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ABSTRACT

Performance management is an essential task for construction projects. The primary
purpose is to evaluate various indicators which impact performance in project execution,
such as cost, schedule, quality, safety, and customer satisfaction. These performance
indicators provide management stakeholders with necessary decision-making references,
early risk warnings, preventive measures, and continuous improvement opportunities.
The effective performance evaluation methodology is the key to the success of a
construction project. However, engineering performance management involves a wide
range of measurement and evaluation details. In addition to the different views and
definitions of performance, the decision-makers may also adopt different decisions and
measures based on their experience in the level of supervision of each stage at project

execution.

The engineering design process has fundamentally impacted the life cycle of
construction projects, and notably, engineering performance constitutes a critical factor
for a project and shall be measured efficiently. The control, measurement, evaluation, and
prediction of engineering performance are significant in delivering construction projects,
and reliable engineering performance measurement is critical to project performance and
continuous improvement. In the project execution life, the engineering design at the early
stage is critical for successful execution and can significantly affect the final total cost as
illustrated in cost impact curves. Even though engineering costs have increased to
reaching around 20% of total installation cost on several construction projects,
engineering performance is less well realized and has received less focus compares to
construction performance. The implementation of the early-stage engineering design is
an essential key for successful execution and the engineering performance evaluation and

prediction have a substantial influence on the execution phases and effectiveness of the
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project. For above reasons, reliable and precision metrics for evaluating real-time

performance to drive improvement are significant.

Applicable industry engineering performance must be recognized and applied to
current engineering work processes before essential improvement and predictability of
performance can be developed. Over the past years, several approaches for engineering
performance measurement and evaluation methods have been proposed, and the studies
have demonstrated the cause-effect relationships between project variables and
performance measures. The historical research for engineering performance measurement
was analyzed primarily focused on job-hour performance, represented an incomplete

picture, and is not broad enough to assess the effectiveness of engineering performance.

Recently, building information modeling (BIM) application has been a rapidly
developing innovative technology in architecture and construction engineering. In
addition to having better control of the actual implementation of the project, BIM can
integrate various design, procurement, and construction operations in the project life
cycle, reduce project costs and errors, and improve project quality, efficiency, and safety.
Many international engineering projects have deployed BIM technology, and some major
domestic projects have also gradually introduced BIM technology and actively developed
information that can integrate schedule, cost, risk, and performance to control project
execution effectively. The application has reformed how owners execute the industry's
engineering, construction, commissioning, and operation. While large-scale projects at
home and abroad are consistently oriented towards the application of BIM technology,
the current academic research on BIM implementation and project performance
evaluation has not yet matured, and the relevant research is limited to the performance of

BIM implementation. It has not evaluated its project engineering design stage.

vi
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The application of BIM has changed how design-build or turnkey project are
performed. Based on understanding the relationship between the application of BIM use
elements and project results, the importance of predicting engineering design
performance, and understanding of its relative relevance, improving project engineering
performance based on the knowledge of the relationships between BIM use application
and performance outcomes becomes essential. This research proposes a system analysis
model to correlate BIM use input factors with engineering design performance output
analysis by leveraging data from 60 samples. The statistical variable reduction techniques
are deployed to develop multiple linear regression models linear regression (LR) analysis
and applying artificial intelligence neural network (ANNSs) machine learning multilayer
perceptron (MLMP) technology of the engineering performance to establish evaluation
models to measure and predict the application benefits of BIM in construction projects.
The development of the prediction models is based on practical execution data from
projects collected through a comprehensive BIM application survey and the best
prediction was generated, validated, and implemented. After rigorous verification, the
best prediction is obtained and the results prove a significant correlation between BIM
application and engineering design performance outcome measures, which can be applied
to predict engineering design performance measures using the established models. The
study establishes a comprehensive methodology for the proposing models, and the
accuracy and reliability of the models are tested validated. Moreover, engineering

performance measures can be predicted by BIM uses.

Keywords: building information modeling (BIM); artificial neural networks (ANNS);
Engineering, procurement, and construction (EPC); machine learning multilayer

perceptron (MLMP); engineering performance
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1.0 Introduction

1.1 Background

The term “Performance” attracts extraordinary attention from industry stakeholders
and researchers in various construction activities. In the five phases of an industrial
construction project, namely, preliminary planning, engineering design, procurement,
construction, and commissioning, the owner’s expectations and requirements for the
engineering design process that transforms ideas into reality are considered critical
driving factors for a successful project performance (Georgy, Chang, and Zhang 2005).
Engineering performance has a major impact on the subsequent project execution phases,
thus, potentially affecting the overall project outcome. Project owners and facility
managers need a means to evaluate the engineering performance of internal design
organizations or engineering contractors. Engineering contractors need the means to drive
improvement in their organizations as engineering costs as a percentage of total project
costs continue to rise. Since the engineering design process is critical for the project life
cycle, performance measurement and prediction are very important for successful project

delivery, and the ability to manage engineering performance is essential.

Cost engineering research has proven that the ability to influence and manage Total
Installation Cost (TIC) is greatest at the earliest stages of a construction project. The cost
curves widely used in construction engineering projects in Figure 1 (Anderson, Molenaar,
and Schexnayder 2007) illustrates the concept and were fully endorsed by the
Construction Industry Institute (CIlI). The ability to influence TIC is most significant at
the beginning of the project development and design process. During the implementation
of the procurement and construction phase, the ability to influence project costs declines

rapidly. By the commissioning and handover phase, the impact on the cost structure is
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almost negligible. According to the relevant historical data and construction engineering

experience, the engineering design stage can account for up to 20% of the project cost.

However, the engineering design content and related equipment and material

specifications directly affect the total TIC structure of the project.

HIGH

ABILITY TO
INFLUENCE COST

LOW

Influence
Curve

Cost
Expenditure

Planning Programming Advanced Planning/  Final  Letting Award
Preliminary Design  Design

<

Figure 1.

PROJECT PHASES

Construction

Cost Influence Curves

>

(Anderson, Molenaar, and Schexnayder 2007)

HIGH

CUMULATIVE
COST

LOW

Engineering design performance is a crucial aspect of a construction project, and it

plays a significant role in the overall project performance. Engineering design

performance focuses on design quality, efficiency, risk mitigation, cost control, schedule

management, quality assurance, stakeholder satisfaction, environmental and regulatory

compliance. In comparison to project overall performance, which encompasses the entire

project lifecycle, engineering design performance primarily focuses on the initial

planning and conceptualization stages. However, the quality of the design has a direct and

lasting impact on the overall project's success, as it sets the sequent stages for

construction, procurement, commissioning, operation, and maintenance. Thus, good

engineering design performance is essential for achieving favorable project performance

outcomes.
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The implementation of the early-stage engineering design stage is an essential key
for the project’s success or failure, and its engineering design performance evaluation and
prediction have a significant influence on the project execution life and execution
effectiveness of a project. Reliable and accurate assessment of project performance
evaluation is significant to the success of construction projects. Such prediction assists
stakeholder in obtaining early warnings against potential execution issues. Thus,
performance measurement and prediction constitute critical evaluations for higher

performance and successful project delivery.

The engineering design process has significantly changed the project execution
workflow of a facility by applying building information modeling (BIM) to the
architecture, engineering, and construction (AEC) industry, thereby promoting a rapid
interest in its application in the AEC industry. BIM is developing and managing
parametric digital building or facility models during its execution lifecycle (Lee et al.
2006). BIM has been acknowledged as a new execution project approach that can improve
productivity and quality in the construction industry for both academic research and
industry application (Smith and Tardif 2009). In recent years, BIM has become
increasingly vital in managing large scales of information and communication and
sharing processes on collaborative aspect of construction projects. The significant
evolution in BIM allows stakeholders to automate project tasks in the design, analysis,
coordination, fabrication, construction, startup, operation, and maintenance processes.
Most importantly, the nature and attributes of a digitally simulated facility can be the
knowledge base and record information center of a construction project (Eastman et al.

2011).
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1.2 BIM Application and Engineering Performance

A study of the foremost successful factors for BIM implementation from 2005 to
2015 found elements include design collaboration, engineering and construction owners
or contractors, early and precise model design visualization, construction planning and
coordination, enhancing the information exchange and knowledge database management,
and improved site arrangement planning and construction site safety (Antwi-Afari et al.
2018). Research on the significant benefits of the BIM application shows its usability in
three-dimensional modeling, work process, coordination and collaboration improvement,
quality, cost and schedule management, project potential risk monitoring, workforce and
resource management, utility and supply management, and sustainable implementation
(Seyis 2019). Furthermore, the study showed that effective scheduling and costing are the
leading top-ranking benefits of the BIM application. An analysis of the average BIM
return on investment for a project from 2005 to 2007 showed a 634% increase, indicating

its potential economic benefits (Azhar 2011).

BIM applications have proven to enhance project schedules, reduce project costs, and
improve the overall quality of facilities. Recently, many facility owners and developers
now required teams to embed BIM in their projects (Jung and Joo 2011). Its application
in the execution procedure and delivery process helps designers to develop, coordinate,
and revise a current design and measure it for engineering design performance more
efficiently. Also, contractors can easily extract material quantities from models and
correctly develop a cost estimate for the project (Won et al. 2013). This development
implies that engineering design or construction changes can be efficiently studied and
evaluated for cost and schedule impacts, constructability, and engineering performance.
BIM application enhances construction and startup processes efficiency by coordinating

different site activities (Suermann 2009). Nowadays, the increasing application of project
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planning and analysis by implementing more integrated BIM applications and capable
modeling technology has significantly improved project performance. The BIM-based
off-site assembly and fabrication approach for industrial facilities also offers expanded
benefits (Tatum 2018). Thus, BIM has changed the conventional project execution model
and impacted how stakeholders evaluate and predict project and engineering

performance.

The increasing application of BIM technology is very difficult to be sustained if the
synergy among BIM, like project performance, integrated project delivery, sustainability,
and risk management are not properly addressed (Kent and Becerik-Gerber 2010). In
addition, deploying BIM technology requires significant technical and non-technical
changes in widely adopted business practices in the AEC industry (Succar 2009; Gu and
London 2010). While technological interoperability has made significant progress, but
business or performance interoperability is still limited (Taylor and Bernstein 2009). An
integrated performance measurement and assessment approach is needed to assist owners
in assessing and aligning BIM application with their defined business strategy.
Furthermore, implementing new technology creates numerous challenges, including the
challenge of accurately measuring project performance is now critical. Therefore,
measuring and predicting engineering performance through project life is essential to

improving project performance through BIM implementation.

The application of BIM has a significant impact on project engineering performance
compared to projects that do not use BIM. The project apply BIM in execution has the

following major influence to engineering performance:
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e Enhanced Collaboration: BIM promotes better collaboration among engineering
disciplines (civil, structural, piping, mechanical, electrical and control system)

through a shared 3D model to reduce miscommunication and coordination issues.

e Real-Time Updates: BIM allows for real-time updates and changes to the design,

reducing the need for manual revisions and facilitating faster decision-making.

e Clash Detection: BIM software can automatically detect clashes and conflicts in

engineering systems, reducing errors and rework in the construction phase.

e Data Integration: BIM integrates engineering data, specifications, and material
information, streamlining the design, construction, operation, and maintenance

processes.

e Visualization: Engineers can visually assess the design, making it easier to identify
design flaws and optimize system performance. The constructability and the

requirements of operation and maintenance can be further reviewed.

e Energy Efficiency: BIM enables engineers to simulate and optimize building systems
for energy efficiency, which is essential for sustainable and high-performance

buildings and facilities.
e Cost Estimation: BIM can provide more accurate cost estimations for engineering

components, helping engineers stay within budget.

