8). Model I classifies all individuals into either the high-risk or low-risk
groups, leaving no individuals in the “gray zone” (average risk), whereas model II
assigns a certain proportion (25.35%) and model III an even larger proportion (67.99%)
of the population to the gray zone. This suggests that among prediction models with the
same Gini index and scaled Brier score, a higher Pietra index reflects a stronger ability
to resolve the gray zone, effectively reducing the number of individuals assigned near

the average-risk level.
3.2 Horizontal Risk Separation: Gini Index

The middle row of Figure 2 presents the predictiveness curves of three additional
prediction models, IV, V, and VI, applied to the same population. These models share
the same Pietra index of 0.3244 and the same scaled Brier score of 0.0840, but their
Gini indices differ: 0.3889 for model IV and 0.3244 for models V and VI (Appendix 8).

Model IV classifies the population into three distinct groups: equal proportions
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(40.06%) in the high-risk and low-risk groups, with the remaining 19.88% in the
average-risk group. In contrast, models V and VI classify individuals into only two
groups—high-risk and low-risk—without leaving any in the average-risk category. This
indicates that among prediction models with the same Pietra index and scaled Brier
score, a higher Gini index reflects a stronger ability to separate predicted probabilities
between individuals, while a lower Gini index suggests a tendency to assign similar

probabilities to many individuals.

3.3 Vertical Certainty of Prediction: Scaled Brier Score

The lower row of Figure 2 illustrates the predictiveness curves of three prediction
models, VII, VIII, and IX, applied to the same population with a disease prevalence of
0.2. Each model classifies individuals into high-risk (risk > 0.2), low-risk (risk < 0.2),
or average-risk (risk = 0.2). As shown in Appendix 8, all three models have the same
Gini index of 0.4000 and the same Pietra index of 0.3244, but their scaled Brier scores
differ: 0.2835 for model VII, 0.0981 for model VIII, and 0.0878 for model IX. From
Figure 2, model VII predicts high-risk individuals as diseased with certainty (risk = 1),
model VIII predicts low-risk individuals as non-diseased with certainty (risk = 0),
while model IX achieves neither—raising the risk of high-risk individuals to 0.3354
(less than 1) and lowering the risk of low-risk individuals to 0.0646 (greater than 0).
This demonstrates that among prediction models with the same Gini and Pietra indices,
a higher scaled Brier score reflects a stronger ability to shift high-risk individuals
toward more certain diseased predictions or low-risk individuals toward more certain

non-diseased predictions.

We also compared the risk stratification properties of these three indices across
populations with varying disease prevalence. The results consistently confirm that the
7
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Pietra index, Gini index, and scaled Brier score respectively reflect a model’s ability to
resolve intermediate-risk cases, separate predicted risks, and enhance certainty in risk

estimation.
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Chapter 4 Ensuring Calibration and Unbiasedness in Prediction

Models

The preceding development assumes that the prediction model is both well-
calibrated and unbiased. To ensure these conditions are met in practice, we propose a
three-step adjustment procedure—cross-validation, calibration, and bootstrap

averaging—as detailed below:
4.1 Cross-Validation

The dataset is randomly partitioned into K subsets (folds). In K-fold cross-
validation, the model is trained on K—/ folds and tested on the remaining fold, rotating
through all folds so that each data point is used for validation once. Variants include
leave-one-out cross-validation (a special case where K equals the number of
observations), repeated K-fold cross-validation, and stratified cross-validation®, which
maintains the outcome distribution across folds. This process ensures that the predicted
risks used in evaluation are derived from models not trained on the individuals being
predicted, thereby mimicking predictions for unseen individuals and supporting valid

model assessment.
4.2 Calibration

To align predicted risks with observed outcomes, the cross-validated predictions
are further calibrated using isotonic regression.’ This non-parametric method assumes a
monotonic increasing relationship between predicted risk and true outcomes.
Individuals are first sorted by predicted risk in ascending order. The Pool-Adjacent-
Violators Algorithm (PAVA) is then applied to enforce monotonicity by averaging
adjacent segments where the observed outcomes violate this assumption. This process
9
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yields calibrated risk estimates that better reflect the true probability of the outcome,

ensuring that the resulting predictiveness curve remains monotonically non-decreasing.
4.3 Bootstrap Averaging

When the sample size is limited, the predictiveness curve derived using the above
PAVA-based calibration may appear jagged or step-like, as violations of the
monotonicity assumption become more frequent, leading to more frequent averaging of
adjacent segments. We propose bootstrap averaging to mitigate this problem.
Specifically, multiple bootstrap samples!® are drawn from the original dataset along with
the corresponding cross-validated risks. Each bootstrap sample undergoes isotonic
regression via the PAVA procedure to produce a monotonic predictiveness curve.
Averaging these bootstrap predictiveness curves preserves monotonicity while
smoothing out the step-like jumps inherent in individual curves, resulting in a more

stable and visually interpretable final curve.

