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中文摘要 國立台灣大學土木工程學系博士班 

民國 112 年博士學位論文摘要 

 

建築資訊模型執行應用於工程設計績效評估 

研 究 生：邱文彬 

指導教授：張陸滿 

績效管理為營建工程專案重要的經營措施，目的為評核專案執行過程中的各項

績效指標，例如成本、進度、品質、安全與顧客滿意度等，主要為提供經營管理者

必要的決策參考、早期警示與預防措施、以及加強持續改善的機會。然而，工程績

效管理所涉及的層面非常廣泛，除了對績效一詞的看法與定義不盡相同外，其決策

者對於專案執行各階段中績效監督的程度，也可能依其經驗與看法不同，而採取不

同的決策與措施。 

工程績效評估與控制對於專案的執行具有重要的意義，正確而有效的績效評估

方式是營建工程專案成功與否的關鍵。根據營建工程業經驗，在專案規劃與執行初

期，工程設計的過程就影響了營建工程的生命週期，且直接影響專案執行的成敗。

而營建工程中廣泛被應用的成本影響曲線，說明了工程設計執行為最能夠直接影

響總造價的階段，在專案執行過程中需要仔細評估與衡量，所以工程規劃與設計對

於專案的成功執行有關鍵性影響。儘管在某些營建工程專案中，工程設計成本已接

近專案總造價的 20%，但至今對於工程設計績效的了解和研究仍不及施工績效普

遍與深入。此外工程設計績效是工程專案成本和進度的關鍵決定因素。由於這些原

因，評估工程設計以預測專案績效指標與推動持續改善至關重要。 

有效而實用的工程營建績效指標必須建立，並將其應用於現行的營建工作流程，

然後進一步建立工程執行績效的可預測性。多年來，許多相關研究已經提出了幾種

不同的工程績效測量與預測方法，並已經建立專案執行參數變量和績效測量之間
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的因果關係。然而現在分析測量工程績效的研究和方式，大都主要集中在工時與時

程的績效上，並不是一個足夠廣泛的衡量標準來評估工程績效的有效與適用性。 

近年來，建築資訊模型（Building Information Modeling, BIM）已成為建築與營

建工程領域中快速發展的創新技術，其應用主要是透過多維數位化模型建構與管

理，對工程生命週期中的各階段作業進行各種應用分析，除了對工程的實際執行有

較佳的掌握外，更能有效整合工程執行過程中的各項設計、採購與施工作業資訊，

降低工程成本與錯誤，提升工程品質、效率與安全。現今許多國際工程專案已普遍

使用 BIM 技術執行，國內一些重大工程也逐步導入 BIM 技術，並積極開發可以

整合時程、成本、風險與績效資訊，以期達成對工程執行的有效掌控。然而在國內

外各型工程專案一致朝向應用與發展 BIM技術同時，現今學術界針對 BIM的執行

對於專案績效評估相關研究尚未發展成熟，相關研究也僅限於 BIM 執行本身的績

效，未針對其專案工程設計階段績效進行評估與探討。 

BIM 的應用已改變營建工程統包執行方式。基於了解應用 BIM 於專案執行所

使用的輸入參數變量與專案設計績效成果之間的關係，提高預測工程設計績效的

重要性，進一步了解其相對關聯性。本研究建立一套系統分析模型，透過調查收集

實際來自 60 個應用 BIM 工程執行樣本的專案數據，將 BIM 使用輸入變量與工程

設計績效輸出進行關聯性分析，並依相關係數來檢核 BIM輸入因子之間及 BIM輸

入因子與輸出績效的相互關係，之後進一步採用統計變量遞減技術建立工程績效

預測的多元線性回歸模型，並運用人工智慧機器學習技術，建立評估模型，以期達

更好的測量和預測營建專案 BIM 的應用效益。經過嚴格的驗證流程，並採用統計

方法評估模型的差異性，實現並達成了最佳的專案工程績效預測，結果證明 BIM

應用與工程設計績效指標之間存在顯著相關性，可進一步利用建立的多元線性回

歸與人工智慧機器學習模型來預測工程設計績效指標，並有效且正確的應用於工

程專案執行。 
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ABSTRACT 

Performance management is an essential task for construction projects. The primary 

purpose is to evaluate various indicators which impact performance in project execution, 

such as cost, schedule, quality, safety, and customer satisfaction. These performance 

indicators provide management stakeholders with necessary decision-making references, 

early risk warnings, preventive measures, and continuous improvement opportunities. 

The effective performance evaluation methodology is the key to the success of a 

construction project. However, engineering performance management involves a wide 

range of measurement and evaluation details. In addition to the different views and 

definitions of performance, the decision-makers may also adopt different decisions and 

measures based on their experience in the level of supervision of each stage at project 

execution. 

The engineering design process has fundamentally impacted the life cycle of 

construction projects, and notably, engineering performance constitutes a critical factor 

for a project and shall be measured efficiently. The control, measurement, evaluation, and 

prediction of engineering performance are significant in delivering construction projects, 

and reliable engineering performance measurement is critical to project performance and 

continuous improvement. In the project execution life, the engineering design at the early 

stage is critical for successful execution and can significantly affect the final total cost as 

illustrated in cost impact curves. Even though engineering costs have increased to 

reaching around 20% of total installation cost on several construction projects, 

engineering performance is less well realized and has received less focus compares to 

construction performance. The implementation of the early-stage engineering design is 

an essential key for successful execution and the engineering performance evaluation and 

prediction have a substantial influence on the execution phases and effectiveness of the 
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project. For above reasons, reliable and precision metrics for evaluating real-time 

performance to drive improvement are significant. 

Applicable industry engineering performance must be recognized and applied to 

current engineering work processes before essential improvement and predictability of 

performance can be developed. Over the past years, several approaches for engineering 

performance measurement and evaluation methods have been proposed, and the studies 

have demonstrated the cause-effect relationships between project variables and 

performance measures. The historical research for engineering performance measurement 

was analyzed primarily focused on job-hour performance, represented an incomplete 

picture, and is not broad enough to assess the effectiveness of engineering performance.  

Recently, building information modeling (BIM) application has been a rapidly 

developing innovative technology in architecture and construction engineering. In 

addition to having better control of the actual implementation of the project, BIM can 

integrate various design, procurement, and construction operations in the project life 

cycle, reduce project costs and errors, and improve project quality, efficiency, and safety. 

Many international engineering projects have deployed BIM technology, and some major 

domestic projects have also gradually introduced BIM technology and actively developed 

information that can integrate schedule, cost, risk, and performance to control project 

execution effectively. The application has reformed how owners execute the industry's 

engineering, construction, commissioning, and operation. While large-scale projects at 

home and abroad are consistently oriented towards the application of BIM technology, 

the current academic research on BIM implementation and project performance 

evaluation has not yet matured, and the relevant research is limited to the performance of 

BIM implementation. It has not evaluated its project engineering design stage.  
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The application of BIM has changed how design-build or turnkey project are 

performed. Based on understanding the relationship between the application of BIM use 

elements and project results, the importance of predicting engineering design 

performance, and understanding of its relative relevance, improving project engineering 

performance based on the knowledge of the relationships between BIM use application 

and performance outcomes becomes essential. This research proposes a system analysis 

model to correlate BIM use input factors with engineering design performance output 

analysis by leveraging data from 60 samples. The statistical variable reduction techniques 

are deployed to develop multiple linear regression models linear regression (LR) analysis 

and applying artificial intelligence neural network (ANNs) machine learning multilayer 

perceptron (MLMP) technology of the engineering performance to establish evaluation 

models to measure and predict the application benefits of BIM in construction projects. 

The development of the prediction models is based on practical execution data from 

projects collected through a comprehensive BIM application survey and the best 

prediction was generated, validated, and implemented. After rigorous verification, the 

best prediction is obtained and the results prove a significant correlation between BIM 

application and engineering design performance outcome measures, which can be applied 

to predict engineering design performance measures using the established models. The 

study establishes a comprehensive methodology for the proposing models, and the 

accuracy and reliability of the models are tested validated. Moreover, engineering 

performance measures can be predicted by BIM uses.  

Keywords: building information modeling (BIM); artificial neural networks (ANNs); 

Engineering, procurement, and construction (EPC); machine learning multilayer 

perceptron (MLMP); engineering performance 
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1.0 Introduction 

1.1 Background 

The term “Performance” attracts extraordinary attention from industry stakeholders 

and researchers in various construction activities. In the five phases of an industrial 

construction project, namely, preliminary planning, engineering design, procurement, 

construction, and commissioning, the owner’s expectations and requirements for the 

engineering design process that transforms ideas into reality are considered critical 

driving factors for a successful project performance (Georgy, Chang, and Zhang 2005). 

Engineering performance has a major impact on the subsequent project execution phases, 

thus, potentially affecting the overall project outcome. Project owners and facility 

managers need a means to evaluate the engineering performance of internal design 

organizations or engineering contractors. Engineering contractors need the means to drive 

improvement in their organizations as engineering costs as a percentage of total project 

costs continue to rise. Since the engineering design process is critical for the project life 

cycle, performance measurement and prediction are very important for successful project 

delivery, and the ability to manage engineering performance is essential.  

Cost engineering research has proven that the ability to influence and manage Total 

Installation Cost (TIC) is greatest at the earliest stages of a construction project. The cost 

curves widely used in construction engineering projects in Figure 1 (Anderson, Molenaar, 

and Schexnayder 2007) illustrates the concept and were fully endorsed by the 

Construction Industry Institute (CII). The ability to influence TIC is most significant at 

the beginning of the project development and design process. During the implementation 

of the procurement and construction phase, the ability to influence project costs declines 

rapidly. By the commissioning and handover phase, the impact on the cost structure is 
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almost negligible. According to the relevant historical data and construction engineering 

experience, the engineering design stage can account for up to 20% of the project cost. 

However, the engineering design content and related equipment and material 

specifications directly affect the total TIC structure of the project. 

 

Figure 1. Cost Influence Curves 

(Anderson, Molenaar, and Schexnayder 2007) 

Engineering design performance is a crucial aspect of a construction project, and it 

plays a significant role in the overall project performance. Engineering design 

performance focuses on design quality, efficiency, risk mitigation, cost control, schedule 

management, quality assurance, stakeholder satisfaction, environmental and regulatory 

compliance. In comparison to project overall performance, which encompasses the entire 

project lifecycle, engineering design performance primarily focuses on the initial 

planning and conceptualization stages. However, the quality of the design has a direct and 

lasting impact on the overall project's success, as it sets the sequent stages for 

construction, procurement, commissioning, operation, and maintenance. Thus, good 

engineering design performance is essential for achieving favorable project performance 

outcomes.  
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The implementation of the early-stage engineering design stage is an essential key 

for the project’s success or failure, and its engineering design performance evaluation and 

prediction have a significant influence on the project execution life and execution 

effectiveness of a project. Reliable and accurate assessment of project performance 

evaluation is significant to the success of construction projects. Such prediction assists 

stakeholder in obtaining early warnings against potential execution issues. Thus, 

performance measurement and prediction constitute critical evaluations for higher 

performance and successful project delivery. 

The engineering design process has significantly changed the project execution 

workflow of a facility by applying building information modeling (BIM) to the 

architecture, engineering, and construction (AEC) industry, thereby promoting a rapid 

interest in its application in the AEC industry. BIM is developing and managing 

parametric digital building or facility models during its execution lifecycle (Lee et al. 

2006). BIM has been acknowledged as a new execution project approach that can improve 

productivity and quality in the construction industry for both academic research and 

industry application (Smith and Tardif 2009). In recent years, BIM has become 

increasingly vital in managing large scales of information and communication and 

sharing processes on collaborative aspect of construction projects. The significant 

evolution in BIM allows stakeholders to automate project tasks in the design, analysis, 

coordination, fabrication, construction, startup, operation, and maintenance processes. 

Most importantly, the nature and attributes of a digitally simulated facility can be the 

knowledge base and record information center of a construction project (Eastman et al. 

2011). 
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1.2 BIM Application and Engineering Performance 

A study of the foremost successful factors for BIM implementation from 2005 to 

2015 found elements include design collaboration, engineering and construction owners 

or contractors, early and precise model design visualization, construction planning and 

coordination, enhancing the information exchange and knowledge database management, 

and improved site arrangement planning and construction site safety (Antwi-Afari et al. 

2018). Research on the significant benefits of the BIM application shows its usability in 

three-dimensional modeling, work process, coordination and collaboration improvement, 

quality, cost and schedule management, project potential risk monitoring, workforce and 

resource management, utility and supply management, and sustainable implementation 

(Seyis 2019). Furthermore, the study showed that effective scheduling and costing are the 

leading top-ranking benefits of the BIM application. An analysis of the average BIM 

return on investment for a project from 2005 to 2007 showed a 634% increase, indicating 

its potential economic benefits (Azhar 2011). 

BIM applications have proven to enhance project schedules, reduce project costs, and 

improve the overall quality of facilities. Recently, many facility owners and developers 

now required teams to embed BIM in their projects (Jung and Joo 2011). Its application 

in the execution procedure and delivery process helps designers to develop, coordinate, 

and revise a current design and measure it for engineering design performance more 

efficiently. Also, contractors can easily extract material quantities from models and 

correctly develop a cost estimate for the project (Won et al. 2013). This development 

implies that engineering design or construction changes can be efficiently studied and 

evaluated for cost and schedule impacts, constructability, and engineering performance. 

BIM application enhances construction and startup processes efficiency by coordinating 

different site activities (Suermann 2009). Nowadays, the increasing application of project 
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planning and analysis by implementing more integrated BIM applications and capable 

modeling technology has significantly improved project performance. The BIM-based 

off-site assembly and fabrication approach for industrial facilities also offers expanded 

benefits (Tatum 2018). Thus, BIM has changed the conventional project execution model 

and impacted how stakeholders evaluate and predict project and engineering 

performance. 

The increasing application of BIM technology is very difficult to be sustained if the 

synergy among BIM, like project performance, integrated project delivery, sustainability, 

and risk management are not properly addressed (Kent and Becerik-Gerber 2010). In 

addition, deploying BIM technology requires significant technical and non-technical 

changes in widely adopted business practices in the AEC industry (Succar 2009; Gu and 

London 2010). While technological interoperability has made significant progress, but 

business or performance interoperability is still limited (Taylor and Bernstein 2009). An 

integrated performance measurement and assessment approach is needed to assist owners 

in assessing and aligning BIM application with their defined business strategy. 

Furthermore, implementing new technology creates numerous challenges, including the 

challenge of accurately measuring project performance is now critical. Therefore, 

measuring and predicting engineering performance through project life is essential to 

improving project performance through BIM implementation.  

The application of BIM has a significant impact on project engineering performance 

compared to projects that do not use BIM. The project apply BIM in execution has the 

following major influence to engineering performance: 
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• Enhanced Collaboration: BIM promotes better collaboration among engineering 

disciplines (civil, structural, piping, mechanical, electrical and control system) 

through a shared 3D model to reduce miscommunication and coordination issues. 

• Real-Time Updates: BIM allows for real-time updates and changes to the design, 

reducing the need for manual revisions and facilitating faster decision-making. 

• Clash Detection: BIM software can automatically detect clashes and conflicts in 

engineering systems, reducing errors and rework in the construction phase. 

• Data Integration: BIM integrates engineering data, specifications, and material 

information, streamlining the design, construction, operation, and maintenance 

processes. 

• Visualization: Engineers can visually assess the design, making it easier to identify 

design flaws and optimize system performance. The constructability and the 

requirements of operation and maintenance can be further reviewed.  

• Energy Efficiency: BIM enables engineers to simulate and optimize building systems 

for energy efficiency, which is essential for sustainable and high-performance 

buildings and facilities. 

• Cost Estimation: BIM can provide more accurate cost estimations for engineering 

components, helping engineers stay within budget. 

As for the projects do not apply BIM in execution, the engineering has the major 

impact on: 

• Limited Collaboration: In non-BIM projects, collaboration between engineering 

disciplines may be less efficient and coordination with construction and operation can 

be difficult, leading to communication challenges and coordination issues. 
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• Manual Clash Detection: Engineers must manually detect clashes and conflicts in 

design, which can be time-consuming and prone to errors. 

• Data Fragmentation: Engineering data, material specifications, and cost information 

may be stored in separate documents or systems, making integration and updates more 

challenging. 

• Visualization Challenges: Non-BIM projects often rely on 2D drawings, which may 

not provide a clear visual representation of the design, potentially leading to oversight 

of engineering issues and less coordination with construction and operation. 

• Energy Efficiency Challenges: Achieving energy efficiency and sustainable design 

may be more challenging without BIM tools for simulations and optimizations. 

• Cost Estimation Uncertainty: Cost estimations in non-BIM projects may be less 

precise, leading to potential cost overruns. 

From above comparison, BIM application can significantly improve engineering 

performance by enhancing collaboration, reducing errors, enabling real-time updates, and 

providing tools for better visualization, analysis, and optimization. However, the projects 

that do not apply BIM may encounter challenges related to communication, coordination, 

and efficiency in the engineering and the subsequent phases. 

1.3 Research Motivation 

A reliable engineering performance evaluation is a critical component in the project 

execution and improvement processes. Applicable industry engineering performance 

systems shall be developed and then applied to project execution processes before the 

improvement and predictability of performance can be implemented. Furthermore, a 

based technique for evaluating engineering performance can enhance the benchmarking 

effort on both an internal and external basis of the business outcome (Hanna 2016).  
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Several approaches for engineering performance measurement have been proposed 

for the past two decades. These historical approaches for measuring engineering 

performance mostly focus on job hours expended on deliverables, the completion number 

of drawings, and the specifications verse schedules. Several apparent issues, including 

subjective weighting to address the complexity of each deliverable, costly data collection 

effort on all hours expended on each deliverable, drawing scale changes that may increase 

the number of deliverables, and the base of performance calculation are not adequately 

presented and reported.  

Recently, BIM application has reformed how owners execute the industry’s 

engineering, construction, commissioning, and operation. Research on integration and 

innovation for construction engineering suggested taking significant benefits from 

computer automation modeling processes from project planning, executing, and closing. 

The study also suggested that the constructed BIM models and planning, design, 

construction, and startup processes provide a critical opportunity for the research related 

to engineering and construction execution. However, most previous studies have 

concentrated on the advantages of BIM use in projects. Until now, linking quantitative 

studies connecting BIM use to improved engineering design performance has been 

lacking. Moreover, the definition of performance study is limited in cost, schedule, 

quality, and customer satisfaction because of the difficulty in measuring these terms. 

Further issues are the difficulty of measuring and collecting the input and output variables 

and the data complexity of construction projects.  

There is increasing interest among industry practitioners to evaluate potential benefits 

of BIM and accurately present the BIM's influence on executing projects. Recently, many 

researchers have proposed case studies to describe how to be applying BIM for 

application can improve project performance. Several research have found the value of 
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specific case studies or isolated BIM application projects. However, the research findings 

that may be expended across the construction industry still need to be discovered. There 

has been an increasing focus on finding the benefits of BIM use on project performance. 

However, a minor priority has been given to engineering performance. Improving 

engineering performance based on the knowledge of the relationships between BIM 

inputs and project performance outcomes becomes essential.  

Based on the above reasons, which represent an incomplete picture and is not a broad 

enough measure to assess the effectiveness of the engineering performance in project 

execution applying BIM. It is necessary to contribute to the study of the effect of the BIM 

application on engineering performance of engineering, procurement, and construction 

(EPC) approach projects. Accurately measuring the engineering performance of BIM 

applications and implementation is essential to facilitate early responsive action to adjust 

or correct project performance, increasing the possibility of successful BIM 

implementation in EPC project execution. This research proposes a systematic statistical 

analysis that correlates the BIM uses with engineering performance, a machine learning 

multilayer perceptron (MLMP) model, and a liner regression (LR) model to have better 

engineering performance control evaluation and measurement and prediction in industrial 

EPC approach projects. 

1.4 Goals and Objectives  

The goals and objectives are the aims and specific targets guiding this research 

process in BIM application in engineering design performance. The primary goals are 

intended to develop a generic system for BIM application on engineering performance 

that aids the industry in the following ways: 

• Enhancing engineering design performance by effectively utilizing BIM applications. 
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• Bridging the gap between BIM application potential and practical performance 

implementation in engineering design processes. 

• Optimizing engineering design efficiency, accuracy, cost-effectiveness, and 

sustainability in EPC projects by BIM application. 

• Leveraging data-driven insights and advanced technologies to improve design 

performance outcomes by applying regression and ANN deep learning methods. 

• Applying the validated prediction model to evaluate the outcomes and developing 

control procedures to ensure the desired engineering performance.  

• Contributing to the body of knowledge and best practices in BIM application for 

engineering design performance. 

To achieve above research goals, the following research objectives were identified: 

• To assess the current BIM adoption and utilization level in engineering design 

processes and to understand past and current practices in engineering performance 

assessment. To go through and summarize research on engineering performance 

assessment and further define the performance.  

• To investigate the relationship among the BIM uses identified in the National BIM 

Guide for Owners (NBGO), identify key design performance metrics, and develop 

measurement methodologies for quantifying them. Find the correlation between BIM 

use inputs and engineering design performance measures.  

• To analyze the collected data and to construct a framework that allows uniform 

application of evaluation of engineering. To evaluate the impact of BIM applications 

on design performance, such as efficiency, accuracy, and cost-effectiveness. 
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• To analyze data and apply ANN machine learning models to identify patterns, 

relationships, and predictive capabilities to build the machine learning multilayer 

perceptron (MLMP) method and linear regression (LR) stepwise modeling and 

develop an assessment of the prediction models.  

• The prediction models can be validated and implemented by applying the actual data 

from selected and targeted projects for laying out the suggestions of project successful 

factors. To validate the developed models and findings through independent data sets 

to monitor and evaluate the outcomes of the implemented models and assess their 

impact on design performance. 

• To apply and communicate the research process, methodologies, and findings to 

contribute to the field of BIM application in engineering design performance. 

The research process becomes focused, purposeful, and aligned with the desired 

outcomes by establishing clear goals and objectives. These goals and objectives guide the 

research activities, analysis, and implementation, ensuring that the research improves 

design performance and advances the field of BIM application in engineering. 

1.5 Research Scope 

Based on the goals and objectives identified above, the research scope for 

investigating the application of BIM application in engineering design performance can 

be structured and developed from the following key aspects: 

• Evaluation of BIM application adoption: evaluate the current level of BIM adoption 

in the engineering and construction industry, including the extent to which BIM 

application is utilized in engineering design processes, the awareness and 

understanding of BIM among professionals, and the challenges faced in implementing 

and integrating BIM applications. 
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• Investigation and identification of BIM use factors and engineering performance 

measures: identify and define key design performance metrics that can be influenced 

or improved through the effective use of BIM. These metrics may include design 

efficiency, accuracy, constructability, collaboration, cost-effectiveness, 

sustainability, and overall project success. 

• Data collection and best practices: conduct in-depth data collection and studies of 

construction projects that have successfully utilized BIM applications to improve 

design performance. Analyze the project workflows, implementation strategies, 

challenges faced, and lessons learned to identify best practices and success factors in 

utilizing BIM effectively. 

• Construct, implement, apply and control: Utilize the MLMP model and LR stepwise 

model and develop an assessment of the prediction models, and apply the models to 

current execution projects.  

• Recommendations for future knowledge: based on the research findings, develop 

recommendations and knowledge for engineering firms and professionals to 

maximize the benefits of BIM applications in design performance. Provide practical 

strategies for integrating BIM into design workflows, addressing interoperability 

issues, and enhancing skills and knowledge in BIM utilization. 

• Future trends and opportunities: Explore emerging trends, technologies, and 

advancements in BIM that have potential to enhance engineering design performance. 

Investigate topics such as artificial intelligence and machine learning integration, 

automation, and digital twins, and assess their implications for design processes. 

By focusing on these research areas within the scope of BIM application in 

engineering design performance, the study can provide valuable insights, guidance, and 
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recommendations to bridge the gap between BIM potential and its practical 

implementation in improving design outcomes. Recently, artificial neural network 

(ANNs) applications have commonly been used in the industry to model performance and 

productivity using intelligent information that learns and imitates from data and training 

samples. As parts of ANNs, machine learning (ML) algorithms simulate human thinking 

processes and apply computational methodologies to understand information and 

experience. The method is applied to model constructions from the measuring, learning, 

and predictive effectiveness of ML (Portas and AbouRizk 1997).  

This research proposes a comprehensive performance evaluation model for BIM 

application EPC approach projects. First, the study summarizes previous research on 

engineering performance assessment, BIM application and ANNs machine learning and 

the required research data collection based on benchmarking and a previous study of 

critical successful factors. Second, the study investigated the relationship among the BIM 

uses identified in the NBGO by the National Institute of Building Sciences (NIBS 2017). 

The correlation between BIM use inputs and engineering design performance was used 

to evaluate effective implementation, which included the benchmarking concept and the 

BIM key performance indicators. Next, the study presented the MLMP method and a LR 

stepwise modeling and developed an assessment of the prediction models. Furthermore, 

the developed prediction models are validated by the training data and implemented by 

applying the actual data from selected and targeted projects. The validity of the BIM 

application engineering performance evaluation models was verified for multicriteria 

statistical methods including coefficient of determination adjusted R-square and variance 

value F-value of F-test from the test projects. Recommendations of the findings from the 

research process, and the conclusions and suggestions for future works were proposed.  
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2.0 Literature Review 

This research begins with summarizing previous studies in engineering design 

performance, building information modeling, artificial neural network, and ANNs  

machine learning. The progress of the most updated research on the relative subjects has 

been reviewed and served as a base knowledge for this research. 

2.1 Engineering Design Performance 

Engineering design performance is an inconsistent term interpreted by many 

practitioners in the construction industry. When thinking and applying engineering 

design, involvers cannot limit themselves only to the tangible outcomes of the 

engineering and design activities. Engineering provides the process and procedure to 

transform owner expectations and requirements into engineered deliverables, 

specifications, and documents. Engineering design can be ideas, images, sketches, 

drawings, specifications, or physical models. Regardless of the neatness and timeliness 

of engineering outcomes, and unless the owner is satisfied with how these engineering 

outcomes perform down the road in the project life cycle, the engineering job cannot be 

described as successful. 

For decades, engineering performance has been studied and applied to define the best 

evaluation and measurement metrics or indicators to interoperate performance. According 

to the study by Tucker and Scarlett (1986), the most common indicator of engineering 

performance in the construction industry is the ratio of engineering design work hours per 

deliverable or drawing. Few researchers, however, have investigated more reliable 

engineering performance measures. The most common to these studies is the introduction 

of engineering performance in the form of value-added function, although 

implementation varies between one study and another. 
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A study introduced the owner satisfaction as a main based of measuring engineering 

performance through the major success factors project execution such as cost, schedule, 

and quality (Chalabi, Beaudin, and Salazar 1987). This approach can be formally 

represented as a multi-attribute value function. The concept assumes that the owner makes 

single comparisons between actual and specified performance on attribute designating 

value to the stakeholders, then accumulates the single evaluations to determine a 

comprehensive value of satisfaction measured by a function. Tucker and Scarlett (1986) 

pursued another research activity, which addresses measuring engineering performance 

by applying the concept of design effectiveness. An objective matrix method was used to 

list, categorize, and weight design criteria having significant project impact. As an 

evaluation procedure, this method is commonly used to measure and improve the 

performance of difficult-to-measure functions. The objective matrix comprises four main 

components: criteria, importance ratings and weights, performance scale, and 

performance index. The requirements define what is to be measured and the weights 

determine the relative importance of the criteria to another and to the overall performance 

measurement objectives. The performance scale compares the project-measured value of 

the benchmark to past performance and future goals. The performance index is calculated 

to evaluate and track performance using these three components. 

The definition of design effectiveness criteria constitutes the core of the research by 

Tucker and Scarlett (1986) in the report SD-16 by Construction Industry Institute (CII). 

Fourteen criteria were originally identified for the overall evaluation of design 

effectiveness. Based on the quantitative nature, data availability, and timing of this 

availability, the original list was refined to include only seven criteria to evaluate design 

effectiveness. The criteria chosen are accuracy of design deliverables or drawings, 

applicability of design documents, total design costs, constructability of designed facility, 
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design economy, performance against schedule, and ease of facility startup. After 

interviewing several construction industry personnel, the research team assigned weights 

indicating the relative importance of each criterion to the remaining set of criteria. The 

criteria with their assigned weights were used to construct an objective matrix with a 0-

10 scale corresponding to each criterion. This scale uses 10 as an indicator of optimal 

performance, 0 as an indicator of poor performance, and 3 as an indicator of average 

performance. For any project to be judged under this method, each criterion is evaluated 

and assigned a value on the scale. A cumulative design effectiveness index is calculated 

based on the values and weights of the different criteria. Each criterion can be assessed 

based on subjective or quantitative measures. For instance, the accuracy of design 

deliverables can be evaluated by measuring the number of rework or the number of 

revisions per total amount of drawings. Using an objective matrix also allows each 

criterion to be measured using a separate sub-matrix. A sub-matrix employs sub-criteria 

to evaluate a specific criterion. This makes a sub-matrix final index correspond to a single 

value entry in the original objective matrix. Using of sub-matrices allows for a far better 

evaluation of a single criterion compared with a one-step approach. 