As for the projects do not apply BIM in execution, the engineering has the major

impact on:

e Limited Collaboration: In non-BIM projects, collaboration between engineering
disciplines may be less efficient and coordination with construction and operation can

be difficult, leading to communication challenges and coordination issues.
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e Manual Clash Detection: Engineers must manually detect clashes and conflicts in

design, which can be time-consuming and prone to errors.

e Data Fragmentation: Engineering data, material specifications, and cost information
may be stored in separate documents or systems, making integration and updates more

challenging.

e Visualization Challenges: Non-BIM projects often rely on 2D drawings, which may
not provide a clear visual representation of the design, potentially leading to oversight

of engineering issues and less coordination with construction and operation.

e Energy Efficiency Challenges: Achieving energy efficiency and sustainable design

may be more challenging without BIM tools for simulations and optimizations.

e Cost Estimation Uncertainty: Cost estimations in non-BIM projects may be less

precise, leading to potential cost overruns.

From above comparison, BIM application can significantly improve engineering
performance by enhancing collaboration, reducing errors, enabling real-time updates, and
providing tools for better visualization, analysis, and optimization. However, the projects
that do not apply BIM may encounter challenges related to communication, coordination,

and efficiency in the engineering and the subsequent phases.

1.3 Research Motivation

A reliable engineering performance evaluation is a critical component in the project
execution and improvement processes. Applicable industry engineering performance
systems shall be developed and then applied to project execution processes before the
improvement and predictability of performance can be implemented. Furthermore, a
based technique for evaluating engineering performance can enhance the benchmarking

effort on both an internal and external basis of the business outcome (Hanna 2016).

7
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Several approaches for engineering performance measurement have been proposed
for the past two decades. These historical approaches for measuring engineering
performance mostly focus on job hours expended on deliverables, the completion number
of drawings, and the specifications verse schedules. Several apparent issues, including
subjective weighting to address the complexity of each deliverable, costly data collection
effort on all hours expended on each deliverable, drawing scale changes that may increase
the number of deliverables, and the base of performance calculation are not adequately

presented and reported.

Recently, BIM application has reformed how owners execute the industry’s
engineering, construction, commissioning, and operation. Research on integration and
innovation for construction engineering suggested taking significant benefits from
computer automation modeling processes from project planning, executing, and closing.
The study also suggested that the constructed BIM models and planning, design,
construction, and startup processes provide a critical opportunity for the research related
to engineering and construction execution. However, most previous studies have
concentrated on the advantages of BIM use in projects. Until now, linking quantitative
studies connecting BIM use to improved engineering design performance has been
lacking. Moreover, the definition of performance study is limited in cost, schedule,
quality, and customer satisfaction because of the difficulty in measuring these terms.
Further issues are the difficulty of measuring and collecting the input and output variables

and the data complexity of construction projects.

There is increasing interest among industry practitioners to evaluate potential benefits
of BIM and accurately present the BIM's influence on executing projects. Recently, many
researchers have proposed case studies to describe how to be applying BIM for

application can improve project performance. Several research have found the value of
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specific case studies or isolated BIM application projects. However, the research findings
that may be expended across the construction industry still need to be discovered. There
has been an increasing focus on finding the benefits of BIM use on project performance.
However, a minor priority has been given to engineering performance. Improving
engineering performance based on the knowledge of the relationships between BIM

inputs and project performance outcomes becomes essential.

Based on the above reasons, which represent an incomplete picture and is not a broad
enough measure to assess the effectiveness of the engineering performance in project
execution applying BIM. It is necessary to contribute to the study of the effect of the BIM
application on engineering performance of engineering, procurement, and construction
(EPC) approach projects. Accurately measuring the engineering performance of BIM
applications and implementation is essential to facilitate early responsive action to adjust
or correct project performance, increasing the possibility of successful BIM
implementation in EPC project execution. This research proposes a systematic statistical
analysis that correlates the BIM uses with engineering performance, a machine learning
multilayer perceptron (MLMP) model, and a liner regression (LR) model to have better
engineering performance control evaluation and measurement and prediction in industrial

EPC approach projects.

1.4 Goals and Objectives

The goals and objectives are the aims and specific targets guiding this research
process in BIM application in engineering design performance. The primary goals are
intended to develop a generic system for BIM application on engineering performance

that aids the industry in the following ways:

e Enhancing engineering design performance by effectively utilizing BIM applications.
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Bridging the gap between BIM application potential and practical performance

implementation in engineering design processes.

Optimizing engineering design efficiency, accuracy, cost-effectiveness, and

sustainability in EPC projects by BIM application.

Leveraging data-driven insights and advanced technologies to improve design

performance outcomes by applying regression and ANN deep learning methods.

Applying the validated prediction model to evaluate the outcomes and developing

control procedures to ensure the desired engineering performance.

Contributing to the body of knowledge and best practices in BIM application for

engineering design performance.

To achieve above research goals, the following research objectives were identified:

To assess the current BIM adoption and utilization level in engineering design
processes and to understand past and current practices in engineering performance
assessment. To go through and summarize research on engineering performance

assessment and further define the performance.

To investigate the relationship among the BIM uses identified in the National BIM
Guide for Owners (NBGO), identify key design performance metrics, and develop
measurement methodologies for quantifying them. Find the correlation between BIM

use inputs and engineering design performance measures.

To analyze the collected data and to construct a framework that allows uniform
application of evaluation of engineering. To evaluate the impact of BIM applications

on design performance, such as efficiency, accuracy, and cost-effectiveness.

10
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e To analyze data and apply ANN machine learning models to identify patterns,
relationships, and predictive capabilities to build the machine learning multilayer
perceptron (MLMP) method and linear regression (LR) stepwise modeling and

develop an assessment of the prediction models.

e The prediction models can be validated and implemented by applying the actual data
from selected and targeted projects for laying out the suggestions of project successful
factors. To validate the developed models and findings through independent data sets
to monitor and evaluate the outcomes of the implemented models and assess their

impact on design performance.

e To apply and communicate the research process, methodologies, and findings to

contribute to the field of BIM application in engineering design performance.

The research process becomes focused, purposeful, and aligned with the desired
outcomes by establishing clear goals and objectives. These goals and objectives guide the
research activities, analysis, and implementation, ensuring that the research improves

design performance and advances the field of BIM application in engineering.

1.5 Research Scope

Based on the goals and objectives identified above, the research scope for
investigating the application of BIM application in engineering design performance can

be structured and developed from the following key aspects:

e Evaluation of BIM application adoption: evaluate the current level of BIM adoption
in the engineering and construction industry, including the extent to which BIM
application is utilized in engineering design processes, the awareness and
understanding of BIM among professionals, and the challenges faced in implementing

and integrating BIM applications.

11
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e Investigation and identification of BIM use factors and engineering performance
measures: identify and define key design performance metrics that can be influenced
or improved through the effective use of BIM. These metrics may include design
efficiency, accuracy, constructability,  collaboration,  cost-effectiveness,

sustainability, and overall project success.

e Data collection and best practices: conduct in-depth data collection and studies of
construction projects that have successfully utilized BIM applications to improve
design performance. Analyze the project workflows, implementation strategies,
challenges faced, and lessons learned to identify best practices and success factors in

utilizing BIM effectively.

e Construct, implement, apply and control: Utilize the MLMP model and LR stepwise
model and develop an assessment of the prediction models, and apply the models to

current execution projects.

e Recommendations for future knowledge: based on the research findings, develop
recommendations and knowledge for engineering firms and professionals to
maximize the benefits of BIM applications in design performance. Provide practical
strategies for integrating BIM into design workflows, addressing interoperability

issues, and enhancing skills and knowledge in BIM utilization.

e Future trends and opportunities: Explore emerging trends, technologies, and
advancements in BIM that have potential to enhance engineering design performance.
Investigate topics such as artificial intelligence and machine learning integration,

automation, and digital twins, and assess their implications for design processes.
By focusing on these research areas within the scope of BIM application in

engineering design performance, the study can provide valuable insights, guidance, and

12
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recommendations to bridge the gap between BIM potential and its practical
implementation in improving design outcomes. Recently, artificial neural network
(ANNS) applications have commonly been used in the industry to model performance and
productivity using intelligent information that learns and imitates from data and training
samples. As parts of ANNs, machine learning (ML) algorithms simulate human thinking
processes and apply computational methodologies to understand information and
experience. The method is applied to model constructions from the measuring, learning,

and predictive effectiveness of ML (Portas and AbouRizk 1997).

This research proposes a comprehensive performance evaluation model for BIM
application EPC approach projects. First, the study summarizes previous research on
engineering performance assessment, BIM application and ANNs machine learning and
the required research data collection based on benchmarking and a previous study of
critical successful factors. Second, the study investigated the relationship among the BIM
uses identified in the NBGO by the National Institute of Building Sciences (NIBS 2017).
The correlation between BIM use inputs and engineering design performance was used
to evaluate effective implementation, which included the benchmarking concept and the
BIM key performance indicators. Next, the study presented the MLMP method and a LR
stepwise modeling and developed an assessment of the prediction models. Furthermore,
the developed prediction models are validated by the training data and implemented by
applying the actual data from selected and targeted projects. The validity of the BIM
application engineering performance evaluation models was verified for multicriteria
statistical methods including coefficient of determination adjusted R-square and variance
value F-value of F-test from the test projects. Recommendations of the findings from the

research process, and the conclusions and suggestions for future works were proposed.
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2.0 Literature Review

This research begins with summarizing previous studies in engineering design
performance, building information modeling, artificial neural network, and ANNSs
machine learning. The progress of the most updated research on the relative subjects has

been reviewed and served as a base knowledge for this research.

2.1 Engineering Design Performance

Engineering design performance is an inconsistent term interpreted by many
practitioners in the construction industry. When thinking and applying engineering
design, involvers cannot limit themselves only to the tangible outcomes of the
engineering and design activities. Engineering provides the process and procedure to
transform owner expectations and requirements into engineered deliverables,
specifications, and documents. Engineering design can be ideas, images, sketches,
drawings, specifications, or physical models. Regardless of the neatness and timeliness
of engineering outcomes, and unless the owner is satisfied with how these engineering
outcomes perform down the road in the project life cycle, the engineering job cannot be

described as successful.

For decades, engineering performance has been studied and applied to define the best
evaluation and measurement metrics or indicators to interoperate performance. According
to the study by Tucker and Scarlett (1986), the most common indicator of engineering
performance in the construction industry is the ratio of engineering design work hours per
deliverable or drawing. Few researchers, however, have investigated more reliable
engineering performance measures. The most common to these studies is the introduction
of engineering performance in the form of value-added function, although

implementation varies between one study and another.
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A study introduced the owner satisfaction as a main based of measuring engineering
performance through the major success factors project execution such as cost, schedule,
and quality (Chalabi, Beaudin, and Salazar 1987). This approach can be formally
represented as a multi-attribute value function. The concept assumes that the owner makes
single comparisons between actual and specified performance on attribute designating
value to the stakeholders, then accumulates the single evaluations to determine a
comprehensive value of satisfaction measured by a function. Tucker and Scarlett (1986)
pursued another research activity, which addresses measuring engineering performance
by applying the concept of design effectiveness. An objective matrix method was used to
list, categorize, and weight design criteria having significant project impact. As an
evaluation procedure, this method is commonly used to measure and improve the
performance of difficult-to-measure functions. The objective matrix comprises four main
components: criteria, importance ratings and weights, performance scale, and
performance index. The requirements define what is to be measured and the weights
determine the relative importance of the criteria to another and to the overall performance
measurement objectives. The performance scale compares the project-measured value of
the benchmark to past performance and future goals. The performance index is calculated

to evaluate and track performance using these three components.