10
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Chapter 5 A Case Study: Five-Year Fatality Among Lung Cancer

Patients in Taiwan

We used data from the Taiwan Cancer Registry'" 1 to evaluate the performance of
a prediction model for five-year fatality among lung cancer patients. The dataset
included 23,839 patients diagnosed between 2017 and 2018: 18,885 with
adenocarcinoma, 3,247 with squamous cell carcinoma, 1,660 with small cell carcinoma,
and 47 with large cell carcinoma; patients with other cell types were excluded from the
analysis. The dataset provided detailed information on patients’ demographic
characteristics, lifestyle behaviors, medical histories, and clinical data. To determine
survival time, the cancer registry data were linked with mortality records, allowing

calculation of time-to-death from the date of diagnosis.

We developed a five-year fatality risk prediction model using Cox proportional
hazards regression, with the baseline hazard function estimated via the Breslow method
to compute individual five-year fatality risks. The model included one continuous
covariate (age) and twelve categorical covariates: sex, cancer histology, level of
urbanization, hospital level, cancer stage, smoking status, and six treatment modalities
(surgery, chemotherapy, radiotherapy, targeted therapy, immunotherapy, and palliative

care).

To ensure calibration and unbiasedness of the predictions, we applied the three-step
adjustment procedure described above to derive the adjusted five-year fatality risk for
each patient. This involved five-fold cross-validation stratified by five-year survival
status, followed by isotonic regression calibration. The final predicted risks—referred to
as adjusted risks—were obtained by averaging across 50 bootstrap samples. These

adjusted risks were then used to construct the predictiveness curves and compute the
11
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associated geometric summary measures: scaled Brier score, Pietra index, and Gini
index. To quantify uncertainty in both the predictiveness curves and summary measures,

an outer loop of 100 bootstrap resamples was performed.

Figure 3A presents the predictiveness curve for five-year fatality among lung
cancer patients (combining all four cell types). This curve reveals how patients are
stratified across the risk spectrum. For example, 40.8% of patients have a predicted five-
year fatality risk below the population average of 0.5539 (indicated by the dotted line
and reported in Table 1), while 59.2% exceed this average. The model also identifies
25.1% of patients as very low risk (risk < 0.10) and 50.1% as high risk (risk > 0.75). In
contrast, only 2.2% and 5.1% of patients fall into the gray zone, with predicted risks

within £0.05 and +0.1 of the average, respectively.

Figures 3B and 3C display the corresponding Lorenz and ROC curves for
comparison. Unlike the predictiveness curve, these plots do not offer direct insights into
how patients are stratified by risk; instead, they serve primarily to produce summary
indices. However, the same summary indices can be obtained from the predictiveness
curve: Pietra = 0.6719 and Gini = 0.7850 (Table 1), and AUC = 0.8925 (via
Gini = 2 X AUC — 1), and MVD = 0.6719 (noting that MVD equals Pietra).
Moreover, the predictiveness curve also enables computation of the scaled Brier score
(0.5186 in Table 1), a valuable performance measure not available from either the

Lorenz or ROC curves.

Figure 4 presents the predictiveness curves for five-year fatality among lung cancer
patients, stratified by cell type, with corresponding geometric summary measures shown
in Table 1. The curves differ substantially across cell types, indicating variable risk
stratification performance of the prediction model. The predictiveness curve for

12
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adenocarcinoma (Figure 4A) shows the steepest slope near the average fatality risk line,
consistent with its highest Pietra index, indicating fewer patients with risks clustered
around the mean and greater resolution of intermediate-risk cases. Adenocarcinoma also
achieves the highest Gini index, reflecting the strongest horizontal (patient-wise)
separation of fatality risks. This is visually evident in its predictiveness curve, which
shows a broader spread when moving along the x-axis. The scaled Brier score is
likewise highest for adenocarcinoma, corresponding to its predictiveness curve showing
more patients assigned to the extreme low- or high-risk ends, indicating greater
certainty in risk predictions. In contrast, the curves for squamous cell carcinoma (Figure
4B), small cell carcinoma (Figure 4C), and large cell carcinoma (Figure 4D) are flatter
near the average risk line, less horizontal spread, and lower vertical certainty compared

to adenocarcinoma.

13

doi:10.6342/NTU202504305



Chapter 6 Discussion

The ROC curve has long been used to evaluate the performance of individual
biomarkers and diagnostic tests, followed by the Lorenz curve; both have since been
extended to assess risk-prediction models.® 71315 These curves primarily serve to
generate summary indices—AUC and MVD for the ROC curve, and Gini and Pietra for
the Lorenz curve.® Among them, the AUC (and equivalently, the Gini index) has
dominated the evaluation of prediction models. However, as demonstrated in this paper,
these indices can also be derived from the predictiveness curve.!® Unlike ROC and
Lorenz curves, the predictiveness curve offers an additional summary measure—the
scaled Brier score—and, more importantly, the entire curve provides meaningful
insights. It visually and quantitatively illustrates how a prediction model stratifies risk
across a population, identifying what proportion falls into different risk categories. In
contrast, the ROC and Lorenz curves serve only as intermediaries for computing their
respective indices and offer little direct information about population-level risk

stratification.