Improving engineering performance has been one of the major considerations for 

most contractors in AEC to minimize rework and manage risks. As the frontline 

construction workforce, the contractors are working to transform design concepts to 

physical facilities, the effective engineering approach is their major focus. Finding 

effective strategies to manage engineering performance improvement has been concerned 

and presented in several industry reviews (Mottahedin 2003). In these studies, proactive 

evaluate and measure performance like selecting a capable contractor is fundamental to 

secure the performance (Konchar and Sanvido 1998; Kashiwagi and Byfield 2002). 

Several researchers proposed that contractors performance depends on the factors of the 
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experience of contractors, financial capability, and feasibility and availability of 

resources. The study proposed the project performance can be effectively predict by 

staffing capability, company scale, experience, financial status, and quality control 

(Wong 2004; Ling and Liu 2004) and suggested that past performance of contractor, 

relationships with the local authority, and the level of mechanization are major 

performance predictors. Some performance prediction models based on these suggested 

predictors had been proposed to assist the contractor selection at the pre-contract stage 

(Molenaar and Songer 1998; Ng et al. 2002).  

Research focus on the project performance of the efficiency process is another study 

to understand the relationship of efficiency and performance. The relative study is mainly 

focuses on the time consuming, man-hours expenditure, or cost of production. A study 

proposed the average man-hours spent for erecting formwork as a major performance 

measure for civil work (Thomas and Napolitan 1995). Another study predicted the 

contractors' performance in tunneling projects by examining the monthly site activities 

progress rates (Touran 1997). Nevertheless, the researchers argued that the strong 

supporters focus on efficiency may encourage contractors to stay with old engineering 

assumptions (Crawford and Bryne 2003). The study pointed out the action restrict their 

innovation and insensitivity to client needs changes, thus sacrificing effectiveness in 

return. Regarding the concerns, the study suggested using performance indication to 

represent both efficiency and effectiveness in evaluating and measuring for performance 

prediction. Therefore, the study proposed the effectiveness of contractors of work can be 

measured by their ability to complete customer requirements and propose innovative 

ideas for the project execution (Cheung et al. 2005). As such, recently, the progressive 

development of project performance evaluation systems has made measuring the 

performance of contractors in terms of both efficiency and possible effectiveness 



doi: 10.6342/NTU202304540
18 

(Crawford and Bryne 2003). In this connection, historical data from project performance 

evaluation systems were considered for predicting contractors' performance as the project 

progress (Wong and Cheung 2005). 

A systematic and analytical scheme that measures and predicts engineering 

performance is essential for industrial projects. The concept of engineering performance 

strengthens the understanding of the measurability of the required inputs and expected 

output variables (Maloney 1990). The study by the Construction Industry Institute (CII) 

research team 156 (RT-156) identified 25 engineering inputs and 10 engineering design 

performance outputs. CII RT-156 proposed a genetic algorithm, the ANN integrated 

search model, which developed the relationships between the 25 inputs and 10 outputs 

(Chang, Georgy, and Zhang 2001). This model searched the engineering inputs directly 

targeting the engineering performance, which is a part of the basis of this research. The 

study used neuro-fuzzy systems to measure project engineering performance by 

identifying project attributes and execution status that positively or negatively influenced 

the performance (Georgy, Chang, and Zang 2005). 

2.2 Building Information Modeling 

Measuring and predicting project performance by implementing the BIM application 

is complicated. Previous studies indicated that 55% and 58% of survey responses agreed 

that the BIM application could lower project costs and overall project schedule, 

respectively (Becririk-Gerber and Rice 2010). A strong positive relationship was found 

and suggested among project schedule, cost, quality performance, and BIM 

implementation (Azhar 2011; Barlish and Sullivan 2012; Bryde, Broquetas, and Volm 

2013). The benefits of BIM adoption show that 52% of the surveyed information 

suggested reduced errors and omissions, 48% reduced rework, 39% reduced cycle time 
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for specific workflows, 37% reduced project duration, and 32% reduced construction 

costs (Bernstein and Jones 2012). A study showed that project cost is the most significant 

influence attribute for BIM application in project success. Other factors are execution 

communication, work coordination improvement, and quality assurance and control 

(Bryde, Broquetas, and Volm 2013). By surveying project data from 200 more projects 

via multiple regression analysis, a strong relationship emerged between the BIM 

application and the project delivery time and perceived project quality performance when 

controlling project execution complexity. This quantitative study examined whether the 

project’s overall performance was influenced by BIM use implementation and BIM 

execution planning in the project delivery method (Franz and Messner 2019). 

Measuring the influence of BIM application on project performance for a single 

project is a challenging work (Yuan et al. 2009). Deployment of applying management 

strategies for predicting BIM impact on all projects in an organization is even more 

challenging. For providing some guidance, several previous studies applied industry 

surveys to identify and analyze the perception of construction project participants 

regarding the benefits and return on investment that can be achieved through BIM 

application (Jones et al. 2015; Zuppa, Issa, and Suermann 2009). A study found that 55% 

of survey respondents thought that BIM application was associated with lower project 

total costs, and 58% replied that the overall schedule was reduced (Becerik-Gerber and 

Rice 2010). Research has also been proposed and studied by using detailed interview 

analysis (Vass and Gustavsson 2014) and industry workshops (Stowe et al. 2014), the 

findings from the studies generally supported the perceptions of practitioners received 

from surveys. Moreover, several detailed case studies have compared BIM and non-BIM 

application projects. These studies suggested a strong positive relationship between the 

application of BIM and cost, schedule, and quality considerations. The other research 
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identified cost and schedule improvements in hospital construction attributable to 

adopting BIM application and a comprehensive integrated project delivery method. The 

study reported a US$ 9 million cost savings of over 9% of total project cost and a 6-month 

schedule saving of approximately 15% of total project schedule (Khanzode, Fischer, and 

Reedn 2008).  

While the above study examples offer some viewpoints into the extensive literature 

on the benefits of BIM application, researchers have struggled to find solid quantitative 

evidence connecting BIM use to improved project performance. Several reasons have 

been suggested for this lack of evidence: (1) the difficulty in accurately measuring the 

specific performance areas impacted by BIM and distinguishing them from other factors 

like changes in delivery methods, (2) inconsistencies in measuring BIM use, including 

the varying extent of adoption for each application and the maturity of the organizations 

implementing the technology, and (3) the inherent uniqueness and complexity of each 

construction project. The focus of this study was to examine the impact of implementing 

one or multiple BIM uses on a project. A BIM use is defined as a method or strategy of 

applying BIM throughout a facility's life cycle to achieve specific objectives (Kreider and 

Messner 2013). Different approaches have been used to define BIM use variables 

(Kreider 2013). The BIM Project Execution Planning Guide (CIC 2011) outlines 25 

distinct BIM uses across various stages, including planning, design, construction, and 

operation. For this research, the study specifically utilizes a subset of these BIM uses, 

emphasizing those that have been widely adopted (Kreider, Messner, and Dubler 2010). 

In recent years, numerous researchers have employed illustrative case studies to 

present how the application of BIM for specific purposes can enhance project 

performance. A notable study conducted by Franz and Messner in 2019 places particular 

emphasis on evaluating the impact of BIM on project performance and quantifying the 
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benefits it brings. This research presents the findings of a quantitative study aimed at 

examining the influence of BIM use adoption and BIM Execution Planning (BEP) on 

project performance across various project delivery methods. The study revealed that 

BEP participation plays a significant role as a predictor of BIM use adoption. Projects 

that implemented BEP, either with a designer-contractor team or involving the entire 

project team, demonstrated a higher adoption rate of BIM compared to projects that did 

not employ BEP. Furthermore, the results indicated a substantial positive correlation 

between BIM use adoption and the speed of project delivery, perceived facility quality, 

and group cohesion within the project team, even when accounting for project 

complexity. Despite the critical insights gained from this research, it also shed light on 

the need for a fresh approach to capturing process data across projects to enable more 

detailed and comprehensive analysis in the future. The industry stands to benefit from 

additional studies that focus on obtaining and leveraging a dataset specifically designed 

for the application of BIM and BEP processes. It is important to note that the existing 

dataset applied in this study was initially collected to observe project-level trends in 

performance resulting from variations in project delivery methods. The data analysis 

provided empirical support for three out of the five project benefits of BIM, as perceived 

by practitioners: faster delivery, enhanced collaboration, and improved quality. However, 

there was a lack of information concerning how each specific BIM use was implemented 

and how the BEP was utilized to integrate these uses into design and construction 

workflows. Furthermore, the study did not include information on the observed 

performance improvements at the process level, such as the number of Requests for 

Information (RFIs) and the percentage of rework, while both factors are critical to impact 

the performance. 



doi: 10.6342/NTU202304540
22 

Recent advancements in BIM have significantly contributed to enhanced productivity 

and improved quality within the AEC industry. In this context, Mom and Hsieh (2012) 

have proposed a systematic and practical method for assessing BIM technology 

implementations at the corporate level. Their research framework comprises four models: 

BIM perception, adoption, performance, and capability maturity. These models were 

derived and consolidated from various existing BIM frameworks and approaches utilized 

within the AEC industry. 

The BIM perception model plays a crucial role in assisting management in evaluating 

the perceived benefits, costs, and risks associated with their investments in BIM 

technology. Through this model, management can evaluate the potential benefits against 

the costs and risks involved in implementing the BIM technology, with the return on 

investment (ROI) technique serving as the best practice evaluation method. Moreover, 

the BIM adoption model aids in formulating a strategic BIM execution plan by identifying 

the critical success factors (CSFs) relevant to the identified BIM performance areas 

(Bassioni, Price, and Hassan, 2004). Several approaches, such as the strength, weakness, 

opportunities, and threats method (Luu et al. 2008), performance objectives, and cause-

and-effect linkage (Kaplan and Norton 1996), can be employed to achieve this objective. 

Additionally, the BIM performance model plays a key role in establishing benchmarks 

for important performance reference using key performance indicators (KPIs). The model 

aims to utilize specific KPIs for BIM performance measurement. These metrics should 

be tailored to the unique requirements of each project and organization while maintaining 

adaptability to be applicable across the entire construction industry. Notably, there is 

currently no consensus on KPI measures among existing performance measurement 

frameworks in construction (Bassioni, Price, and Hasssan 2005), allowing BIM adopters 

to choose a suitable framework based on their specific requirements. Furthermore, the 
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performance measures should be concise and flexible enough to accommodate changes 

as needed. It is worth noting that organizations rarely suffer from having too few steps in 

the process (Kaplan and Norton 1996). Various techniques can be applied to predict, 

measure, or evaluate project or company performance within the context of BIM 

implementation. These techniques include a scoring system (Yu et al. 2007; Ling and Peh 

2005), a regression model (El-Mashaleh, O’Brien, and Minchin Jr 2006; Elyamany, 

Basha, and Zayed 2007), factor analysis (Isik et al. 2010), data envelopment analysis (El-

Mashaleh, Minchin Jr, and O’Brien 2007; Horta, Camanho, and Da Costa 2010), a utility-

function model (Georgy, Chang, and Zhang 2005), and a value model (Sullivan 1998). 

These techniques provide valuable tools for accurately assessing the effectiveness and 

impact of BIM implementation on project and organizational performance. 

The BIM capability maturity model serves as a framework to determine the BIM 

performance levels within an organization. It offers an assessment procedure that guides 

the evaluation process. This approach aims to provide a practical and feasible solution for 

systematically assessing an organization's BIM application performance, considering 

both technical and non-technical aspects. The model revolves around the diffusion of 

BIM technology within the organization and evaluates the interaction between BIM 

capability and BIM maturity. As proposed by Mom, Tsai, and Hsieh in 2011, the study 

includes a comparison between the definitions of BIM adoption stages and an analysis of 

the maturity levels based on maturity models and BIM performance maturity. This 

comparison helps in gauging the organization's progress and effectiveness in adopting 

and utilizing BIM, ultimately contributing to a more comprehensive understanding of its 

BIM capabilities. 

Now, there is an increasing understanding in the industry that BIM is operated and 

maintained by facility owners. Thus, the NIBS released the NBGO in 2017 as a guideline 
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for implementing projects for contractors, designers, and owners. The primary aim of the 

NBGO is to provide building owners with a comprehensive outline for developing and 

implementing BIM application requirements in their internal policies, procedures, and 

contracts. This includes guidance on utilizing BIM for planning, designing, constructing, 

and operating buildings. The McGraw Hill Construction Smart Market Reports indicate 

that the business value of BIM use in construction projects has continuously increased 

(BuildingSMART Alliance 2015). The business value of BIM trend study and user 

surveys from 2007 to 2012 suggests that BIM implementation increased from 17% in 

2007 to 71% in 2012, and 62% of responses from the construction industry recognized a 

positive return on their BIM application investment. The 2014 BIM business value for 

owners identified 68% of the facility owners in the U.S. as either deploying or applying 

BIM for their current and planning projects. Now, BIM implementation is widely 

deployed in the industry, and there is an increasing need among owners, stakeholders, 

and contractors to evaluate the advantages of BIM applications more precisely (Succar 

2010; Sher, and Willaims 2012 and 2013).  

Research on integration and innovation for construction engineering (Tatum 2018) 

was emphasized that leveraging computer automation modeling in project planning and 

execution offers significant potential benefits. The study also highlighted how BIM 

models and the various stages of planning, design, construction, and startup present a 

crucial opportunity for advancing research in construction engineering execution. The 

research program's results, based on case studies of innovative projects, provided valuable 

insights, enabling a better understanding of construction innovation and its effectiveness. 

This increased understanding led to significant findings concerning innovative design and 

construction organizations and projects. Moreover, the study underscored the importance 

of practical applications, particularly the application of BIM technology, to foster the 
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expansion and acceleration of innovation within the construction industry (Yu et al. 

2007). Ultimately, the research findings contribute to the core body of knowledge in 

construction engineering activities and highlight their essential role in enhancing project 

performance across critical aspects such as cost management, schedule adherence, safety, 

quality, and sustainability objectives. 

2.3 Artificial Neural Network and Machine Learning 

Artificial Neural Networks (ANNs) and machine learning techniques have emerged 

as powerful tools within the field of BIM, enabling engineers to leverage data-driven 

insights and optimize design processes. This literature review explores the applications 

of ANNs and machine learning in the context of BIM for engineering design performance. 

Research in AI and ML has provided reliable tools for the construction industry. ML 

algorithms improve the implementation performance since the data samples available for 

the learning process increase. Recently, ANNs in AI have provided robust systems and 

introduced promising management techniques that improve current automation processes 

in the construction business. ANNs have become integral in enhancing engineering 

performance through their application in various machine learning tasks. In the literature, 

numerous studies highlight the efficacy of ANNs in optimizing engineering processes. 

Researchers have extensively explored the use of ANNs for predictive modeling, 

demonstrating their capability to forecast complex engineering outcomes with high 

accuracy. Machine learning, including ANNs, has also been leveraged in optimization 

problems within engineering design. From parameter tuning to the layout optimization of 

complex systems, ANNs offer innovative solutions that significantly streamline the 

design process and improve overall performance. 
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In the work by Moselhi, Hegazy, and Fazio (1991), the fundamental neural network 

architectures and their potential applications in construction engineering and management 

were explored, focusing on the usage and potential of ANNs in civil engineering. The 

study offered a graphical representation of ANNs' functioning and demonstrated their 

effectiveness in detecting various civil engineering issues (Flood and Kartam 1994). 

Moreover, the research by Sonmez and Rowings (1998) proposed the development of a 

model to evaluate the labor productivity using multilayer feedforward neural networks 

trained with a backpropagation algorithm. This approach allowed for the presentation of 

a complex mapping of factors affecting labor productivity. These studies shed light on 

the utility and potential of ANNs in the field of civil engineering, proposing their ability 

to address various construction-related challenges and improve labor productivity 

modeling. The evaluation performance models were proposed and implemented at two 

actual power plant construction projects by examining the influential factors and creating 

an ANN to evaluate labor productivity (Heravi and Eslamdoost 2015). The above studies 

have reported the application and use of ANNs or ML to measure labor productivity and 

engineering performance in some areas. 

Multiple regression and ANNs have become common tools for developing prediction 

models in various fields. For instance, A study utilized multiple regression approach to 

forecast the unit costs and predict the construction progress and speed in design and build 

projects (Konchar and Sanvido 1998). Similarly, a study used multiple regression to 

forecast project cost, schedule growth, conformance to expectations, and user satisfaction 

levels (Molenaar and Songer 1998). Wong (2004) employed multiple regression to 

predict contractors' performance in meeting client requirements. However, not all 

prediction models yield satisfactory results. The reason might be caused by the 

assumption of linear characteristic nature between predictors and performance in the 
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multiple regression approach as pointed out in the research. To overcome this limitation, 

serval researchers turned to ANN as an alternative approach. The study used ANN to 

predict the construction quality of design and build projects (Ling and Liu 2004). 

Similarly, Georgy, Chang, and Zhang (2005) developed an ANN model to predict the 

performance of civil engineering projects. In another study, ANN was applied with input 

parameters such as contractor's financial capability, technical expertise, and project 

experience to predict the organizational effectiveness and overall contractor performance. 

Despite producing satisfactory prediction results, ANN's black-box computation process 

sometimes poses challenges in interpreting the implications of the models (Dikmen, 

Birgonul, and Ataoglu 2005). 

While the literature recognizes the potential of ANNs in engineering and BIM, 

ongoing research is dedicated to addressing challenges such as interpretability, 

robustness, and the need for large datasets. Future endeavors are likely to focus on 

refining these aspects to further enhance the integration of ANNs and machine learning 

techniques into engineering and BIM practices. 
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3.0 Research Framework and Approaches 

A comprehensive methodology is developed as a framework and an approach for this 

research. The framework builds a structure of the phases of this research and provides the 

planned outputs at each phase. The research approach lay outs the processes and methods 

of this study, including target industry sector for data collection and model development 

methodology. The concept of deep machine learning of multilayer perception techniques 

is introduced and finally the proposed models is validated and implemented.  

3.1 Framework 

This research proposes a three-phase main framework, as illustrated in Figure 2. The 

three phases are approached as phase 1: define and measure, phase 2: analysis and 

modeling, and phase 3: validation and implementation. 

 

Figure 2. Research Framework 

At phase 1 of define and measure, the study first articulates the problem for baseline 

industry requirements. Clearly defines the research goals, objectives, and scope of the 

study related to BIM application in engineering design performance. Previous studies are 

reviewed to form a body of knowledge as a foundation for this research. Next, identify 

the key variables and metrics that are used to measure engineering design performance, 

such as efficiency, accuracy, cost-effectiveness, or sustainability. Determine the data 
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collection methods and sources, and this step involves collecting data from BIM models, 

project records, surveys, or other relevant sources from target industry sectors. Finally, 

develop a methodology to quantify and measure the identified engineering design 

performance measures. This step involves establishing performance indicators, 

developing evaluation criteria, or defining measurement scales. The output of this phase 

is defined 15 BIM use input variables and 10 selected engineering performance output 

measures. 

Phase 2 analysis and modeling is to analyze the collected data using appropriate 

statistical or analytical techniques, including descriptive statistics, correlation analysis, 

regression analysis, and machine learning algorithms. Two stages are proposed to 

approach phase 2. Stage 1 is to find the relationship between input variables and output 

measures by correlation analysis and examine the interaction of the factors. Stage 2 is to 

apply linear regression and machine learning models to the data to identify patterns, 

relationships, or predictive capabilities. Train the models on the available data to develop 

robust and accurate models. Explore the relationship between the identified design 

performance metrics and other variables to gain insights into the factors influencing 

engineering design performance. This analysis can help identify significant predictors or 

drivers of engineering design performance. The outputs of this phase are correlation 

analysis for inputs, inputs, and outputs, the LR model, and the MLMP model.  

Phase 3 of validation and implementation is to validate and apply the developed 

models by testing their predictive capabilities using independent data sets. This step helps 

to assess the accuracy and reliability of the models. Compare the model's predictions or 

recommendations with actual engineering design performance outcomes to evaluate its 

effectiveness. This step ensures that the models are providing valuable insights and 

contributing to improved design performance. Implement the validated models or 
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findings in practical engineering scenarios. This step involves integrating the models into 

BIM software tools, decision support systems, or design workflows. Assess the impact of 

the implemented models on design performance by monitoring and evaluating the 

outcomes. This step helps determine the practical implications and benefits of utilizing 

the developed models in real-world engineering projects. The outputs of this stage are 

model validation and implementation, further application of the model and monitoring 

and control, discussion of the findings, core contribution, and suggestions of the body of 

knowledge. 

Throughout each planned phase, it is essential to document and communicate the 

research methodology, data analysis techniques, and findings clearly and transparently. 

This enables future researchers to replicate or build upon the research and contribute to 

advancing BIM applications in engineering design performance. These outputs serve as 

valuable contributions to the field of BIM application in engineering design performance. 

They provide insights, recommendations, and actionable information for engineers, 

designers, and stakeholders to improve engineering process efficiency, accuracy, cost-

effectiveness, and sustainability. Additionally, the knowledge of the research process and 

findings allows for transparency, replication, and advancements in the field.  

3.2 Approaches 

Under the three-phase framework structure, the approach lays out this research’s 

main steps. Four target industry sectors were selected to establish the scope of the 

investigation, and the survey data was collected from the targeted sectors. This research 

is primarily centered around projects that employ the EPC approach during their planning 

and execution phases. The primary focus of this study is to examine and analyze the 

performance of surveyed projects by utilizing BIM. The data is obtained through 
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surveying projects that fall within specific industry sectors. These surveys are conducted 

to gather valuable information and insights from the projects operating within these 

sectors. By gathering survey data from targeted industry sectors, the study aims to offer 

a detailed analysis and assessment of how BIM application in EPC projects perform 

within these specific domains. To conduct this research, a key emphasis is placed on 

projects that implement EPC practices during their execution phases. Through the 

collection of survey data from chosen industry sectors, the study aims to deliver sector-

specific findings and conclusions that can benefit practitioners and stakeholders in those 

industries. The methodology of model development is introduced as the base of the study. 

3.2.1 Targeted Industrial Sectors 

The primary goal of this research was to gain a comprehensive understanding of the 

applications and effectiveness of BIM in large-scale construction projects. By focusing 

on four distinct industry sectors, this research aimed to shed light on the diverse ways in 

which BIM was being utilized across different domains, from power generation to high-

tech facility construction. 

• Industry Sectors: The choice of the four industry sectors, namely power, oil and gas, 

rail and metro, and high-tech facilities, was strategic. Each of these sectors has its 

unique challenges and requirements, and the study sought to determine how BIM was 

adapted to address the specific needs of each. 

• Types of Projects Considered: Within each of these industry sectors, various types of 

industrial projects were taken into consideration. This means that BIM's 

implementation was assessed across a range of project types, from power plants to 

high-tech facilities. 
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• Data Sources: Data for the study was sourced from 60 projects conducted by 

prominent U.S. companies. These companies were chosen based on their ranking in 

the 2017 ENR lists of top design-build firms and top contractors. The selection of 

these companies adds a level of credibility to the research as it draws upon real-world 

practices of industry leaders. 

• Project Diversity: By including a wide variety of projects within the selected sectors, 

the research encompassed a broad cross-section of construction endeavors. This 

ensured that the findings would be applicable to a range of project types, not limited 

to a single niche within each sector. 

• Scale of Projects: The research focused on projects with substantial financial 

investments, ranging from US$ 750 million to US$ 3 billion. This deliberate choice 

of scale allowed the researchers to explore how BIM was employed in significant 

construction efforts, where the stakes are high, and the complexities are considerable. 

• Data Summary: The research collected data from different sources and summarized 

in Table 1. The table shows the distribution of the sampled projects among the four 

industry sectors: 13 from power plants, 7 from oil and gas plants, 19 from rail and 

metro, and 21 from high-tech facilities. 

This study sought to provide a robust analysis of BIM implementation in the 

construction industry by examining a variety of sectors and project types. The inclusion 

of data from top U.S. firms and the emphasis on large-scale projects make the findings 

relevant to major players in the industry and offer insights into the adaptation of BIM 

technology to diverse construction challenges. 

The following methods were performed to ensure the diversity of the data sets to 

reach more accurate and reliable models: (1) Descriptive statistics provide insights into 
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the central tendency and variability of the data and identify potential outliers. (2) 

Correlation analysis identifies the strength and direction of relationships between 

variables to identify potential confounding variables that need to be controlled for in the 

modeling process. (3) Data visualization identifies patterns to identify potential gaps in 

the data before modeling. (4) Data sampling applies to ensure a diverse range of data for 

modeling to ensure equal representation of different subgroups. (5) Data transformation 

for normalization ensures the data is in a suitable format for modeling to prevent biases 

due to differences in different variable ranges. 

Table 1. Project Survey Summary 

Industry 

Sector 

Total 

Project 

Samples 

Model Development 

Training Set 

Model Validation 

Test Set 

Project 

Number 
% 

Average TIC 

(US$ in mil) 

Project 

Number 
% 

Average TIC 

(US$ in mil) 

Power Plants 13 11 21% 2,850 2 25% 2,500 

Oil and Gas 

Plants 
7 5 10% 2,650 2 25% 2,600 

Rail and Metro 19 17 33% 1,450 2 25% 1,420 

High Tech 

Facility 
21 19 37% 800 2 25% 760 

Total 60 52 100% 1,938 8 100% 1,820 

3.2.2 Data Collection 

This research developed a comprehensive data collection method to collect the 

performance information of the targeted construction projects to build the proposed 

models. Next, the study designed and distributed a project performance evaluation 

package to collect required information and determine the relationship between BIM use 

inputs and engineering performance measures. The survey package consists of three 

forms is designed to explain the purpose of the research is to evaluate the impact of BIM 

uses on engineering design performance and ask the evaluator’s experience of how BIM 

uses in the project affects the engineering performance.  
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The first section collects feedback on the acceptance level of output engineering 

measures to understand the performance perspective from either project directors or 

managers. This section consists of two parts, part 0 is the information for the inputter 

including name, title, company, industry experiences, and BIM uses in years. And part 1 

is the acceptance level in the percentage of 15 engineering performance measures 

according to BIM use the standard of application experience. The second section in the 

survey package is to evaluate the relationship between BIM use inputs and engineering 

performance outputs by measuring the significant levels on a five-point Likert scale, 

where 5 represents very significant, 4 is significant, 3 is moderate, 2 is little significant, 

1 is not significant, and 0 is no relationship. The purpose is to understand the experience 

and perspective of BIM use application in relation to performance. The third section 

assesses the inputs of BIM uses on implementation levels and the engineering 

performance by using a 10-point scale in percentage, where 0 represents 0% 

implemented, and 10 represents 100% implemented. Moreover, the project information 

of the above survey input includes the project name, project sector, project location, 

contract type, contract value, and project schedule. The third section is the primary data 

sets to conduct the prediction models. By using 15 input variables of BIM application and 

10 output variables of engineering performance, the relationships are reviewed by AI and 

statistical methods. This survey package with a data collection plan comprises three 

sections as attached in Appendix 2. 

The data collection was a rigorous process to ensure the quality of the survey and the 

reliability of the data. After the necessary data collection, these data were applied to 

evaluate the statistical key results to obtain the significant levels of the input and output 

variables. These confirmed important variables were formed to construct the correlation 

analysis and the assessment MLMP and LR prediction models. Data preparation is a 
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crucial step in preparing the original data for machine learning. This process involves 

selecting the relevant data and applying various pre-processing steps to transform the raw 

data into a format suitable for training and validating machine learning models. The data 

is split into multiple parts, with one part used as the training set for model development, 

and the other part as the test set for model validation and implementation. Three project 

samples with a data collection plan of three sections of survey package as attached in 

Appendix 3. Some of information are protected for the project required confidential and 

commercial reasons. 

In this study, a total of 60 data samples are grouped into two sets: the training set, 

which is essential for training the deep model to understand and apply concepts, design 

rules, and produce accurate results; and the test set, which is used to evaluate the 

effectiveness of the predictive model trained with the training set. During the training 

process, the model is adjusted by fitting parameters, which involves adjusting weights to 

optimize the model's performance. The test set, on the other hand, is not used during 

training but is utilized in the validation process to inform the choice of parameters and 

input features. Once the final model is selected, the test data set serves as a final test, 

providing the best possible estimate of the model's success when applied to entirely new 

data. This step ensures the reliability and generalizability of the predictive model for 

future data. 

Data mining is applied to improve efficiency and productivity by identifying patterns, 

trends, and insights to optimize data preparation processes. Preprocess and clean the data 

to ensure the quality and suitability for data mining before applying it to build the models. 

By analyzing data from previous BIM application and engineering design processes, the 

patterns and trends are used to optimize processes for better BIM application and 
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engineering performance, reduced costs, shorter design cycles, and increased customer 

satisfaction (Hao, Zhien, and Zhao 2019). 

3.2.3 Model Development Method 

To identify the influence levels of BIM use inputs on engineering performance 

measure outputs, two approaches were proposed, as shown in Figure 3, to evaluate the 

relationship between the inputs and outputs and develop the performance prediction 

models. The first approach is separated essential and enhanced BIM uses, which considers 

how essential and enhanced BIM uses influence separately at different phases of 

engineering performance measures. This is defined as the separated BIM use model, 

which applies correlation analysis to evaluate the relationship strength between 10 

performance outputs associated with 5 BIM use inputs for the essential model and 10 

performance outputs related to 10 BIM use inputs for the enhanced model. This method 

establishes the statistical correlation significance and possible connection among the 

inputs and outputs. The second approach with 2 stages is the combined BIM use approach, 

which combines the essential and enhanced BIM uses and considers how essential and 

enhanced BIM uses jointly influence different phases of engineering performance 

measures. Stage 1 is to construct the MLMP model, and stage 2 is to construct the LR 

model. In approach 2, both were built to evaluate the collected output measures and input 

variables from the data survey and collection, find regression and activation equations, 

and predict the engineering performance. 