The definition of design effectiveness criteria constitutes the core of the research by
Tucker and Scarlett (1986) in the report SD-16 by Construction Industry Institute (CII).
Fourteen criteria were originally identified for the overall evaluation of design
effectiveness. Based on the quantitative nature, data availability, and timing of this
availability, the original list was refined to include only seven criteria to evaluate design
effectiveness. The criteria chosen are accuracy of design deliverables or drawings,

applicability of design documents, total design costs, constructability of designed facility,
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design economy, performance against schedule, and ease of facility startup. After
interviewing several construction industry personnel, the research team assigned weights
indicating the relative importance of each criterion to the remaining set of criteria. The
criteria with their assigned weights were used to construct an objective matrix with a 0-
10 scale corresponding to each criterion. This scale uses 10 as an indicator of optimal
performance, 0 as an indicator of poor performance, and 3 as an indicator of average
performance. For any project to be judged under this method, each criterion is evaluated
and assigned a value on the scale. A cumulative design effectiveness index is calculated
based on the values and weights of the different criteria. Each criterion can be assessed
based on subjective or quantitative measures. For instance, the accuracy of design
deliverables can be evaluated by measuring the number of rework or the number of
revisions per total amount of drawings. Using an objective matrix also allows each
criterion to be measured using a separate sub-matrix. A sub-matrix employs sub-criteria
to evaluate a specific criterion. This makes a sub-matrix final index correspond to a single
value entry in the original objective matrix. Using of sub-matrices allows for a far better

evaluation of a single criterion compared with a one-step approach.

Improving engineering performance has been one of the major considerations for
most contractors in AEC to minimize rework and manage risks. As the frontline
construction workforce, the contractors are working to transform design concepts to
physical facilities, the effective engineering approach is their major focus. Finding
effective strategies to manage engineering performance improvement has been concerned
and presented in several industry reviews (Mottahedin 2003). In these studies, proactive
evaluate and measure performance like selecting a capable contractor is fundamental to
secure the performance (Konchar and Sanvido 1998; Kashiwagi and Byfield 2002).

Several researchers proposed that contractors performance depends on the factors of the
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experience of contractors, financial capability, and feasibility and availability of
resources. The study proposed the project performance can be effectively predict by
staffing capability, company scale, experience, financial status, and quality control
(Wong 2004; Ling and Liu 2004) and suggested that past performance of contractor,
relationships with the local authority, and the level of mechanization are major
performance predictors. Some performance prediction models based on these suggested
predictors had been proposed to assist the contractor selection at the pre-contract stage

(Molenaar and Songer 1998; Ng et al. 2002).

Research focus on the project performance of the efficiency process is another study
to understand the relationship of efficiency and performance. The relative study is mainly
focuses on the time consuming, man-hours expenditure, or cost of production. A study
proposed the average man-hours spent for erecting formwork as a major performance
measure for civil work (Thomas and Napolitan 1995). Another study predicted the
contractors' performance in tunneling projects by examining the monthly site activities
progress rates (Touran 1997). Nevertheless, the researchers argued that the strong
supporters focus on efficiency may encourage contractors to stay with old engineering
assumptions (Crawford and Bryne 2003). The study pointed out the action restrict their
innovation and insensitivity to client needs changes, thus sacrificing effectiveness in
return. Regarding the concerns, the study suggested using performance indication to
represent both efficiency and effectiveness in evaluating and measuring for performance
prediction. Therefore, the study proposed the effectiveness of contractors of work can be
measured by their ability to complete customer requirements and propose innovative
ideas for the project execution (Cheung et al. 2005). As such, recently, the progressive
development of project performance evaluation systems has made measuring the

performance of contractors in terms of both efficiency and possible effectiveness
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(Crawford and Bryne 2003). In this connection, historical data from project performance
evaluation systems were considered for predicting contractors' performance as the project

progress (Wong and Cheung 2005).

A systematic and analytical scheme that measures and predicts engineering
performance is essential for industrial projects. The concept of engineering performance
strengthens the understanding of the measurability of the required inputs and expected
output variables (Maloney 1990). The study by the Construction Industry Institute (CII)
research team 156 (RT-156) identified 25 engineering inputs and 10 engineering design
performance outputs. CIl RT-156 proposed a genetic algorithm, the ANN integrated
search model, which developed the relationships between the 25 inputs and 10 outputs
(Chang, Georgy, and Zhang 2001). This model searched the engineering inputs directly
targeting the engineering performance, which is a part of the basis of this research. The
study used neuro-fuzzy systems to measure project engineering performance by
identifying project attributes and execution status that positively or negatively influenced

the performance (Georgy, Chang, and Zang 2005).

2.2 Building Information Modeling

Measuring and predicting project performance by implementing the BIM application
is complicated. Previous studies indicated that 55% and 58% of survey responses agreed
that the BIM application could lower project costs and overall project schedule,
respectively (Becririk-Gerber and Rice 2010). A strong positive relationship was found
and suggested among project schedule, cost, quality performance, and BIM
implementation (Azhar 2011; Barlish and Sullivan 2012; Bryde, Broquetas, and VVolm
2013). The benefits of BIM adoption show that 52% of the surveyed information

suggested reduced errors and omissions, 48% reduced rework, 39% reduced cycle time

18

doi: 10.6342/NTU202304540



for specific workflows, 37% reduced project duration, and 32% reduced construction
costs (Bernstein and Jones 2012). A study showed that project cost is the most significant
influence attribute for BIM application in project success. Other factors are execution
communication, work coordination improvement, and quality assurance and control
(Bryde, Broguetas, and VVolm 2013). By surveying project data from 200 more projects
via multiple regression analysis, a strong relationship emerged between the BIM
application and the project delivery time and perceived project quality performance when
controlling project execution complexity. This quantitative study examined whether the
project’s overall performance was influenced by BIM use implementation and BIM

execution planning in the project delivery method (Franz and Messner 2019).

Measuring the influence of BIM application on project performance for a single
project is a challenging work (Yuan et al. 2009). Deployment of applying management
strategies for predicting BIM impact on all projects in an organization is even more
challenging. For providing some guidance, several previous studies applied industry
surveys to identify and analyze the perception of construction project participants
regarding the benefits and return on investment that can be achieved through BIM
application (Jones et al. 2015; Zuppa, Issa, and Suermann 2009). A study found that 55%
of survey respondents thought that BIM application was associated with lower project
total costs, and 58% replied that the overall schedule was reduced (Becerik-Gerber and
Rice 2010). Research has also been proposed and studied by using detailed interview
analysis (Vass and Gustavsson 2014) and industry workshops (Stowe et al. 2014), the
findings from the studies generally supported the perceptions of practitioners received
from surveys. Moreover, several detailed case studies have compared BIM and non-BIM
application projects. These studies suggested a strong positive relationship between the

application of BIM and cost, schedule, and quality considerations. The other research
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identified cost and schedule improvements in hospital construction attributable to
adopting BIM application and a comprehensive integrated project delivery method. The
study reported a US$ 9 million cost savings of over 9% of total project cost and a 6-month
schedule saving of approximately 15% of total project schedule (Khanzode, Fischer, and

Reedn 2008).

While the above study examples offer some viewpoints into the extensive literature
on the benefits of BIM application, researchers have struggled to find solid quantitative
evidence connecting BIM use to improved project performance. Several reasons have
been suggested for this lack of evidence: (1) the difficulty in accurately measuring the
specific performance areas impacted by BIM and distinguishing them from other factors
like changes in delivery methods, (2) inconsistencies in measuring BIM use, including
the varying extent of adoption for each application and the maturity of the organizations
implementing the technology, and (3) the inherent uniqueness and complexity of each
construction project. The focus of this study was to examine the impact of implementing
one or multiple BIM uses on a project. A BIM use is defined as a method or strategy of
applying BIM throughout a facility's life cycle to achieve specific objectives (Kreider and
Messner 2013). Different approaches have been used to define BIM use variables
(Kreider 2013). The BIM Project Execution Planning Guide (CIC 2011) outlines 25
distinct BIM uses across various stages, including planning, design, construction, and
operation. For this research, the study specifically utilizes a subset of these BIM uses,

emphasizing those that have been widely adopted (Kreider, Messner, and Dubler 2010).

In recent years, numerous researchers have employed illustrative case studies to
present how the application of BIM for specific purposes can enhance project
performance. A notable study conducted by Franz and Messner in 2019 places particular

emphasis on evaluating the impact of BIM on project performance and quantifying the

20

doi: 10.6342/NTU202304540



benefits it brings. This research presents the findings of a quantitative study aimed at
examining the influence of BIM use adoption and BIM Execution Planning (BEP) on
project performance across various project delivery methods. The study revealed that
BEP participation plays a significant role as a predictor of BIM use adoption. Projects
that implemented BEP, either with a designer-contractor team or involving the entire
project team, demonstrated a higher adoption rate of BIM compared to projects that did
not employ BEP. Furthermore, the results indicated a substantial positive correlation
between BIM use adoption and the speed of project delivery, perceived facility quality,
and group cohesion within the project team, even when accounting for project
complexity. Despite the critical insights gained from this research, it also shed light on
the need for a fresh approach to capturing process data across projects to enable more
detailed and comprehensive analysis in the future. The industry stands to benefit from
additional studies that focus on obtaining and leveraging a dataset specifically designed
for the application of BIM and BEP processes. It is important to note that the existing
dataset applied in this study was initially collected to observe project-level trends in
performance resulting from variations in project delivery methods. The data analysis
provided empirical support for three out of the five project benefits of BIM, as perceived
by practitioners: faster delivery, enhanced collaboration, and improved quality. However,
there was a lack of information concerning how each specific BIM use was implemented
and how the BEP was utilized to integrate these uses into design and construction
workflows. Furthermore, the study did not include information on the observed
performance improvements at the process level, such as the number of Requests for
Information (RFIs) and the percentage of rework, while both factors are critical to impact

the performance.
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Recent advancements in BIM have significantly contributed to enhanced productivity
and improved quality within the AEC industry. In this context, Mom and Hsieh (2012)
have proposed a systematic and practical method for assessing BIM technology
implementations at the corporate level. Their research framework comprises four models:
BIM perception, adoption, performance, and capability maturity. These models were
derived and consolidated from various existing BIM frameworks and approaches utilized

within the AEC industry.

The BIM perception model plays a crucial role in assisting management in evaluating
the perceived benefits, costs, and risks associated with their investments in BIM
technology. Through this model, management can evaluate the potential benefits against
the costs and risks involved in implementing the BIM technology, with the return on
investment (ROI) technique serving as the best practice evaluation method. Moreover,
the BIM adoption model aids in formulating a strategic BIM execution plan by identifying
the critical success factors (CSFs) relevant to the identified BIM performance areas
(Bassioni, Price, and Hassan, 2004). Several approaches, such as the strength, weakness,
opportunities, and threats method (Luu et al. 2008), performance objectives, and cause-
and-effect linkage (Kaplan and Norton 1996), can be employed to achieve this objective.
Additionally, the BIM performance model plays a key role in establishing benchmarks
for important performance reference using key performance indicators (KPIs). The model
aims to utilize specific KPIs for BIM performance measurement. These metrics should
be tailored to the unique requirements of each project and organization while maintaining
adaptability to be applicable across the entire construction industry. Notably, there is
currently no consensus on KPI measures among existing performance measurement
frameworks in construction (Bassioni, Price, and Hasssan 2005), allowing BIM adopters

to choose a suitable framework based on their specific requirements. Furthermore, the
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performance measures should be concise and flexible enough to accommodate changes
as needed. It is worth noting that organizations rarely suffer from having too few steps in
the process (Kaplan and Norton 1996). Various techniques can be applied to predict,
measure, or evaluate project or company performance within the context of BIM
implementation. These techniques include a scoring system (Yu et al. 2007; Ling and Peh
2005), a regression model (El-Mashaleh, O’Brien, and Minchin Jr 2006; Elyamany,
Basha, and Zayed 2007), factor analysis (Isik et al. 2010), data envelopment analysis (EI-
Mashaleh, Minchin Jr, and O’Brien 2007; Horta, Camanho, and Da Costa 2010), a utility-
function model (Georgy, Chang, and Zhang 2005), and a value model (Sullivan 1998).
These techniques provide valuable tools for accurately assessing the effectiveness and

impact of BIM implementation on project and organizational performance.