Prediction models require cross-validation to avoid overly optimistic estimates of
discrimination performance; however, calibration is equally—if not more—crucial to
ensure that predicted risks accurately reflect true outcome probabilities. This paper
advocates integrating cross-validation and calibration into a unified development
process, operationalized through a three-step adjustment procedure: cross-validation,
calibration, and bootstrap averaging. Appendix 9 illustrates the predictiveness curves for
the four lung cancer cell types, based on models incorporating increasing levels of
adjustment: none, one step, two steps, and all three steps. For adenocarcinoma,
squamous cell carcinoma, and small cell carcinoma, the curves from models with and

14
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without cross-validation are nearly identical due to their large sample sizes. In contrast,
for large cell carcinoma (n = 47), cross-validation (one-step adjustment) noticeably
alters the curve, reflecting the impact of limited data. Calibration applied after cross-
validation (two-step adjustment) leads to substantial shifts in all four cell types,
particularly at the extremes of the risk distribution. For instance, in large cell carcinoma,
the uncalibrated model assigns 23.4% and 61.7% of patients predicted risks near 0 and
1, respectively—an overconfident estimate corrected by calibration. Nevertheless, the
two-step procedure results in step-like, unsmoothed curves in smaller samples (e.g.,
squamous, small cell, and large cell carcinoma), which are effectively smoothed by

applying the full three-step adjustment.

Appendix 10 presents the adjustment curves for the four lung cancer cell types.
These curves plot the final adjusted five-year fatality risks—obtained through the full
three-step procedure—against the cross-validated risks from the first step, which
emulate the raw predicted risks for prospective new patients. The 45-degree reference
lines (dotted) represent perfect agreement between predicted and observed risks;
deviations from these lines indicate areas where the model tends to over- or
underestimate risk and thus requires adjustment. These adjustment curves should be
considered integral components of the prediction model. Alongside conventional model
outputs—such as the regression coefficients from the Cox model and the baseline
hazard estimated via the Breslow method—they are essential for producing accurate

risk estimates in new individuals.

In conclusion, this study extends the application of the predictiveness curve from
single biomarkers and diagnostic tests to multivariable risk prediction models,

introducing three intuitive geometric summaries—the Pietra index, Gini index, and

15
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scaled Brier score—to comprehensively evaluate predictive performance. Demonstrated
through analytical derivation, illustrative examples, and a case study using a large
cohort of lung cancer patients, this framework provides deeper insights into critical
aspects of risk stratification, such as gray-zone resolution, risk separation, and
prediction certainty. The three-step adjustment procedure—cross-validation, calibration,
and bootstrap averaging—ensures reliable and robust predictive models, complementing
and enhancing conventional model evaluation methods. These tools and methods thus
offer researchers and healthcare practitioners a transparent, population-oriented
approach for refining and assessing prediction models to improve decision-making in

clinical medicine and public health.
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Table Note

Table 1. Geometric summary measures of the predictiveness curves for five-year
fatality prediction models among lung cancer patients, presented both overall

(all four cell types combined) and stratified by cell type.
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Table 1.

Types

Average five-year

fatality risk

Pietra

[95% confidence interval]

Gini

[95% confidence interval]

scaled Brier

[95% confidence interval]

Overall lung cancer
Adenocarcinoma
Squamous cell carcinoma
Small cell carcinoma

Large cell carcinoma

0.5539

0.4970

0.7197

0.8753

0.7226

0.6719 [0.6652,0.6843]
0.6979 [0.6906,0.7054]
0.4871 [0.4553,0.5180]
0.3380 [0.2880,0.4145]

0.4827 [0.3017,0.7716]

0.7850 [0.7777,0.7942]
0.8026 [0.7942,0.8111]
0.6185 [0.5801,0.6532]
0.4378 [0.3814,0.5287]

0.5729 [0.3704,0.8614]

0.5186 [0.5106,0.5314]
0.5386 [0.5281,0.5503]
0.2862 [0.2628,0.3212]
0.1195 [0.0873,0.1825]

0.2544 [0.1112,0.5933]
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Figure Note

Figure 1. Predictiveness curves and geometry: (A) informative but imperfect model,
(B) null model, (C) perfect model (blue line: predictiveness curve; dotted
line: disease prevalence in the population; orange shaded region: below-the-
line region; red shaded region: above-the-line region; orange dot: center of
gravity of the below-the-line region; red dot: center of gravity of the above-

the-line region).

Figure 2. Predictiveness curves for nine prediction models applied to the same
population with a disease prevalence of 0.2 (solid lines: predictiveness
curves; dotted line: disease prevalence). Models I, II, and III differ solely in
their Pietra indices; models IV, V, and VI differ solely in their Gini indices;

and models VII, VIII, and IV differ solely in their scaled Brier scores.

Figure 3. Evaluation curves for five-year fatality among lung cancer patients: (A)
Predictiveness curve, (B) Lorenz curve, and (C) Receiver Operating
Characteristic (ROC) curve. In panel (A), the dotted line marks the average
five-year fatality risk; in panels (B) and (C), it represents the diagonal
reference line indicating no discriminatory power. Shaded regions denote

95% bootstrap confidence intervals.