 MiniTab 18 statistical software package is selected and deployed for the data 

analysis in this research. MiniTab is a comprehensive, robust data mining, predictive 

analytics, and modeling tool for performing statistical analysis, including correlation, 
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hypothesis testing, regression, and ANOVA. The main features used in this study are 

basic statistics, regression, ANOVA, and control charts under statistical analysis modules. 

 

Figure 3. (a) Approach 1 Separated BIM Uses 

 

(b) Approach 2 Stage 1 Combined BIM Uses for MLMP Model 

 

(c) Approach 2 Stage 2 Combined BIM Uses for LR Model 

Figure 3. (b) and (c) Approach 2 Combined BIM Uses 

BIM applications were implemented in the life cycles of the 60 surveyed project 

samples with valid data points. These survey datasets were separated into two groups 

training set and a test set. The first group of 52 projects applied sample data as a training 

set for required model development, and the second group of 8 project data as a test set 

for model validation and implementation. The second group of 8 project samples of the 

test set was selected from the four sectors near the mean TIC average statistical points for 

model validation and implementation, as indicated in Table 1. The first compared the 
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existing project datasets by selecting two projects from the two most populated sectors. 

Project sample 1 from the rail and metro sector and Project sample 36 from the high-tech 

facility from the first group of 52 project sample training sets. The second step uses 8 

project sample test sets from four sectors and two from each sector divided into two test 

sets for model validation. The separation of samples aims to spread the data among sectors 

to ensure the diverse spectrum of the projects. 

3.3 ML Multilayer Perception Techniques 

An MLMP technique is a feedforward ANNs that creates a group of outputs from a 

group of inputs for function approximation. MLMP is a type of artificial neural network 

that consists of multiple layers of nodes or neurons, and this network helps to obtain 

information about the underlying reasons in the advanced models of deep learning. It is 

commonly used in machine learning for various tasks like classification, regression, and 

pattern recognition. 

MLMP is widely used in machine learning and can be applied to various tasks, 

including engineering performance analysis and prediction is commonly used in simple 

regression problems. A multilayer perceptron strives to remember patterns in sequential 

data. Because of this, it requires many parameters to process multidimensional data. It is 

characterized by multiple layers of input nodes connected as a directed connection 

between the input and output layers. MLMP consists of the input, hidden, and output 

layers.  

Figure 4 shows a diagram of a neuron in an MLMP network, also called Node i. It 

includes a summer and nonlinear activation function g. This study applies the Karas 

source Python library to develop and evaluate the proposed deep learning models. Keras 

is a high-level deep learning library written in Python. It provides a user-friendly and 
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intuitive interface for building and training neural networks, including MLMPs. 

Multilayer feedforward networks use several training techniques, the significant portions 

of a feedforward network’s learning and training process with a backpropagation 

algorithm (Svozil, Kvsanicka, and Pospichal 1997). 

 

Figure 4. Multilayer Perceptron Feedforward Neural Network 

In MLMP, the information flows from the input layer through the hidden layers to 

the output layer in MLMP. Each neuron in a layer process its inputs and passes the result 

to the next layer. The weights and biases are parameters that the network learns during 

training, they are adjusted to minimize the difference between predicted and actual 

outputs. MLMP is trained using a supervised learning approach, it involves feeding input 

data forward through the network, calculating the error, and adjusting weights and biases 

using backpropagation. Backpropagation is an optimization algorithm that minimizes the 

error by adjusting weights backward through the network. It involves computing the 

gradient of the error with respect to the weights. 
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The applications of MLMP are pattern recognition, classification and regression, 

function approximation, time series prediction and natural language processing. MLMP 

is applied in tasks like language translation, sentiment analysis, and text classification. 

MLMP's strength lies in its ability to model complex non-linear relationships in data. Its 

architecture and training process make it a foundational building block for more advanced 

neural network architectures used in contemporary machine learning applications. MLMP 

is proposed to apply to this research by using it’s regression feature to enhance 

performance. 
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4.0 Input Variables and Output Measures 

This section explains the input variables and output measures applied to this research. 

The input variables are the BIM use, and the output measures are the engineering 

performance outputs. The definitions of input variables and output measures are 

investigated, reviewed, discussed, and defined for correlation analysis and model 

development purposes. 

4.1 BIM Use Input Variables 

The National Institute of Building Sciences (NIBS) launched and published a 

National BIM Guide for Owners (NBGO) in January 2017. The applicability of NBGO 

can vary depending on the specific country and jurisdiction, as different countries may 

have their own guidelines and standards for BIM implementation in the construction and 

real estate industries. The NBGO is typically designed to assist building owners and 

operators in effectively implementing and using BIM throughout the lifecycle of a 

construction project. It provides guidance on how to specify BIM requirements, set 

expectations, and establish protocols for information exchange with project teams and 

stakeholders. The key points to consider regarding the applicability of a NBGO are: 

• Local Regulations: Different country or region has specific regulations or guidelines 

related to BIM implementation. In some countries, BIM requirements are mandated 

for public projects, and these requirements may align with a national BIM guide. 

• Project Type: The applicability of the guide depends on the type and scale of the 

construction project. Larger, more complex projects are more likely to benefit from 

comprehensive BIM guidelines, but the principles can be adapted for smaller projects 

as well. 
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• Industry Standards: Consider industry-specific standards and guidelines. For 

example, organizations like the BuildingSMART International have developed global 

standards for BIM that can be used in conjunction with or in place of national guides. 

• Organizational Requirements: Even if there is no specific national guide, a BIM guide 

for owners can be developed at the organizational level to ensure consistency and best 

practices for BIM implementation. 

• Collaboration: Collaboration with architects, engineers, contractors, and other 

stakeholders is crucial. The applicability of a BIM guide is often tied to the 

willingness of all parties involved to adopt BIM processes. 

It is essential to understand the specific requirements and guidelines in different 

region and for the type of project. BIM can offer numerous benefits in terms of improved 

project coordination, reduced costs, and enhanced facility management, so it is worth 

considering its implementation and referring to relevant guides and standards for 

guidance. BIM guides and standards can vary significantly from one country to another. 

These variations are often influenced by factors such as local regulations, construction 

practices, and the level of BIM adoption within a specific region. A general comparison 

of BIM guides in different countries: 

• United States National BIM Standard (NBIMS): The United States has a National 

BIM Standard, which provides a framework for BIM implementation. It includes 

guidelines and templates for BIM execution plans, standards for data exchange, and 

classification systems like COBie (Construction-Operations Building information 

exchange). 

• United Kingdom BS 1192 and PAS 1192: The UK has been a pioneer in BIM adoption 

with its BS 1192 and PAS 1192 standards. These standards provide detailed guidance 
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on BIM processes, information exchange, and common data environments. The UK 

also introduced a BIM Level 2 mandate for government projects. 

• Canada CAN/CSA Z195: Canada has the CAN/CSA Z195 standard for BIM, which 

outlines processes and guidelines for BIM implementation. Provinces like Ontario 

have also developed their own BIM standards and guidelines. 

• Australasian BIM Framework: Australia has the Australasian BIM Framework, which 

provides guidance for BIM implementation in the Australian and New Zealand 

context. The framework includes principles for BIM use in various project stages. 

• Singapore BCA BIM Guide: The Building and Construction Authority (BCA) in 

Singapore has developed a comprehensive BIM guide. It includes guidelines for BIM 

standards, project collaboration, and BIM submission requirements. 

• Germany: DIN 69910-1 and VDI 2552: Germany has DIN 69910-1 and VDI 2552 

standards that provide guidance on BIM processes and information modeling. These 

standards are widely used in the German construction industry. 

• China: China has its own BIM standards and guidelines that align with the country's 

specific construction practices and regulations. These standards are developed by 

organizations such as the China BIM Alliance. 

• Netherlands: The Netherlands has a BIM Loket, which serves as a national platform 

for BIM development. They have their own guidelines and standards, including the 

Netherlands Standard for Building Specifications (STABU) and the Netherlands 

Information Model (NL/SfB). 

The application of specific BIM guides and standards varies from country to country 

and often depends on local regulations, industry practices, and project requirements. 

There is no single universally adopted BIM guide or standard that applies worldwide. 



doi: 10.6342/NTU202304540
44 

However, some guides and standards have gained broader recognition and use in various 

regions. The following standards provide general practice and application for most of the 

locations. 

• ISO 19650: ISO 19650 is an international standard for BIM that provides a framework 

for managing information over the entire life cycle of a built asset using BIM. It has 

gained global recognition and serves as a foundation for BIM implementation in many 

countries. 

• UK BIM Standards (BS 1192 and PAS 1192): The United Kingdom's BIM standards, 

including BS 1192 and PAS 1192, were influential in the early adoption of BIM 

practices and have been widely used as a reference in many countries. 

• National BIM Standard (NBIMS) in United States: The NBIMS in the United States, 

developed by the National Institute of Building Sciences (NIBS), provides guidance 

for BIM implementation in the U.S. It has been used as a reference point for BIM 

practices in North America. 

• Australasian BIM Framework: The Australasian BIM Framework is well-recognized 

in Australia and New Zealand and has influenced BIM practices in the region. 

• Local Standards and Guidelines: Many countries have developed their own BIM 

standards and guidelines tailored to their specific construction industry and regulatory 

environment. These local standards are often more widely used for projects within 

their respective countries. 

It is important that BIM adoption and the use of specific guides and standards can 

change over time, and new standards may have emerged. When embarking on a BIM 

project, it is essential to identify the most current and relevant BIM guides and standards 

for the specific region and project type. Additionally, project owners and stakeholders 
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should consult with local authorities and industry organizations to ensure compliance 

with the latest regulations and best practices. In this research, the NBIMS of the United 

States developed by the NIBS, provides more general practice guidance for BIM 

implementation in the U.S. It has been used as a reference point for BIM practices in 

North America, is applied to this study. 

The NBGO intended to direct facility owners to apply and implement the BIM 

application requirements in execution procedures and contracts to plan, design, build, 

startup, operate, and maintain the facilities. The Guide defines a method for developing 

and implementing the BIM application requirements for a construction project from the 

viewpoint of facility owner. It assists them in maximizing the potential opportunities of 

BIM implementation in their projects. The Guide further indicates that the BIM 

application can facilitate the owner’s communication of decision-making processes, 

design concept, details integration, project-wise coordination across different stages, 

improved project overall schedule and cost control, after‐construction facility 

management and maintenance, building automation, monitoring, and many other 

benefits. Notably, BIM implementation in the U.S. keeps increasing since owners benefit 

the most by applying BIM as a control tool to maximize a facility’s value during its 

overall execution phase. 

The BIM uses defined in NBGO are a standard criterion for implementing BIM 

applications, enabling the facility’s overall life cycle to reach specific objectives expected 

by the owner. The implementation of BIM empowers facility owners to utilize the 

integrated model in various applications tailored to their specific requirements. To ensure 

a successful project execution, a well-defined project execution plan is essential, outlining 

the project deliverables to be provided to the facility owner upon the turnover after test 

and commissioning. The defined deliverables encompass a design intent model, a 
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construction model, and comprehensive operations and maintenance data, as illustrated 

in Figure 5. To avoid any ambiguities or misunderstandings, the content of each 

deliverable should be explicitly specified within the contract documents involved in 

project. The BIM use input variables identified to apply in this study are included in the 

deliverables as described in the following processes.  

• Design Intent Model: This model captures the intended design, and serves multiple 

purposes, including project BIM execution, digital design mock-ups, decision 

support, and design coordination.  

• Construction Model: Developed based on criteria relevant to the facility's fabrication 

and construction, these models stem from the design intent model during construction 

coordination. Cross-platform 3D model viewing software is often used to combine 

the files to accommodate various subcontractor file formats and provide a higher level 

of detail.  

• As-Built Model: This model captures the status of the project upon its completion. 

Initially based on the design intent model, it progressively incorporates project 

information as construction progresses.  

• Record Model: Prepared for operations and maintenance purposes, the record model 

typically utilizes the design intent model as a baseline and is then updated to reflect 

all changes made during construction and testing. The goal is to create a lightweight 

model with sufficient detail for facilities management operations, without being 

overly detailed. It contains accurate attribute data on major equipment and systems, 

supporting facilities management documentation. The model is utilized during 

commissioning or updated to reflect commissioning data.  
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• Operations and Maintenance Data: This deliverable comprises asset inventory with 

asset names, classifications, and locations. For critical components, attributes such as 

make, model, and serial number are considered. Throughout the project phases, the 

project BIM team must provide a formal report confirming the completion of 

consistency checks. This report is discussed as part of the review process and 

addresses any identified interferences and constructability issues. 

As depicted in Figure 5, the collaborative process between design and construction 

professionals involves the creation of design intent models to generate accurate 

construction documents. These design intent models serve as a foundation for developing 

construction models during the construction phase. As construction progresses, these 

models evolve to capture project data, forming the basis for an as-built model that depicts 

more detailed construction task conditions. Throughout construction, the integration of 

various construction models culminates in the development of the as-built model. This 

model, along with ongoing project information exchanged with design professionals, 

facilitates the updating of design intent models into a record model. To cater to the 

specific needs of operations and maintenance, the record model is derived from the design 

intent model, providing a lightweight version without compromising essential 

information. Overall, the record model, along with the as-built model and project data, 

offers facilities management personnel a diverse array of information in multiple formats, 

effectively supporting various facilities management uses and activities. The seamless 

interaction between design intent models, construction models, as-built models, and 

record models ensures a comprehensive and streamlined approach to facility 

management. 
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Figure 5. Sample Process for Life Model Requirements 

From section 4.2 BIM uses of the NBGO, a BIM use refers to the application of BIM 

throughout the lifecycle of a facility to achieve specific objectives. The versatile nature 

of BIM technology enables various owners to utilize the model in diverse ways, tailoring 

its implementation to suit their project's distinct requirements. As the project progresses 

through different phases, the information constructed within the BIM expands both in 

quantity and detail. These BIM uses can be categorized into three main types: essential 

BIM, enhanced BIM, and owner-related uses. Each of these categories represents specific 

functionalities and purposes of BIM, providing owners with valuable tools to optimize 

their project management and decision-making processes. The essential BIM uses 

identify a minimum key requirement to apply BIM in the project, and the enhanced BIM 

uses identify an extension of essential BIM use to reinforce the application of BIM use. 

The owner‐related uses are mainly the usage of BIM identified by the owner to include 

the required information related to operation and maintenance after project turnover. 

NGBO suggests that it is very important that the BIM uses should align with project goals 

and execution plans.  

The guild establishes a minimum requirement for the five essential BIM uses 

indicated in Table 2, second column from X1 to X5, namely X1: existing conditions, X2: 
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design authoring, X3: design review, X4: three‐dimensional (3D) coordination, and X5: 

record modeling. As shown in Figure 6, the minimum BIM example suggests the five 

essential BIM uses applications in the five phases of an industrial construction project life 

cycle. The main application applies to a project phase indicated in solid boxes and the 

extension applications in dotted boxes. From applying the five essentials is in the project 

phases, as shown in Figure 6, the interaction and the overlapping of the BIM use expended 

in the five phases of the project cycle explicitly explains the correlation among these BIM 

uses input variables.  

 

Figure 6. Minimum BIM Use in Project Phases 

Project conditions classify the enhanced BIM uses, and the owner‐related BIM uses 

in the Guide, the Enhanced BIM Uses as described in Table 2 from X6 to X15, namely 

X6: cost estimating, X7: phase and 4D planning, X8: site analysis-development, X9: site 

utilization-for construction, X10: digital fabrication, X11: 3D location and layout, X12: 

engineering analysis, X13: sustainability analysis, X14: codes and standards compliance, 

and X15: construction systems design. The definition of the essential and enhanced BIM 

use defined in NBGO is listed in Table 2 to identify the actual practice and to provide the 

application guidelines. The owner‐related BIM uses, including asset management, 

disaster planning and management, and space arrangement in NGBO, are suggested in 

the Guide to confidently include the operation of manufacture for vertical and horizontal 
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phase information. Owner-related uses represent the culmination of the BIM journey, 

emphasizing the owner's specific needs during the operation and maintenance phase. This 

phase involves the integration of crucial information identified by the owner to facilitate 

seamless operation and maintenance post-project turnover. By tailoring BIM to these 

owner-centric requirements, the technology becomes a powerful asset, contributing to 

effective facility management and long-term sustainability. In essence, the tripartite 

classification of BIM applications aligns with the distinct demands of design, 

construction, and operation, offering a comprehensive approach to project optimization. 

Considering that the size of the data domain for the collection and analysis from the owner 

is complicated, the owner-related BIM uses are excluded from this study. 
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Table 2. BIM Use in NBGO 

Category BIM Uses Definition in NBGO Section 4.2 

Essential 
BIM Uses 

Existing Conditions 
A process of geometry and information of the existing 

conditions and facilities on a site 

Design Authoring 
A process is used or implemented to develop a BIM of the 

engineering design 

Design Review 
A quality process is used to allow stakeholders to verify design 

and reviews can resolve design issues 

Coordination 
A process for elements can be coordinated, and clash detection 

or conflicts can be identified 

Record Modeling 
A process contains an accurate depiction of the physical and 

functional conditions of a facility 

Enhanced 
BIM Uses 

Cost Estimating 
A process used to generate a quantity takeoff and cost estimate 

and provide cost effects of changes 

Phase and 4D Planning 

4D used to effectively plan the phased occupancy in a 

renovation, and the construction sequence with space 

requirements 

Site Analysis-

Development 

BIM and GIS tools are used to evaluate properties to determine 

the most optimal site location 

Site utilization for 

Construction 
For Construction (See Phase and 4D Planning) 

Digital Fabrication 

Machine technology to prefabricate directly. model is used as 

input into manufacturing for production of components and 

assemblies 

3D Location and Layout 

Utilizes a model to lay out the building assemblies and 

produce 2D/3D component drawings used during site 

construction 

Engineering Analysis 

The integrated tools that allow the physical and material 

properties of elements, assemblies, and systems within for 

analysis and simulation 

Sustainability Analysis 

The integrated tools that allow the physical and material 

properties of elements, assemblies, and systems for developing 

sustainable elements 

Codes and Standards 

Compliance 

A process in which validation to check the model parameters 

against applicable codes and standards 

Construction Systems 

Design 
A process to design and analyzes the contemporary systems 

The brief description of BIM uses extracted from NBGO section 4.2 is shown in the 

third column in Table 2 to provide the general practices of each input. The definition of 

BIM use provides standard guidelines to 15 suggested applications for facility owners or 

BIM users to follow in both essential and enhanced BIM uses. Based on the brief 

description of BIM inputs from NBGO, the definitions of input variables are enhanced 

and specified to reflect the actual practices for data collection purposes indicated in the 
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fourth column in Table 3. In the third section of the survey package, to evaluate the 

implementation of each 10-input attribute, the application level is indicated as a scale of 

0 to 10 to represent 0 to 100% implementation, where 0 represents 0% implemented, and 

10 represents 100% implemented for the surveying project. The application of BIM uses 

is suggested to apply in this study to provide comprehensive understanding of analysis 

and must be aligned with construction project goals, based on added value to the facility 

owner. The definition of the BIM inputs is defined as the execution method of the used 

variables, and it provides explicit instruction on data collection criteria for the 

standardization of the BIM use input variables. 

Table 3. BIM Use Input Variables 

Category BIM Use Attributes 
Attributes of Data Collection 

(Scale 0 to 10 for 0-100% implemented) 

Essential 

BIM Uses 

X1 Existing Conditions 
Existing site and facilities geometry information 

to be included in BIM model  

X2 Design Authoring 
BIM Software/Tool used in the engineering 

design process 

X3 Design Review 
30/60/90%/100% Model Review in the design 

execution 

X4 Coordination 
Clash detection and resolution execution in BIM 

model 

X5 Record Modeling 
Physical and functional information input in the 

elements of the model 

Enhanced 

BIM Uses 

X6 Cost Estimating Generate material quantity takeoff and cost data 

X7 Phase and 4D Planning 
Dimension of time and schedule information used 

in the model 

X8 Site Analysis Development GIS tools used in model 

X9 
Site utilization for 

Construction 

Communication tool for construction plan added 

in the model  
X10 Digital Fabrication Prefabricate by using BIM data or information 

X11 3D Location and Layout Function of utilities to layout assemblies 

X12 Engineering Analysis Engineering system simulation used in model 

X13 Sustainability Analysis Sustainable design elements included in model 

X14 
Codes and Standards 

Compliance 
Validation of codes for model 

X15 Construction Systems Design Contemporary system analysis in Model 
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4.2 Engineering Performance Output Measures 

As discussed in the previous section, the term “performance” can be viewed and 

evaluated from different perspectives. The evaluation of engineering performance in the 

industrial sector is paramount, and the contentment of owners and facility developers with 

engineering outcomes has been recognized as a fundamental criterion in this regard. 

Alongside the satisfaction factor, scholarly literature and insights from industry experts 

corroborate that numerous measures can be deployed to evaluate engineering 

performance across each phase of the project life cycle. This comprehensive approach 

aims to ensure a holistic assessment and continual improvement of engineering processes 

throughout the entire facility development process.  

The CII RT-156 studied and analyzed the data collected from targeted projects using 

the CII benchmarking and metric committee to have a valid, reliable, and easy-to-use 

system for measuring engineering performance (Chang, Georgy, and Zhang 2001). The 

research found systematic processes and procedures and developed a new and innovative 

approach for measuring productivity in engineering organizations by addressing the 

broader scheme and improving engineering performance. A utility-based neuro-fuzzy 

approach was established by constructing the connections between engineering inputs 

and performance outputs, and multiple utility functions were applied to integrate the 

collective assessments of performance measures (Georgy 2000). This developed 

integrated platform by RT-156 was used for several practical purposes, including 

performance output assessment and prediction and sensitivity analysis of individual 

inputs. The platform encompasses developing analytical methods that impact 

performance and techniques to quantify the resulting engineering performance. 
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From the knowledge encoded in an integrated scheme by RT-156, several areas have 

been highlighted as influential in driving engineering performance in construction 

projects. RT-156 identified the engineering performance measures with 10 metrics and 

10 outputs to measure and forecast engineering performance (Georgy et al. 2005). A total 

of 10 distinct measures have been discerned to represent the engineering performance 

across three pivotal phases of the project: detailed design, procurement and construction, 

and startup and commissioning. These identified 10 measures encapsulate essential 

indicators of engineering efficacy during each respective phase. For a comprehensive 

overview, please refer to Table 4, which presents the specific engineering performance 

measures considered for design, construction, and startup in project life. 

Table 4. List of Measures of Engineering Performance by CII RT-156 

Category 
Engineering Performance 

Measure 
Significant Variables 

Detailed Design 

Value 

Design Rework (%)  
Completeness of scope definition 

Change communication system 

Design document release 

commitment 

Split engineering practices 

Completeness of objectives and priorities 

Change communication system 

Detailed design schedule delay (%) 
Completeness of objectives and priorities 

Change communication system 

Detailed design cost overrun (%) Designer qualifications and capacity 

Fabrication and 

Construction 

Value 

Fabrication and construction 

schedule delay due to design 

deficiencies (%) 

Completeness of objectives and priorities 

Change communication system 

Fabrication and construction cost 

increase due to design deficiencies 

(%) 

Split engineering 

Newness of process technology to designer 

Change communication system 

Construction hours for design 

problem solving and field design 

Completeness of basic design data 

Use of 3D computer aided design modeling 

Estimated dollar savings due to 

constructability 

Relative size of project 

Design schedule 

Completeness of scope definition 

Use of electronic data interchange  

Change communication system 

Start-up and 

Commissioning 

Value 

Startup schedule delay due to 

design deficiencies (%) 

Newness of process technology to owner 

Design–construction overlap 

Startup cost increase due to design 

deficiencies (%) 
Completeness of objectives and priorities 
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As reported in RT-156, the evaluation of engineering performance during the 

operational and maintenance phase necessitates several years of full production of the 

industrial facility. Therefore, for the purpose of the research by RT-156, the definition of 

engineering performance was restricted to the project phases leading up to the full 

operation of the facility. A comprehensive set of 10 output measures had been identified 

to signify the engineering performance during the detailed design, procurement, and 

construction, and the startup and commissioning phases of the project. To gather data for 

system training and validation, a questionnaire survey was utilized, focusing on industrial 

projects within the targeted industry sectors in the United States. The data set comprised 

information from 50 industrial projects, meticulously selected to include a diverse 

representation of the industry. These projects were undertaken by prominent companies 

within the U.S. industrial construction targeted sector and encompass a wide range of 

project types, including grassroots and greenfield additions to existing facilities, with 

varying contractual arrangements, from lump sum to targeted price with incentives, and 

project sizes ranging from US$ 1 million to over US$ 130 million. 

Upon reviewing Table 4, a diverse range of numerical and non-numerical variables 

became evident. Numerical variables were characterized by precise or near-exact values, 

while non-numerical variables were often described using semantic scales, introducing 

varying degrees of imprecision or fuzziness in their descriptions. To address this 

variability, different strategies were employed in representing the variables. For 

numerical variables, a steep change in the triangular membership function was adopted, 

reflecting their lower level of uncertainty or fuzziness. In contrast, non-numerical or 

linguistic variables are typically defined on semantic or ordinal scales. To ensure 

consistency, a term set divided into five points is employed to represent the various non-

numerical variables within the system. Given that non-numerical variables exhibit a 



doi: 10.6342/NTU202304540
56 

higher degree of uncertainty or fuzziness, their membership functions should transition 

more gradually than those used for numerical variables. Consequently, any value for a 

non-numerical variable can simultaneously belong to multiple linguistic terms. 

Employing hedges like "about," "not," and "very" enables the development of appropriate 

representations for these linguistic variables. Such an approach accommodates the 

inherent imprecision in linguistic descriptions, facilitating a more nuanced and accurate 

fuzzy representation of the variables of the system. 

The selection of performance measures for this study based on the findings from CII 

RT-156 , and the focus is on performance measures related to the phases leading up to a 

facility's full operation, which typically includes project planning, construction, and 

initial operation. The report mentions that while it would be beneficial to include 

performance measures for the operation and maintenance phase of the facility, as well as 

the decommissioning phase. The task is currently challenging, and this is primarily due 

to the lack of readily available data for these phases. Gathering data for the project phases 

leading up to full operation is already time-consuming, and collecting data for the entire 

life cycle of projects from initial planning to demolition is even more challenging. The 

passage highlights that integrating measures for these later phases is currently unfeasible 

because of these data limitations. In essence, it emphasizes the practical constraints of 

collecting comprehensive data for all project phases, which is why the focus remains on 

the earlier phases leading up to facility operation in the study. 

The data set comprising 60 industrial construction projects is relatively limited in 

terms of both data size and data quality. Despite encountering challenges in data 

collection, the acquisition of data for 60 projects has been relatively successful. However, 

from a statistical standpoint, this sample size may not be sufficient for robust model 

validation. Furthermore, the data used in this study encompass various industrial facility 
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types, including chemical manufacturing, oil refining, power generation, among others. 

As industrial facilities are bespoke entities, the amalgamation of mixed project data 

representing different facility types may introduce diverse patterns that can hinder the 

effective learning of the neuro-fuzzy system. 

After reviewing the study by RT-156, the output variables defined the execution 

method for using the variables and provided explicit instructions on data collection 

criteria standardizing of the output variables. As indicated in this study, the numerical 

expression did not represent three variables, since these variables rated by general depict 

the impression levels. A review of the output performance measures in the study shows 

that the three variables not represented by numerical expression consisted of high levels 

of imprecise expression, namely (1) commitment to engineering design document release 

or issue, (2) construction time spent on engineering design issues or interference and field 

engineering coordination, and (3) construction cost-saving for constructability study. 

These performance output variables were difficult to define and could only be described 

and expressed in fuzzy linguistic terms. Therefore, the three measures are suggested to 

replace by quantitative items for better and more accurate data analysis (Chiu and Chang 

2022). 

The research focused on quantitative performance indicators from management’s 

construction perception and asserted that quantitative units of measurement should 

remain simple and easy to apply (Cox, Issa, and Ahrens 2003). For control and monitoring 

purposes, quantifying of metrics and trend provides more solid decision-making 

processes and opportunities for improvement. A significant collection of performance 

information obtained from the quantity project data and a comprehensive statistical study 

were conducted for future consideration. Furthermore, a survey of benchmark 

performance metrics for integrated project delivery suggested the impact of the request 
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for information (RFIs) and change management in quantitatively evaluating overall 

performance. From the results of the above research on the performance measures, three 

variables were redefined and replaced by the more specific and measurable quantitative 

index. Namely, Y4 detailed designed quantity compared to the final installed quantity 

replaced the commitment of engineering design document release or issue in the detailed 

engineering design phase to reflect engineering performance; Y7 construction hours for 

RFIs replaced construction spent time for engineering design issue or interference and 

field engineering coordination; Y8 construction hours for field change request (FCR) 

replaced construction cost-saving for constructability study. Both Y7 and Y8 are in the 

construction phase to reflect construction performance as shown in Table 5.  