The BIM capability maturity model serves as a framework to determine the BIM
performance levels within an organization. It offers an assessment procedure that guides
the evaluation process. This approach aims to provide a practical and feasible solution for
systematically assessing an organization's BIM application performance, considering
both technical and non-technical aspects. The model revolves around the diffusion of
BIM technology within the organization and evaluates the interaction between BIM
capability and BIM maturity. As proposed by Mom, Tsai, and Hsieh in 2011, the study
includes a comparison between the definitions of BIM adoption stages and an analysis of
the maturity levels based on maturity models and BIM performance maturity. This
comparison helps in gauging the organization's progress and effectiveness in adopting
and utilizing BIM, ultimately contributing to a more comprehensive understanding of its

BIM capabilities.

Now, there is an increasing understanding in the industry that BIM is operated and

maintained by facility owners. Thus, the NIBS released the NBGO in 2017 as a guideline
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for implementing projects for contractors, designers, and owners. The primary aim of the
NBGO is to provide building owners with a comprehensive outline for developing and
implementing BIM application requirements in their internal policies, procedures, and
contracts. This includes guidance on utilizing BIM for planning, designing, constructing,
and operating buildings. The McGraw Hill Construction Smart Market Reports indicate
that the business value of BIM use in construction projects has continuously increased
(BuildingSMART Alliance 2015). The business value of BIM trend study and user
surveys from 2007 to 2012 suggests that BIM implementation increased from 17% in
2007 to 71% in 2012, and 62% of responses from the construction industry recognized a
positive return on their BIM application investment. The 2014 BIM business value for
owners identified 68% of the facility owners in the U.S. as either deploying or applying
BIM for their current and planning projects. Now, BIM implementation is widely
deployed in the industry, and there is an increasing need among owners, stakeholders,
and contractors to evaluate the advantages of BIM applications more precisely (Succar

2010; Sher, and Willaims 2012 and 2013).

Research on integration and innovation for construction engineering (Tatum 2018)
was emphasized that leveraging computer automation modeling in project planning and
execution offers significant potential benefits. The study also highlighted how BIM
models and the various stages of planning, design, construction, and startup present a
crucial opportunity for advancing research in construction engineering execution. The
research program's results, based on case studies of innovative projects, provided valuable
insights, enabling a better understanding of construction innovation and its effectiveness.
This increased understanding led to significant findings concerning innovative design and
construction organizations and projects. Moreover, the study underscored the importance

of practical applications, particularly the application of BIM technology, to foster the
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expansion and acceleration of innovation within the construction industry (Yu et al.
2007). Ultimately, the research findings contribute to the core body of knowledge in
construction engineering activities and highlight their essential role in enhancing project
performance across critical aspects such as cost management, schedule adherence, safety,

quality, and sustainability objectives.

2.3 Artificial Neural Network and Machine Learning

Artificial Neural Networks (ANNs) and machine learning techniques have emerged
as powerful tools within the field of BIM, enabling engineers to leverage data-driven
insights and optimize design processes. This literature review explores the applications
of ANNSs and machine learning in the context of BIM for engineering design performance.
Research in Al and ML has provided reliable tools for the construction industry. ML
algorithms improve the implementation performance since the data samples available for
the learning process increase. Recently, ANNs in Al have provided robust systems and
introduced promising management techniques that improve current automation processes
in the construction business. ANNs have become integral in enhancing engineering
performance through their application in various machine learning tasks. In the literature,
numerous studies highlight the efficacy of ANNSs in optimizing engineering processes.
Researchers have extensively explored the use of ANNs for predictive modeling,
demonstrating their capability to forecast complex engineering outcomes with high
accuracy. Machine learning, including ANNS, has also been leveraged in optimization
problems within engineering design. From parameter tuning to the layout optimization of
complex systems, ANNSs offer innovative solutions that significantly streamline the

design process and improve overall performance.
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In the work by Moselhi, Hegazy, and Fazio (1991), the fundamental neural network
architectures and their potential applications in construction engineering and management
were explored, focusing on the usage and potential of ANNs in civil engineering. The
study offered a graphical representation of ANNs' functioning and demonstrated their
effectiveness in detecting various civil engineering issues (Flood and Kartam 1994).
Moreover, the research by Sonmez and Rowings (1998) proposed the development of a
model to evaluate the labor productivity using multilayer feedforward neural networks
trained with a backpropagation algorithm. This approach allowed for the presentation of
a complex mapping of factors affecting labor productivity. These studies shed light on
the utility and potential of ANNSs in the field of civil engineering, proposing their ability
to address various construction-related challenges and improve labor productivity
modeling. The evaluation performance models were proposed and implemented at two
actual power plant construction projects by examining the influential factors and creating
an ANN to evaluate labor productivity (Heravi and Eslamdoost 2015). The above studies
have reported the application and use of ANNs or ML to measure labor productivity and

engineering performance in some areas.

Multiple regression and ANNs have become common tools for developing prediction
models in various fields. For instance, A study utilized multiple regression approach to
forecast the unit costs and predict the construction progress and speed in design and build
projects (Konchar and Sanvido 1998). Similarly, a study used multiple regression to
forecast project cost, schedule growth, conformance to expectations, and user satisfaction
levels (Molenaar and Songer 1998). Wong (2004) employed multiple regression to
predict contractors' performance in meeting client requirements. However, not all
prediction models yield satisfactory results. The reason might be caused by the

assumption of linear characteristic nature between predictors and performance in the
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multiple regression approach as pointed out in the research. To overcome this limitation,
serval researchers turned to ANN as an alternative approach. The study used ANN to
predict the construction quality of design and build projects (Ling and Liu 2004).
Similarly, Georgy, Chang, and Zhang (2005) developed an ANN model to predict the
performance of civil engineering projects. In another study, ANN was applied with input
parameters such as contractor's financial capability, technical expertise, and project
experience to predict the organizational effectiveness and overall contractor performance.
Despite producing satisfactory prediction results, ANN's black-box computation process
sometimes poses challenges in interpreting the implications of the models (Dikmen,

Birgonul, and Ataoglu 2005).

While the literature recognizes the potential of ANNSs in engineering and BIM,
ongoing research is dedicated to addressing challenges such as interpretability,
robustness, and the need for large datasets. Future endeavors are likely to focus on
refining these aspects to further enhance the integration of ANNs and machine learning

techniques into engineering and BIM practices.
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3.0 Research Framework and Approaches

A comprehensive methodology is developed as a framework and an approach for this
research. The framework builds a structure of the phases of this research and provides the
planned outputs at each phase. The research approach lay outs the processes and methods
of this study, including target industry sector for data collection and model development
methodology. The concept of deep machine learning of multilayer perception techniques

is introduced and finally the proposed models is validated and implemented.

3.1 Framework

This research proposes a three-phase main framework, as illustrated in Figure 2. The
three phases are approached as phase 1: define and measure, phase 2: analysis and

modeling, and phase 3: validation and implementation.

Phase 1 Define and Phase 2 Analysis and Phase 3 Validati(.)n and
Measure Modeling Implementation
* Define Problem e Correlation Analysis for * Model Validation and
e Literature Review and Inputs and Outputs Implementation
Data Collection V o Apply Regression e Assess Model Accuracy
i d Reliabili
¢ Evaluate and Define Modeling and Reliability
Input Variables and e Apply Machine e Lavage successful
Output Measures Learning to Model factors to Body of
Knowledge

Figure 2.  Research Framework

At phase 1 of define and measure, the study first articulates the problem for baseline
industry requirements. Clearly defines the research goals, objectives, and scope of the
study related to BIM application in engineering design performance. Previous studies are
reviewed to form a body of knowledge as a foundation for this research. Next, identify
the key variables and metrics that are used to measure engineering design performance,

such as efficiency, accuracy, cost-effectiveness, or sustainability. Determine the data
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collection methods and sources, and this step involves collecting data from BIM models,
project records, surveys, or other relevant sources from target industry sectors. Finally,
develop a methodology to quantify and measure the identified engineering design
performance measures. This step involves establishing performance indicators,
developing evaluation criteria, or defining measurement scales. The output of this phase
is defined 15 BIM use input variables and 10 selected engineering performance output

measures.

Phase 2 analysis and modeling is to analyze the collected data using appropriate
statistical or analytical techniques, including descriptive statistics, correlation analysis,
regression analysis, and machine learning algorithms. Two stages are proposed to
approach phase 2. Stage 1 is to find the relationship between input variables and output
measures by correlation analysis and examine the interaction of the factors. Stage 2 is to
apply linear regression and machine learning models to the data to identify patterns,
relationships, or predictive capabilities. Train the models on the available data to develop
robust and accurate models. Explore the relationship between the identified design
performance metrics and other variables to gain insights into the factors influencing
engineering design performance. This analysis can help identify significant predictors or
drivers of engineering design performance. The outputs of this phase are correlation

analysis for inputs, inputs, and outputs, the LR model, and the MLMP model.

Phase 3 of validation and implementation is to validate and apply the developed
models by testing their predictive capabilities using independent data sets. This step helps
to assess the accuracy and reliability of the models. Compare the model's predictions or
recommendations with actual engineering design performance outcomes to evaluate its
effectiveness. This step ensures that the models are providing valuable insights and

contributing to improved design performance. Implement the validated models or
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findings in practical engineering scenarios. This step involves integrating the models into
BIM software tools, decision support systems, or design workflows. Assess the impact of
the implemented models on design performance by monitoring and evaluating the
outcomes. This step helps determine the practical implications and benefits of utilizing
the developed models in real-world engineering projects. The outputs of this stage are
model validation and implementation, further application of the model and monitoring
and control, discussion of the findings, core contribution, and suggestions of the body of

knowledge.

Throughout each planned phase, it is essential to document and communicate the
research methodology, data analysis techniques, and findings clearly and transparently.
This enables future researchers to replicate or build upon the research and contribute to
advancing BIM applications in engineering design performance. These outputs serve as
valuable contributions to the field of BIM application in engineering design performance.
They provide insights, recommendations, and actionable information for engineers,
designers, and stakeholders to improve engineering process efficiency, accuracy, cost-
effectiveness, and sustainability. Additionally, the knowledge of the research process and

findings allows for transparency, replication, and advancements in the field.

3.2 Approaches

Under the three-phase framework structure, the approach lays out this research’s
main steps. Four target industry sectors were selected to establish the scope of the
investigation, and the survey data was collected from the targeted sectors. This research
is primarily centered around projects that employ the EPC approach during their planning
and execution phases. The primary focus of this study is to examine and analyze the

performance of surveyed projects by utilizing BIM. The data is obtained through
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surveying projects that fall within specific industry sectors. These surveys are conducted
to gather valuable information and insights from the projects operating within these
sectors. By gathering survey data from targeted industry sectors, the study aims to offer
a detailed analysis and assessment of how BIM application in EPC projects perform
within these specific domains. To conduct this research, a key emphasis is placed on
projects that implement EPC practices during their execution phases. Through the
collection of survey data from chosen industry sectors, the study aims to deliver sector-
specific findings and conclusions that can benefit practitioners and stakeholders in those

industries. The methodology of model development is introduced as the base of the study.