Figure 4. Predictiveness curves for five-year fatality among lung cancer patients,
stratified by cell type: (A) adenocarcinoma, (B) squamous cell carcinoma, (C)
small cell carcinoma, and (D) large cell carcinoma. Dotted lines indicate the
average five-year fatality risk for each subtype. Shaded regions represent 95%

bootstrap confidence intervals.
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Figure 3.

Five-year Fatality Risk
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Figure 4.
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Appendix Note

Appendix 1. Relationship among the area under the predictiveness curve, mean

predicted risk, and disease prevalence in the population.

Appendix 2. Relationship between the areas of the below-the-line and the above-the-

line regions.
Appendix 3. The Pietra index as a geometric summary of the predictiveness curve.
Appendix 4. The Gini index as a geometric summary of the predictiveness curve.

Appendix 5. The scaled Brier score as a geometric summary of the predictiveness

curve.

Appendix 6. Relationships among the Pietra index, the Gini index, and the scaled Brier

Scorc€.

Appendix 7. Example predictiveness curve calculations for an informative but

imperfect model.
Appendix 8. Prediction Models I to IX Calculations.

Appendix 9. Predictiveness curves after stepwise application of cross-validation,
calibration, and bootstrap smoothing for five-year fatality among lung
cancer patients, stratified by cell type: (A) adenocarcinoma, (B) squamous
cell carcinoma, (C) small cell carcinoma, and (D) large cell carcinoma.
Curves are color-coded by adjustment level: blue = unadjusted, brown =
cross-validation only, red = cross-validation with calibration, green = full
three-step adjustment. Dotted lines indicate the average five-year fatality
risk.
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Appendix 10. Adjustment curves for five-year fatality prediction models among lung
cancer patients, stratified by cell type: (A) adenocarcinoma, (B) squamous
cell carcinoma, (C) small cell carcinoma, and (D) large cell carcinoma.
Each solid curve plots the final adjusted risks—obtained through cross-
validation, calibration, and bootstrap averaging—against the cross-
validated risks prior to calibration, which emulate the raw predicted risks
for prospective new patients. Dotted 45-degree reference lines indicate

perfect agreement between predicted and true risks.
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Appendix 1. Relationship among the area under the predictiveness curve, mean

predicted risk, and disease prevalence in the population.

Let R be a random variable representing the predicted risk of disease, ranging

from 0 to 1, with probability density function f(r). The area under the predictiveness
curve is |, 01 rdF (r), where F(r) is the cumulative distribution function of R. Since

dF (r) = f(r)dr, this area equals | 01 rf (r) dr, which is the mean predicted risk. For a

well-calibrated and unbiased prediction model—where approximately 100 X r% of
individuals with predicted risk r are truly diseased—this value equals the disease

prevalence m in the population.
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Appendix 2. Relationship between the areas of the below-the-line and the above-

the-line regions.

The area of the below-the-line (BL) region is | OF(n) (r—=r)dF(r) =

) : ™1 dF Q] : @ dF (r). The area of the above-the-line (AL) region is

) Fl(n)(r —m)dF(r)=| Fl(n) rdF(r) —mx Fl(”) 1dF(r). For a well-calibrated and

unbiased prediction model, the sum of the integrals of 1 over the full domain is 1, and

the total area under the predictiveness curve equals the disease prevalence, m. Thus, the

difference between the areas of the AL and BL regions is [ 01 rdF(r) —m X

) 01 1dF(r) = m —m = 0, which shows that the two regions have equal area.
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Appendix 3. The Pietra index as a geometric summary of the predictiveness curve.

The Pietra index measures the average gain in information provided by the
prediction model, defined as the absolute difference between the predicted risk

(posterior probability) and the disease prevalence (prior probability). It is calculated as:

the mean gain provided by the given prediction model

Pietra =
fetra the mean gain provided by the perfect prediction model

~ J)\r = m|dF (r)
T ax|l-nl+(1-n)x|0-n|

7@ = 1)dF () + fp (= A ()

2xXnX(1—-m)
__area of BL region + area of AL region A
B 2xmx(1—m) T rx(1-m)

where the prediction model is assumed to be unbiased and well-calibrated such that the

below-the-line (BL) and the above-the-line (AL) regions have equal area, A.
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Appendix 4. The Gini index as a geometric summary of the predictiveness curve.

The Gini index measures separation, defined as the absolute difference between the
predicted probabilities of two randomly selected individuals. It is calculated using the

formula:

the mean separation provided by the given prediction model

Gini =
m the mean separation provided by the perfect prediction model

~ [ [y = ol dF (r)dF (1)
T l-1xm2+1-0|xmex(1-m)+]0-1x(1-m) XmT+|0—0| X (1—m)?