Table 5. Engineering Performance Output Measures 

Category Variables Definition (in %) 

Detailed Design 

Value 

Y1 Design Rework  Design Rework Hours/Total Design Hours 

Y2 
Detailed Design Schedule 

Delay   

Days of Design Schedule Delay/Total Design 

Schedule Days 

Y3 Detailed Design Cost Overrun 
Design Cost Overrun in USD/Total Design 

Cost in USD 

Y4 

Detailed Designed Quantity 

Compared to Final Installed 

Quantity  

Issue for Construction Designed 

Quantity/Final Installed Quantity  

Fabrication and 

Construction 

Value 

Y5 

Fabrication and Construction 

Schedule Delay due to Design 

Deficiencies  

Days of Fabrication and Construction 

Schedule Delay due to Design 

Deficiencies/Total Fabrication and 

Construction Days  

Y6 

Fabrication and Construction 

Cost Overrun due to Design 

Deficiencies  

Fabrication and Construction Cost Overrun 

due to Design Deficiencies in USD/Total 

Fabrication and Construction Cost in USD  

Y7 
Construction Hours for 

Request for Information (RFI)   

Construction Hours for Request for 

Information (RFI)/Total Construction Hours 

Y8 
Construction Hours for Field 

Change Request (FCR)  

Construction Hours for Field Change 

Request (FCR)/Total Construction Hours 

Start-up and 

Commissioning 

Value 

Y9 
Start-up Schedule Delay due 

to Design Deficiencies  

Days of Start-up Schedule Delay due to 

Design Deficiencies/Total Start-up Days  

Y10 
Start-up Cost Overrun due to 

Design Deficiencies  

Start-up Cost Overrun due to Design 

Deficiencies in USD/Total Start-up Cost in 

USD 
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From the second column in Table 5, the revised engineering performance output 

measures of 10 variables consist of three replaced variables and seven defined initially 

defined variables that are mainly divided into three categories according to the 

development of a construction project, engineering design phase, construction and 

fabrication phase, startup, and commissioning phase, where spans over the life cycle. As 

each output measure’s definition is clearly defined and specified, the proposed 

engineering performance measures with the measurable quantitative criteria to evaluate 

the output measures by using the percentage to identify the values. 
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5.0 Model Development 

The correlation analysis for BIM use inputs and engineering performance measure 

outputs is first be reviewed for the base of model development. And later the two 

prediction models are proposed for engineering design performance measurement using 

statistic regression processes and machine learning techniques. LR and MLMP models 

are developed by applying the identified BIM use input variables and engineering 

performance output measures. After the models are developed, the comparison and 

findings are discussed. 

5.1 Correlation Analysis 

The engineering performance evaluation is a continuous task throughout a project’s 

life, from the planning phase to the operation and maintenance phase. As the project 

progresses through various phases in its execution life, the interpretation of engineering 

performance measures shall be different by pre-defined input variables. For example, if 

the design rework rate (performance output measure Y1) is high in the design phase 

means differently compared to measurement in the procurement or construction phases, 

and the required corrective action to be considered to resolve the issues shall be different. 

On the other hand, when measuring engineering performance at different project phase, 

some of the inputs are not available, or the values are partial for measurement. For 

example, the detailed designed quantity compared to the final installed quantity rate 

(performance output measures Y4) is unavailable until construction is finished. In the 

design phase, the designed quantity is developed at the conceptual, preliminary, and 

detailed design stage. Therefore, the equipment and materials quantities are finalized at 

issue for construction (IFC) stage, and quantities may be revised in the following 

procurement, construction, and commissioning phases. This explains that there shall exist 
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a relationship among the input variables and between input variables and output 

measures. The correlation analysis is required to understand the strength of the 

relationships and how they interact.  

Pearson’s correlation coefficient for continuous interval level data from −1 to +1 was 

applied to evaluate the strength of the association for variables. The positive correlation 

indicates that both variables decrease or increase simultaneously, whereas the negative 

correlation indicates that as one variable decreases, the other increases, and vice versa. 

From the rule of thumb for interpreting the correlation coefficient size, 0.9 to 1.0 (−0.9 to 

−1.0) represents a very high positive (negative) correlation, and 0.7 to 0.9 (−0.7 to −0.9) 

represents a high positive (negative) correlation (Hinkle, Wiersma, and Jurs 2003). 

Therefore, the Pearson’s coefficient helps quantify how closely two variables are related 

in a linear relationship. It is a useful tool in statistics and data analysis to understand 

relationships between data points. The interpretation of Pearson’s correlation coefficients 

in terms of the strength of the relationship is based on empirical observations and 

statistical conventions. Many studies in various fields have supported these 

interpretations over the years. Researchers and statisticians have found that these general 

guidelines for assessing the strength of correlations are broadly applicable. Therefore, the 

Pearson correlation between 0.7 to 1.0 (−0.7 to −1.0) is suggested to consider a strong 

relationship in this research and further reviewed in the two correlation analyses. 

This study applies a statistical method for correlation analysis to evaluate the strength 

of a cause-effect relationship for quantitative variables and measures. Here, two 

correlation analyses were performed to measure the relationship between the BIM use 

inputs and that between BIM use inputs and engineering performance outputs. Apply 

correlation analysis module in MiniTab 18 statistical software package by inputting BIM 

use variables from X1 to X15 and engineering performance output measures from Y1 to 
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Y10, and the relationships of all Xs and Ys are generated as shown in Appendix 4. The 

results showed that a strong correlation indicates that two or more variables have a strong 

relationship, whereas a weak correlation shows that the variables are hardly related. 

5.2 Correlation among BIM Use Input Variables  

As discussed in session 4.1 and indicated in Figure 6, the input variables are extended 

through project phases, and relationships exist among the 15 BIM inputs. This analysis 

intends to find the facts of the relationships among the BIM use variables to understand 

the significant levels of each input and how they interact with other inputs.  

After applying correlation analysis in MiniTab, the result is shown in Table 6. The 

correlation in BIM use input variables for essential and enhanced BIM Uses, there is a 

high correlation with essential BIM uses related to design phase activities including 

design review (0.897), design authoring (0.879), coordination (0.731), record modeling 

(0.704) and existing conditions (0.704). Also, essential BIM uses highly correlate with 

enhanced BIM uses in sustainability analysis (0.859), codes and standards compliances 

(0.846), and phase and 4D planning (0.816), which indicate the enhanced BIM use 

activities related to design efforts. For enhanced BIM uses, there is a high correlation in 

digital fabrication (0.888), construction systems design (0.888), cost estimation (0.874), 

3D location and layout (0.869), and site utilization for construction (0.869), where implies 

the enhanced BIM uses are mainly influenced related to construction activities. 
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Table 6. Correlation Analysis for BIM Use Input Variables  
C

a
te

g
o

ry
 

BIM Uses 

Essential BIM Uses Enhanced BIM Uses 

BIM Uses 
Pearson 

Coefficient 
BIM Uses 

Pearson 

Coefficient 

E
ss

en
ti

a
l 

B
IM

 U
se

s 

X1 Existing Conditions X5 Record Modeling 0.704 X13 Sustainability Analysis 0.859 

X2 Design Authoring 
X3 Design Review 0.897 

X7 Phase and 4D Planning 0.712 
X4 Coordination 0.731 

X3 Design Review 
X2 Design Authoring 0.879 

X7 Phase and 4D Planning 0.753 
X4 Coordination 0.716 

X4 Coordination X2 Design Authoring 0.731 X7 Phase and 4D Planning 0.702 

X5 Record Modeling X1 
Existing 

Conditions 
0.704 

X7 Phase and 4D Planning 0.816 

X13 Sustainability Analysis 0.771 

X14 
Codes and Standards 

Compliance 
0.846 

E
n

h
a
n

ce
d

 B
IM

 U
se

s 

X6 Cost Estimating N/A 

X10 Digital Fabrication 0.874 

X15 
Construction Systems 

Design 
0.870 

X7 
Phase and 4D 

Planning 

X2 Design Authoring 0.712 

X14 
Codes and Standards 

Compliance 
0.752 X3 Design Review 0.879 

X5 Record Modeling 0.816 

X8 
Site Analysis-

Development 
N/A N/A 

X9 
Site utilization-For 

Construction 
N/A X11 

3D Location and 

Layout 
0.869 

X10 Digital Fabrication N/A 

X6 Cost Estimating 0.874 

X15 
Construction Systems 

Design 
0.888 

X11 
3D Location and 

Layout 
N/A X9 

Site utilization-For 

Construction 
0.869 

X12 
Engineering 

Analysis 
N/A N/A 

X13 
Sustainability 

Analysis 

X1 
Existing 

Conditions 
0.859 

X14 
Codes and Standards 

Compliance 
0.815 

X5 Record Modeling 0.771 

X14 

Codes and 

Standards 

Compliance 

X5 Record Modeling 0.846 X7 Phase and 4D Planning 0.752 

X7 
Phase and 4D 

Planning 
0.752 X13 Sustainability Analysis 0.815 

X15 
Construction 

Systems Design 
N/A X10 Digital Fabrication 0.888 

5.3 Correlation between Input Variables and Output Measures 

As discussed in session 4.1 and indicated in Figure 5, the deliverables of the BIM 

application are models at five project execution phases. The deliverables are extended 

through project phases, and relationships exists between the 15 BIM inputs and 10 
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engineering outputs. This analysis intends to find the facts of the relationships between 

inputs and outputs to understand the significant levels of inputs and outputs and how they 

interact with each other.  

After applying correlation analysis in MiniTab, the result is shown in Table 7 for the 

correlation between BIM use inputs and engineering performance outputs. The results 

show that detailed design values correlate with essential BIM uses mainly in design 

activities, including coordination (-0.8093), record modeling (-0.7545), design authoring 

(-0.7434), and design review (-0.7432). Furthermore, it correlates with enhanced BIM 

uses also influenced by design, including engineering analysis (-0.7336), sustainability 

analysis (-0.7308), and phase and 4D planning (-0.7304). Fabrication and construction 

values correlate with enhanced BIM uses, and were related to construction activities, 

including digital fabrication (-0.7487), site analysis development (-0.7398), construction 

system design (-0.737), site usage for construction (-0.7285), and cost estimation (-

0.7277). Values of the startup and commissioning outputs correlated with both essential 

and enhanced BIM uses. Here, record modeling in essential use concerned recording 

information and cost estimation (-0.7661). In contrast, codes, and standards compliance 

(-0.6961), construction system design (-0.7107), and phase and 4D planning (-0.7039) in 

enhanced BIM use significantly influenced the project completion stage. 
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Table 7. Correlation Analysis for Engineering Performance Outputs and BIM Uses 
C

a
te

g
o
ry

 

Engineering 

Performance 

Measures (%) 

Essential BIM Uses Enhanced BIM Uses 

BIM Uses 
Pearson 

Coefficient 
BIM Uses 

Pearson 

Coefficient 

D
et

a
il

ed
 D

es
ig

n
 V

a
lu

e 

Design Rework 

Design Authoring -0.7478 Phase and 4D Planning -0.7089 

Design Review -0.7148 Engineering Analysis -0.7336 

Coordination -0.8093 N/A 

Detailed Design 

Schedule Delay 

Existing Conditions -0.7361 Sustainability Analysis -0.7308 

Design Authoring -0.7144 Codes and Standards -0.7167 

Design Review -0.7056 
N/A 

Record Modeling -0.7545 

Detailed Design Cost 

Overrun 

Design Authoring -0.7434 Phase and 4D Planning -0.7304 

Design Review -0.7432 Digital Fabrication -0.7069 

Coordination -0.8496 Engineering Analysis -0.7041 

Detailed Designed 

Quantity Compared to 

Final Installed 

Quantity 

Design Authoring 0.74228 Phase and 4D Planning 0.70217 

Design Review 0.70178 Engineering Analysis 0.81397 

Coordination 0.74514 N/A 

F
a
b

ri
ca

ti
o
n

 a
n

d
 C

o
n

st
ru

ct
io

n
 V

a
lu

e 

Fabrication and 

Construction Schedule 

Delay due to Design 

Deficiencies 

N/A 

Site Analysis-Development -0.7398 

Site Utilization for 

Construction 
-0.7285 

3D Location and Layout -0.7179 

Fabrication and 

Construction Cost 

Overrun due to 

Design Deficiencies 

Coordination -0.7001 

Cost Estimating -0.7277 

Digital Fabrication -0.7487 

Construction Systems 

Design 
-0.737 

Construction Hours 

for Request for 

Information (RFI) 

Existing Conditions -0.7106 Sustainability Analysis -0.7296 

Record Modeling -0.7042 
Codes and Standards 

Compliance 
-0.7372 

Construction Hours 

for Field Change 

Request (FCR) 

Coordination -0.7179 

Cost Estimating -0.7284 

Digital Fabrication -0.709 

Construction Systems 

Design 
-0.7131 

S
ta

rt
-u

p
 a

n
d

 C
o
m

m
is

si
o
n

in
g
 

V
a
lu

e 

Start-up Schedule 

Delay due to Design 

Deficiencies 

Record Modeling -0.7022 

Cost Estimating -0.7032 

Phase and 4D Planning -0.7028 

Codes and Standards -0.7156 

Startup Cost Overrun 

due to Design 

Deficiencies 

Record Modeling -0.7661 

Cost Estimating -0.756 

Phase and 4D Planning -0.7039 

Digital Fabrication -0.7012 

Codes and Standards 

Compliance  
-0.6961 

Construction Systems 

Design 
-0.7107 
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5.4 Linear Regression Model  

This iterative process involves constructing a series of regression models, wherein 

input variables are systematically added or removed based on F-statistic calculations to 

decide their significance or insignificance. The stepwise reduction technique was 

deployed to develop multiple linear regression models for each measure of engineering 

performance outputs. The details of the 52 project samples were applied to MiniTab 18 

statistical software, and the models were produced as shown in Table 8 for each 

performance output measure.  

The predictive effectiveness of the models is assessed using statistical metrics, 

including the coefficient of determination adjusted R-square of the model, as indicated in 

the R-sq (adj) column. The F-test is employed to test the null hypothesis, which assumes 

that the means of a specified set of normally distributed populations, all sharing the same 

standard deviation, are equal. In regression analysis, the F-value serves to determine the 

overall statistical significance of a regression model. When a regression model includes 

multiple predictor variables (independent variables), the F-value helps to assess whether 

the model as a whole explains a significant portion of the variance in the dependent 

variable (the variable trying to predict). A high F-value in regression analysis implies that 

the model is statistically significant and that the independent variables collectively 

contribute to explaining the variation in the dependent variable. The model explains zero 

variance in the dependent variables, the results shown in the F-value column are highly 

significant. Thus, it can be concluded that the model explains a significant amount of the 

variance. The P-value of 0.000s is much smaller than a significance level of 0.05, which 

is the normal probability of rejecting the null hypothesis in statistical practice. Hence, the 

null hypothesis is rejected, concluding the model is statistically significant. From the 

statistical evidence, the fittest regression models with the formation of equations of inputs 
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and outputs then produced and significantly created very reliable predictions for each 

engineering performance measure, as shown in the third column in Table 8. 

Table 8. Multiple Regression Model for Output Measures and Input Variables 

C
a
te

g
o
ry

 

Output Measures 
Linear Regression Model 

(LR) 
R-sq(adj) F-Value P-Value 

D
et

a
il

ed
 D

es
ig

n
 p

h
a
se

 Y1 Design Rework 
26.96 - 0.815 X4 - 1.032 X10 - 

1.629 X12 
80.32% 70.37 0.000 

Y2 
Detailed Design 

Schedule Delay  

12.811 - 0.303 X1 - 0.765 X3 + 

0.293 X4 - 0.493 X5 
73.75% 36.82 0.000 

Y3 
Detailed Design Cost 

Overrun  

27.31 - 1.202 X4 - 0.912 X10 - 

1.179 X12 
81.46% 75.68 0.000 

Y4 

Detailed Designed 

Quantity Compared to 

Final Installed Quantity  

90.823 + 0.2268 X4 + 0.3865 

X7 - 0.3105 X10 + 0.2506 X11 

+ 0.801 X12 

84.48% 56.51 0.000 

F
a
b

ri
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o
n

 a
n

d
 C

o
n

st
ru

ct
io

n
 P

h
a
se

 

Y5 

Fabrication and 

Construction Schedule 

Delay due to Design 

Deficiencies  

21.34 - 1.312 X8 - 1.082 X9 + 

0.678 X12 
68.29% 37.62 0.000 

Y6 

Fabrication and 

Construction Cost 

Overrun due to Design 

Deficiencies  

10.765 - 0.521 X4 - 0.755 X6 + 

0.441 X14 
71.25% 43.12 0.000 

Y7 

Construction Hours for 

Request for 

Information  

10.096 - 0.706 X8 + 0.501 X11 

- 0.611 X14 
65.69% 33.55 0.000 

Y8 
Construction Hours for 

Field Change Request  

8.811 - 0.4674 X4 + 0.3261 X5 

- 0.6091 X6 
71.77% 44.21 0.000 

S
ta

rt
-u

p
 P

h
a
se

 

Y9 

Start-up Schedule 

Delay due to Design 

Deficiencies  

10.551 - 0.467 X6 + 0.368 X13 

- 0.923 X14 
63.01% 29.96 0.000 

Y10 

Start-up Cost Overrun 

due to Design 

Deficiencies  

9.201 - 0.452 X5 - 0.3954 X6 67.77% 54.63 0.000 

The analysis is a method of fitting regression models in which an automatic procedure 

carried the choice of predictive variables to find the final regression equations and further 

predict the engineering performance. An example of output measures for Y1 and Y2 

regression models generated by stepwise regression analysis from Minitab 18 is 

illustrated in Figure 7.  
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Figure 7. Example of Output Measure Model from MiniTab 18 Stepwise Regression 

The output variable Ys represent output measures, and Xs represent the BIM use 

input attributes in regression analysis. Analysis of variance indicates the equality of 

variances between factor levels, where a P-value 0.000 explains that the association 

Regression Analysis: Y1 versus X1, X2, X3, X4, X5, X6, X7, ... 3, X14, X15 

 

Stepwise Selection of Terms 

α to enter = 0.1, α to remove = 0.1 

 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 3 2591.9 863.96 70.37 0.000 

  X4 1 125.6 125.63 10.23 0.002 

  X10 1 306.2 306.21 24.94 0.000 

  X12 1 253.7 253.66 20.66 0.000 

Error 48 589.3 12.28       

Total 51 3181.2          

 

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

3.50401 81.47% 80.32% 78.61% 

 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 26.96 1.20 22.44 0.000    

X4 -0.815 0.255 -3.20 0.002 2.55 

X10 -1.032 0.207 -4.99 0.000 1.56 

X12 -1.629 0.358 -4.55 0.000 1.87 

      

Regression Equation 

Y1 = 26.96 - 0.815 X4 - 1.032 X10 - 1.629 X12 

 

  
Regression Analysis: Y2 versus X1, X2, X3, X4, X5, X6, X7, ... 3, X14, X15 

 

Stepwise Selection of Terms 

α to enter = 0.1, α to remove = 0.1 

 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 4 592.23 148.057 36.82 0.000 

  X1 1 17.53 17.528 4.36 0.042 

  X3 1 75.93 75.927 18.88 0.000 

  X4 1 17.12 17.116 4.26 0.045 

  X5 1 51.05 51.046 12.69 0.001 

Error 47 189.00 4.021       

Total 51 781.23          

 

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

2.00533 75.81% 73.75% 70.49% 

 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 12.811 0.740 17.32 0.000    

X1 -0.303 0.145 -2.09 0.042 2.42 

X3 -0.765 0.176 -4.35 0.000 2.87 

X4 0.293 0.142 2.06 0.045 2.42 

X5 -0.493 0.138 -3.56 0.001 2.43 

 

Regression Equation 

Y2 = 12.811 - 0.303 X1 - 0.765 X3 + 0.293 X4 - 0.493 X5 
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between the responses and the inputs is statistically significant, and F-value indicates 

70.37 associated with the response high significant level. Model summary shows how the 

model goodness-of-fit with the data, R-sq (adj) 80.32% indicates a high percentage of 

variation in output explained by the model. The coefficients describe the size and 

direction of the relationship between inputs and outputs and the regression coefficient of 

each input variable. Finally, the regression equations are generated, and the complete 

regression analysis report for all performance outputs is attached in Appendix 5. 

The LR procedure generates a series of regression models by adding or deleting an 

input attribute, followed by F-statistic evaluations to decide whether such input attributes 

are significant at each step. Applying the statistical stepwise reduction method showed 

that the LR models were well constructed for each output attribute of the engineering 

performance outputs. 

5.5 MLMP Model  

The engineering performance measurement prediction models in this study were 

developed using the MLMP technique. MLMP networks represent feedforward 

multilayer neural networks trained with a backpropagation learning algorithm. These 

networks consist of computational neurons organized into separate output and hidden 

layers, with the connections between neurons characterized by weighting. Each neuron 

incorporates an activation function that maps its summed input to its output, and bias is 

another parameter calculated with the weighted inputs of the neuron. 

For the implementation of MLMP, Python Keras was employed. Keras is a high-level 

neural networks API written in Python, offering a powerful and user-friendly open-source 

library for developing and evaluating deep learning models. It leverages efficient 

numerical computation libraries, enabling the definition and training of neural network 
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models with minimal lines of code. Additionally, Keras supports both convolutional 

networks and recurrent networks, as well as combinations of both. The modeling steps 

using Keras, as depicted in Figure 8, involve loading the data, defining the MLMP model, 

compiling the model, fitting the model to the data, evaluating the model's performance, 

and predicting the outputs. This comprehensive approach utilizing MLMP with Python 

Keras facilitates efficient and effective development, evaluation, and application of the 

engineering performance prediction models. In the implementation process, the following 

steps are performed using Python Keras: 

• Data Loading: Functions and classes are defined to load and prepare the data for the 

subsequent modeling stages. 

• Model Definition: The MLMP model is structured as a sequence of layers, and layers 

are added one by one to construct the network architecture. 

• Model Compilation: The MLMP model is compiled, utilizing the efficient numerical 

libraries (backend). The backend automatically selects the most optimized 

representation for network training and predictions. 

• Model Fitting: The compiled model is executed on the chosen dataset, undergoing 

training and adaptation to the data. 

• Model Evaluation: The network's performance is assessed on the dataset, which is 

separated into train and test datasets to facilitate both model training and evaluation. 

• Model Prediction: Predictions are generated using the trained model on the dataset. 

These steps in the MLMP implementation facilitate the seamless development and 

evaluation of the neural network model, ensuring its accuracy and efficiency in predicting 

engineering performance outcomes. Please refer to Appendix 6 for the coding of ML in 

Python. 
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(Note: fit ( ), evaluate ( ), predict ( ) are function coding in ML Python) 

Figure 8. MLMP Modeling by Python Kears 

The machine learning processes develop a sequence of MLMP models for each 

performance output measures. The details of the 52 project samples were applied to ANN 

machine learning software, and the models were produced as shown in Table 9 for each 

output measure. 

Data Preparation and Data Mining

Load Data to MLMP Model
• 15 input variables and 10 output variable

• Learning the model to map rows of input variables (Xs) to an output 

variable (Ys) summarize as Ys = f (Xs)

Define MLMP Model
• Model expects rows of data with 15 variables (input_dim=15 argument)

• First hidden layer has 15 nodes and uses the activation function

• Second hidden layer has 10 nodes and uses the activation function

• Output layer has 10 nodes and uses the sigmoid activation function

Compile MLMP Model
• Find the best set of weights to map inputs to outputs in the dataset

• Specify the loss function to use to evaluate a set of weights

• Collect and report the classification accuracy by the metrics argument

Fit MLMP Model

• Fit model on loaded data by calling the fit( ) function on the model

• Train model in mapping of rows of input data to the output

• Amount of error level out for model configuration and convergence

Evaluate MLMP Model

• Evaluate model on training dataset using the evaluate( ) function

• Generate a prediction for each input and output pair and collect scores

• Evaluate( ) function will return the accuracy of the model on the dataset

Model Prediction
• To generate predictions on the training dataset

• Making predictions by calling the predict( ) function on the model

• Apply a sigmoid activation function on the output layer
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Table 9. MLMP Models for Engineering Performance Measures 

Machine Learning Multilayer Perception Models (MLMP) 

Multilayer Perception Model Equation 

Yi = b + w1X1 + w2X2 + w3X3 + w4X4 + w5X5 w6X6 + w7X7 + w8X8 + w9X9 + w10X10 w11X11 + w12X12 

+ w13X13 + w14X14 + w15X15 

 

Example of Y1: 

Y1 = 27.038 + 0.0135 X1 – 0.2319 X2 – 0.0191 X3 – 0.5388 X4 – 0.1186 X5 – 0.5342 X6 – 0.4048 X7 + 0.1821 

X8 – 0.4287 X9 + 0.6430 X10 + 0.4047 X11 −1.4968 X12 − 0.5825 X13 + 1.1374 X14 + 0.1325 X15 
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The evaluation of MLMP models for regression tasks, the F-value, while important 

in the context of statistical analysis and regression, but it is not typically used for directly 

evaluating the performance of MLMP models. Instead, when assessing MLMP for 

regression tasks, the evaluation metrics R-sq (adj) are employed. R-sq (adj) measures the 
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proportion of the variance in the dependent variable that is explained by the independent 

variables in the model. It quantifies the goodness of fit of the regression model. R-sq (adj) 

values range from 0% to 100%, with higher values indicating a better fit of the model to 

the data. R-sq (adj) is particularly relevant when assessing the performance of MLMP 

models in predicting continuous numerical values. A higher R-sq (adj) value suggests that 

the model is doing a better job of explaining the variability in the dependent variable. 

Now, the predictive power of the models is determined through the statistical 

measurement coefficient of determination and the model goodness of fit adjusted R-

square of the model as shown in the R-sq (adj) column. From the statistical evidence, the 

models with the formation of equations of inputs and outputs then produced and 

significantly created very reliable predictions for each engineering performance measure, 

as shown in the third column in Table 10. 

Table 10. MLMP Model for Output Measures 
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Output Measures 

Machine Learning Multilayer 

Perception Model 

(MLMP) 
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Y1 Design Rework 

Machine Learning Multilayer Perception 

Model Equation 

Yi = b + w1X1 + w2X2 + w3X3 + w4X4 

+ w5X5 w6X6 + w7X7 + w8X8 + w9X9 

+ w10X10 + w11X11 + w12X12 + 

w13X13 + w14X14 + w15X15 

 

Example of Y1: 

Y1 = 27.038 + 0.0135 X1 – 0.2319 X2 – 

0.0191 X3 – 0.5388 X4 – 0.1186 X5 – 

0.5342 X6 – 0.4048 X7 + 0.1821 X8 – 

0.4287 X9 + 0.6430 X10 + 0.4047 X11 

−1.4968 X12 − 0.5825 X13 + 1.1374 X14 

+ 0.1325 X15 

 

 

 

 

99.89% 

Y2 Detailed Design Schedule Delay  99.85% 

Y3 Detailed Design Cost Overrun  98.94% 

Y4 

Detailed Designed Quantity 

Compared to Final Installed 

Quantity  

99.86% 

F
a
b

ri
ca

ti
o
n

 a
n

d
 

C
o
n

st
ru

ct
io

n
 P

h
a
se

 Y5 

Fabrication and Construction 

Schedule Delay due to Design 

Deficiencies  

99.48% 

Y6 

Fabrication and Construction 

Cost Overrun due to Design 

Deficiencies  

99.88% 

Y7 
Construction Hours for Request 

for Information  
99.80% 

Y8 
Construction Hours for Field 

Change Request  
99.80% 

S
ta

rt
u

p
 

P
h

a
se

 Y9 
Start-up Schedule Delay due to 

Design Deficiencies  
99.82% 

Y10 
Start-up Cost Overrun due to 

Design Deficiencies  
99.66% 
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An example of output measures and regression models generated by machine learning 

is illustrated in Table 10. The output variable Y represents output measures, and Xs 

represent the BIM use input variables in machine learning analysis. Model summary 

shows how the model goodness-of-fit with the data, R-sq (adj) of 99.89% indicates a high 

percentage of variation in output explained by the model. Finally, the MLMP equations 

are generated and well-constructed for each output attribute of the engineering 

performance outputs. 