3.2.1 Targeted Industrial Sectors

The primary goal of this research was to gain a comprehensive understanding of the
applications and effectiveness of BIM in large-scale construction projects. By focusing
on four distinct industry sectors, this research aimed to shed light on the diverse ways in
which BIM was being utilized across different domains, from power generation to high-

tech facility construction.

e Industry Sectors: The choice of the four industry sectors, namely power, oil and gas,
rail and metro, and high-tech facilities, was strategic. Each of these sectors has its
unique challenges and requirements, and the study sought to determine how BIM was

adapted to address the specific needs of each.

e Types of Projects Considered: Within each of these industry sectors, various types of
industrial projects were taken into consideration. This means that BIM's
implementation was assessed across a range of project types, from power plants to

high-tech facilities.
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e Data Sources: Data for the study was sourced from 60 projects conducted by
prominent U.S. companies. These companies were chosen based on their ranking in
the 2017 ENR lists of top design-build firms and top contractors. The selection of
these companies adds a level of credibility to the research as it draws upon real-world

practices of industry leaders.

e Project Diversity: By including a wide variety of projects within the selected sectors,
the research encompassed a broad cross-section of construction endeavors. This
ensured that the findings would be applicable to a range of project types, not limited

to a single niche within each sector.

e Scale of Projects: The research focused on projects with substantial financial
investments, ranging from US$ 750 million to US$ 3 billion. This deliberate choice
of scale allowed the researchers to explore how BIM was employed in significant

construction efforts, where the stakes are high, and the complexities are considerable.

e Data Summary: The research collected data from different sources and summarized
in Table 1. The table shows the distribution of the sampled projects among the four
industry sectors: 13 from power plants, 7 from oil and gas plants, 19 from rail and

metro, and 21 from high-tech facilities.

This study sought to provide a robust analysis of BIM implementation in the
construction industry by examining a variety of sectors and project types. The inclusion
of data from top U.S. firms and the emphasis on large-scale projects make the findings
relevant to major players in the industry and offer insights into the adaptation of BIM

technology to diverse construction challenges.

The following methods were performed to ensure the diversity of the data sets to
reach more accurate and reliable models: (1) Descriptive statistics provide insights into
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the central tendency and variability of the data and identify potential outliers. (2)
Correlation analysis identifies the strength and direction of relationships between
variables to identify potential confounding variables that need to be controlled for in the
modeling process. (3) Data visualization identifies patterns to identify potential gaps in
the data before modeling. (4) Data sampling applies to ensure a diverse range of data for
modeling to ensure equal representation of different subgroups. (5) Data transformation
for normalization ensures the data is in a suitable format for modeling to prevent biases

due to differences in different variable ranges.

Table 1.  Project Survey Summary

Model Development Model Validation
Industry Total Training Set Test Set
Project
Sector Sarr(r)ljelces Project Y Average TIC Project % Average TIC
P Number ® | (USSinmil) | Number ¢ (USS$ in mil)
Power Plants 13 11 21% 2,850 2 25% 2,500
OIIP‘EitSaS 7 5 10% 2,650 2 25% 2,600
Rail and Metro 19 17 33% 1,450 2 25% 1,420
High Tech
}igacﬂg 21 19 37% 800 2 25% 760
Total 60 52 100% 1,938 8 100% 1,820

3.2.2 Data Collection

This research developed a comprehensive data collection method to collect the
performance information of the targeted construction projects to build the proposed
models. Next, the study designed and distributed a project performance evaluation
package to collect required information and determine the relationship between BIM use
inputs and engineering performance measures. The survey package consists of three
forms is designed to explain the purpose of the research is to evaluate the impact of BIM
uses on engineering design performance and ask the evaluator’s experience of how BIM

uses in the project affects the engineering performance.
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The first section collects feedback on the acceptance level of output engineering
measures to understand the performance perspective from either project directors or
managers. This section consists of two parts, part 0 is the information for the inputter
including name, title, company, industry experiences, and BIM uses in years. And part 1
is the acceptance level in the percentage of 15 engineering performance measures
according to BIM use the standard of application experience. The second section in the
survey package is to evaluate the relationship between BIM use inputs and engineering
performance outputs by measuring the significant levels on a five-point Likert scale,
where 5 represents very significant, 4 is significant, 3 is moderate, 2 is little significant,
1 is not significant, and 0 is no relationship. The purpose is to understand the experience
and perspective of BIM use application in relation to performance. The third section
assesses the inputs of BIM uses on implementation levels and the engineering
performance by using a 10-point scale in percentage, where O represents 0%
implemented, and 10 represents 100% implemented. Moreover, the project information
of the above survey input includes the project name, project sector, project location,
contract type, contract value, and project schedule. The third section is the primary data
sets to conduct the prediction models. By using 15 input variables of BIM application and
10 output variables of engineering performance, the relationships are reviewed by Al and
statistical methods. This survey package with a data collection plan comprises three

sections as attached in Appendix 2.

The data collection was a rigorous process to ensure the quality of the survey and the
reliability of the data. After the necessary data collection, these data were applied to
evaluate the statistical key results to obtain the significant levels of the input and output
variables. These confirmed important variables were formed to construct the correlation

analysis and the assessment MLMP and LR prediction models. Data preparation is a
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crucial step in preparing the original data for machine learning. This process involves
selecting the relevant data and applying various pre-processing steps to transform the raw
data into a format suitable for training and validating machine learning models. The data
is split into multiple parts, with one part used as the training set for model development,
and the other part as the test set for model validation and implementation. Three project
samples with a data collection plan of three sections of survey package as attached in
Appendix 3. Some of information are protected for the project required confidential and

commercial reasons.

In this study, a total of 60 data samples are grouped into two sets: the training set,
which is essential for training the deep model to understand and apply concepts, design
rules, and produce accurate results; and the test set, which is used to evaluate the
effectiveness of the predictive model trained with the training set. During the training
process, the model is adjusted by fitting parameters, which involves adjusting weights to
optimize the model's performance. The test set, on the other hand, is not used during
training but is utilized in the validation process to inform the choice of parameters and
input features. Once the final model is selected, the test data set serves as a final test,
providing the best possible estimate of the model's success when applied to entirely new
data. This step ensures the reliability and generalizability of the predictive model for

future data.

Data mining is applied to improve efficiency and productivity by identifying patterns,
trends, and insights to optimize data preparation processes. Preprocess and clean the data
to ensure the quality and suitability for data mining before applying it to build the models.
By analyzing data from previous BIM application and engineering design processes, the

patterns and trends are used to optimize processes for better BIM application and
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engineering performance, reduced costs, shorter design cycles, and increased customer

satisfaction (Hao, Zhien, and Zhao 2019).

3.2.3 Model Development Method

To identify the influence levels of BIM use inputs on engineering performance
measure outputs, two approaches were proposed, as shown in Figure 3, to evaluate the
relationship between the inputs and outputs and develop the performance prediction
models. The first approach is separated essential and enhanced BIM uses, which considers
how essential and enhanced BIM uses influence separately at different phases of
engineering performance measures. This is defined as the separated BIM use model,
which applies correlation analysis to evaluate the relationship strength between 10
performance outputs associated with 5 BIM use inputs for the essential model and 10
performance outputs related to 10 BIM use inputs for the enhanced model. This method
establishes the statistical correlation significance and possible connection among the
inputs and outputs. The second approach with 2 stages is the combined BIM use approach,
which combines the essential and enhanced BIM uses and considers how essential and
enhanced BIM uses jointly influence different phases of engineering performance
measures. Stage 1 is to construct the MLMP model, and stage 2 is to construct the LR
model. In approach 2, both were built to evaluate the collected output measures and input
variables from the data survey and collection, find regression and activation equations,

and predict the engineering performance.

MiniTab 18 statistical software package is selected and deployed for the data
analysis in this research. MiniTab is a comprehensive, robust data mining, predictive

analytics, and modeling tool for performing statistical analysis, including correlation,
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hypothesis testing, regression, and ANOVA. The main features used in this study are

basic statistics, regression, ANOVA, and control charts under statistical analysis modules.

Essential BIM Uses
Input: 5 Variables
Enhanced BIM Uses
Input: 10 Variables

Figure 3.  (a) Approach 1 Separated BIM Uses

Engineering
Correlation Analysis Performance Measures

Output: 10 Measures

Essential BIM Uses Machine Learning Engineering
and Enhanced BIM Mutilayer Perception Performance Measures

Input: 15 Variables (MLMP) Output: 10 Measures

(b) Approach 2 Stage 1 Combined BIM Uses for MLMP Model

Essential BIM Uses : : Engineering
and Enhanced BIM Q Liner RLegressmn Q Performance Measures
Input: 15 Variables (LR) Output: 10 Measures

(c) Approach 2 Stage 2 Combined BIM Uses for LR Model

Figure 3.  (b) and (c) Approach 2 Combined BIM Uses

BIM applications were implemented in the life cycles of the 60 surveyed project
samples with valid data points. These survey datasets were separated into two groups
training set and a test set. The first group of 52 projects applied sample data as a training
set for required model development, and the second group of 8 project data as a test set
for model validation and implementation. The second group of 8 project samples of the
test set was selected from the four sectors near the mean TIC average statistical points for
model validation and implementation, as indicated in Table 1. The first compared the
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existing project datasets by selecting two projects from the two most populated sectors.
Project sample 1 from the rail and metro sector and Project sample 36 from the high-tech
facility from the first group of 52 project sample training sets. The second step uses 8
project sample test sets from four sectors and two from each sector divided into two test
sets for model validation. The separation of samples aims to spread the data among sectors

to ensure the diverse spectrum of the projects.

3.3 ML Multilayer Perception Techniques

An MLMP technique is a feedforward ANNs that creates a group of outputs from a
group of inputs for function approximation. MLMP is a type of artificial neural network
that consists of multiple layers of nodes or neurons, and this network helps to obtain
information about the underlying reasons in the advanced models of deep learning. It is
commonly used in machine learning for various tasks like classification, regression, and

pattern recognition.

MLMP is widely used in machine learning and can be applied to various tasks,
including engineering performance analysis and prediction is commonly used in simple
regression problems. A multilayer perceptron strives to remember patterns in sequential
data. Because of this, it requires many parameters to process multidimensional data. It is
characterized by multiple layers of input nodes connected as a directed connection
between the input and output layers. MLMP consists of the input, hidden, and output

layers.

Figure 4 shows a diagram of a neuron in an MLMP network, also called Node i. It
includes a summer and nonlinear activation function g. This study applies the Karas
source Python library to develop and evaluate the proposed deep learning models. Keras

is a high-level deep learning library written in Python. It provides a user-friendly and
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intuitive interface for building and training neural networks, including MLMPs.
Multilayer feedforward networks use several training techniques, the significant portions
of a feedforward network’s learning and training process with a backpropagation

algorithm (Svozil, Kvsanicka, and Pospichal 1997).

Input layer Hidden layer Output layer

Figure 4. Multilayer Perceptron Feedforward Neural Network

In MLMP, the information flows from the input layer through the hidden layers to
the output layer in MLMP. Each neuron in a layer process its inputs and passes the result
to the next layer. The weights and biases are parameters that the network learns during
training, they are adjusted to minimize the difference between predicted and actual
outputs. MLMP is trained using a supervised learning approach, it involves feeding input
data forward through the network, calculating the error, and adjusting weights and biases
using backpropagation. Backpropagation is an optimization algorithm that minimizes the
error by adjusting weights backward through the network. It involves computing the

gradient of the error with respect to the weights.
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The applications of MLMP are pattern recognition, classification and regression,
function approximation, time series prediction and natural language processing. MLMP
is applied in tasks like language translation, sentiment analysis, and text classification.
MLMP's strength lies in its ability to model complex non-linear relationships in data. Its
architecture and training process make it a foundational building block for more advanced
neural network architectures used in contemporary machine learning applications. MLMP
is proposed to apply to this research by using it’s regression feature to enhance

performance.
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4.0 Input Variables and Output Measures

This section explains the input variables and output measures applied to this research.
The input variables are the BIM use, and the output measures are the engineering
performance outputs. The definitions of input variables and output measures are
investigated, reviewed, discussed, and defined for correlation analysis and model

development purposes.