Jy Jy\r = raldF (r)dF () [ [, Tmax(ry, ) — min(ry, 7)1dF (ry)dF (r3)
- 2xmx(1—m) B 2xmXx(1—m)

1
T 2xmax(1-m)

d

) U: JOF(TZ)erF(H)dF(Tz) _JOI L;Z)rzdF(rl)dF(rz)l}

1
S 2xmx(1-mn)

d

) ]01 LF(TZ)erF(Tl) AR (r,) — JO ' JO erdF(rl)dF(rz)l

1 01 1 ~F(rp)
[ [ naraara-| | TldF(Tl)dF(rz)l
0 JF(ry) 0 Yo

1 .1 1,1
2 X1 X f f 1dF (r,)dF (ry,) — f f r,dF (ry)dF(ry)
0 JF(ry) 0 JF(ry)

+

1 F(ry) 1 F(r2)
2XmX J J 1dF (ry)dF(r,) — J f rdF (ry)dF (ry)
0o Jo 0o Jo

. jol Ll(rZ)HdF(rl)dF(rZ) — fol folrldF(rl)dF(rz)l}
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_ 1
T ax(1-mn)

1 ,1 1 1
X |2 XmX f f 1dF(T'1)dF(T'2) - f f T'ZdF(T'l)dF(T'Z)
0 JF(ry) 0 JF(rz)

1 F(ry) 1 .1
+.f0.[; erF(rl)dF(rZ)—fO fOerF(rl)dF(rZ)l

_ 1
T x(1—-mn)

X [2 X T X j L(rz)ldF(rl)dF(rZ) -2 X L L(rz)rzdF(rl)dF(rz)l

_ 1
T x(1-n)

1 1
X {2 X f [[1-F@)]xr|dF(r) -2 x f [[1-F@)]xr] dF(r)}
0 0

J7 @ =) dF () + [ (r — 1) dF ()
B X (1—m)

f (n) 1 F(r)] x n] dF (1) . fOF(n)[[l —F(r)] x n] dF(r)
Jr (= ) dF (1) [P —r) dF ()

Jrlll - F@Ixr]dF @) [FP[11 = F] x 1] dF ()
fp(n)(r 77:) dr (T‘) fF(T[)( - T) dF(T‘)

= 2 X Pietra

N =mdFe) - [l - FOI x ¢ = m] aF )
Jr)(r = M) dF (r)

P @ = dF @) = [ [ - F@O x (2 - )] dF (r)
JF P =) dr )
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. [ FO) X - =mIdF@)  [FPR@) x (- )] dF(r) 7
= — l1etra
fFl(”)(r - T[) dF(T') fF(n) (77.' - T') dF(T')

0

=2X (xAL — xBL) X Pietra,

h _ f;(n)[F(T)X(T—n)]dF(r)
WNEIe Xap, = f;(n)(r_”)dF(r)

represents the x-coordinate of the center of gravity

PO p () x (=) dF ()

[F (m—ryar(r)

for the above-the-line (AL) region and xp;, = represents the x-

coordinate of the center of gravity for the below-the-line (BL) region.
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Appendix 5. The scaled Brier score as a geometric summary of the predictiveness

curve.

The scaled Brier score measures squared gain, defined as the squared difference
between the predicted probability and the disease prevalence. It is calculated using the

formula:

the mean squared gain provided by the given prediction model

led Brier =
scated Briet the mean squared gain provided by the perfect prediction model

~ [} (r = m)2dF (r) o —m)2dF(r)
T Q-2 xn+(0-n)2x(1-n) wx(1l-mn)
_ 1

T 2xmx(1-m)

from@ = M2AF@) [ (F@ 1 l
—T)dF — m)dF
fFl(n)(r —m)dF(r) g Uo (r=mdEe + fF(n)(r m)dF (r)

F(m),. 2 F(m) 1
s Jo G =m?dF () x U (m —7)dF(r) + f (r— n)dF(T)I
0 F

[P —rdF(r) ()

[F® - rydF ) + Jr T = M)AF (1)

2Xm X (1—m)

o =0 dF@)  [FP 0 — m)2dF(r)
X

+
fpl(ﬂ)(r - T[)dF (T) fOF(T[)(ﬂ - T)dF(T)

= Pietra

Jo = M2AF () + 2 X X [ (r = mdF (1)
Sy = MAF (7)

2x7x [P —1dF @) - [T - m)2dF ()

0

Iy P = r)dF ()
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1 1 1 Fm
_ o ? X f(”)(rz — ﬂz)dF(T') B 7 X &(n) (71-2 _ _’,.Z)dF(r) N
Jpy ™ — AF () [ (e = 1)dF ()
. o [ x o =m]dF@) [ [ x (r= D] dF ()
- fpl(n)(r - T[)dF (T‘) fOF(T[)(TL' - T‘)dF(T)
X Pietra

=2X (yAL - YBL) X Pietra,

B f;(n) [”T”x(r—n)]dp(r)
e r-mdE®)

where yap, represents the y-coordinate of the center of gravity

SO (1) ar (r)

for the above-the-line (AL) region and yg; = represents the y-

[ (n—ryar(r)

coordinate of the center of gravity for the below-the-line (BL) region.
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Appendix 6. Relationships among the Pietra index, the Gini index, and the scaled

Brier score.