5.6 Comparison of MLMP and LR Models 

In compression of MLMP and LR models, Table 11 summarizes the performance 

output measures, MLMP and LR models with the predicting equations and statistical 

results. The Table lists the coefficient of determination R-sq (adj) to indicate the 

statistically significant to MLMP and LR models respects the 10 performance outputs. 
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Table 11. Summary of MLMP and LR Models 
C

a
te

g
o
ry

 

Engineering 

Performance Measures 

Machine Learning 

Multilayer 

Perception Models 

(MLMP) 

Linear Regression Models 

(LR) 

Predict 

Equation 

R-sq 

(adj) 
Predict Equation 

R-sq 

(adj) 
F-value 

D
et

a
il

ed
 D

es
ig

n
 V

a
lu

e 

Design Rework 

M
ac

h
in

e 
L

ea
rn

in
g
 M

u
lt

il
ay

er
 P

er
ce

p
ti

o
n
 M

o
d
el

 E
q
u
at

io
n
 

Y
i 

=
 b

 +
 w

1
X

1
 +

 w
2
X

2
 +

 w
3

X
3
 +

 w
4
X

4
 +

 w
5
X

5
 w

6
X

6
 +

 w
7
X

7
 +

 w
8
X

8
 +

 w
9
X

9
 +

 w
1
0
X

1
0
 

w
11

X
1
1
 +

 w
1
2
X

1
2
 +

 w
1
3
X

1
3
 +

 w
1
4
X

1
4
 +

 w
1
5
X

1
5
 

99.89% 
Y1 = 26.96 − 0.815 X4 − 

1.032 X10 − 1.629 X12 
80.32% 70.37 

Detailed Design Schedule 

Delay 
99.85% 

Y2 = 12.811 − 0.303 X1 − 

0.765 X3 + 0.293 X4 − 

0.493 X5 

73.75% 36.82 

Detailed Design Cost 

Overrun  
98.94% 

Y3 = 27.31 − 1.202 X4 − 

0.912 X10 − 1.179 X12 
81.46% 75.68 

Detailed Designed 

Quantity Compared to 

Final Installed Quantity  

99.86% 

Y4 = 90.823 + 0.2268 X4 

+ 0.3865 X7 − 0.3105 

X10 + 0.2506 X11 + 0.801 

X12 

84.48% 56.51 

F
a
b

ri
ca

ti
o
n

 a
n

d
 C

o
n

st
ru

ct
io

n
 

V
a
lu

e 

Fabrication and 

Construction Schedule 

Delay due to Design 

Deficiencies  

99.48% 
Y5 = 21.34 − 1.312 X8 − 

1.082 X9 + 0.678 X12 
68.29% 37.62 

Fabrication and 

Construction Cost 

Overrun due to Design 

Deficiencies  

99.88% 
Y6 = 10.765 − 0.521 X4 − 

0.755 X6 + 0.441 X14 
71.25% 43.12 

Construction Hours for 

Request for Information   
99.80% 

Y7 = 10.096 − 0.706 X8 + 

0.501 X11 − 0.611 X14 
65.69% 33.55 

Construction Hours for 

Field Change Request   
99.80% 

Y8 = 8.811 − 0.4674 X4 + 

0.3261 X5 − 0.6091 X6 
71.77% 44.21 

S
ta

rt
u

p
 V

a
lu

e Startup Schedule Delay 

due to Design 

Deficiencies  

99.82% 
Y9 = 10.551 − 0.467 X6 + 

0.368 X13 − 0.923 X14 
63.01% 29.96 

Startup Cost Overrun due 

to Design Deficiencies 
99.66% 

Y10 = 9.201 − 0.452 X5 − 

0.3954 X6 
67.77% 54.63 

The results developed by the MLMP system showed fewer deviations with much 

higher R-sq (adj) of outputs than the LR models, as illustrated in Figure 9. The observed 

output results were anticipated due to the inherent limitation of the LR models, which fail 

to account for the nonlinear nature of the engineering design performance prediction 

process. Both the accuracy of MLMP and LR models was affected by the constrained 

dataset used in their construction. To enhance the efficacy of the models presented in this 

study for potential industry applications, a critical aspect would involve augmenting the 

size of the actual project data set to improve their performance. 
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Figure 9. R-sq (adj) for MLMP and LR Models 

5.7 Findings of LR and MLMP Models  

In this study, the evaluation and prediction of engineering performance were 

approached using regression and machine learning systems, considering their merits in 

handling fault tolerance, modeling nonlinearity, and effectively addressing linguistic 

variables. To enable a comprehensive comparison, this section explores and evaluates 

both sets of models, namely linear regression models and machine learning techniques, 

to be applied for engineering performance prediction in the identified four target 

industrial construction sectors. 

ML results in more accurate predictions and outcomes than the LR method, 

automating complex tasks and processes to improve efficiency and time savings. ML can 

adapt and learn from new data, making them more flexible and adaptable to changing 
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conditions than LR methods. It can be easily scaled up or down to accommodate varying 

levels of complexity, making them suitable for handling big data and complex problems 

compared to LR methods. ML makes predictions and forecasts based on historical data, 

allowing for proactive decision-making and planning. This predictive capability is 

advantageous compared to conventional methods that may rely on past experiences or 

assumptions with limited ability to predict future performance outcomes. ML uncovers 

patterns, trends, and insights from datasets that may not be easily identifiable through 

conventional methods. 

Due to the substantial number of BIM use input variables, it becomes impractical to 

develop regression models encompassing the entire set of inputs. To address this, 

screening procedures, commonly known as exploratory variable reduction techniques, are 

employed to identify potentially significant variables. In this study, the forward stepwise 

procedure, widely acknowledged in practice, is used for this purpose (Neter, Wasserman, 

and Kutner 1990). This approach iteratively constructs regression models, assessing the 

significance of each input variable based on F-statistic calculations to determine inclusion 

or exclusion. 

In several study cases, the machine learning system exhibits less deviations from the 

actual performance outputs compared to regression models. This outcome is reasonable 

an as the expectation, as regression models do not account for the possible nonlinearity 

inherent in the engineering performance prediction process. Regardless of the approach 

used, the accuracy of the models, whether employing ANNs or statistical regression, is 

influenced by the limited dataset availability during model development. To enhance the 

functionality of the models presented in this paper for potential industry applications, 

increasing the capacity of actual project data is crucial for consideration in future research 

and industry practices. 
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From the statistical evidence, the MLMP and LR models, with the formation of input 

and output equations, produced and significantly created a reliable scientific foundation 

for validation of proposed models for each engineering performance measure, as shown 

in Table 11. 
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6.0 Model Validation and Implementation 

The prediction models of the engineering performance presented in the above 

sections of this paper has shown that the best-fit models were obtained through the MLMP 

and LR analysis procedures and processes. The adjusted R-sq value maximization, model 

variance minimization, and the selected attributes in the best-evaluated model are 

statistically significant using F-tests and stepwise selection processes.  

Figure 10 shows the process map for model validation and implementation and, later 

the applications of the models. As depicted in the flowchart, three distinct data sets - the 

training set, the validation set, and the pilot test set are employed for various stages, 

including model training, fine-tuning, and testing. This approach ensures rigorous model 

validation, implementation, and application. The dataset is divided into multiple parts, 

enabling the model to be trained on one portion and its effectiveness to be tested on 

another.  
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Figure 10. Process Map for Model Validation and Implementation 

6.1 Model Validation 

 The purpose of model validation is to validate the developed models by testing their 

predictive capabilities using independent data sets and to assess the accuracy, and by 

applying statistical F-test method to verify the reliability of the models. The next step is 

the predictions and recommendations of the models with actual engineering performance 

outcomes to evaluate its effectiveness to ensure that the models provide valuable insights 

and contribute to improved engineering performance. 

Two-stage test approaches were deployed to verify the accuracy of the models and 

validate the developed performance prediction model. The first stage test uses the two 

projects (sample 1 and 36) from the project dataset collected for comparison and the 
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second stage consists of two test sets balancing the project type (sample 52 to 60) with 

four test project data for each group, used for validation. Understanding that the output 

measures provided by the project datasets and the data derived from the LR and MLMP 

models indicated linear and nonlinear correlations for LR and MLMP, the following steps 

were developed to evaluate the strength and direction of the correlation relationship by 

representing a correlation coefficient. 

Apply Minitab to calculate the correlation coefficients and significant levels, as 

shown in Table 12, using the correlation analysis between the predicted models and actual 

awarded data for each engineering performance output. Thus, in the first stage of both 

test projects (sample 1 and 36) for comparing existing project data, the correlation 

coefficients were 0.99912 for LR and MLMP for the test project sample 1 and 0.99989 

for LR and MLMP for test project sample 36 with both P-values of 0.000s in more than 

95% confidence interval, showing that the correlation coefficients are significant. 

To verify the reliability of the developed models, the F-test is applied to access the 

variance of the LR and MLMP models. The F-test is a statistical test used to compare the 

variances of two or more populations and the test is used to assess whether the variances 

of two groups are equal or they differ significantly. The F-value, also known as the F-

statistic, is the test statistic generated by the F-test. It represents the ratio of the variances 

between two or more groups being compared. The F-value is calculated by dividing the 

variance between groups by the variance within groups. The significance of the F-value 

is assessed by comparing it to a critical F-value from a probability distribution, typically 

an F-distribution. A high F-value suggests that the variances between groups are 

significantly larger than the variances within groups, indicating that there may be a 

significant difference between the groups being compared. In contrast, a low F-value 

suggests that the variances between groups are similar, and there is no significant 
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difference. Therefore, if the calculated F-statistic is greater than the critical F-value, the 

null hypothesis of the alternative hypothesis is rejected, suggesting that one model is 

significantly better than the other. On the other hand, if the calculated F-statistic is less 

than the critical F-value, the null hypothesis is failed to reject, indicating that there is no 

significant difference between the two models. 

Table 12. LR and MLMP Model Validation 

C
a
te

g
o
ry

 

Engineering Performance 

Measures (%) 

Compare to Existing Project Data 

Project No 1 and No 36 

Project Test 1 No 1 Project Test 2 No 36 

LR MLMP *Data LR MLMP *Data 

D
et

a
il

ed
 D

es
ig

n
 

V
a
lu

e 

Design Rework 23.5% 27.0% 25% 22.6% 22.5% 21% 

Detailed Design Schedule Delay 10.4% 10.2% 8% 11.8% 12.6% 12% 

Detailed Design Cost Overrun 24.0% 24.4% 20% 22.8% 24.0% 22% 

Detailed Designed Quantity 

Compared to Final Installed 

Quantity 

92.9% 92.8% 95% 93.8% 93.6% 91% 

F
a
b

ri
ca

ti
o
n

 a
n

d
 C

o
n

st
ru

ct
io

n
 

V
a
lu

e 

Fabrication and Construction 

Schedule Delay due to Design 

Deficiencies 

9.8% 10.7% 10% 13.9% 14.3% 12% 

Fabrication and Construction Cost 

Overrun due to Design 

Deficiencies 

12.1% 13.2% 15% 9.4% 9.4% 7% 

Construction Hours for Request 

for Information  
4.1% 5.8% 3% 10.5% 11.2% 10% 

Construction Hours for Field 

Change Request  
8.3% 9.2% 8% 7.5% 8.3% 6% 

S
ta

rt
u

p
 V

a
lu

e Startup Schedule Delay due to 

Design Deficiencies 
6.3% 7.7% 7% 9.5% 10.1% 8% 

Startup Cost Overrun due to 

Design Deficiencies 
7.9% 7.6% 6% 8.3% 8.9% 8% 

Pearson Correlation Coefficient 0.99912 N/A 0.99989 N/A 

Significant Level 0.000 0.000 

*Data: The data is actual collected from the survey  

To verify the validity of the developed models to check the variance of the 

engineering performance output measures between MLMP, and LR models and compare 
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the actual performance data from the survey, Figure 11 identifies the 15 performance 

outputs at project design, construction, and startup phases by inputting test data set of test 

sample project #1 into models. It compares to the variance to the actual data value from 

the survey. The Figure shows the facts that the performance output measure prediction 

for MLMP and LR for test project 1 (Project #1) is precisely matched and almost the same 

value as the actual performance data from the survey.  

 

Figure 11. Output Performance Measures for Test Project 1 in 1st Stage Validation 

Figure 12 identifies the 15 performance outputs at project design, construction, and 

startup phases by inputting test data set of test sample project #36 into models. It 

compares to the variance to the actual data value from the survey. The Figure shows the 

facts that the performance output measure prediction for MLMP and LR for test project 
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2 (Project #36) is precisely matched and almost the same value as the actual performance 

data from the survey. 

 

Figure 12. Output Performance Measures for Test Project 2 in 1st Stage Validation 

By applying F-test in Minitab, the F-value is calculated to verify the variance between 

the LR models and MLMP models. As shown in Figure 13, based on the comparison of  

F-statistic is 1.01805 and critical F-value is 3.17889 for test project test sample 1, the 

calculated F-statistic is less than the critical F-value with the significance level of 5%, 

indicating that there is no significant difference between the two models and the 

conclusion about the relative performance of the two models. Thus, the acceptance of 

reliability of the LR and MLMP models is reached. 
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Figure 13. F-test and Correlation for LR and MLMP Models for Project Test 1 

For test project sample 36 as shown in Figure 14, the comparison of F-statistic is 

1.01803 and critical F-value is 3.17889, the calculated F-statistic is less than the critical 
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between the two models and the conclusion about the relative performance of the two 

models. Thus, the acceptance of reliability of the LR and MLMP models is reached. 

23.50%

10.40%

24.00%

92.90%

9.80% 12.10%
4.10% 8.30% 6.30% 7.90%

27.00%

10.20%

24.40%

92.80%

10.70% 13.20%
5.80%

9.20% 7.70% 7.60%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 Y 8 Y 9 Y 1 0

E N G I N E E R I N G  P E R F O R M A N C E  M E A S U R E S  

F-TEST FOR VARIANCES P R O J E C T  T E S T  N O  1

Project Test 1 No 1 LR Project Test 1 No 1 MLMP

LR Outputs MLMP Outputs

Mean 0.1993 0.2086

Variance 0.070278011 0.069032267

Observations 10 10

df 9 9

F 1.018045828

P(F<=f) one-tail 0.48959128

F Critical one-tail 3.178893104

LR Outputs MLMP Outputs

LR Outputs 1

MLMP Outputs 0.99911627 1

F-Test Two-Sample for Variances

Project Test No 1

Correlation Analysis

Project Test No 1



doi: 10.6342/NTU202304540
86 

 

 

Figure 14. F-test and Correlation for LR and MLMP Models for Project Test 36 
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states that 0.9 to 1.0 represents a very high positive correlation (Hinkle, Wiersma, and 

Jurs 2003), the correlation relationship between the test project data and developed 

models is strong, positive, and linear at high acceptance and desired levels. The test 

outcomes to validate the regression model showed high reliability and capability of 

assessing the engineering performance measures significantly correlated with actual 

project data. The stronger positive relationships for MLMP than LP explain why the 

MLMP models predict more reliable results than LR. 

Table 13. LR and MLMP Model Validation 

C
a
te

g
o
ry

 

Engineering Performance 

Measures 

Model Validation from Project Data 

No 53 to No 60 

Test Set 1 

Projects in Average 

Test Set 2 

Projects in Average 

LR MLMP *Data LR MLMP *Data 

D
et

a
il

ed
 D

es
ig

n
 

V
a
lu

e 

Design Rework 14.2% 15.3% 15% 11.3% 10.6% 11% 

Detailed Design Schedule Delay 7.6% 7.5% 7% 7.1% 7.1% 7% 

Detailed Design Cost Overrun 14.1% 14.3% 14% 11.4% 11.1% 11% 

Detailed Designed Quantity 

Compared to Final Installed 

Quantity 

95.8% 95.7% 96% 96.5% 96.6% 96% 

F
a
b

ri
ca

ti
o
n

 a
n

d
 C

o
n

st
ru

ct
io

n
 

V
a
lu

e 

Fabrication and Construction 

Schedule Delay due to Design 

Deficiencies 

11.4% 11.1% 11% 11.0% 11.3% 11% 

Fabrication and Construction Cost 

Overrun due to Design Deficiencies 
6.7% 7.2% 8% 5.7% 5.2% 5% 

Construction Hours for Request for 

Information  
6.3% 6.1% 6% 6.5% 6.7% 7% 

Construction Hours for Field 

Change Request  
5.0% 5.0% 5% 4.5% 4.3% 4% 

S
ta

rt
u

p
 V

a
lu

e 

Startup Schedule Delay due to 

Design Deficiencies 
6.2% 6.0% 6% 6.6% 7.0% 7% 

Startup Cost Overrun due to Design 

Deficiencies 
5.9% 5.5% 5% 5.5% 5.9% 6% 

Pearson Correlation Coefficient 0.99987 N/A 0.99991 N/A 

Significant Level 0.000 0.000 

*Data: The data is actual collected from the survey  
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In the second stage of the validation process, to verify the validity of the developed 

models and to check the variance of the engineering performance output measures 

between MLMP and LR models, and compare the actual performance data from the 

survey, Figure 15 identifies the 15 performance outputs at project design, construction, 

and startup phases by inputting test data set of average test sample project from #52 to 

#56 into models. It compares to the variance to the actual data value from the survey. The 

Figure shows the facts that the performance output measure prediction for MLMP and 

LR for test projects average is precisely matched and almost the same value as the actual 

performance data from the survey. 

 

Figure 15. Output Performance Measures for Test Project Set 1 in 2nd Stage 

Validation 
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Similarly, in the second stage of the validation process, to verify the validity of the 

developed models and to check the variance of the engineering performance output 

measures between MLMP and LR models and compare the actual performance data from 

the survey, Figure 16 identifies the 15 performance outputs at project design, 

construction, and startup phases by inputting test data set of average test sample project 

from #57 to #60 into models. It compares to the variance to the actual data value from the 

survey. The Figure shows the facts that the performance output measure prediction for 

MLMP and LR for test projects average set 2 is precisely matched and almost the same 

value as the actual performance data from the survey.  

 

Figure 16. Output Performance Measures for Test Project Set 2 in 2nd Stage 

Validation 
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By applying F-test in Minitab, the F-value is calculated to verify the variance between 

the LR models and MLMP models. As shown in Figure 17, based on the comparison of  

F-statistic is 1.00132 and critical F-value is 3.17889 for test project test set 1, the 

calculated F-statistic is less than the critical F-value with the significance level of 5%, 

indicating that there is no significant difference between the two models and the 

conclusion about the relative performance of the two models. Thus, the acceptance of 

reliability of the LR and MLMP models is reached.  

 

 

 

Figure 17. F-test and Correlation for LR and MLMP Models for Project Test Set 1 
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For test project set 2 as shown in Figure 18, the comparison of F-statistic is 0.99731 

and critical F-value is 3.14575, the calculated F-statistic is less than the critical F-value 

with the significance level of 5%, indicating that there is no significant difference between 

the two models and the conclusion about the relative performance of the two models. 

Thus, the acceptance of reliability of the LR and MLMP models is reached. 

 

 

 

Figure 18. F-test and Correlation for LR and MLMP Models for Project Test Set 2 
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evaluating their predictive capabilities using independent data sets. Furthermore, the 

reliability of the models is established through a rigorous statistical analysis. The F-test 

method is applied to assess the variances and significance levels of both the LR and 

MLMP models. Following these validation methods, it is confirmed that both accuracy 

and reliability meet acceptable standards, thus validating the models. 

6.2 Model Implementation 

Model implementation aims to implement the validated models and findings in 

practical engineering scenarios. This step involves integrating the models into BIM 

applications, decision support systems, and design workflows to assess the impact of the 

implemented models on engineering performance by monitoring and evaluating the 

outcomes. This step helps to determine the practical implications and benefits of utilizing 

the developed models in real-world construction projects. 

The primary objective of training the system with a limited dataset is to create a 

platform capable of capturing the underlying relationships between project BIM use input 

variables and the output of engineering performance. This enables the system to estimate 

or predict performance measures when presented with a new set of input variables from 

the project, leveraging the knowledge encoded in the network structure. To validate the 

system's effectiveness, two separate sets of projects were chosen for testing. Notably, 

none of these projects were utilized during the system's training phase. The selection of 

these projects was deliberately varied to represent diverse project conditions and 

corresponding performances. It is essential to acknowledge that the use of only 60 

projects in the system's development had an impact on the reliability and accuracy of 

predicted engineering performance output measures. With a more extensive dataset for 



doi: 10.6342/NTU202304540
93 

training, the deviations from the targeted values could have been minimized. The 

limitations of the dataset are presented in discussion section later. 

As the performance models have been validated and meet the desired performance 

criteria, the models are proposed to be implemented in practical applications. This could 

involve integrating the model into software tools, decision support systems, or simulation 

platforms used in engineering design processes. Continuously monitor the performance 

model in real-world applications. Collect new data and periodically retrain or update the 

model to ensure accuracy and reliability. Monitor the model's predictions and compare 

them to actual performance outcomes to identify areas for improvement or recalibration. 

Engage in collaborative efforts with domain experts, designers, and stakeholders to refine 

the performance model. Gather feedback, incorporate new knowledge, and iterate on the 

model to enhance its effectiveness and relevance. 

Implementing of a performance model in engineering design aims to provide valuable 

insights, predictions, or evaluations to support decision-making, optimize designs, and 

improve overall performance. By leveraging data and modeling techniques, engineers 

better understand of the factors that impact performance and make informed decisions to 

achieve desired outcomes. 

A pilot study is recommended before full implementing of the validated models. A 

pilot is the trial implementation of the identified solution of the proposed models on a 

reduced scale. In order the verify the models after validation, two pilot test projects are 

chosen to be implemented by inputting the BIM use input data to the developed models. 

As discussed in the definition of BIM input variables, the data represent the inputs of BIM 

uses on implementation levels using a 10-point scale in percentage, where 0 represents 

0% implemented, and 10 represents 100% implemented. After inputting the BIM use 
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input data to validate the MLMP model, the performance output measures are generated. 

Table 14 shows the implementation of the MLMP model with BIM use inputs and 

performance outputs. As illustrated in the Table, 15 BIM use inputs for pilot test 1 

generate 10 performance outputs measures, and the same process applies to pilot test 2. 

Table 14. MLMP Model Implementation 

Input Variables 
Test 

1 
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Output Measures MLMP 
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16.2 8.2 

X2 Design Authoring 6 6 

Y2 
Detailed Design 

Schedule Delay 
6.3 7.0 

X3 Design Review 6 6 

X4 Coordination 5 7 
Y3 

Detailed Design Cost 

Overrun 
15.4 9.1 

X5 Record Modeling 4 4 

Y4 

Detailed Designed 

Quantity Compared to 

Final Installed Quantity 

95.5 97.3 
X6 Cost Estimating 5 5 

X7 
Phase and 4D 

Planning 
5 5 

Y5 

Fabrication and 

Construction Schedule 

Delay due to Design 

Deficiencies 

13.2 9.5 

X8 
Site Analysis-

Development 
4 6 

Y6 

Fabrication and 

Construction Cost 

Overrun due to Design 

Deficiencies 

6.9 4.4 
X9 

Site utilization-

For Construction 
4 6 

X10 
Digital 

Fabrication 
4 5 

Y7 
Construction Hours for 

Request for Information  
5.9 6.5 

X11 
3D Location and 

Layout 
4 5 

Y8 
Construction Hours for 

Field Change Request  
4.8 3.8 

X12 
Engineering 

Analysis 
2 4 

X13 
Sustainability 

Analysis 
4 5 

Y9 

Startup Schedule Delay 

due to Design 

Deficiencies 

5.0 7.5 

X14 

Codes and 

Standards 

Compliance 

4 3 

Y10 

Startup Cost Overrun 

due to Design 

Deficiencies 

4.3 6.6 
X15 

Construction 

Systems Design 
5 5 

The same implementation process applies to the LR model. After inputting the BIM 

use input data to validate the LR model, the performance output measures are generated. 

Table 15 shows the implementation of LR model with BIM use inputs and performance 
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outputs. As illustrated in the Table below, 15 BIM use inputs for pilot test 1 generate 10 

performance output measures, and the same process applies to pilot test 2. 

Table 15. LR Model Implementation 

Input Variables 
Pilot 

Test 1/2 

P
ro
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ct

 I
m
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m
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o
n
 

Output Measures LR Model 
Test 

1 

Test 
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X1 
Existing 

Conditions 
4 5 

Y1 Design Rework 

Y1 = 26.96 − 0.815 X4 

− 1.032 X10 − 1.629 

X12 

14.7 9.7 

X2 
Design 

Authoring 
6 6 

Y2 
Detailed Design 

Schedule Delay 

Y2 = 12.811 − 0.303 X1 

− 0.765 X3 + 0.293 X4 

− 0.493 X5 

6.7 7.0 
X3 Design Review 6 6 

X4 Coordination 5 7 

Y3 
Detailed Design Cost 

Overrun 

Y3 = 27.31 − 1.202 X4 

− 0.912 X10 − 1.179 

X12 

14.5 9.5 

X5 
Record 

Modeling 
4 4 

Y4 

Detailed Designed 

Quantity Compared 

to Final Installed 

Quantity 

Y4 = 90.823 + 0.227 X4 

+ 0.387 X7 − 0.311 X10 

+ 0.251 X11 + 0.801 

X12 

95.5 96.8 
X6 Cost Estimating 5 5 
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Phase and 4D 

Planning 
5 5 

Y5 

Fabrication and 

Construction 

Schedule Delay due 

to Design 

Deficiencies 

Y5 = 21.34 − 1.312 X8 

− 1.082 X9 + 0.678 X12 
12.6 8.8 

X8 
Site Analysis-

Development 
4 6 

Y6 

Fabrication and 

Construction Cost 

Overrun due to 

Design Deficiencies 

Y6 = 10.765 − 0.521 X4 

− 0.755 X6 + 0.441 X14 
6.2 4.9 

X9 

Site utilization 

-For 

Construction 

4 6 

X10 
Digital 

Fabrication 
4 5 

Y7 

Construction Hours 

for Request for 

Information  

Y7 = 10.096 − 0.706 X8 

+ 0.501 X11 − 0.611 

X14 

6.4 6.1 

X11 
3D Location 

and Layout 
4 5 

Y8 

Construction Hours 

for Field Change 

Request  

Y8 = 8.811 − 0.4674 X4 

+ 0.3261 X5 − 0.6091 

X6 

4.6 4.0 
X12 

Engineering 

Analysis 
2 4 

X13 
Sustainability 

Analysis 
4 5 

Y9 

Startup Schedule 

Delay due to Design 

Deficiencies 

Y9 = 10.551 − 0.467 X6 

+ 0.368 X13 − 0.923 

X14 

5.3 7.1 

X14 

Codes and 

Standards 

Compliance 

4 3 

Y10 

Startup Cost Overrun 

due to Design 

Deficiencies 

Y10 = 9.201 − 0.452 X5 

− 0.3954 X6 
5.4 5.3 

X15 
Construction 

Systems Design 
5 5 

Now, the emphasis is on the successful implementation and maintaining the gains 

achieved. The question is trying to answer, “How can we guarantee performance?” From 

the pilot test project process above, the engineering design performance measures are 
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generated for required actions for stakeholders to assist in obtaining warnings against 

potential problems. Predicting of the performance constitutes critical evaluations for 

higher performance outcomes and successful project execution and delivery.  
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7.0 Discussion 

7.1 Evaluation of Correlation Analysis 

In synthesizing the findings from the proposed first separated BIM use, which applied 

the correlation method to analyze the influence of essential and enhanced BIM uses on 

engineering performance measures separately, the study further reviews the frequency of 

occurrence of more than 50% of each input by the outputs in three project phases. Figure 

19 shows that the essential BIM uses with five inputs, design authoring, and design review 

and coordination obtained 100% and 75% for the four engineering performance measures 

in the engineering design phase, 50% in the construction stage, and 100% for record 

modeling for both engineering performance measures in the startup phase. As for 

enhanced BIM uses with ten inputs, phase and 4D planning and engineering analysis 

achieved 75% in the engineering design phase, cost estimating, digital fabrication, and 

construction system design achieved 50% in the construction phase. Finally, phase and 

4D planning and codes and standards compliance all attained 100% occurrence in the 

startup phase. 
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Figure 19. Critical BIM Uses for Engineering Performance 

This first approach applied a correlation method to analyze the separated BIM use. 

The results show that the essential BIM uses are highly related to design phase activities, 

and the enhanced BIM uses are mainly correlated with the construction phase. Figure 20 

shows the essential and enhanced BIM uses highly influences the engineering 

performance separately. Essential BIM meticulously addresses the foundational 

requirements, chiefly concentrated on the design phase, serving as a pivotal framework 

for implementing BIM. It sets the stage by establishing a minimum key requirement to 

ensure BIM's effectiveness in guiding the project through the intricacies of the design 

process. 

The correlation analysis for BIM use input is to find the relationships of the 15 

variables by two categories of 5 essential BIM uses and 10 enhanced BIM uses and to 

understand their interaction. As shown in Figure 20, the high correlative BIM use inputs 

for both essential and enhanced expansion at the main three phases of project execution, 

and the high correlative inputs describe the influence level of the phases. The result 
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confirms the suggestions in NGBO, as shown in Figure 6. The main findings are discussed 

in the following section.  

 

Figure 20. Expansion of BIM Use Inputs at Project Phases  

7.2 Evaluation of Models 

In synthesizing the findings from the proposed second combined BIM use approach, 

which applied MLMP and LR methods to analyze the influence of combined essential 

and enhanced BIM uses on engineering performance measures integrally, the frequency 

of occurrence over 50% of each input by the outputs in three project phases were 

reviewed. From Figure 21, the essential BIM uses with five inputs show that coordination 

attained 100% and 50% for the four engineering performance measures in the engineering 

design and construction phases, respectively, and 50% for the two engineering 

performance measures for record modeling in the startup phase. For the enhanced BIM 

uses with 10 inputs, digital fabrication and engineering analysis achieved 75% in the 

engineering design phase, cost estimating was 100%, and codes and standards compliance 

showed 50% in the construction phase. In the startup phase, cost estimating attained a 

100% occurrence. 