4.1 BIM Use Input Variables

The National Institute of Building Sciences (NIBS) launched and published a
National BIM Guide for Owners (NBGO) in January 2017. The applicability of NBGO
can vary depending on the specific country and jurisdiction, as different countries may
have their own guidelines and standards for BIM implementation in the construction and
real estate industries. The NBGO is typically designed to assist building owners and
operators in effectively implementing and using BIM throughout the lifecycle of a
construction project. It provides guidance on how to specify BIM requirements, set
expectations, and establish protocols for information exchange with project teams and

stakeholders. The key points to consider regarding the applicability of a NBGO are:

e Local Regulations: Different country or region has specific regulations or guidelines
related to BIM implementation. In some countries, BIM requirements are mandated

for public projects, and these requirements may align with a national BIM guide.

e Project Type: The applicability of the guide depends on the type and scale of the
construction project. Larger, more complex projects are more likely to benefit from
comprehensive BIM guidelines, but the principles can be adapted for smaller projects
as well.
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e Industry Standards: Consider industry-specific standards and guidelines. For
example, organizations like the BuildingSMART International have developed global

standards for BIM that can be used in conjunction with or in place of national guides.

e Organizational Requirements: Even if there is no specific national guide, a BIM guide
for owners can be developed at the organizational level to ensure consistency and best

practices for BIM implementation.

e Collaboration: Collaboration with architects, engineers, contractors, and other
stakeholders is crucial. The applicability of a BIM guide is often tied to the

willingness of all parties involved to adopt BIM processes.

It is essential to understand the specific requirements and guidelines in different
region and for the type of project. BIM can offer numerous benefits in terms of improved
project coordination, reduced costs, and enhanced facility management, so it is worth
considering its implementation and referring to relevant guides and standards for
guidance. BIM guides and standards can vary significantly from one country to another.
These variations are often influenced by factors such as local regulations, construction
practices, and the level of BIM adoption within a specific region. A general comparison

of BIM guides in different countries:

e United States National BIM Standard (NBIMS): The United States has a National
BIM Standard, which provides a framework for BIM implementation. It includes
guidelines and templates for BIM execution plans, standards for data exchange, and
classification systems like COBie (Construction-Operations Building information

exchange).

e United Kingdom BS 1192 and PAS 1192: The UK has been a pioneer in BIM adoption

with its BS 1192 and PAS 1192 standards. These standards provide detailed guidance
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on BIM processes, information exchange, and common data environments. The UK

also introduced a BIM Level 2 mandate for government projects.

e Canada CAN/CSA Z195: Canada has the CAN/CSA Z195 standard for BIM, which
outlines processes and guidelines for BIM implementation. Provinces like Ontario

have also developed their own BIM standards and guidelines.

e Australasian BIM Framework: Australia has the Australasian BIM Framework, which
provides guidance for BIM implementation in the Australian and New Zealand

context. The framework includes principles for BIM use in various project stages.

e Singapore BCA BIM Guide: The Building and Construction Authority (BCA) in
Singapore has developed a comprehensive BIM guide. It includes guidelines for BIM

standards, project collaboration, and BIM submission requirements.

e Germany: DIN 69910-1 and VDI 2552: Germany has DIN 69910-1 and VDI 2552
standards that provide guidance on BIM processes and information modeling. These

standards are widely used in the German construction industry.

e China: China has its own BIM standards and guidelines that align with the country's
specific construction practices and regulations. These standards are developed by

organizations such as the China BIM Alliance.

e Netherlands: The Netherlands has a BIM Loket, which serves as a national platform
for BIM development. They have their own guidelines and standards, including the
Netherlands Standard for Building Specifications (STABU) and the Netherlands

Information Model (NL/STB).

The application of specific BIM guides and standards varies from country to country
and often depends on local regulations, industry practices, and project requirements.

There is no single universally adopted BIM guide or standard that applies worldwide.
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However, some guides and standards have gained broader recognition and use in various
regions. The following standards provide general practice and application for most of the

locations.

ISO 19650: 1ISO 19650 is an international standard for BIM that provides a framework
for managing information over the entire life cycle of a built asset using BIM. It has
gained global recognition and serves as a foundation for BIM implementation in many

countries.

e UK BIM Standards (BS 1192 and PAS 1192): The United Kingdom's BIM standards,
including BS 1192 and PAS 1192, were influential in the early adoption of BIM

practices and have been widely used as a reference in many countries.

e National BIM Standard (NBIMS) in United States: The NBIMS in the United States,
developed by the National Institute of Building Sciences (NIBS), provides guidance
for BIM implementation in the U.S. It has been used as a reference point for BIM

practices in North America.

e Australasian BIM Framework: The Australasian BIM Framework is well-recognized

in Australia and New Zealand and has influenced BIM practices in the region.

e Local Standards and Guidelines: Many countries have developed their own BIM
standards and guidelines tailored to their specific construction industry and regulatory
environment. These local standards are often more widely used for projects within

their respective countries.

It is important that BIM adoption and the use of specific guides and standards can
change over time, and new standards may have emerged. When embarking on a BIM
project, it is essential to identify the most current and relevant BIM guides and standards

for the specific region and project type. Additionally, project owners and stakeholders
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should consult with local authorities and industry organizations to ensure compliance
with the latest regulations and best practices. In this research, the NBIMS of the United
States developed by the NIBS, provides more general practice guidance for BIM
implementation in the U.S. It has been used as a reference point for BIM practices in

North America, is applied to this study.

The NBGO intended to direct facility owners to apply and implement the BIM
application requirements in execution procedures and contracts to plan, design, build,
startup, operate, and maintain the facilities. The Guide defines a method for developing
and implementing the BIM application requirements for a construction project from the
viewpoint of facility owner. It assists them in maximizing the potential opportunities of
BIM implementation in their projects. The Guide further indicates that the BIM
application can facilitate the owner’s communication of decision-making processes,
design concept, details integration, project-wise coordination across different stages,
improved project overall schedule and cost control, after-construction facility
management and maintenance, building automation, monitoring, and many other
benefits. Notably, BIM implementation in the U.S. keeps increasing since owners benefit
the most by applying BIM as a control tool to maximize a facility’s value during its

overall execution phase.

The BIM uses defined in NBGO are a standard criterion for implementing BIM
applications, enabling the facility’s overall life cycle to reach specific objectives expected
by the owner. The implementation of BIM empowers facility owners to utilize the
integrated model in various applications tailored to their specific requirements. To ensure
a successful project execution, a well-defined project execution plan is essential, outlining
the project deliverables to be provided to the facility owner upon the turnover after test

and commissioning. The defined deliverables encompass a design intent model, a
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construction model, and comprehensive operations and maintenance data, as illustrated
in Figure 5. To avoid any ambiguities or misunderstandings, the content of each
deliverable should be explicitly specified within the contract documents involved in
project. The BIM use input variables identified to apply in this study are included in the

deliverables as described in the following processes.

e Design Intent Model: This model captures the intended design, and serves multiple
purposes, including project BIM execution, digital design mock-ups, decision

support, and design coordination.

e Construction Model: Developed based on criteria relevant to the facility's fabrication
and construction, these models stem from the design intent model during construction
coordination. Cross-platform 3D model viewing software is often used to combine
the files to accommodate various subcontractor file formats and provide a higher level

of detail.

e As-Built Model: This model captures the status of the project upon its completion.
Initially based on the design intent model, it progressively incorporates project

information as construction progresses.

e Record Model: Prepared for operations and maintenance purposes, the record model
typically utilizes the design intent model as a baseline and is then updated to reflect
all changes made during construction and testing. The goal is to create a lightweight
model with sufficient detail for facilities management operations, without being
overly detailed. It contains accurate attribute data on major equipment and systems,
supporting facilities management documentation. The model is utilized during

commissioning or updated to reflect commissioning data.
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e Operations and Maintenance Data: This deliverable comprises asset inventory with
asset names, classifications, and locations. For critical components, attributes such as
make, model, and serial number are considered. Throughout the project phases, the
project BIM team must provide a formal report confirming the completion of
consistency checks. This report is discussed as part of the review process and

addresses any identified interferences and constructability issues.

As depicted in Figure 5, the collaborative process between design and construction
professionals involves the creation of design intent models to generate accurate
construction documents. These design intent models serve as a foundation for developing
construction models during the construction phase. As construction progresses, these
models evolve to capture project data, forming the basis for an as-built model that depicts
more detailed construction task conditions. Throughout construction, the integration of
various construction models culminates in the development of the as-built model. This
model, along with ongoing project information exchanged with design professionals,
facilitates the updating of design intent models into a record model. To cater to the
specific needs of operations and maintenance, the record model is derived from the design
intent model, providing a lightweight version without compromising essential
information. Overall, the record model, along with the as-built model and project data,
offers facilities management personnel a diverse array of information in multiple formats,
effectively supporting various facilities management uses and activities. The seamless
interaction between design intent models, construction models, as-built models, and
record models ensures a comprehensive and streamlined approach to facility

management.
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Figure 5.  Sample Process for Life Model Requirements

From section 4.2 BIM uses of the NBGO, a BIM use refers to the application of BIM
throughout the lifecycle of a facility to achieve specific objectives. The versatile nature
of BIM technology enables various owners to utilize the model in diverse ways, tailoring
its implementation to suit their project's distinct requirements. As the project progresses
through different phases, the information constructed within the BIM expands both in
quantity and detail. These BIM uses can be categorized into three main types: essential
BIM, enhanced BIM, and owner-related uses. Each of these categories represents specific
functionalities and purposes of BIM, providing owners with valuable tools to optimize
their project management and decision-making processes. The essential BIM uses
identify a minimum key requirement to apply BIM in the project, and the enhanced BIM
uses identify an extension of essential BIM use to reinforce the application of BIM use.
The owner-related uses are mainly the usage of BIM identified by the owner to include
the required information related to operation and maintenance after project turnover.
NGBO suggests that it is very important that the BIM uses should align with project goals

and execution plans.

The guild establishes a minimum requirement for the five essential BIM uses

indicated in Table 2, second column from X1 to X5, namely X1: existing conditions, X2:
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design authoring, X3: design review, X4: three-dimensional (3D) coordination, and X5:
record modeling. As shown in Figure 6, the minimum BIM example suggests the five
essential BIM uses applications in the five phases of an industrial construction project life
cycle. The main application applies to a project phase indicated in solid boxes and the
extension applications in dotted boxes. From applying the five essentials is in the project
phases, as shown in Figure 6, the interaction and the overlapping of the BIM use expended
in the five phases of the project cycle explicitly explains the correlation among these BIM

uses input variables.