Let r;, and 1y represent the lowest and highest risks on the predictiveness curve,
respectively (0 < 1, < < 1y < 1). The horizontal line at r = m divides the
predictiveness curve into three segments: one (15;,) below the line, spanning from (0,
1) to (FgL(7), m), one extending along it, spanning from (Fgy, (), ) to (Far (), 1),
and one (r,1,) above it, spanning from (Fay, (1), ) to (1, 1), where 0 < Fgp () <

FAL(T[) <1

Note that 7, is @ monotonically non-decreasing function for 0 < F(r) <
Fg;. (1), which implies 0 < (m — rg;) < m — 11, over this range. Similarly, 7, is a
monotonically non-decreasing function for Fay () < F(r) < 1, implying 0 <

(rar, — m) < ry — 1. As aresult, the areas of the BL and AL regions are constrained as:
0 S ABL = fOFBL(n)(T[ —_ TBL)dF(T) S (T[ —_ TL) X FBL(T[), and O S AAL =

) FlAL (n)(rAL —m)dF(r) < (rg — ) X [1 — Fap,()]. Since the prediction model is

assumed to be well-calibrated and unbiased, Ag; and A,; must be equal. Thus, the

ABL  _ _ AL _ (m—r)xFpL(m) _
X (1-1) - nx(1-m) — X (1-1) -

Pietra index is bounded as: 0 < Pietra =

(ru—m)X[1-F a1 ()]
x(1-m)

. For a perfect prediction model, r;, = 0, ry=1, and Fg; (1) =

Fap(m) = 1 — , making the upper bound equal to 1. Therefore, the Pietra index

satisfies the constraint: 0 < Pietra < 1.

The x-coordinate of the center of gravity for the BL region is given by xg;, =

[y BLOF ()X (-rpL)ldF (r)

foFBL(n)(TT—TBL)dF(T)

FgL(m)
2

, and it is constrained by xp;, < . Similarly, the x-

coordinate of the center of gravity for the AL region is given by x,;, =
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[# g o [F X (raL-m)]dF ()

14 Fap(m)
2

, and it is constrained by x5, = . Thus, the difference

7y T AL=TAF (7)

. ) 1+ F -F 1
between the two x-coordinates satisfies (x5, — Xpr.) = AL(HZ) LY £ 51 From

Appendix 4, the Gini index is expressed as Gini = 2 X (x5, — xgy) X Pietra. This

relationship implies that the Gini index is bounded below by the Pietra index. For a
perfect prediction model, Pietra =1, xg;, = 1—711’ and xp;, =1-— g Consequently, the

Gini index is bounded above by 1.

The y-coordinate of the center of gravity for the BL region is given by yg;, =

Iy BHP [ () |aF ()

[EBL (_ryar(r)

, and it is constrained by yg;, = % Similarly, the y-coordinate

1 T+r
. . . . fFAL(n)[TX(r_TE)] dF(r)
of the center of gravity for the AL region is given by y,;, =
)(r—n)dF(r)

1 9
fFAL(Tf

it is constrained by y,;, < HJ;J Thus, the difference between the two y-coordinates

TH-TL

satisfies (yaL — ¥pr) < < % From Appendix 5, the scaled Brier score is
expressed as scaled Brier = 2 X (ya;, — yg1.) X Pietra. This relationship implies that
the scaled Brier score is bounded above by the Pietra index. For a null prediction model,

Pietra = 0, and yg; = ya1, = m. Consequently, the scaled Brier score is bounded below

by 0.

Taken together, we obtain 0 < scaled Brier < Pietra < Gini < 1.
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Appendix 7. Example predictiveness curve calculations for an informative but

imperfect model.

Consider a prediction model with a predictiveness curve defined by the following

function;

[F(r) + 0.01]* + 0.0859 when 0 < F(r) < 0.5712,
r =

JF(r) +0.0798 — 0.6068 when 0.5712 < F(r) < 1.

The area under the predictiveness curve, which represents the disease prevalence in the

population, is calculated as follows:
1
T = f rdF(r)
0

0.5712
_ f ([F(r) + 0.01]* + 0.0859} dF (r)
0

1
+ j {VF(r) +0.0798 — 0.6068} dF (r)
0.5712
=0.2.

The area of the BL region is calculated as follows:

0.5712

fOF(")(,T —7)dF(r) = [,777{0.1141 — [F(r) + 0.01]*} dF (r) = 0.0519,

and the area of the AL region is calculated as follows:

j (r— 1) dF (r) = f [\/F(r) +0.0798 — 0.8068] dF(r) = 0.0519,
F (1)

0.5712

which are equal as expected.

The Pietra index is calculated as follows:
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0.0519

ax(1-1) - 0.2x(1-0.2) = 0.3244.