Project Phase Engineering Design Construction and Fabrication Startup and Commissioning

X2: Design Authoring

X3: Design Review

X5: Record Modeling

X7: Phase and 4D Planning X7: Phase and 4D Planning

X10: Digital Fabrication

X12: Engineering Analysis

X14: Codes and Standards Compliance

X15: Construction Systems Design
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X6: Cost Estimation
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The second approach of the MLMP and LR methods showed that the essential BIM 

uses are highly related to design phase activities. The enhanced BIM uses are mainly 

correlated with the construction phase. From Figure 21, the engineering performance is 

highly influenced by BIM uses for combined essential and enhanced inputs. Enhanced 

BIM seamlessly extends beyond the design phase, delving into the construction phase 

with a focus on reinforcing BIM applications. This phase expands on the essential BIM 

functions, aligning them with the intricacies of the construction process. It provides an 

enriched set of tools and functionalities, enhancing collaboration and efficiency during 

the physical realization of the project. 

Reviewing the frequency of percentage occurrence of the total BIM uses in the 

project phases by the performance measures for both models confirms that BIM use inputs 

are highly significant for developing engineering performance prediction models. 

Furthermore, coordination was presented in both models in the engineering design phase, 

explaining that coordination efforts in the engineering design phase, including design 

authoring and review, are significant. Coordination and cost estimation in both models in 

the construction phase indicate that coordination in construction activities and cost 

estimation are the main factors in construction. Recording modeling and cost estimation 

were present in the startup phase for both models, demonstrating that recording and costs 

are significant in the project startup phase. 
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Figure 21. Critical BIM Uses for Engineering Performance 

The models for BIM use input are to find the relationships of the 15 variables in two 

categories of 5 essential BIM uses and 10 enhanced BIM uses and the 10 output 

performance measures in three categories of 4 detailed design values, 4 fabrication and 

construction values and 2 start-up and commissioning values to understand their 

interaction. As shown in Figure 22, the high correlative BIM use inputs for both essential 

and enhanced expand at the main three phases of project execution, and the high 

correlative inputs describe the influence level of the phases. The result confirms the 

suggestions in NGBO shown in Figure 6. The main findings are discussed in the following 

section. 
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Figure 22. Expansion of BIM Use Inputs at Project Phases  

Facilitating the performance prediction models involves ensuring that the developed 

models are effectively utilized in real-world project execution scenarios to address 

practical challenges and improve the decision-making process. The application of the 

developed models involves two processes, performance monitoring and performance 

controls.  

7.3 Application for Performance Monitoring Management 

Facilitating the performance prediction models involves ensuring that the developed 

models are effectively utilized in real-world project execution scenarios to address 

practical challenges and improve the decision-making process. The application of the 

developed models involves two processes, performance monitoring and performance 

controls. Figure 23 shows the suggested application process.  

Project Phase Design Construction Startup

X5: Record Modeling

X10: Digital Fabrication
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X14: Codes and Standards Compliance
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X4: Coordination
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Figure 23. Model Application Process 

The suggested process aims to integrate these models into real-world systems or 

project execution scenarios. This task often requires collaboration with IT teams to ensure 

a seamless transition. The project data and predictions are continuously fed back into the 

models, allowing them to adapt and improve over time. This iterative process helps in 

addressing practical challenges. The predictions generated by these models should be 

effectively utilized to support decision-making processes, and this involves creating 

dashboards, reports, or alerts for decision-makers to use. Establishing a feedback loop 

with end-users and stakeholders is essential and the input helps in fine-tuning the models 

and making them more practical and aligned with the project's goals. Based on feedback 

Load BIM Use Xs from Project 

Database system

Input BIM Use Variables Xs to 

LR/MLMP Models

Engineering Performance Ys 

Prediction from developed MLMP/LR

Models system

Create Engineering Performance 

Measures Ys data to Performance 
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Verify Output
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Project 
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Engineering Performance Measures 
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Corrective Actions Management and 

Continuous Improvement  
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and changing project requirements, models are required to be adapted, retrained, or 

improved to maintain their relevance and effectiveness. It is important to document the 

models and provide training to relevant team members, ensuring that the team understand 

how to interpret the predictions and make informed decisions. Thus, facilitating 

performance prediction models involves a comprehensive approach that integrates data 

science with real-world project execution, constant feedback, and adaptation to ensure 

the models effectively address practical challenges and enhance decision-making. 

Implement performance monitoring to track the accuracy and effectiveness of models 

over time and regularly assess how well the model’s prediction aligns with real-world 

outcomes and make necessary adjustments. This section shows that the real-world project 

data was applied to the validated engineering performance models for implementation 

pilot tests. From the implementation process of a pilot test and has had a chance to ensure 

the performance is under control and continue. The application of performance control 

allows the project team or stakeholder to identify what is essential to improve and 

maintain the current performance levels based on the research.  

Table 16 shows the application of the goal and acceptance levels for each engineering 

performance output measures for pilot test 1. As illustrated in the Table, the engineering 

performance output are listed with the definition of each measurement. Two control 

targets are identified as the goal of aiming result and the acceptance level of desired 

control limit. After applying BIM use variables X1 to X15 to MLMP and LR models, the 

performance measure output Y1 to Y10 can be generated as indicated in Table 16 of pilot 

test 1. Further applications or recommendations can be developed for performance control 

purposes. 
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Table 16. Pilot Test 1 Application 

Engineering Performance Output Measures Target Pilot Project 1 

Measures Definition 
Goal 

(%) 

Acceptance 

Level (%) 

MLMP 

(%) 

LR 

(%) 

Y1 Design Rework 
Design Rework Hours/Total 

Design Hours 
0 2.5 16.2 14.7 

Y2 
Detailed Design 

Schedule Delay  

Days of Design Schedule 

Delay/Total Design Schedule 

Days 

0 0.0 6.3 6.7 

Y3 
Detailed Design Cost 

Overrun  

Design Cost Overrun in 

$/Total Design Cost in $ 
0 0.0 15.4 14.5 

Y4 

Detailed Designed 

Quantity Compared 

to Final Installed 

Quantity  

Issue for Construction 

Designed Quantity/Final 

Installed Quantity  

100 95.0 95.5 95.5 

Y5 

Fabrication and 

Construction 

Schedule Delay due 

to Design 

Deficiencies  

Days of Fabrication and 

Construction Schedule Delay 

due to Design Deficiencies/ 

Total Fabrication and 

Construction Days  

0 0.0 13.2 12.6 

Y6 

Fabrication and 

Construction Cost 

Overrun due to 

Design Deficiencies  

Fabrication and Construction 

Cost Overrun due to Design 

Deficiencies in $/Total 

Fabrication and Construction 

Cost in $  

0 0.0 6.9 6.2 

Y7 

Construction Hours 

for Request for 

Information 

Construction Hours for 

Request for Information/ Total 

Construction Hours 

0 5.0 5.9 6.4 

Y8 

Construction Hours 

for Field Change 

Request 

Construction Hours for Field 

Change Request/Total 

Construction Hours 

0 2.5 4.8 4.6 

Y9 

Start-up Schedule 

Delay due to Design 

Deficiencies  

Days of Start-up Schedule 

Delay due to Design 

Deficiencies/ Total Start-up 

Days  

0 2.0 5.0 5.3 

Y10 

Start-up Cost 

Overrun due to 

Design Deficiencies  

Start-up Cost Overrun due to 

Design Deficiencies in $/Total 

Start-up Cost in $ 

0 0.0 4.3 5.4 

To have better compassion of the goal, acceptance level and the actual engineering 

performance output measures, Figure 24 shows the variation of the pilot test 1. The 

engineering performance output measures of Y1 to Y10 are shown in X-axis and actual 

values are shown in Y-axis. The results show that the strength of performance prediction 

for MLMP and LR models is almost the same. The acceptance level and the control target 

are also identified to display the variation of actual performance measurements.  
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Figure 24. Pilot Test 1 for Performance Measures for MLMP and LR Models 

In Figure 24, each predicted output measure value generated by the model has two 

reference points for applying engineering performance measures. These reference points 

are the acceptance level and the target values. The acceptance level represents the level 

of performance that can be tolerated, while the target is the ideal control goal. For 

instance, consider the engineering performance output measure Y1, which is design 

rework calculated by comparing design rework hours to total design hours. In the Figure, 

the acceptance level is set at 2.5%, and the control target is 0%. During the evaluation 

and measurement, the MLMP generated a value of 16.2%, while LR generated 14.7%, 

indicating a high level of rework hours at current evaluating period. In real-world 

applications, corrective actions are necessary to mitigate the high design rework risk. 
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Continuous monitoring of the performance moving range after corrective efforts with the 

acceptance level and control limit is suggested in the design execution and management. 

Table 17 shows the application of the goal and acceptance levels for each engineering 

performance output measures for pilot test 2. As illustrated in the Table, the engineering 

performance output are listed with the definition of each measurement. Two control 

targets are identified as the goal of aiming result and the acceptance level of desired 

control limit. After applying BIM use variables X1 to X15 to MLMP and LR models, the 

performance measure output Y1 to Y10 can be generated as indicated in Table 17 of pilot 

test 2. Further applications or recommendations can be developed for performance control 

purposes. 
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Table 17. Pilot Test 2 Application 

Engineering Performance Output Measures Target Pilot Project 2 

Measures Definition 
Goal 

(%) 

Acceptance 

Level (%) 

MLMP 

(%) 

LR  

(%) 

Y1 Design Rework 
Design Rework Hours/Total Design 

Hours 
0 2.5 8.2 9.7 

Y2 
Detailed Design 

Schedule Delay  

Days of Design Schedule 

Delay/Total Design Schedule Days 
0 0.0 7.0 7.0 

Y3 
Detailed Design Cost 

Overrun  

Design Cost Overrun in $/Total 

Design Cost in $ 
0 0.0 9.1 9.5 

Y4 

Detailed Designed 

Quantity Compared to 

Final Installed 

Quantity  

Issue for Construction Designed 

Quantity/Final Installed Quantity  
100 95.0 97.3 96.8 

Y5 

Fabrication and 

Construction Schedule 

Delay due to Design 

Deficiencies  

Days of Fabrication and 

Construction Schedule Delay due to 

Design Deficiencies/ Total 

Fabrication and Construction Days  

0 0.0 9.5 8.8 

Y6 

Fabrication and 

Construction Cost 

Overrun due to Design 

Deficiencies  

Fabrication and Construction Cost 

Overrun due to Design Deficiencies 

in $/Total Fabrication and 

Construction Cost in $  

0 0.0 4.4 4.9 

Y7 

Construction Hours for 

Request for 

Information 

Construction Hours for Request for 

Information/ Total Construction 

Hours 

0 5.0 6.5 6.1 

Y8 
Construction Hours for 

Field Change Request 

Construction Hours for Field 

Change Request/Total Construction 

Hours 

0 2.5 3.8 4.0 

Y9 

Start-up Schedule 

Delay due to Design 

Deficiencies  

Days of Start-up Schedule Delay 

due to Design Deficiencies/Total 

Start-up Days  

0 2.0 7.5 7.1 

Y10 

Start-up Cost Overrun 

due to Design 

Deficiencies  

Start-up Cost Overrun due to Design 

Deficiencies in $/Total Start-up Cost 

in $ 

0 0.0 6.6 5.3 

To have better compassion of the goal, acceptance level and the actual engineering 

performance output measures, Figure 25 shows the variation of the pilot test 2. The 

engineering performance output measures of Y1 to Y10 are shown in X-axis and actual 

values are shown in Y-axis. The results show that the strength of performance prediction 

for MLMP and LR models is almost the same. The acceptance level and the control target 

are also identified to display the actual performance measurements. 
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Figure 25. Pilot Test 2 for Performance Measures for MLMP and LR Models 

As shown in Figure 25, for instance, the two reference points, acceptance level and 

target values are also applicable to engineering performance output measure Y4. The 

measure Y4 represents the detailed design quantity compared to the final construction 

installed quantity, measuring the effectiveness of the design quantity. In this case, the 

Figure displays an acceptance level of 95% and a control target of 100%. During the 

evaluation and measurement, the MLMP generated 97.3%, and LR generated 96.8%, 

indicating good design quality at the current evaluating period, surpassing the acceptance 

level but still falling short of the control target. In real-world implementations, corrective 

actions should be considered to address the accuracy of design and construction quantity. 

Continuous monitoring of the performance moving range after corrective efforts with the 

acceptance level and control limit is suggested in the quantity control and management. 
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7.4 Application for Performance Control Management 

The engineering performance control is proposed to interpretate the ongoing 

monitoring or process controls needed to ensure that process owners sustain the gains of 

the engineering performance prediction process. The effective and precision performance 

control also plays a crucial part in fulfilling the requirements for strengthening the ability 

of project to keep the solutions in place. The control chart is general applied as a practical 

management tool to performance control. The control chart as specialized run chart is 

recommended to control and monitor the performance and provide a systematic way to 

evaluate engineering performance continuously by monitoring key performance metrics 

and enabling data driven decision-making (McCary et al. 2005). By maintaining a stable 

process and addressing variations as they arise, the decision makers can optimize the 

engineering operations for better quality and efficiency. Facilitating control charts to 

effectively manage a process involves various steps and considerations. To facilitate the 

use of control charts for process management, the major consideration and steps are, 

• Select the Engineering Performance Metric: Identify metrics that align with project 

goals and customer requirements. Consider both leading and lagging performance 

indicators, focusing on what is most critical and collaborate with stakeholders to 

define which metrics are most relevant. 

• Collect Project Data: Set up a data collection process with defined data sources and 

methods. Ensure the data quality and consistency by using standardized measurement 

procedures and collect data at regular intervals, but do not overwhelm the process 

with excessive data points. 

• Determine Control Limits: Consider the process stability and available historical data 

when setting control limits. Choose the appropriate control chart type, such as X-bar 
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and R-chart, X-bar and S-chart, or individual/moving range (I-MR) charts based on 

the data characteristics. Understand that control limits may need adjustment over time 

as the process improves. 

• Create the Control Chart: Use specialized software or templates to create accurate and 

visually clear control charts. Ensure the chart is accessible to relevant team members 

through a centralized platform. Consider implementing automated data collection and 

chart generation for real-time monitoring. 

• Define Responsibilities: Clearly outline the responsibility for data collection, chart 

maintenance, and problem-solving. Designate roles for reviewing and analyzing the 

chart, including a process owner or champion. Encourage team members to take 

ownership of their roles and be proactive in maintaining the chart. 

• Regular Monitoring: Choose the appropriate review frequency based on the process’s 

nature and the criticality of the metric. Schedule regular meetings or check-ins to 

review the chart, share insights, and track progress. Develop a standardized process 

for reviewing data and reacting to out-of-control situations. 

• Data Analysis: Implement statistical analysis tools to identify trends, cycles, or 

special causes of variation. Apply statistical process control techniques like control 

chart pattern recognition. Conduct hypothesis testing if necessary to confirm the 

significance of observed variations. 

• Root Cause Analysis: Utilize methods 5 Whys or Fishbone cause and effect diagrams 

to identify the underlying causes of process variations. Encourage cross-functional 

teams to collaborate in root cause analysis. Focus on addressing root causes rather 

than just the symptoms of a problem. 
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• Take Corrective Actions: Develop an action plan to address identified root causes and 

bring the process back into control. Track the progress and effectiveness of corrective 

actions and adjust them as needed. Ensure communication and accountability for 

implementing corrective actions. 

• Continual Improvement: Encourage a culture of continuous improvement within the 

team. Share best practices, lessons learned, and successful improvements across the 

organization. Consider process reengineering or major changes based on the 

cumulative insights from control charts. 

• Documentation: Maintain a comprehensive and easily accessible record of all control 

chart data, findings, and actions taken. Use documentation to track the historical 

performance of the process and reference it for future analysis and audits. 

• Communication: Establish regular communication channels to keep team members 

informed about control chart status and updates. Encourage open dialogue and 

feedback to address concerns or suggestions for improvement. Share success stories 

and achievements related to process management through control charts. 

The control chart as specialized run chart is recommended to control and monitor the 

performance. In a control chart, the Y axis is the metric of output measures, and the X 

axis is the time or sample point in time series. There are three statistically calculated lines 

are imposed for control propose, a center line in an average of output measures, upper or 

lower control limits to identify acceptance levels, and a target line to specify the control 

targets.  

Figure 26 illustrates the example of the performance control for output measure Y2. 

The definition of output measure Y2 is a detailed design schedule delay and calculated 

by the days of design schedule delay divided by total design schedule days. The chart 
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shows the variation of performance measure output Y2 from the beginning of the project 

in term of sample # where the measurement frequency of cycle can be defined by the 

control and monitoring propose. The blue dotted line is the average of the performance 

measure output during the evaluation period and can be compared to the variation of each 

measurement. The red solid line is the control limit, where specifies the acceptance level 

at performance measure output. The green line is the control target of the measurement, 

which identify the aim of the control result. This pilot project applies the performance 

measure output Y2 from the prediction of the MLMP model by inputting BIM use 

variables X1 to X15 as indicated in MLMP model implementation in Table 14. The 

performance of detailed design delay varied from 6.3% to 2.4%. Here, 6.3% is above 

control limit 6.0%, and 2.4% is under control limit, and the performance moving over a 

10 checking points is approaching the target at 0.0%. The pilot application indicates that 

the project takes the required actions to control the performance to the desired outcome.  

 

Figure 26. Control Chart Performance Measures Y2 
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Figure 27 shows the example of the performance control for output measure Y4. The 

definition of output measure Y4 is a detailed designed quantity compared to the final 

installed quantity and calculated by the issue for construction designed quantity divided 

by the final installed quantity. The chart shows the variation of performance measure 

output Y4 from the beginning of the project in terms of sample number, where the 

measurement frequency of the cycle can be defined by the control and monitoring 

purpose. This pilot project applies the performance measure output Y4 from the 

prediction of the MLMP model by inputting BIM use variables X1 to X15 as indicated in 

LR model implementation in Table 15. The performance of the detailed designed quantity 

compared to the final installed quantity varied from 95.5% to 101.0%. Here, 95.5% is 

above control limit of 95.0%, and 101% is above control limit, and the performance 

moving over 10 checking points is approaching the target at 100.0%. The pilot application 

indicates that the project takes the required actions to control the performance to the 

desired outcome. 

 

Figure 27. Control Chart Performance Measures Y4 
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7.5 Statistical and Hypothesis Tests 

This research utilizes the use of statistical and hypothesis tests for model validation, 

specifically highlighting the adjusted R-squared coefficient of determination and the F-

test for variance. This discussion sets the stage for a deeper exploration of these tests in 

the following sections, emphasizing their importance and relevance in the context of 

regression analysis and the linear regression and machine learning models. 

7.5.1 Adjusted R-squared  

R-squared also known as the coefficient of determination, is a statistical measure to 

assess the goodness of fit of a regression model. It quantifies the proportion of the 

variance in the dependent variables (Ys) that can be explained by the independent 

variables (Xs) in a linear regression model. It helps to understand how well the 

independent variables can account for the variations in the dependent variable. R-squared 

is between 0 and 1, representing the percentage of the variation in the dependent variable 

Y that is explained by the independent variables X. An R-squared value of 0 means that 

the independent variables do not explain any of the variation in Y, while an R-squared 

value of 1 means that all the variation in Y can be explained by the independent variables 

(Downing and Clark 2003).  

In LR model, Y = a + bX1 + cX2 + dX3 + ... + Xn is a multiple linear regression 

model. Here 'a' represents the intercept or constant term, and 'b', 'c', 'd', ..., 'Xn' are the 

coefficients associated with each of the independent variables. These coefficients indicate 

the strength and direction of the relationship between each X variable and the dependent 

variable Y. Now, an R-squared value of 90% as in LR model, it means that 90% of the 

variability in the dependent variable Y can be attributed to the influence of the 

independent variables X1, X2, X3, ..., Xn. In other words, these independent variables 
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collectively account for a significant portion of the observed variations in Y. It considers 

the trade-off between model complexity and goodness of fit. 

In this research, the adjusted R-squared is used to evaluate the developed models. An 

adjusted R-squared is a modified version of the standard R-squared that considers the 

number of independent variables in a regression model. Adjusted R-squared is calculated 

using the same principles as R-squared, but it incorporates the number of independent 

variables in the model. It is designed to balance the need for a good fit with the risk of 

overfitting. While R-squared defines how well the independent variables explain the 

variance in the dependent variable, adjusted R-squared offers a more nuanced view by 

penalizing the inclusion of unnecessary or irrelevant independent variables. A higher 

adjusted R-squared suggests that a larger proportion of the variation in the dependent 

variable is explained by the independent variables while penalizing the inclusion of 

unnecessary variables. When comparing models, a higher adjusted R-squared indicates a 

better model fit. 

When comparing different regression models, the adjusted R-squared is a helpful 

criterion. A model with a higher adjusted R-squared, indicating a better fit while 

considering the number of independent variables included. Adjusted R-squared is not a 

definitive measure for model selection. It should be used in conjunction with other model 

evaluation techniques and domain knowledge. It assumes that all variables included in 

the model are relevant and correctly specified. An adjusted R-squared is a valuable tool 

for assessing the goodness of fit of a regression model while considering the trade-off 

between model complexity and model performance. It helps address the issue of 

overfitting by penalizing models with excessive independent variables. When comparing 

models, a higher adjusted R-squared indicates a better model fit while considering the 

number of independent variables in the model. However, it should be used in combination 
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with other evaluation metrics and domain knowledge to make well-informed decisions 

about model selection and refinement. 

7.5.2 F-Test in Machine Learning 

The F-test is typically used in the context of statistical hypothesis testing to compare 

the variances of two or more groups or to compare the fits of different models. In machine 

learning, it can be used for certain tasks, but its application is different from traditional 

statistical hypothesis testing. The F-test can be used to assess the relevance of different 

variables in the machine learning model and the F-statistic and associated F-value can be 

computed to determine whether a particular feature significantly contributes to the 

predictive power of the model (Downing and Clark 2003). 

In this research, the two developed models applied F-test to assess whether the 

differences in their performance are statistically significant. It is important that the 

application of the F-test in machine learning often depends on the specific problem and 

context. However, the application of F-test is tailored to the specific needs and objectives 

of machine learning evaluation with Pros and Cons. 

The Pros of using F-test in machine learning: 

• Feature Selection: The F-test can help identify which features are most relevant for a 

predictive model, allowing to reduce the dimensionality of the data and potentially 

improve model performance and interpretability. 

• Model Comparison: It provides a statistical basis for comparing the performance of 

different models or distinct groups of features, helping to make informed decisions in 

model selection. 
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• ANOVA for Regression Analysis: In regression analysis, the F-test allows to 

determine whether groups of predictor variables collectively have a significant impact 

on the target variable, providing insights into the overall importance of feature groups. 

• Statistical Significance: It helps to determine whether observed differences between 

groups or models are statistically significant, which can be important for making 

robust and data-driven decisions. 

The Cons of using F-test in machine learning: 

• Assumptions: The F-test relies on certain assumptions, such as the assumption of 

normally distributed errors and homoscedasticity. Homoscedasticity is the spread of 

data points is consistent throughout a regression analysis, indicating a stable level of 

variance, and this assumption is important for reliable linear regression models. 

Violations of these assumptions can lead to incorrect results or interpretations. 

• Limited to Linear Models: The F-test is commonly associated with linear models, and 

its applicability to more complex and nonlinear models like deep neural networks may 

be limited. For such models, other methods like cross-validation may be more 

appropriate for model comparison. Cross-validation is a technique used in machine 

learning and statistics to assess how well a predictive model can perform on an 

independent dataset. This process is repeated several times, and the performance 

metrics are averaged to help in obtaining a more robust estimate of a model's 

performance and reduces the risk of overfitting. 

• Subjectivity: Determining the appropriate significance level for the F-test can be 

subjective and may lead to different results based on the chosen significance level. 

• Multiple Comparisons: If the multiple F-tests is performed on different variables or 

models, it need to adjust for multiple comparisons to control the multiplicity error rate 
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to avoid of making a Type I error (false positive). The adjustments help maintain an 

acceptable overall significance level when conducting multiple tests, reducing the 

likelihood of incorrectly rejecting a null hypothesis in any individual test.  

• Model Overfitting: Over-reliance on the F-test for variable selection can lead to 

overfitting if not used judiciously. Removing features solely based on F-scores can 

lead to loss of valuable information. 
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8.0 Conclusions and Recommendations 

This dissertation presents a comprehensive exploration of engineering productivity 

knowledge, encompassing motivation, background, and methodology. Through fruitful 

collaboration with industry stakeholders, the study successfully achieved several key 

objectives. As defined at the beginning of this research included the assessment of current 

BIM utilization in engineering processes and the identification of performance, 

development of methodologies for quantifying and correlating of BIM use and 

performance, application of machine learning models to identify predictive capabilities 

and the MLMP and LR modeling and development an assessment of the prediction, 

validation and implantation of the developed models, and application to contribute the 

findings. The conclusions drawn from the awareness of constraints and the potential 

impact with limitations defined. The research findings are summarized herein, shedding 

light on significant insights and implications for the field with inherent constraints and 

boundaries that affect the research. Additionally, the dissertation offers recommendations 

for future research endeavors, highlighting areas where investigation could yield valuable 

contributions to the domain of engineering performance knowledge. 

Through this scholarly work, the research aims to enrich the understanding of 

engineering performance and its multifaceted dynamics. By collaborating closely with 

industry partners, this study seeks to bridge the gap between academia and practice, 

fostering a more holistic and evidence-based approach to enhance project engineering 

performance. The conclusions and recommendations provided herein aim to inspire and 

guide future researchers in their pursuit of continued advancement in this vital area. 
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8.1 Limitations 

Several limitations were observed in the proposed BIM implementation. The first 

limitation is the selection criteria of the engineering performance output measures. These 

chosen performance output measures were insufficient during the project execution cycle 

before the actual operation of the completed plants or facilities. Practically, it is almost 

difficult and time-consuming to obtain comprehensive lifecycle data for projects from the 

planning phase through the operation and maintenance period. Thus, adding performance 

attributes and measures depicting the operation and maintenance phases to the existing 

dataset of variables to develop a more accurate engineering performance assessment 

prediction model is necessary. 

The second limitation is the inadequate applicable data and the difficulty of data 

collection. The dataset of 60 industrial construction project samples used in this study is 

minimal for total data amount and valuable quality. However, the group of 60 project 

sample data was considered very successful despite the data collection difficulties. 

Although the samples were limited, this study remains acceptable by the triangulation 

concept (Hammersley and Atkinson 2007). The concept explains that the information on 

a single phenomenon should be collected from at least three distinct and separated sources 

to recognize the difference in the information. The project data applied in the study were 

collected from 4 distinct industry sectors of power, oil and gas, transportation, and high-

tech facility, which represented different specific types of facilities over different regions. 

Since these industrial facilities for data collection are highly specialized functions for 

different industrial purposes, various project types exist in different modes. 

Notwithstanding the limited data, the high R-sq (adj) and high assessment power 

indicated the applicability of the models. 
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The third limitation pertains to the restricted application of the developed models, 

which are primarily recommended for EPC projects that implement BIM right from the 

planning stage. Since the engineering prediction models rely on data collected from EPC 

projects utilizing BIM as a management tool, when dealing with projects that either don't 

use BIM or use it only partially, the absence of complete BIM data inputs may result in 

deviations, potentially leading to inaccurate performance predictions. This limitation 

underscores the importance of a comprehensive BIM adoption within EPC projects, as it 

forms the foundation for accurate performance predictions using the developed models. 

In cases where BIM is not fully integrated, the quality and completeness of data inputs 

may suffer, and this deficiency can compromise the precision of the output performance 

forecasts. The limitation underscores a critical dependency on the consistent and 

comprehensive use of BIM in EPC projects. When BIM is not universally embraced, there 

is a higher likelihood of disparities in data collection, and this, in turn, can introduce errors 

or inaccuracies in the performance predictions derived from the engineering models. It is 

essential to recognize that the efficacy of the developed models is contingent on the extent 

to which BIM is employed in EPC projects. The models may not yield accurate 

predictions for projects that do not fully embrace BIM, potentially leading to deviations 

in performance expectations due to incomplete or inconsistent data inputs. The third 

limitation emphasizes that the success of the developed models hinges on the pervasive 

utilization of BIM in EPC projects. When BIM adoption is partial or absent, there is a 

risk of encountering discrepancies in the collection of BIM-related data, which can 

introduce inaccuracies in the performance predictions, highlighting the need for a 

standardized BIM approach in these projects. 
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8.2 Conclusions 

Evaluating and predicting project performance in construction projects is essential 

for all stakeholders to deliver to the facility owners. During a project’s life cycle, the 

engineering design process plays a critical role and is regarded as a significant driving 

force for the overall project performance. BIM use is now considered a substantial factor 

in the project execution outcomes. With the implementation of BIM use in project 

execution to facilitate the engineering process recently, adding BIM applications to the 

engineering design performance evaluation is necessary.  

Previous research on this related study has been insufficient because of the 

imprecision definition of project performance and the complexity of data collection for 

studying engineering performance. The purpose of this study was to establish a generic 

framework for constructing comprehensive relationships between BIM use and the 

overall engineering project performance.  

The first objective of the study was to explore generic models that could delineate the 

statistical correlation between engineering input variables by using BIM and overall 

project performance output measures through MLMP and LR. The model could further 

examine the influential degree of project input variables by using BIM on output 

engineering performance measure. Existing data from 60 industrial finished projects with 

15 BIM use input variables and targeted 10 engineering performance output measures 

were utilized to construct the proposed models. 