‘ Planning ‘ Design ‘ Procurement Construction Operation

’ Existing Condition ‘

\—b{ Design Authoring ‘

Design Reviews

| 3D Coordination |

4“ | Record Modeling

Figure 6.  Minimum BIM Use in Project Phases

Project conditions classify the enhanced BIM uses, and the owner-related BIM uses
in the Guide, the Enhanced BIM Uses as described in Table 2 from X6 to X15, namely
X6: cost estimating, X7: phase and 4D planning, X8: site analysis-development, X9: site
utilization-for construction, X10: digital fabrication, X11: 3D location and layout, X12:
engineering analysis, X13: sustainability analysis, X14: codes and standards compliance,
and X15: construction systems design. The definition of the essential and enhanced BIM
use defined in NBGO is listed in Table 2 to identify the actual practice and to provide the
application guidelines. The owner-related BIM uses, including asset management,
disaster planning and management, and space arrangement in NGBO, are suggested in

the Guide to confidently include the operation of manufacture for vertical and horizontal
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phase information. Owner-related uses represent the culmination of the BIM journey,
emphasizing the owner's specific needs during the operation and maintenance phase. This
phase involves the integration of crucial information identified by the owner to facilitate
seamless operation and maintenance post-project turnover. By tailoring BIM to these
owner-centric requirements, the technology becomes a powerful asset, contributing to
effective facility management and long-term sustainability. In essence, the tripartite
classification of BIM applications aligns with the distinct demands of design,
construction, and operation, offering a comprehensive approach to project optimization.
Considering that the size of the data domain for the collection and analysis from the owner

is complicated, the owner-related BIM uses are excluded from this study.
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Table 2.

BIM Use in NBGO

Category BIM Uses Definition in NBGO Section4.2 |
Existing Conditions A process of geom.eFr.y and 1nf9rmat10n of the existing
conditions and facilities on a site
Design Authoring A process is use.d or implemented to develop a BIM of the
engineering design
Essential . . A quality process is used to allow stakeholders to verify design
D R . _
BIM Uses esign Beview and reviews can resolve design issues
L A process for elements can be coordinated, and clash detection
Coordination . . .
or conflicts can be identified
Record Modeling A process conta.n}s an accurat.e.deplctlon of the physical and
functional conditions of a facility
Cost Estimating A process used to generate a quantity takeoff and cost estimate
and provide cost effects of changes
4D used to effectively plan the phased occupancy in a
Phase and 4D Planning | renovation, and the construction sequence with space
requirements
Site Analysis- BIM and GIS tools are used to evaluate properties to determine
Development the most optimal site location
Site utlllZ’fltIOIl for For Construction (See Phase and 4D Planning)
Construction
Machine technology to prefabricate directly. model is used as
Digital Fabrication input into manufacturing for production of components and
Enhanced assemblies
BIM Uses Utilizes a model to lay out the building assemblies and

3D Location and Layout

produce 2D/3D component drawings used during site
construction

Engineering Analysis

The integrated tools that allow the physical and material
properties of elements, assemblies, and systems within for
analysis and simulation

Sustainability Analysis

The integrated tools that allow the physical and material
properties of elements, assemblies, and systems for developing
sustainable elements

Codes and Standards
Compliance

A process in which validation to check the model parameters
against applicable codes and standards

Construction Systems
Design

A process to design and analyzes the contemporary systems

The brief description of BIM uses extracted from NBGO section 4.2 is shown in the

third column in Table 2 to provide the general practices of each input. The definition of

BIM use provides standard guidelines to 15 suggested applications for facility owners or

BIM users to follow in both essential and enhanced BIM uses. Based on the brief

description of BIM inputs from NBGO, the definitions of input variables are enhanced

and specified to reflect the actual practices for data collection purposes indicated in the
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fourth column in Table 3. In the third section of the survey package, to evaluate the
implementation of each 10-input attribute, the application level is indicated as a scale of
0 to 10 to represent 0 to 100% implementation, where 0 represents 0% implemented, and
10 represents 100% implemented for the surveying project. The application of BIM uses
is suggested to apply in this study to provide comprehensive understanding of analysis
and must be aligned with construction project goals, based on added value to the facility
owner. The definition of the BIM inputs is defined as the execution method of the used
variables, and it provides explicit instruction on data collection criteria for the

standardization of the BIM use input variables.

Table 3.  BIM Use Input Variables

. Attributes of Data Collection
Category BIM Use Attributes (Scale 0 to 10 for 0-100% implemented)
. . Existing site and facilities geometry information
X1 | Existing Conditions to be included in BIM model
X2 | Design Authoring BIM Software/Tool used in the engineering
design process
Essential . . 30/60/90%/100% Model Review in the design
X3 | Design Review .
BIM Uses execution
X4 | Coordination Clash detection and resolution execution in BIM
model
X5 | Record Modeling Physical and functional information input in the
elements of the model
X6 | Cost Estimating Generate material quantity takeoff and cost data
X7 | Phase and 4D Planning Dlmens10n of time and schedule information used
in the model
X8 | Site Analysis Development GIS tools used in model
X9 Site utilization for Communication tool for construction plan added
Enhanced Construction in the model
BIM Uses X10 | Digital Fabrication Prefabricate by using BIM data or information
XI11 | 3D Location and Layout Function of utilities to layout assemblies
X12 | Engineering Analysis Engineering system simulation used in model
X13 | Sustainability Analysis Sustainable design elements included in model
X14 Codes gnd Standards Validation of codes for model
Compliance
X15 | Construction Systems Design | Contemporary system analysis in Model
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4.2 Engineering Performance Output Measures

As discussed in the previous section, the term “performance” can be viewed and
evaluated from different perspectives. The evaluation of engineering performance in the
industrial sector is paramount, and the contentment of owners and facility developers with
engineering outcomes has been recognized as a fundamental criterion in this regard.
Alongside the satisfaction factor, scholarly literature and insights from industry experts
corroborate that numerous measures can be deployed to evaluate engineering
performance across each phase of the project life cycle. This comprehensive approach
aims to ensure a holistic assessment and continual improvement of engineering processes

throughout the entire facility development process.

The CIl RT-156 studied and analyzed the data collected from targeted projects using
the CIl benchmarking and metric committee to have a valid, reliable, and easy-to-use
system for measuring engineering performance (Chang, Georgy, and Zhang 2001). The
research found systematic processes and procedures and developed a new and innovative
approach for measuring productivity in engineering organizations by addressing the
broader scheme and improving engineering performance. A utility-based neuro-fuzzy
approach was established by constructing the connections between engineering inputs
and performance outputs, and multiple utility functions were applied to integrate the
collective assessments of performance measures (Georgy 2000). This developed
integrated platform by RT-156 was used for several practical purposes, including
performance output assessment and prediction and sensitivity analysis of individual
inputs. The platform encompasses developing analytical methods that impact

performance and techniques to quantify the resulting engineering performance.
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From the knowledge encoded in an integrated scheme by RT-156, several areas have
been highlighted as influential in driving engineering performance in construction
projects. RT-156 identified the engineering performance measures with 10 metrics and
10 outputs to measure and forecast engineering performance (Georgy et al. 2005). A total
of 10 distinct measures have been discerned to represent the engineering performance
across three pivotal phases of the project: detailed design, procurement and construction,
and startup and commissioning. These identified 10 measures encapsulate essential
indicators of engineering efficacy during each respective phase. For a comprehensive

overview, please refer to Table 4, which presents the specific engineering performance

measures considered for design, construction, and startup in project life.

Table 4.  List of Measures of Engineering Performance by Cll RT-156
Engineering Performance A .
Category Significant Variables
Measure
Design Rework (%) Completeness of scope definition

Detailed Design
Value

Change communication system

Design document release
commitment

Split engineering practices
Completeness of objectives and priorities
Change communication system

Detailed design schedule delay (%)

Completeness of objectives and priorities
Change communication system

Detailed design cost overrun (%)

Designer qualifications and capacity

Fabrication and
Construction
Value

Fabrication and construction
schedule delay due to design
deficiencies (%)

Completeness of objectives and priorities
Change communication system

Fabrication and construction cost
increase due to design deficiencies
(%)

Split engineering
Newness of process technology to designer
Change communication system

Construction hours for design
problem solving and field design

Completeness of basic design data
Use of 3D computer aided design modeling

Estimated dollar savings due to
constructability

Relative size of project

Design schedule

Completeness of scope definition
Use of electronic data interchange
Change communication system

Start-up and
Commissioning
Value

Startup schedule delay due to
design deficiencies (%)

Newness of process technology to owner
Design—construction overlap

Startup cost increase due to design
deficiencies (%)

Completeness of objectives and priorities
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As reported in RT-156, the evaluation of engineering performance during the
operational and maintenance phase necessitates several years of full production of the
industrial facility. Therefore, for the purpose of the research by RT-156, the definition of
engineering performance was restricted to the project phases leading up to the full
operation of the facility. A comprehensive set of 10 output measures had been identified
to signify the engineering performance during the detailed design, procurement, and
construction, and the startup and commissioning phases of the project. To gather data for
system training and validation, a questionnaire survey was utilized, focusing on industrial
projects within the targeted industry sectors in the United States. The data set comprised
information from 50 industrial projects, meticulously selected to include a diverse
representation of the industry. These projects were undertaken by prominent companies
within the U.S. industrial construction targeted sector and encompass a wide range of
project types, including grassroots and greenfield additions to existing facilities, with
varying contractual arrangements, from lump sum to targeted price with incentives, and

project sizes ranging from US$ 1 million to over US$ 130 million.

Upon reviewing Table 4, a diverse range of numerical and non-numerical variables
became evident. Numerical variables were characterized by precise or near-exact values,
while non-numerical variables were often described using semantic scales, introducing
varying degrees of imprecision or fuzziness in their descriptions. To address this
variability, different strategies were employed in representing the variables. For
numerical variables, a steep change in the triangular membership function was adopted,
reflecting their lower level of uncertainty or fuzziness. In contrast, non-numerical or
linguistic variables are typically defined on semantic or ordinal scales. To ensure
consistency, a term set divided into five points is employed to represent the various non-

numerical variables within the system. Given that non-numerical variables exhibit a
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higher degree of uncertainty or fuzziness, their membership functions should transition
more gradually than those used for numerical variables. Consequently, any value for a
non-numerical variable can simultaneously belong to multiple linguistic terms.
Employing hedges like "about,” "not,” and "very" enables the development of appropriate
representations for these linguistic variables. Such an approach accommodates the
inherent imprecision in linguistic descriptions, facilitating a more nuanced and accurate

fuzzy representation of the variables of the system.

The selection of performance measures for this study based on the findings from ClI
RT-156 , and the focus is on performance measures related to the phases leading up to a
facility's full operation, which typically includes project planning, construction, and
initial operation. The report mentions that while it would be beneficial to include
performance measures for the operation and maintenance phase of the facility, as well as
the decommissioning phase. The task is currently challenging, and this is primarily due
to the lack of readily available data for these phases. Gathering data for the project phases
leading up to full operation is already time-consuming, and collecting data for the entire
life cycle of projects from initial planning to demolition is even more challenging. The
passage highlights that integrating measures for these later phases is currently unfeasible
because of these data limitations. In essence, it emphasizes the practical constraints of
collecting comprehensive data for all project phases, which is why the focus remains on

the earlier phases leading up to facility operation in the study.

The data set comprising 60 industrial construction projects is relatively limited in
terms of both data size and data quality. Despite encountering challenges in data
collection, the acquisition of data for 60 projects has been relatively successful. However,
from a statistical standpoint, this sample size may not be sufficient for robust model

validation. Furthermore, the data used in this study encompass various industrial facility
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types, including chemical manufacturing, oil refining, power generation, among others.
As industrial facilities are bespoke entities, the amalgamation of mixed project data
representing different facility types may introduce diverse patterns that can hinder the

effective learning of the neuro-fuzzy system.

After reviewing the study by RT-156, the output variables defined the execution
method for using the variables and provided explicit instructions on data collection
criteria standardizing of the output variables. As indicated in this study, the numerical
expression did not represent three variables, since these variables rated by general depict
the impression levels. A review of the output performance measures in the study shows
that the three variables not represented by numerical expression consisted of high levels
of imprecise expression, namely (1) commitment to engineering design document release
or issue, (2) construction time spent on engineering design issues or interference and field
engineering coordination, and (3) construction cost-saving for constructability study.
These performance output variables were difficult to define and could only be described
and expressed in fuzzy linguistic terms. Therefore, the three measures are suggested to
replace by quantitative items for better and more accurate data analysis (Chiu and Chang

2022).