Pietra =

The coordinates of the center of gravity for the BL region are calculated as follows:

SR )X (-1 dF(r)

x =
BL JF® -ryar(r)

_ P E@X[0.1141-[F()+0.01)*JaF (r)
- 0.0519
= 20123 _ 2370,

0.0519

Jo "X nare)

YBL = T 1 ar ()

{1y S {IF () +0.01]*+0.2859)x{0.1141- [F () +0.01]*}}aF (1)}
0.0519

_0.0078

= = 0.1503.
0.0519

The coordinates of the center of gravity for the AL region are calculated as follows:

e FOXr-mIaF ()
XaL = S (r=mAF ()

_ Jos712{FX[FG)+0.0798—0.8068|}aF (1)

0.0519

_0.0443
= 0.0519

= 0.8536,

_ Jrl X C-m]ar@)

Jp(mr—maF ()

YaAL

B f01_5712{F(r)><[JF(r)+O.O798—0.8068]}dF(r)

- 0.0519

_0.0145

= = 0.2794.
0.0519
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The Gini index and the scaled Brier score are calculated as follows:

Gini = 2 X (xAL - XBL) X Pietra = 2 X (08536 - 02370) X 0.3244 = 04001,

scaled Brier = 2 X (ya, — ygr) X Pietra = 2 X (0.2794 — 0.1503) x 0.3244

= 0.0838.
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Appendix 8. Prediction Models I to IX Calculations
Model I

The predictiveness curve for the prediction model is defined by the following

functions:

0.10588 when 0.00000 < F(r) < 0.68000,
r =
0.40000 when 0.68000 < F(r) < 1.00000.

The Pietra index is calculated as follows:

Areap;, _ Areap;, _ (0.2-0.10588)x(0.68—0) _ (0.4—0.2)x(1-0.68) 0.4
x(1-m)  wax(1-m) 0.2x(1-0.2) T o02x(1-02)

Pietra =

The Gini index is calculated as follows:

Gini = 2 X (xa1, — xg1,) X Pietra

2%x[140.68] 2x][0.68+0]
=2X 2 2 x 0.4

= 0.4.
The scaled Brier score 1s calculated as follows:

sBrier = 2 X (ya, — ¥g1) X Pietra

[2x(04+02) 2x(0.10588+0.2)
4 4

= 0.1176.

Model 11

The predictiveness curve for the prediction model is defined by the following

functions:
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0.10928 when 0.00000 < F(r) < 0.56281,
r =40.20000 when 0.56281 < F(r) < 0.81631,
0.47796 when 0.81631 < F(r) < 1.00000.

The Pietra index is calculated as follows:

Areap;, _ Areap;, _ (0.2-0.10928)x(0.56281-0) _ (0.47796—0.2)x(1-0.81631)

Pietra = x(1-m)  mx(-m) 0.2x(1-0.2) 0.2x(1-0.2)

0.3191.

The Gini index is calculated as follows:

Gini = 2 X (x1, — xg1) X Pietra

. {2 x [1+40.81631] 2 x[0.56281 + 0]
N 4 4

- } % 0.3191
= 0.4.
The scaled Brier score is calculated as follows:
scaled Brier = 2 X (ya1, — ¥g1) X Pietra
2% (0.47796 + 0.2) _2X (0.10928 + 0.2)

=2 X x 0.3191
4 4

= 0.1176.

Model 1T

The predictiveness curve for the prediction model is defined by the following

functions:

0.00013 when 0.00000 < F(r) < 0.19061,
r =40.20000 when 0.19061 < F(r) < 0.87051,
0.49422 when 0.87051 < F(r) < 1.00000.

The Pietra index is calculated as follows:
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Areap;, _ Areaa;, _ (0.2—0.00013)x(0.19061—0) _ (0.49422-0.2)x(1-0.87051)

rx(1-1)  wx(1-m) 0.2x(1-0.2) 0.2x(1=0.2)

Pietra =

0.2381.

The Gini index is calculated as follows:

Gini = 2 X (xAL — XBL) X Pietra

. {2 x [1+40.87051] 2 X [0.19061 + 0]
N 4 4

— } % 0.2381
= 0.4.
The scaled Brier score is calculated as follows:
scaled Brier = 2 X (ya1, — ¥gL) X Pietra
2 X (0.49422 + 0.2) ~ 2 X (0.00013 4+ 0.2)

=2X x 0.2381
4 4

= 0.1176.

Model IV

The predictiveness curve for the prediction model is defined by the following

functions:

0.07045 when 0.00000 < F(r) < 0.40059,
r ={0.20000 when 0.40059 < F(r) < 0.59941,
0.32955 when 0.59941 < F(r) < 1.00000.

The Pietra index is calculated as follows:

. Areagy, Areap], (0.2—0.07045)%(0.40059—0)  (0.32955—0.2)x(1-0.59941)
Pietra = = = = —
x(1-m) X (1-1m) 0.2x(1-0.2) 0.2x(1-0.2)

0.3244.

The Gini index is calculated as follows:
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Gini = 2 X (xAL — XBL) X Pietra

s {2 X [1+0.59941] 2 x [0.40059 + 0]

- X 0.3244
4 4 }

= 0.3889.
The scaled Brier score is calculated as follows:

scaled Brier = 2 X (ya1, — yg) X Pietra

2 % (0.32955 + 0.2) 2 X (0.07045 + 0.2)
— 2% . — 7 X 0.3244

= 0.0840.