The modeling results indicate a high correlation between input variables and output 

measures with 0.7 to 0.9 Pearson’s positive correlation coefficients or -0.7 to -0.9 

Pearson’s negative correlation coefficients as shown in Table 7. The method of 

correlating MLMP and LR with combined BIM-use results in 70% on average of high 
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goodness of fit R-sq (adj) values and an acceptable level of P-value of 0.000s. Table 11 

summarizes MLMP and LR models with the prediction equations and their statistical 

results, MLMP is in the range of 99.48%~99.94% while LR is in the range of 

63.01%~84.48%. Figure 9 depicts that MLMP shows fewer deviations with much higher 

R-sq (adj) of outputs than the LR models’. 

Moreover, the graphical evaluation shows that the essential BIM uses are highly 

related to design activities, and the enhanced BIM uses are correlated with construction 

phase as indicated in Figure 19 of the critical BIM uses for engineering performance. 

Moreover, Figure 20 of the expansion of BIM uses at project phase demonstrates the high 

correlative BIM use inputs for both essential and enhanced expansion at the three phases 

of project execution, and the influence level of the phases. 

The second objective of the study was verifying the validity and reliability of the 

proposed models and to check the variance of the engineering performance output 

measures through MLMP and LR models and compare their actual performance data with 

the data of overall 60 projects.  

The validation process contains two stages. the F-test was applied to access the 

variances of the LR and MLMP models in the 1st stage. The average values of 15 output 

performance measures identified at project design, construction, and startup phases from 

two selected individual project #1 and project #36 were input into proposed models 

separately. Their variances were compared. Figure 11 and Figure 12 depict that they are 

highly matched. Furthermore, F-test clearly indicates that there is no significant 

difference between the proposed model and the individual project’s as shown in Figure 

13 and Figure 14. The results are significantly equivalent on 95% confidence level of 

reliability. 
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  In the second stage of validation process, the average values of 15 output 

performance measures identified at project design, construction, and startup phases from 

the original 60 project data set were compared with average values of two testing sample 

group projects of #52 to #56 and from #57 to #60. By the same token, signified in Table 

13, Figure 15, Figure 16, Figure 17 and Figure 18, there is no significant difference 

between the proposed model and the group project’s. Thus, the models in this research 

are validated. 

In conclusion, the prediction of engineering performance emerges as a vital 

component for effective project control and management. Previous attempts in this 

research areas were somewhat limited, largely due to the inherent complexity and 

imprecision in engineering performance. This study employed machine learning systems, 

specifically ANNs, to estimate engineering performance by considering various project 

attributes and conditions affecting performance. The utilization of ANNs allowed for both 

learning capabilities and flexible variable descriptions within AI-based modeling. 

The implemented system focused on the identified target industrial sector in this 

study, and the application of ANNs for predicting engineering performance demonstrated 

promising results. The reliability and accuracy of the models can be enhanced by 

expanding the project database. Additionally, these models hold potential for practical 

applications, including performance comparisons, risk identification, sensitivity analyses 

of project attributes and conditions, tradeoff evaluations, and more. 

By leveraging the power of machine learning and ANNs, the research can take 

significant strides in refining the understanding of engineering performance prediction. 

These advancements could contribute to more informed decision-making and ultimately 
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may lead to more efficient and successful project outcomes within the construction 

industry.  

Future research and data collection efforts in this area could theoretically enrich the 

knowledge and strengthen the applicability of AI-based models in construction project 

management. The experience and knowledge can be applied to the future new projects. 

8.3 Recommendations 

This dissertation presents a pragmatic approach to constructing engineering 

performance evaluation models, investigating the correlation between BIM use and 

performance measures, and implementing and applying performance prediction. The 

study offers valuable recommendations for construction stakeholders seeking to measure 

and predict engineering performance using BIM applications in project execution. 

Despite limitations due to the sample size of the data, the following action items are 

proposed: 

• Focus on Implementing Essential and Enhanced BIM Uses: Emphasize the adoption 

of both essential and enhanced BIM uses identified in this study. The clear guidelines 

provided by the BIM use inputs will drive engineering performance outcomes. 

• Examine the Relative Importance of Influence Factors: Future research is suggested 

to explore the relative importance of factors affecting engineering performance. Due 

to the limited data sample size and missing values in this study, a comprehensive 

multivariate analysis could not be conducted. Enhancing the dataset will enable more 

in-depth analysis to facilitate benchmarking efforts. 

• Apply Prediction Models for Performance Monitoring: Utilize the prediction model 

to measure and evaluate engineering performance during project execution. Real-time 
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project progress and performance monitoring will enable proactive measures to 

address issues promptly, enhancing the overall success of engineering design. 

• Improve Decision-Making and Risk Management: Incorporate performance models 

to predict and evaluate design outcomes, leading to improved performance and 

efficiency in engineering projects. Quantifying the potential impact of design choices 

on project performance will enhance decision-making and risk management 

processes. 

• Scalable and Adaptable Solutions: Performance models can be applied across various 

engineering and construction projects and industries. These models provide scalable 

and adaptable solutions, optimizing resource allocation and cost management, 

ensuring project efficiency while adhering to budget constraints. 

By following these recommendations, construction stakeholders can leverage the 

power of BIM applications and performance models to achieve enhanced project 

outcomes, improved decision-making, and more efficient resource management. The 

ongoing pursuit of data collection and analysis will further strengthen the effectiveness 

of these models in project execution and performance evaluation within the construction 

industry. The findings suggest several key research questions and recommendations as 

follows: 

• Prioritizing BIM Use Factors and Engineering Performance Measures: How can BIM 

use factors and engineering performance measures be effectively prioritized to 

enhance engineering performance evaluation and prediction efforts? 

• Data Acquisition and Weighting During Project Life Cycle: What methods can be 

employed to acquire data throughout the project life cycle, and how should the 

weighting of data from different phases be determined? 
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• Measuring BIM Use Factors and Engineering Performance Measures: How can the 

measurement of BIM use factors and engineering performance measures be 

consistently applied during each phase of a project execution cycle, considering their 

varying values? 

• Applying Performance Analysis Results to Improve Project Management: How can 

the analysis results of engineering performance correlations be practically applied to 

enhance project management and decision-making throughout project life cycles? 

• Applicability of Performance Models Across Industry Sectors: How can the 

performance models be effectively applied to various industry sectors while 

maintaining reliable and trustworthy prediction capabilities? 

Addressing these research questions will not only contribute to advancing the field of 

engineering performance evaluation and prediction but also provide valuable insights for 

practical application in diverse construction projects and industry sectors. Future research 

is suggested to base on the questions and recommendations to extent this study and further 

contribute to the body of knowledge.  

8.4 Research Contributions 

This research constitutes a structured and comprehensive approach in collaboration 

with construction industry practitioners to synthesize BIM use factors and engineering 

performance metrics, encompassing diverse measures, and employs these metrics to 

construct predictive models that enrich the body of knowledge. This study offers 

significant contributions to both research and practical applications in the realm of BIM 

application for engineering performance within the construction industry, achieved 

through the development of genetic models with predictive capabilities. The specific 

contributions are outlined below: 
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• Development of High-Level BIM Use Factors and Engineering Performance Indices: 

The research successfully developed high-level BIM use factors and engineering 

performance indices, enabling the synthesis of metrics with distinct units to facilitate 

effective management of engineering performance. 

• Unpacking the Complexity of Engineering Performance: Through comprehensive 

analysis, the study revealed insights into the complex relationships between 

engineering performance and BIM use factors, advancing the understanding of 

engineering performance factors and their interdependencies. 

• Knowledge for Engineering Performance Improvement: The investigation 

encompassed a systematic exploration of information dependencies among BIM use 

factors and engineering performance, identification of quantifiable measures for 

future research, and knowledge the direct impact of BIM use factors on project 

performance, all contributing to enhancing engineering performance. 

• Implementation of MLMP and Statistical-Based Models: The research effectively 

presented the application of MLMP statistical-based systems utilizing the surveyed 

and collected project dataset, offering two models for predicting engineering 

performance outcomes in the industrial construction projects. 

• Potential for Future Improvement: The research highlights the potential for refining 

the developed genetic models by augmenting the multi-dimensional project database, 

which could enhance the accuracy and reliability of the predictive models. 

Overall, the contributions of this study enable engineers and designers to make more 

informed decisions, optimize design processes, enhance project performance, and foster 

sustainable and efficient construction practices. The integration of BIM performance 

models has the potential to revolutionize the engineering industry, making it more data-
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driven, collaborative, and capable of delivering innovative and successful projects. By 

leveraging the predictive capabilities of the proposed models, the construction industry 

can embark on a transformative journey towards improved project outcomes and 

heightened project performance. The experience gained in this research can be applied 

and beneficial to new projects. 

8.5 Future Research 

In pursuing of an effective and user-friendly engineering performance prediction 

model, future research endeavors will be directed towards encapsulating the developed 

generic model into a software package. This approach aims to invite BIM users to test the 

model using their project data, thereby ensuring practical applicability and user 

acceptance. A pilot test of the engineering performance prediction software has already 

been conducted with selective EPC or contractors who participated in the survey, and the 

preliminary feedback has been positive. To optimize the model's performance, specific 

guidance shall be provided for collecting data from various construction tasks. While raw 

data may exist in some form, it must undergo distillation and tailoring before being fed 

into the predictive model. Future research is suggested to conduct and interpret test results 

and unlock the full potential of BIM as a valuable tool in construction tasks, promoting 

wider implementation across the industry. 

Future efforts are suggested to focus on addressing the limitations identified in 

current proposed study. The collection of life-cycle data of construction projects will be 

contingent on data availability and facility owners' willingness to release such data. In 

cases where the model scope is limited to project phases preceding the operation phase, 

a practical plan of project data collection and data mining can be developed. With ample 

data from construction projects of the similar facility type, the ML method could be better 
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trained, leading to more reliable and precise predictions. The system's customization, 

including appropriate input and output variables selection, can facilitate both internal and 

external benchmarking of facility owners and AEC companies. However, the validity of 

predicted engineering performance measures remains subject to the consolidation of more 

tailored project data in the future. 

Enhancing engineering performance validation and reliability forecasts through BIM 

uses will be a focal point of future research. One approach is to apply artificial intelligence 

methods and deep learning algorithms to enable computers to simulate thinking processes 

and learn directly from data without relying on pre-defined models. As the number of 

data samples for the learning process increases, these algorithms can improve 

implementation performance. Advanced AI methods can be applied by enhancing 

predictive capabilities and optimizing system parameters. The technique enables the 

model to learn complex patterns, adapt to changing conditions, and provide more accurate 

assessments of performance in diverse engineering scenarios. Another area of 

investigation is the application of cross-validation for the developed models. This 

technique, widely used in machine learning, assesses the predictive accuracy and 

reliability of the models by dividing the data into multiple subsets and iteratively training 

and testing the model on different subsets. Cross-validation can ensure that the model 

generalizes well to new data and help identify potential data issues, thus enhancing the 

predictive accuracy and reliability of the models. Lastly, including a multi-dimensional 

data structure in the evaluation model will be explored. The current study excluded 

owner-related BIM uses such as asset management, disaster planning and management, 

and space management. Incorporating these aspects into the engineering performance 

model through lifecycle data integration could provide valuable insights and benefit 

analysis. 
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The future research agenda aims to elevate the field of engineering performance 

prediction by leveraging cutting-edge methodologies, optimizing data utilization, and 

expanding the scope of BIM applications to enhance construction practices and project 

outcomes.  
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Appendix 1 

Top 100 Contractor List (1/2) 

 

 

  

RANK 2017 RANK 2016 FIRM

1 1 BECHTEL, San Francisco, Calif.†

2 2 FLUOR CORP., Irving, Texas†

3 3 THE TURNER CORP., New York, N.Y.

4 4 CB&I LLC, The Woodlands, Texas†

5 6 AECOM, Los Angeles, Calif.†

6 5 KIEWIT CORP., Omaha, Neb.†

7 7 SKANSKA USA INC., New York, N.Y.†

8 8 PCL CONSTRUCTION ENTERPRISES INC., Denver, Colo.†

9 10 TUTOR PERINI CORP., Sylmar, Calif.†

10 9 THE WHITING-TURNER CONTRACTING CO., Baltimore, Md.

11 11 THE WALSH GROUP LTD., Chicago, Ill.†

12 15 CLARK GROUP, Bethesda, Md.†

13 14 GILBANE BUILDING CO., Providence, R.I.

14 12 BALFOUR BEATTY US, Dallas, Texas†

15 17 STRUCTURE TONE, New York, N.Y.†

16 20 DPR CONSTRUCTION, Redwood City, Calif.

17 24 SWINERTON INC., San Francisco, Calif.

18 18 MORTENSON CONSTRUCTION, Minneapolis, Minn.†

19 19 HENSEL PHELPS, Greeley, Colo.†

20 25 MCCARTHY HOLDINGS INC., St. Louis, Mo.†

21 13 JACOBS, Dallas, Texas

22 22 ZACHRY GROUP, San Antonio, Texas†

23 26 JE DUNN CONSTRUCTION GROUP, Kansas City, Mo.

24 21 LENDLEASE, New York, N.Y.†

25 30 HOLDER CONSTRUCTION CO., Atlanta, Ga.

26 27 SUFFOLK CONSTRUCTION CO., Boston, Mass.†

27 23 TURNER INDUSTRIES GROUP LLC, Baton Rouge, La.†

28 28 GRANITE CONSTRUCTION INC., Watsonville, Calif.†

29 35 BARTON MALOW CO., Southfield, Mich.

30 29 BRASFIELD & GORRIE LLC, Birmingham, Ala.

31 ** DRAGADOS NORTH AMERICA, New York, N.Y.†

32 16 KBR, Houston, Texas†

33 37 AUSTIN INDUSTRIES, Dallas, Texas†

34 31 ALBERICI-FLINTCO, St. Louis, Mo.†

35 33 PRIMORIS SERVICES CORP., Dallas, Texas†

36 34 MICHELS CORP., Brownsville, Wis.

37 42 CHINA CONSTRUCTION AMERICA/PLAZA CONSTR., Jersey City, N.J.†

38 46 CLAYCO INC., Chicago, Ill.†

39 36 THE YATES COS. INC., Philadelphia, Miss.†

40 56 DEVCON CONSTRUCTION INC., Milpitas, Calif.

41 40 BLACK & VEATCH, Overland Park, Kan.†

42 43 OHL USA INC., College Point, N.Y.†

43 52 WEBCOR CONSTR. DBA WEBCOR BUILDERS, San Francisco, Calif.†

44 71 AMEC FOSTER WHEELER, Atlanta, Ga.†

45 38 PERFORMANCE CONTRACTORS INC., Baton Rouge, La.

46 ** WOOD GROUP, Houston, Texas†

47 44 MANHATTAN CONSTRUCTION GROUP, Naples, Fla.†

48 62 HATHAWAY DINWIDDIE CONSTRUCTION CO., San Francisco, Calif.

49 47 HOFFMAN CORP., Portland, Ore.†

50 41 WALBRIDGE, Detroit, Mich.†

                                                                              ENR 2017 Top 400 Contractors 1-100

Companies are ranked by construction revenue in 2016 in ($) millions. Those with subsidiaries (†) are listed by company rank, which may 

be found on the ENR website at www.ENR.com. Firms not ranked last year are designated as **. Some markets may not add up to 100% 

due to omission of the “other” miscellaneous market category. NA = “not available.”                                                                   Page 1 of 2
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Appendix 1 

Top 100 Contractor List (2/2) 

 

 

  

RANK 2017 RANK 2016 FIRM

51 51 RYAN COS. US INC., Minneapolis, Minn.

52 45 LANE INDUSTRIES INC., Cheshire, Conn.†

53 57 LAYTON CONSTRUCTION CO. LLC, Sandy, Utah

54 53 COLAS INC., Morristown, N.J.†

55 68 HITT CONTRACTING INC., Falls Church, Va.

56 49 MATRIX SERVICE CO., Tulsa, Okla.†

57 59 SHAWMUT DESIGN AND CONSTRUCTION, Boston, Mass.

58 75 BL HARBERT INTERNATIONAL, Birmingham, Ala.

59 60 MESSER CONSTRUCTION CO., Cincinnati, Ohio

60 39 DAY & ZIMMERMANN, Philadelphia, Pa.†

61 ** MOSS & ASSOCIATES LLC, Fort Lauderdale, Fla.

62 32 DAVID E. HARVEY BUILDERS INC., Houston, Texas†

63 50 FLATIRON CONSTRUCTION CORP., Broomfield, Colo.†

64 67 PEPPER CONSTRUCTION GROUP, Chicago, Ill.†

65 64 HUNTER ROBERTS CONSTRUCTION GROUP LLC, New York, N.Y.

66 ** CENTURI CONSTRUCTION GROUP, Phoenix, Ariz.†

67 79 CONSIGLI BUILDING GROUP INC., Milford, MA

68 66 GRAY CONSTRUCTION, Lexington, Ky.†

69 82 EMJ CORP., Chattanooga, Tenn.†

70 65 THE WEITZ CO., Des Moines, Iowa†

71 70 KOKOSING INC., Westerville, Ohio†

72 93 ARCO CONSTRUCTION COS., St. Louis, Mo.†

73 55 BURNS & MCDONNELL, Kansas City, Mo.

74 61 THE BECK GROUP, Dallas, Texas

75 91 CHOATE CONSTRUCTION CO., Atlanta, Ga.

76 89 BIG-D CONSTRUCTION CORP., Salt Lake City, Utah†

77 78 ROBINS & MORTON, Birmingham, Ala.

78 74 POWER CONSTRUCTION CO. LLC, Chicago, Ill.

79 85 CROSSLAND CONSTRUCTION CO. INC., Columbus, Kan.

80 72 THE BOLDT CO., Appleton, Wis.

81 63 FERROVIAL US CONSTRUCTION CORP., Austin, Texas†

82 134 CLUNE CONSTRUCTION CO., Chicago, Ill.

83 86 SELLEN CONSTRUCTION CO., Seattle, Wash.

84 88 AVALONBAY COMMUNITIES INC., Arlington, Va.

85 101 OKLAND CONSTRUCTION CO. INC., Salt Lake City, Utah

86 ** CORE CONSTRUCTION GROUP, Phoenix, Ariz.

87 104 MIRON CONSTRUCTION CO. INC., Neenah, Wis.

88 83 JAMES G. DAVIS CONSTRUCTION CORP., Rockville, Md.

89 98 THE MCSHANE COS., Rosemont, Ill.†

90 81 PJ DICK - TRUMBULL - LINDY PAVING, Pittsburgh, Pa.†

91 112 ALSTON CONSTRUCTION, Atlanta, Ga.

92 73 AEGION CORP., Chesterfield, Mo.

93 69 AMES CONSTRUCTION INC., Burnsville, Minn.

94 54 M+W GROUP, Albany, N.Y.

95 58 S&B ENGINEERS AND CONSTRUCTORS LTD., Houston, Texas†

96 129 E.E. REED CONSTRUCTION LP, Sugar Land, Texas†

97 77 SUNDT CONSTRUCTION INC., Tempe, Ariz.

98 90 LEVEL 10 CONSTRUCTION, Sunnyvale, Calif.

99 160 FORTIS CONSTRUCTION INC., Portland, Ore.

100 96 WEEKS MARINE INC., Cranford, N.J.†

                                                                              ENR 2017 Top 400 Contractors 1-100

Companies are ranked by construction revenue in 2016 in ($) millions. Those with subsidiaries (†) are listed by company rank, which may 

be found on the ENR website at www.ENR.com. Firms not ranked last year are designated as **. Some markets may not add up to 100% 

due to omission of the “other” miscellaneous market category. NA = “not available.”                                                                   Page 2 of 2
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Appendix 2 

Survey of Engineering Performance of BIM Implementation (1/3) 

 

 

 

 

 

 

 

V
ar

ia
b

le
 D

es
ce

ip
ti

o
n

Y1
D

es
ig

n
 R

ew
o

rk
 (

%
)

D
es

ig
n

 R
ew

o
rk

 H
o

u
rs

/T
o

ta
l D

es
ig

n
 H

o
u

rs
 (

%
)

0%
5%

Y2
D

et
ai

le
d

 D
es

ig
n

 S
ch

ed
u

le
 D

el
ay

 (
%

)
D

ay
s 

o
f 

D
es

ig
n

 S
ch

ed
u

le
 D

el
ay

/T
o

ta
l D

es
ig

n
 S

ch
ed

u
le

 D
ay

s 
(%

)
0%

15
%

Y3
D

et
ai

le
d

 D
es

ig
n

 C
o

st
 O

ve
rr

u
n

 (
%

)
D

es
ig

n
 C

o
st

 O
ve

rr
u

n
 in

 U
SD

/T
o

ta
l D

es
ig

n
 C

o
st

 in
 U

SD
 (

%
)

0%
10

%

Y4
D

et
ai

le
d

 D
es

ig
n

ed
 Q

u
an

ti
ty

 C
o

m
p

ai
re

d
 t

o
 F

in
al

 

In
st

al
le

d
 Q

u
an

ti
ty

 (
%

) 
Is

su
e 

fo
r 

C
o

n
st

ru
ct

io
n

 D
es

ig
n

ed
 Q

u
an

ti
ty

/F
in

al
 In

st
al

le
d

 Q
u

an
ti

ty
 (

%
) 

0%
5%

Y5
Fa

b
ri

ca
ti

o
n

 a
n

d
 C

o
n

st
ru

ct
io

n
 S

ch
ed

u
le

 D
el

ay
 d

u
e 

to
 

D
es

ig
n

 D
ef

ic
ie

n
ci

es
 (

%
)

D
ay

s 
o

f 
Fa

b
ri

ca
ti

o
n

 a
n

d
 C

o
n

st
ru

ct
io

n
 S

ch
ed

u
le

 D
el

ay
 d

u
e 

to
 D

es
ig

n
 

D
ef

ic
ie

n
ci

es
/T

o
ta

l F
ab

ri
ca

ti
o

n
 a

n
d

 C
o

n
st

ru
ct

io
n

 D
ay

s 
(%

)
0%

3%

Y6
Fa

b
ri

ca
ti

o
n

 a
n

d
 C

o
n

st
ru

ct
io

n
 C

o
st

 O
ve

rr
u

n
 d

u
e 

to
 

D
es

ig
n

 D
ef

ic
ie

n
ci

es
 (

%
)

Fa
b

ri
ca

ti
o

n
 a

n
d

 C
o

n
st

ru
ct

io
n

 C
o

st
 O

ve
rr

u
n

 d
u

e 
to

 D
es

ig
n

 D
ef

ic
ie

n
ci

es
 in

 U
SD

/T
o

ta
l 

Fa
b

ri
ca

ti
o

n
 a

n
d

 C
o

n
st

ru
ct

io
n

 C
o

st
 in

 U
SD

 (
%

)
0%

3%

Y7
C

o
n

st
ru

ct
io

n
 H

o
u

rs
 f

o
r 

R
eq

u
es

t 
fo

r 
In

fo
rm

at
io

n
 (

R
FI

) 

(%
)

C
o

n
st

ru
ct

io
n

 H
o

u
rs

 f
o

r 
R

eq
u

es
t 

fo
r 

In
fo

rm
at

io
n

 (
R

FI
)/

To
ta

l C
o

n
st

ru
ct

io
n

 H
o

u
rs

(%
)

0%
2%

Y8
C

o
n

st
ru

ct
io

n
 H

o
u

rs
 f

o
r 

Fi
el

d
 C

h
an

ge
 R

eq
u

es
t 

(F
C

R
) 

(%
)

C
o

n
st

ru
ct

io
n

 H
o

u
rs

 f
o

r 
Fi

el
d

 C
h

an
ge

 R
eq

u
es

t 
(F

C
R

)/
To

ta
l C

o
n

st
rc

ti
o

n
 H

o
u

rs
(%

)
0%

1%

Y9
St

ar
t-

u
p

 S
ch

ed
u

le
 D

el
ay

 d
u

e 
to

 D
es

ig
n

 D
ef

ic
ie

n
ci

es
 (

%
)

D
ay

s 
o

f 
St

ar
t-

u
p

 S
ch

ed
u

le
 D

el
ay

 d
u

e 
to

 D
es

ig
n

 D
ef

ic
ie

n
ci

es
/T

o
ta

l S
ta

rt
-u

p
 D

ay
s 

(%
)

0%
2%

Y1
0

St
ar

t-
u

p
 C

o
st

 O
ve

rr
u

n
 d

u
e 

to
 D

es
ig

n
 D

ef
ic

ie
n

ci
es

 (
%

)
St

ar
t-

u
p

 C
o

st
 O

ve
rr

u
n

 d
u

e 
to

 D
es

ig
n

 D
ef

ic
ie

n
ci

es
 in

 U
SD

/T
o

ta
l S

ta
rt

-u
p

 C
o

st
 in

 U
SD

 

(%
)

0%
2%

O
u

tp
u

t 
V

ar
ia

b
le

s

Ta
rg

et
A

cc
ep

ta
n

ce
 

Le
ve

l
Ex

am
p

le

P
ar

t 
0.

 P
le

as
e 

in
p

u
t 

yo
u

r 
In

fo
rm

at
io

n
N

am
e:

Ti
tl

e:

C
o

m
p

an
y:

Ex
p

er
ie

n
ce

 in
 In

d
u

st
ry

 (
Ye

ar
s)

:

Ex
p

er
ie

n
ce

 in
 B

IM
 U

se
s 

(Y
ea

rs
):

Su
rv

er
y 

o
f 

En
gi

n
ee

ri
n

g 
P

er
fo

rm
an

ce
 A

ss
es

sm
en

t 
o

f 
B

IM
 Im

p
le

m
en

ta
ti

o
n

O
u

tp
u

t 
V

ar
ia

b
le

s

En
gi

n
ee

ri
n

g 
P

er
fo

rm
an

ce
 M

ea
su

re
s

Th
is

 r
es

ea
rc

h
 is

 s
tu

d
in

g 
th

e 
im

ap
ct

 o
f 

B
IM

 u
se

s 
o

n
 e

n
gi

n
ee

ri
n

g 
d

es
ig

n
 p

er
fo

rm
an

ce
. R

ec
en

t 
ye

ar
s,

 B
IM

 a
p

p
lic

at
io

n
 h

as
 c

h
an

ge
d

 h
o

w
 w

e 
ap

p
ro

ac
h

 d
es

ig
n

, c
o

n
st

ru
ct

io
n

, a
n

d
 o

p
er

at
io

n
s 

in
 

th
e 

co
n

st
ru

ct
io

n
 in

d
u

st
ry

.  
Th

is
 s

tu
d

y 
is

 a
sk

in
g 

yo
u

r 
ex

p
er

ie
n

ce
 o

f 
h

o
w

 B
IM

 u
se

s 
in

 t
h

e 
p

ro
je

ct
 a

ff
ec

ts
 t

h
e 

en
gi

n
ee

ri
n

g 
p

er
fo

rm
an

ce
. B

y 
u

si
n

g 
15

 in
p

u
t 

va
ri

av
le

s 
o

f 
B

IM
 a

p
p

lic
at

io
n

 a
n

d
 1

0 

o
u

tp
u

t 
va

ri
ab

le
s 

o
f 

en
gi

n
ee

ri
n

g 
p

er
fo

rm
an

ce
, t

h
e 

re
la

ti
o

n
sh

ip
s 

w
ill

 b
e 

re
vi

ew
ed

 b
y 

A
I a

n
d

 s
ta

ti
si

c 
m

et
h

o
d

s.
 T

h
er

e 
ar

e 
3 

p
ar

ts
 o

f 
su

rv
er

y,
 p

le
as

e 
in

p
u

t 
yo

u
 r

es
p

o
n

se
s 

an
d

 h
el

p
 t

h
e 

re
se

ar
ch

.

P
u

rp
o

se
 o

f 
th

e 
R

es
ea

rc
h

P
ar

t 
1.