Model V

The predictiveness curve for the prediction model is defined by the following

functions:

0.01268 when 0.00000 < F(r) < 0.27705,
r =
0.27179 when 0.27705 < F(r) < 1.00000.

The Pietra index is calculated as follows:

. Areag;, Areapy, (0.2-0.01268)%(0.27705—-0)  (0.27179-0.2)x(1-0.27705)
Pietra = = = = =
X (1-1) X (1-1) 0.2x(1-0.2) 0.2x(1-0.2)

0.3244.

The Gini index is calculated as follows:

Gini = 2 X (x;, — xg1) X Pietra

o {2 x [140.27705] 2% [0.27705 + 0]
N 4 4

- } X 0.3244
= 0.3244.

The scaled Brier score is calculated as follows:
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scaled Brier = 2 X (ya1, — ygL) X Pietra

2% (027179 +0.2) 2 x (0.01268 + 0.2)

=2X x 0.3244
4 4

= 0.0840.

Model VI

The predictiveness curve for the prediction model is defined by the following

functions:

0.12821 when 0.00000 < F(r) < 0.72295,
r =
0.38732 when 0.72295 < F(r) < 1.00000.

The Pietra index is calculated as follows:

. Areapy, Areapy, (0.2-0.12821)%(0.72295-0)  (0.38732-0.2)x(1-0.72295)
Pietra = = = = —
nx(1-m) x(1-m) 0.2x(1-0.2) 0.2x(1-0.2)

0.3244.

The Gini index is calculated as follows:

Gini = 2 X (x5, — xg1) X Pietra

s {2 X [1+0.72295] 2 x [0.72295 + 0]

- X 0.3244
4 4 }

= 0.3244.
The scaled Brier score is calculated as follows:

scaled Brier = 2 X (ya1, — yg1) X Pietra

2x(0.38732+0.2) 2x(0.12821+0.2)

=2X X 0.3244
4 4

= 0.0840.

Model VII
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The predictiveness curve for the prediction model is defined by the following

functions:

0.12606 when 0.00000 < F(r) < 0.70194,
r =140.20000 when 0.70194 < F(r) < 0.93513,
1.00000 when 0.93513 < F(r) < 1.00000.

The Pietra index is calculated as follows:

Pietra — Areag, _ Areaar _ (02-0.12606)x(0.70194-0) _ (1-0.2)x(1-093513) _ 0.3244.
x(1-m)  mx(1-m) 0.2%(1-0.2) 0.2%(1-0.2)
The Gini index is calculated as follows:
Gini = 2 X (x1, — xg1) X Pietra
2 X [140.93513] 2 x[0.70194 + 0]
=2 % - x 0.3244
4 4
= 0.4.
The scaled Brier score 1s calculated as follows:
scaled Brier = 2 X (yar, — ¥g1) X Pietra
2x(140.2) 2x(0.12606+ 0.2)
=2 X — x 0.3244

4 4

= 0.2835.

Model VIII

The predictiveness curve for the prediction model is defined by the following

functions:

0.00000 when 0.00000 < F(r) < 0.25949,
r =1:0.20000 when 0.25949 < F(r) < 0.49268,
0.30229 when 0.49268 < F(r) < 1.00000.

The Pietra index is calculated as follows:
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Areap;, _ Areaa; _ (0.2—0)x(0.25949-0) _ (0.30229-0.2)x(1—0.49268)

Pietra = x(1-m)  wax(1-m) 0.2x(1-0.2) - 0.2x(1-0.2) = 0.3244.
The Gini index is calculated as follows:
Gini = 2 X (x5, — xg,) X Pietra
2 X [1+40.49268] 2 x[0.25949 + 0]
=2 % - x 0.3244
4 4

= 0.4.

The scaled Brier score is calculated as follows:
scaled Brier = 2 X (ya1, — ¥g1) X Pietra
2x%x(0.30229+0.2) 2x(0+0.2)
=2 % 2 — 2 x 0.3244

= 0.0981.

Model IX

The predictiveness curve for the prediction model is defined by the following

functions:

0.06464 when 0.00000 < F(r) < 0.38340,
r =10.20000 when 0.38340 < F(r) < 0.61659,
0.33536 when 0.61659 < F(r) < 1.00000.

The Pietra index is calculated as follows:

. Areapy, Areas;, _ (0.2-0.06464)x(0.3834—0) _ (0.33536—0.2)x(1-0.61659)
Pietra = = = = —
X (1-1) X (1—1) 0.2%x(1-0.2) 0.2x(1-0.2)

0.3244.

The Gini index is calculated as follows:

Gini = 2 X (x1, — xg1,) X Pietra
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y {2 X [1+0.61659] 2 x [0.3834 + 0]

-~ x 0.3244
4 4 }

= 04.
The scaled Brier score is calculated as follows:

scaled Brier = 2 X (ya1, — ygL) X Pietra

2x(0.335364+0.2) 2 x(0.06464 + 0.2)
=2X 2 — 2 x 0.3244

= 0.0878.
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Appendix 9.

Five-year Fatality Risk
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Appendix 10.

Adjusted Risk
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