 P
le

as
e 

in
p

u
t 

th
e 

ac
ce

p
ta

n
ce

 a
cc

o
rd

in
g 

to
 y

o
u

r 
ex

p
er

ie
n

ce



doi: 10.6342/NTU202304540
148 

Y
1

Y
2

Y
3

Y
4

Y
5

Y
6

Y
7

Y
8

Y
9

Y
1

0

D
e

si
gn

 

R
e

w
o

rk
 

(%
)

D
e

ta
ile

d
 

D
e

si
gn

 

Sc
h

e
d

u
le

 

D
e

la
y 

(%
)

D
e

ta
ile

d
 

D
e

si
gn

 

C
o

st
 

O
ve

rr
u

n
 

(%
)

D
e

ta
ile

d
 

D
e

si
gn

e
d

 

Q
u

a
n

ti
ty

 

C
o

m
p

a
ir

e
d

 t
o

 

Fi
n

a
l I

n
st

a
lle

d
 

Q
u

a
n

ti
ty

 (
%

) 

Fa
b

ri
ca

ti
o

n
 a

n
d

 

C
o

n
st

ru
ct

io
n

 

Sc
h

e
d

u
le

 D
e

la
y 

d
u

e
 t

o
 D

e
si

gn
 

D
e

fi
ci

e
n

ci
e

s 
(%

)

Fa
b

ri
ca

ti
o

n
 a

n
d

 

C
o

n
st

ru
ct

io
n

 

C
o

st
 O

ve
rr

u
n

 

d
u

e
 t

o
 D

e
si

gn
 

D
e

fi
ci

e
n

ci
e

s 
(%

)

C
o

n
st

ru
ct

io
n

 

H
o

u
rs

 f
o

r 

R
e

q
u

e
st

 f
o

r 

In
fo

rm
a

ti
o

n
 

(R
FI

) 
(%

)

C
o

n
st

ru
ct

io
n

 

H
o

u
rs

 f
o

r 
Fi

e
ld

 

C
h

a
n

ge
 

R
e

q
u

e
st

 (
FC

R
) 

(%
)

St
a

rt
-u

p
 

Sc
h

e
d

u
le

 

D
e

la
y 

d
u

e
 t

o
 

D
e

si
gn

 

D
e

fi
ci

e
n

ci
e

s 

(%
)

St
a

rt
-u

p
 C

o
st

 

O
ve

rr
u

n
 d

u
e

 

to
 D

e
si

gn
 

D
e

fi
ci

e
n

ci
e

s 

(%
)

V
a

ri
a

b
le

 D
e

sc
ri

p
ti

o
n

X
1

E
xi

st
in

g 

C
o

n
d

it
io

n
s

E
xi

st
in

g 
Si

te
/F

a
ci

li
ti

e
s 

G
e

o
m

e
tr

y 
a

n
d

 I
n

fo
rm

a
ti

o
n

 

in
cl

u
d

e
d

 i
n

 M
o

d
e

l

X
2

D
e

si
gn

 A
u

th
o

ri
n

g
B

IM
 S

o
ft

w
a

re
/T

o
o

l 
U

se
d

 i
n

 

D
e

si
gn

 P
ro

ce
ss

X
3

D
e

si
gn

 R
e

vi
e

w
3

0
/6

0
/9

0
%

/1
0

0
%

 M
o

d
e

l 

R
e

vi
e

w
  

X
4

C
o

o
rd

in
a

ti
o

n
C

la
sh

 D
e

te
ct

io
n

 P
ro

ce
ss

X
5

R
e

co
rd

 M
o

d
e

li
n

g
P

h
ys

ic
a

l 
a

n
d

 F
u

n
ct

io
n

a
l 

In
fo

rm
a

ti
o

n
 i

n
p

u
t 

in
 M

o
d

e
l

X
6

C
o

st
 E

st
im

a
ti

n
g

G
e

n
e

ra
te

 M
T

O
 a

n
d

 C
o

st
 D

a
ta

X
7

P
h

a
se

 a
n

d
 4

D
 

P
la

n
n

in
g

D
im

e
n

si
o

n
 o

f 
T

im
e

 a
n

d
 

Sc
h

e
d

u
le

 A
d

d
e

d

X
8

Si
te

 A
n

a
ly

si
s-

D
e

ve
lo

p
m

e
n

t
G

IS
 T

o
o

ls
 u

se
d

 i
n

 M
o

d
e

l 

X
9

Si
te

 u
ti

li
za

ti
o

n
-

Fo
r 

C
o

n
st

ru
ct

io
n

C
o

m
m

u
n

ic
a

ti
o

n
 T

o
o

l 
fo

r 

C
o

n
st

ru
ct

io
n

 P
la

n
 A

d
d

e
d

X
1

0
D

ig
it

a
l 

Fa
b

ri
ca

ti
o

n

P
re

fa
b

ri
ca

te
 b

y 
u

si
n

g 
B

IM
 

D
a

te
 o

r 
In

fo
rm

a
ti

o
n

X
1

1
3

D
 L

o
ca

ti
o

n
 a

n
d

 

La
yo

u
t

Fu
n

ct
io

n
 o

f 
U

ti
li

ti
e

s 
to

 

La
yo

u
t 

A
ss

e
m

b
li

e
s

X
1

2
E

n
gi

n
e

e
ri

n
g 

A
n

a
ly

si
s

E
n

gi
n

e
e

ri
n

g 
Sy

st
e

m
 

Si
m

u
la

ti
o

n
 u

se
d

 i
n

 M
o

d
e

l

X
1

3
Su

st
a

in
a

b
il

it
y 

A
n

a
ly

si
s

Su
st

a
in

a
b

le
 D

e
si

gn
 E

le
m

e
n

ts
 

in
cl

u
d

e
d

 i
n

 M
o

d
e

l

X
1

4

C
o

d
e

s 
a

n
d

 

St
a

n
d

a
rd

s 

C
o

m
p

li
a

n
ce

V
a

li
d

a
ti

o
n

 o
f 

C
o

d
e

s 
fo

r 

M
o

d
e

l

X
1

5
C

o
n

st
ru

ct
io

n
 

Sy
st

e
m

s 
D

e
si

gn

C
o

n
te

m
p

o
ra

ry
 S

ys
te

m
 

A
n

a
ly

si
s 

in
 M

o
d

e
l

O
u

tp
u

t 
V

a
ri

a
b

le
s-

 E
n

gi
n

e
e

ri
n

g 
P

e
rf

o
rm

a
n

ce
 M

e
a

su
re

s

P
a

rt
 2

. 
P

le
a

se
 in

p
u

t 
th

e
 s

ig
n

if
ic

a
n

t 
le

ve
l a

cc
o

rd
in

g 
to

 y
o

u
r 

e
xp

e
ri

e
n

ce

Su
rv

e
ry

 o
f 

E
n

gi
n

e
e

ri
n

g 
P

e
rf

o
rm

a
n

ce
 A

ss
e

ss
m

e
n

t 
o

f 
B

IM
 Im

p
le

m
e

n
ta

ti
o

n

P
le

a
se

 e
va

lu
a

te
 t

h
e

 r
e

la
ti

o
n

 b
e

tw
e

e
n

 i
n

p
u

ts
 a

n
d

 o
u

tp
u

ts
, 

in
p

u
t 

th
e

 s
ig

n
if

ic
a

n
t 

le
ve

ls
 i

n
 s

ca
le

 o
f 

5
,

5
=

 V
e

ry
 S

ig
n

if
ic

a
n

t

4
=

 S
ig

n
if

ic
a

n
t

3
=

 M
o

d
e

ra
te

2
=

 L
it

tl
e

 S
ig

n
if

ic
a

n
t

1
=

 N
o

t 
Si

gn
if

ic
a

n
t

0
=

 N
o

 R
e

la
ti

o
n

sh
ip

In
p

u
t 

V
a

ri
a

b
le

s

B
IM

 V
ir

a
b

le
s

Input Variables- BIM Uses

Appendix 2 

Survey of Engineering Performance of BIM Implementation (2/3) 

 

 

  



doi: 10.6342/NTU202304540
149 

Appendix 2 

Survey of Engineering Performance of BIM Implementation (3/3) 
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Appendix 3 

Survey Samples (Project Sample 1-1) 
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Appendix 3 

Survey Samples (Project Sample 1-2) 
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Appendix 3 

Survey Samples (Project Sample 1-3) 
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Appendix 3 

Survey Samples (Project Sample 2-1) 
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Appendix 3 

Survey Samples (Project Sample 2-2) 
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Appendix 3 

Survey Samples (Project Sample 2-3) 
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Appendix 3 

Survey Samples (Project Sample 3-1) 
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Appendix 3 

Survey Samples (Project Sample 3-2) 
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Appendix 3 

Survey Samples (Project Sample 3-3) 
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Correlation Analysis MiniTab Report (1/2) 

 

 

 

 

 

 

 

 

 

  

Correlation: X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

X2 0.6000

0.0000

X3 0.5150 0.8970

0.0000 0.0000

X4 0.2110 0.7310 0.7160

0.1320 0.0000 0.0000

X5 0.7040 0.6200 0.5590 0.4460

0.0000 0.0000 0.0000 0.0010

X6 0.3610 0.5400 0.5860 0.5620 0.6780

0.0090 0.0000 0.0000 0.0000 0.0000

X7 0.4510 0.7120 0.7530 0.7020 0.8160 0.6950

0.0010 0.0000 0.0000 0.0000 0.0000 0.0000

X8 0.4340 0.3670 0.3050 0.1970 0.3160 0.1960 0.2800

0.0010 0.0070 0.0280 0.1620 0.0220 0.1640 0.0450

X9 -0.1450 0.0680 0.0070 0.1410 -0.1810 -0.0090 -0.0630 0.6090

0.3060 0.6340 0.9630 0.3180 0.1990 0.9470 0.6570 0.0000

X10 0.3940 0.5390 0.5260 0.5940 0.6230 0.8740 0.6670 0.2550 0.0870

0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0690 0.5410

X11 -0.0680 0.0420 -0.0390 0.0310 -0.1460 -0.0720 -0.0900 0.6290 0.8690 0.0120

0.6330 0.7680 0.7820 0.8270 0.3000 0.6100 0.5270 0.0000 0.0000 0.9340

X12 0.3020 0.6630 0.6240 0.6780 0.3540 0.2900 0.5750 0.0980 -0.0680 0.3420 -0.1830

0.0290 0.0000 0.0000 0.0000 0.0100 0.0370 0.0000 0.4900 0.6300 0.0130 0.1940

X13 0.8590 0.5810 0.5310 0.2970 0.7710 0.4870 0.5990 0.4940 -0.1000 0.4480 -0.0350 0.3250

0.0000 0.0000 0.0000 0.0330 0.0000 0.0000 0.0000 0.0000 0.4810 0.0010 0.8040 0.0190

X14 0.6670 0.5290 0.5700 0.3750 0.8460 0.6190 0.7520 0.2700 -0.2830 0.5120 -0.2230 0.3610 0.8150

0.0000 0.0000 0.0000 0.0060 0.0000 0.0000 0.0000 0.0530 0.0420 0.0000 0.1120 0.0090 0.0000

X15 0.3720 0.5850 0.5550 0.6500 0.6440 0.8700 0.6810 0.2450 0.0930 0.8880 0.0680 0.2740 0.4440 0.5500

0.0070 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0800 0.5130 0.0000 0.6340 0.0490 0.0010 0.0000

Y1 -0.3570 -0.7480 -0.7180 -0.8090 -0.5180 -0.6580 -0.7090 -0.2510 -0.1160 -0.7080 0.0310 -0.7340 -0.4210 -0.4060 -0.6490

0.0090 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0730 0.4140 0.0000 0.8260 0.0000 0.0020 0.0030 0.0000

Y2 -0.7360 -0.7140 -0.7060 -0.3750 -0.7540 -0.5800 -0.6610 -0.4110 0.1780 -0.5160 0.1270 -0.3380 -0.7310 -0.7160 -0.5170

0.0000 0.0000 0.0000 0.0060 0.0000 0.0000 0.0000 0.0030 0.2060 0.0000 0.3710 0.0140 0.0000 0.0000 0.0000

Y3 -0.3220 -0.7430 -0.7430 -0.8500 -0.5260 -0.6840 -0.7300 -0.2880 -0.0990 -0.7070 0.0540 -0.7040 -0.4270 -0.4580 -0.6470

0.0200 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0380 0.4870 0.0000 0.7030 0.0000 0.0020 0.0010 0.0000

Y4 0.3610 0.7420 0.7020 0.7450 0.4920 0.2990 0.7020 0.2950 0.1270 0.3110 0.0870 0.8140 0.4240 0.4410 0.3680

0.0090 0.0000 0.0000 0.0000 0.0000 0.0310 0.0000 0.0340 0.3700 0.0250 0.5410 0.0000 0.0020 0.0010 0.0070

Y5 -0.0600 -0.0790 -0.0960 0.0030 0.0280 -0.0380 -0.0260 -0.7400 -0.7290 -0.1460 -0.7180 0.1580 -0.1020 0.0740 -0.0940

0.6750 0.5780 0.4990 0.9840 0.8460 0.7870 0.8560 0.0000 0.0000 0.3030 0.0000 0.2630 0.4710 0.6020 0.5050

Y6 -0.2140 -0.5600 -0.5320 -0.7000 -0.4060 -0.7280 -0.5380 -0.1000 -0.1010 -0.7490 0.0020 -0.4330 -0.2400 -0.2460 -0.7370

0.1270 0.0000 0.0000 0.0000 0.0030 0.0000 0.0000 0.4790 0.4770 0.0000 0.9900 0.0010 0.0870 0.0790 0.0000

Y7 -0.7110 -0.5630 -0.6000 -0.3080 -0.7040 -0.5010 -0.5700 -0.4680 0.0870 -0.4350 0.1210 -0.2560 -0.7300 -0.7370 -0.4100

0.0000 0.0000 0.0000 0.0260 0.0000 0.0000 0.0000 0.0000 0.5380 0.0010 0.3920 0.0670 0.0000 0.0000 0.0030

Y8 -0.0790 -0.5400 -0.5840 -0.7180 -0.3380 -0.7280 -0.5230 -0.1010 -0.1080 -0.7090 0.0390 -0.3790 -0.2000 -0.2730 -0.7130

0.5800 0.0000 0.0000 0.0000 0.0140 0.0000 0.0000 0.4780 0.4470 0.0000 0.7860 0.0060 0.1540 0.0500 0.0000

Y9 -0.3870 -0.4880 -0.5860 -0.4090 -0.7020 -0.7030 -0.7030 -0.2090 0.1780 -0.5930 0.1150 -0.2300 -0.4760 -0.7160 -0.6100

0.0050 0.0000 0.0000 0.0030 0.0000 0.0000 0.0000 0.1370 0.2070 0.0000 0.4150 0.1020 0.0000 0.0000 0.0000

Y10 -0.4380 -0.5500 -0.5700 -0.4220 -0.7660 -0.7560 -0.7040 -0.1960 0.1570 -0.7010 0.1080 -0.2090 -0.4820 -0.6960 -0.7110

0.0010 0.0000 0.0000 0.0020 0.0000 0.0000 0.0000 0.1630 0.2660 0.0000 0.4470 0.1360 0.0000 0.0000 0.0000
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Correlation: Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

Y2 0.5540

0.0000

Y3 0.9510 0.5620

0.0000 0.0000

Y4 -0.7010 -0.4250 -0.6820

0.0000 0.0020 0.0000

Y5 0.0970 0.1730 0.1370 -0.0220

0.4920 0.2210 0.3330 0.8770

Y6 0.8260 0.3730 0.7900 -0.3800 0.0360

0.0000 0.0060 0.0000 0.0050 0.7990

Y7 0.3810 0.8260 0.4590 -0.3370 0.1460 0.2590

0.0050 0.0000 0.0010 0.0150 0.3010 0.0640

Y8 0.7920 0.4030 0.8380 -0.3440 0.1040 0.8970 0.3220

0.0000 0.0030 0.0000 0.0130 0.4630 0.0000 0.0200

Y9 0.4560 0.7390 0.5240 -0.2770 0.0880 0.4300 0.6950 0.4920

0.0010 0.0000 0.0000 0.0470 0.5340 0.0010 0.0000 0.0000

Y10 0.4770 0.7660 0.5100 -0.2780 0.0770 0.4540 0.6680 0.5090 0.8870

0.0000 0.0000 0.0000 0.0460 0.5880 0.0010 0.0000 0.0000 0.0000
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Regression Analysis: Y1 versus X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15 

Stepwise Selection of Terms 

α to enter = 0.1, α to remove = 0.1 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 3 2591.9 863.96 70.37 0.000 

  X4 1 125.6 125.63 10.23 0.002 

  X10 1 306.2 306.21 24.94 0.000 

  X12 1 253.7 253.66 20.66 0.000 

Error 48 589.3 12.28       

Total 51 3181.2          

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

3.50401 81.47% 80.32% 78.61% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 26.96 1.20 22.44 0.000    

X4 -0.815 0.255 -3.20 0.002 2.55 

X10 -1.032 0.207 -4.99 0.000 1.56 

X12 -1.629 0.358 -4.55 0.000 1.87 

Regression Equation 
Y1 = 26.96 - 0.815 X4 - 1.032 X10 - 1.629 X12 

Fits and Diagnostics for Unusual Observations 

Obs Y1 Fit Resid Std Resid  
3 20.00 13.27 6.73 2.06 R 

21 3.00 11.04 -8.04 -2.37 R 

31 2.00 9.36 -7.36 -2.14 R 

R  Large residual 

 

Regression Analysis: Y2 versus X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15 

Stepwise Selection of Terms 

α to enter = 0.1, α to remove = 0.1 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 4 592.23 148.057 36.82 0.000 

  X1 1 17.53 17.528 4.36 0.042 

  X3 1 75.93 75.927 18.88 0.000 

  X4 1 17.12 17.116 4.26 0.045 

  X5 1 51.05 51.046 12.69 0.001 

Error 47 189.00 4.021       

Total 51 781.23          

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

2.00533 75.81% 73.75% 70.49% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 12.811 0.740 17.32 0.000    

X1 -0.303 0.145 -2.09 0.042 2.42 

X3 -0.765 0.176 -4.35 0.000 2.87 

X4 0.293 0.142 2.06 0.045 2.42 

X5 -0.493 0.138 -3.56 0.001 2.43 

Regression Equation 
Y2 = 12.811 - 0.303 X1 - 0.765 X3 + 0.293 X4 - 0.493 X5 

Fits and Diagnostics for Unusual Observations 

Obs Y2 Fit Resid Std Resid  
52 16.000 11.835 4.165 2.17 R 

R  Large residual 
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Regression Analysis: Y3 versus X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15 

Stepwise Selection of Terms 

α to enter = 0.05, α to remove = 0.05 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 3 2697.7 899.25 75.68 0.000 

  X4 1 273.4 273.42 23.01 0.000 

  X10 1 239.1 239.14 20.13 0.000 

  X12 1 132.8 132.80 11.18 0.002 

Error 48 570.3 11.88       

Total 51 3268.1          

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

3.44699 82.55% 81.46% 79.65% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 27.31 1.18 23.12 0.000    

X4 -1.202 0.251 -4.80 0.000 2.55 

X10 -0.912 0.203 -4.49 0.000 1.56 

X12 -1.179 0.353 -3.34 0.002 1.87 

Regression Equation 
Y3 = 27.31 - 1.202 X4 - 0.912 X10 - 1.179 X12 

Fits and Diagnostics for Unusual Observations 

Obs Y3 Fit Resid Std Resid  
17 13.00 20.41 -7.41 -2.23 R 

31 3.00 9.92 -6.92 -2.05 R 

R  Large residual 

Regression Analysis: Y4 versus X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15 

Stepwise Selection of Terms 

α to enter = 0.05, α to remove = 0.05 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 5 345.052 69.010 56.51 0.000 

  X4 1 8.438 8.438 6.91 0.012 

  X7 1 32.038 32.038 26.23 0.000 

  X10 1 21.702 21.702 17.77 0.000 

  X11 1 17.976 17.976 14.72 0.000 

  X12 1 53.667 53.667 43.94 0.000 

Error 46 56.179 1.221       

Total 51 401.231          

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

1.10512 86.00% 84.48% 82.26% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 90.823 0.497 182.71 0.000    

X4 0.2268 0.0863 2.63 0.012 2.94 

X7 0.3865 0.0755 5.12 0.000 2.64 

X10 -0.3105 0.0737 -4.22 0.000 2.00 

X11 0.2506 0.0653 3.84 0.000 1.10 

X12 0.801 0.121 6.63 0.000 2.14 

Regression Equation 
Y4 = 90.823 + 0.2268 X4 + 0.3865 X7 - 0.3105 X10 + 0.2506 X11 + 0.801 X12 

Fits and Diagnostics for Unusual Observations 

Obs Y4 Fit Resid Std Resid  
27 100.000 97.889 2.111 2.01 R 

36 91.000 93.794 -2.794 -2.63 R 

R  Large residual 
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Regression Analysis: Y5 versus X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15 

Stepwise Selection of Terms 

α to enter = 0.05, α to remove = 0.05 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 3 1773.06 591.02 37.62 0.000 

  X8 1 401.96 401.96 25.58 0.000 

  X9 1 254.44 254.44 16.19 0.000 

  X12 1 79.17 79.17 5.04 0.029 

Error 48 754.17 15.71       

Total 51 2527.23          

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

3.96382 70.16% 68.29% 64.79% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 21.34 1.66 12.85 0.000    

X8 -1.312 0.259 -5.06 0.000 1.64 

X9 -1.082 0.269 -4.02 0.000 1.63 

X12 0.678 0.302 2.24 0.029 1.04 

Regression Equation 
Y5 = 21.34 - 1.312 X8 - 1.082 X9 + 0.678 X12 

Fits and Diagnostics for Unusual Observations 

Obs Y5 Fit Resid Std Resid  
28 5.00 13.74 -8.74 -2.38 R 

R  Large residual 

Regression Analysis: Y6 versus X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15 

Stepwise Selection of Terms 

α to enter = 0.05, α to remove = 0.05 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 3 495.12 165.040 43.12 0.000 

  X4 1 89.60 89.603 23.41 0.000 

  X6 1 162.22 162.215 42.38 0.000 

  X14 1 51.48 51.483 13.45 0.001 

Error 48 183.71 3.827       

Total 51 678.83          

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

1.95633 72.94% 71.25% 68.09% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 10.765 0.673 16.00 0.000    

X4 -0.521 0.108 -4.84 0.000 1.46 

X6 -0.755 0.116 -6.51 0.000 2.04 

X14 0.441 0.120 3.67 0.001 1.62 

Regression Equation 
Y6 = 10.765 - 0.521 X4 - 0.755 X6 + 0.441 X14 

Fits and Diagnostics for Unusual Observations 

Obs Y6 Fit Resid Std Resid  
3 10.000 5.007 4.993 2.68 R 

4 5.000 0.528 4.472 2.38 R 

34 5.000 8.888 -3.888 -2.05 R 

R  Large residual 
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Regression Analysis: Y7 versus X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15 

Stepwise Selection of Terms 

α to enter = 0.05, α to remove = 0.05 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 3 419.65 139.883 33.55 0.000 

  X8 1 81.66 81.657 19.59 0.000 

  X11 1 34.60 34.596 8.30 0.006 

  X14 1 107.50 107.497 25.79 0.000 

Error 48 200.10 4.169       

Total 51 619.75          

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

2.04176 67.71% 65.69% 62.17% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 10.096 0.822 12.28 0.000    

X8 -0.706 0.160 -4.43 0.000 2.34 

X11 0.501 0.174 2.88 0.006 2.28 

X14 -0.611 0.120 -5.08 0.000 1.49 

Regression Equation 
Y7 = 10.096 - 0.706 X8 + 0.501 X11 - 0.611 X14 

Fits and Diagnostics for Unusual Observations 

Obs Y7 Fit Resid Std Resid  
24 4.000 8.670 -4.670 -2.40 R 

43 2.000 7.735 -5.735 -2.93 R 

52 14.000 9.075 4.925 2.51 R 

R  Large residual 

Regression Analysis: Y8 versus X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15 

Stepwise Selection of Terms 

α to enter = 0.05, α to remove = 0.05 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 3 330.24 110.082 44.21 0.000 

  X4 1 71.35 71.354 28.66 0.000 

  X5 1 28.96 28.956 11.63 0.001 

  X6 1 98.26 98.262 39.47 0.000 

Error 48 119.51 2.490       

Total 51 449.75          

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

1.57788 73.43% 71.77% 69.45% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 8.811 0.531 16.58 0.000    

X4 -0.4674 0.0873 -5.35 0.000 1.48 

X5 0.3261 0.0956 3.41 0.001 1.87 

X6 -0.6091 0.0969 -6.28 0.000 2.19 

Regression Equation 
Y8 = 8.811 - 0.4674 X4 + 0.3261 X5 - 0.6091 X6 

Fits and Diagnostics for Unusual Observations 

Obs Y8 Fit Resid Std Resid  
4 3.000 -0.040 3.040 2.02 R 

31 2.000 5.201 -3.201 -2.05 R 

34 4.000 7.126 -3.126 -2.04 R 

R  Large residual 
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Regression Analysis: Y9 versus X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15 

Stepwise Selection of Terms 

α to enter = 0.05, α to remove = 0.05 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 3 481.91 160.637 29.96 0.000 

  X6 1 77.91 77.910 14.53 0.000 

  X13 1 22.03 22.032 4.11 0.048 

  X14 1 99.00 99.004 18.46 0.000 

Error 48 257.40 5.362       

Total 51 739.31          

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

2.31569 65.18% 63.01% 60.33% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 10.551 0.627 16.84 0.000    

X6 -0.467 0.122 -3.81 0.000 1.62 

X13 0.368 0.181 2.03 0.048 2.99 

X14 -0.923 0.215 -4.30 0.000 3.69 

Regression Equation 
Y9 = 10.551 - 0.467 X6 + 0.368 X13 - 0.923 X14 

Fits and Diagnostics for Unusual Observations 

Obs Y9 Fit Resid Std Resid   
14 3.000 8.050 -5.050 -2.25 R    

33 7.000 7.267 -0.267 -0.13    X 

44 18.000 9.529 8.471 3.76 R    

52 18.000 9.529 8.471 3.76 R    

R  Large residual 

X  Unusual X 

Regression Analysis: Y10 versus X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15 

Stepwise Selection of Terms 

α to enter = 0.05, α to remove = 0.05 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 2 326.85 163.424 54.63 0.000 

  X5 1 56.24 56.237 18.80 0.000 

  X6 1 49.01 49.013 16.38 0.000 

Error 49 146.59 2.992       

Total 51 473.44          

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

1.72966 69.04% 67.77% 64.55% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 9.201 0.442 20.83 0.000    

X5 -0.452 0.104 -4.34 0.000 1.85 

X6 -0.3954 0.0977 -4.05 0.000 1.85 

Regression Equation 
Y10 = 9.201 - 0.452 X5 - 0.3954 X6 

Fits and Diagnostics for Unusual Observations 

Obs Y10 Fit Resid Std Resid  
14 2.000 6.095 -4.095 -2.50 R 

28 1.000 4.401 -3.401 -2.08 R 

44 12.000 8.354 3.646 2.16 R 

52 12.000 8.354 3.646 2.16 R 

R  Large residual 
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Appendix 6 

Coding of Machine Learning Modeling in Python with Keras (1/6) 

 

The code is to establish the main equation of MLMP and predict after the MLMP equation 

is established. 
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Appendix 6 

Coding of Machine Learning Modeling in Python with Keras (2/6) 

 

The code is created to include: 

1. Read the original data (the original EXCEL data has been converted into a pickle file) 

2. Divide the original data into training data and test data for MLMP training 

3. Establish various verification methods (such as least square method R-square, mean 

square error MSE, root mean square error RMSE) 
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Appendix 6 

Coding of Machine Learning Modeling in Python with Keras (3/6) 

The code is to import the original data of the EXCEL file and convert the data into a 

pickle file for subsequent modeling (the main reason is that it is time-consuming to read 

the EXCEL file). 

 



doi: 10.6342/NTU202304540
171 

 

 

 

 

  



doi: 10.6342/NTU202304540
172 

Appendix 6 

Coding of Machine Learning Modeling in Python with Keras (4/6) 

The code is to save all the parameters into the file (.h5) after completing the MLMP 

simulation and perform multiple verifications to find the best MLMP model (the main 

reason is that the random distribution of the normal distribution is placed at the beginning 

of the establishment of the MLMP model. The numerical value is not the best MLMP 

mode after one training is completed, so it is necessary to find the final MLMP mode after 

multiple calculations). 
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Appendix 6 

Coding of Machine Learning Modeling in Python with Keras (5/6) 
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Appendix 6 

Coding of Machine Learning Modeling in Python with Keras (6/6) 
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Appendix 7 

F-test and Correlation for LR and MLMP Models (1/2) 

 

 

 

 

 

 

 

 

 

 

  

LR Outputs MLMP Outputs

Mean 0.1993 0.2086

Variance 0.070278011 0.069032267

Observations 10 10

df 9 9

F 1.018045828

P(F<=f) one-tail 0.48959128

F Critical one-tail 3.178893104

LR Outputs MLMP Outputs

LR Outputs 1

MLMP Outputs 0.99911627 1

LR Outputs MLMP Outputs

Mean 0.2101 0.2149

Variance 0.068458767 0.067246322

Observations 10 10

df 9 9

F 1.0180299

P(F<=f) one-tail 0.489600384

F Critical one-tail 3.178893104

LR Outputs MLMP Outputs

LR Outputs 1

MLMP Outputs 0.999889582 1

Correlation Analysis

Project Test No 36

Project Test No 36

F-Test Two-Sample for Variances

Project Test No 1

Correlation Analysis

Project Test No 1

F-Test Two-Sample for Variances
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Appendix 7 

F-test and Correlation for LR and MLMP Models (2/2) 

 

 

 

LP Outputs in Average MLMP Outputs in Average

Mean 0.1732 0.1737

Variance 0.077209067 0.077107344

Observations 10 10

df 9 9

F 1.001319229

P(F<=f) one-tail 0.499232646

F Critical one-tail 3.178893104

LP Outputs in Average MLMP Outputs in Average

LR Outputs 1

MLMP Outputs 0.999868813 1

LP Outputs in Average MLMP Outputs in Average

Mean 0.1661 0.1658

Variance 0.079457656 0.079672178

Observations 10 10

df 9 9

F 0.997307439

P(F<=f) one-tail 0.498430679

F Critical one-tail 3.145749062

LP Outputs in Average MLMP Outputs in Average

LR Outputs 1

MLMP Outputs 0.999908671 1

F-Test Two-Sample for Variances

Project Test Set No 2

Correlation Analysis

Project Test Set No 2

F-Test Two-Sample for Variances

Project Test Set No 1

Correlation Analysis

Project Test Set No 1