The research focused on quantitative performance indicators from management’s
construction perception and asserted that quantitative units of measurement should
remain simple and easy to apply (Cox, Issa, and Ahrens 2003). For control and monitoring
purposes, quantifying of metrics and trend provides more solid decision-making
processes and opportunities for improvement. A significant collection of performance
information obtained from the quantity project data and a comprehensive statistical study
were conducted for future consideration. Furthermore, a survey of benchmark

performance metrics for integrated project delivery suggested the impact of the request
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for information (RFIs) and change management in quantitatively evaluating overall
performance. From the results of the above research on the performance measures, three
variables were redefined and replaced by the more specific and measurable quantitative
index. Namely, Y4 detailed designed quantity compared to the final installed quantity
replaced the commitment of engineering design document release or issue in the detailed
engineering design phase to reflect engineering performance; Y7 construction hours for
RFIs replaced construction spent time for engineering design issue or interference and
field engineering coordination; Y8 construction hours for field change request (FCR)
replaced construction cost-saving for constructability study. Both Y7 and Y8 are in the

construction phase to reflect construction performance as shown in Table 5.

Table 5.  Engineering Performance Output Measures

Category Variables Definition (in %)
Y1 |Design Rework Design Rework Hours/Total Design Hours
Detailed Design Schedule Days of Design Schedule Delay/Total Design
Y2
Delay Schedule Days
Detailed Design - : .
Value Y3 | Detailed Design Cost Overrun Design Cost Overrun in USD/Total Design

Cost in USD

Detailed Designed Quantity
Y4 | Compared to Final Installed
Quantity

Issue for Construction Designed
Quantity/Final Installed Quantity

Days of Fabrication and Construction
Schedule Delay due to Design
Deficiencies/Total Fabrication and
Construction Days

Fabrication and Construction
Y5 | Schedule Delay due to Design
Deficiencies

Fabrication and Construction |Fabrication and Construction Cost Overrun
Cost Overrun due to Design | due to Design Deficiencies in USD/Total
Deficiencies Fabrication and Construction Cost in USD

Fabrication and Y6
Construction
Value

Construction Hours for Construction Hours for Request for

Y7 Request for Information (RFI) | Information (RFI)/Total Construction Hours

Construction Hours for Field |Construction Hours for Field Change

Y8 Change Request (FCR) Request (FCR)/Total Construction Hours
Y9 Start-up Schedule Delay due |Days of Start-up Schedule Delay due to
to Design Deficiencies Design Deficiencies/Total Start-up Days

Start-up and

Commissioning
Value Y10 Start-up Cost Overrun due to

Design Deficiencies

Start-up Cost Overrun due to Design
Deficiencies in USD/Total Start-up Cost in
USD
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From the second column in Table 5, the revised engineering performance output
measures of 10 variables consist of three replaced variables and seven defined initially
defined variables that are mainly divided into three categories according to the
development of a construction project, engineering design phase, construction and
fabrication phase, startup, and commissioning phase, where spans over the life cycle. As
each output measure’s definition is clearly defined and specified, the proposed
engineering performance measures with the measurable quantitative criteria to evaluate

the output measures by using the percentage to identify the values.

59

doi: 10.6342/NTU202304540



5.0 Model Development

The correlation analysis for BIM use inputs and engineering performance measure
outputs is first be reviewed for the base of model development. And later the two
prediction models are proposed for engineering design performance measurement using
statistic regression processes and machine learning techniques. LR and MLMP models
are developed by applying the identified BIM use input variables and engineering
performance output measures. After the models are developed, the comparison and

findings are discussed.

5.1 Correlation Analysis

The engineering performance evaluation is a continuous task throughout a project’s
life, from the planning phase to the operation and maintenance phase. As the project
progresses through various phases in its execution life, the interpretation of engineering
performance measures shall be different by pre-defined input variables. For example, if
the design rework rate (performance output measure Y1) is high in the design phase
means differently compared to measurement in the procurement or construction phases,
and the required corrective action to be considered to resolve the issues shall be different.
On the other hand, when measuring engineering performance at different project phase,
some of the inputs are not available, or the values are partial for measurement. For
example, the detailed designed quantity compared to the final installed quantity rate
(performance output measures Y4) is unavailable until construction is finished. In the
design phase, the designed quantity is developed at the conceptual, preliminary, and
detailed design stage. Therefore, the equipment and materials quantities are finalized at
issue for construction (IFC) stage, and quantities may be revised in the following

procurement, construction, and commissioning phases. This explains that there shall exist
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a relationship among the input variables and between input variables and output
measures. The correlation analysis is required to understand the strength of the

relationships and how they interact.

Pearson’s correlation coefficient for continuous interval level data from —1 to +1 was
applied to evaluate the strength of the association for variables. The positive correlation
indicates that both variables decrease or increase simultaneously, whereas the negative
correlation indicates that as one variable decreases, the other increases, and vice versa.
From the rule of thumb for interpreting the correlation coefficient size, 0.9 to 1.0 (—0.9 to
—1.0) represents a very high positive (negative) correlation, and 0.7 to 0.9 (—0.7 to —0.9)
represents a high positive (negative) correlation (Hinkle, Wiersma, and Jurs 2003).
Therefore, the Pearson’s coefficient helps quantify how closely two variables are related
in a linear relationship. It is a useful tool in statistics and data analysis to understand
relationships between data points. The interpretation of Pearson’s correlation coefficients
in terms of the strength of the relationship is based on empirical observations and
statistical conventions. Many studies in various fields have supported these
interpretations over the years. Researchers and statisticians have found that these general
guidelines for assessing the strength of correlations are broadly applicable. Therefore, the
Pearson correlation between 0.7 to 1.0 (0.7 to —1.0) is suggested to consider a strong

relationship in this research and further reviewed in the two correlation analyses.

This study applies a statistical method for correlation analysis to evaluate the strength
of a cause-effect relationship for quantitative variables and measures. Here, two
correlation analyses were performed to measure the relationship between the BIM use
inputs and that between BIM use inputs and engineering performance outputs. Apply
correlation analysis module in MiniTab 18 statistical software package by inputting BIM

use variables from X1 to X15 and engineering performance output measures from Y1 to
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Y10, and the relationships of all Xs and Ys are generated as shown in Appendix 4. The
results showed that a strong correlation indicates that two or more variables have a strong

relationship, whereas a weak correlation shows that the variables are hardly related.

5.2 Correlation among BIM Use Input Variables

As discussed in session 4.1 and indicated in Figure 6, the input variables are extended
through project phases, and relationships exist among the 15 BIM inputs. This analysis
intends to find the facts of the relationships among the BIM use variables to understand

the significant levels of each input and how they interact with other inputs.

After applying correlation analysis in MiniTab, the result is shown in Table 6. The
correlation in BIM use input variables for essential and enhanced BIM Uses, there is a
high correlation with essential BIM uses related to design phase activities including
design review (0.897), design authoring (0.879), coordination (0.731), record modeling
(0.704) and existing conditions (0.704). Also, essential BIM uses highly correlate with
enhanced BIM uses in sustainability analysis (0.859), codes and standards compliances
(0.846), and phase and 4D planning (0.816), which indicate the enhanced BIM use
activities related to design efforts. For enhanced BIM uses, there is a high correlation in
digital fabrication (0.888), construction systems design (0.888), cost estimation (0.874),
3D location and layout (0.869), and site utilization for construction (0.869), where implies

the enhanced BIM uses are mainly influenced related to construction activities.
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Table 6.

Correlation Analysis for BIM Use Input Variables

£ Essential BIM Uses Enhanced BIM Uses
‘?‘f BIM Uses Pearson Pearson
S BIM Uses . BIM Uses :
Coefficient Coefficient
X1 |Existing Conditions | X5 |Record Modeling 0.704 X13 [Sustainability Analysis 0.859
. . X3 |Design Review 0.897 .
% | X2 |Design Authoring . X7 |Phase and 4D Planning 0.712
2 X4 |Coordination 0.731
s . i X2 |Design Authoring|  0.879 .
= | X3 |Design Review . X7 |Phase and 4D Planning 0.753
o X4 |Coordination 0.716
‘g X4 |Coordination X2 |Design Authoring|  0.731 X7 |Phase and 4D Planning 0.702
q%) X7 |Phase and 4D Planning 0.816
E X1 lity Anal 771
X5 |Record Modeling X1 x1st1.n.g 0.704 3 |Sustainability Analysis 0.77
Conditions Codes and Standards
X14 . 0.846
Compliance
X10 |Digital Fabrication 0.874
X6 |Cost Estimati N/A i
ost Estimating X15 Con§truct10n Systems 0.870
Design
X2 |Design Authoring|  0.712
X7 Phase.and 4D X3 |Design Review 0.879 X14 Codes jand Standards 0.752
Planning - Compliance
X5 |Record Modeling 0.816
X8 Site Analysis- N/A N/A
Development
X9 Site utlllZE.i'[IOIl—For N/A X11 3D Location and 0.869
2 Construction Layout
; X6 |Cost Estimating 0.874
X10 [Digital Fabrication N/A i
= X15 Con.structlon Systems 0.888
s Design
E X11 3D Location and N/A X9 Site utlhz'fmon-For 0.869
= Layout Construction
= - -
E
X12 | emeering N/A N/A
Analysis
Existing
inabili X1 . 0.859
X13 /S\ust;un.ablhty Conditions X14 godesljdnd Standards 0.815
natysis X5 |Record Modeling 0.771 omphance
Codes and X5 |Record Modeling 0.846 X7 |Phase and 4D Planning 0.752
X14 |Standards
: x7 |Phase and 4D 0.752 | X13 |Sustainability Analysis |  0.815
Compliance Planning
Constructi .. L.
X15 |onsiue 1011. N/A X10 |Digital Fabrication 0.888
Systems Design

5.3 Correlation between Input Variables and Output Measures

As discussed in session 4.1 and indicated in Figure 5, the deliverables of the BIM

application are models at five project execution phases. The deliverables are extended

through project phases, and relationships exists between the 15 BIM inputs and 10
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engineering outputs. This analysis intends to find the facts of the relationships between
inputs and outputs to understand the significant levels of inputs and outputs and how they

interact with each other.

After applying correlation analysis in MiniTab, the result is shown in Table 7 for the
correlation between BIM use inputs and engineering performance outputs. The results
show that detailed design values correlate with essential BIM uses mainly in design
activities, including coordination (-0.8093), record modeling (-0.7545), design authoring
(-0.7434), and design review (-0.7432). Furthermore, it correlates with enhanced BIM
uses also influenced by design, including engineering analysis (-0.7336), sustainability
analysis (-0.7308), and phase and 4D planning (-0.7304). Fabrication and construction
values correlate with enhanced BIM uses, and were related to construction activities,
including digital fabrication (-0.7487), site analysis development (-0.7398), construction
system design (-0.737), site usage for construction (-0.7285), and cost estimation (-
0.7277). Values of the startup and commissioning outputs correlated with both essential
and enhanced BIM uses. Here, record modeling in essential use concerned recording
information and cost estimation (-0.7661). In contrast, codes, and standards compliance
(-0.6961), construction system design (-0.7107), and phase and 4D planning (-0.7039) in

enhanced BIM use significantly influenced the project completion stage.
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Table 7.

Correlation Analysis for Engineering Performance Outputs and BIM Uses

? Engineering Essential BIM Uses Enhanced BIM Uses
o
] Performance Pearson Pearson
< BIM BIM
o Measures (%) Uses Coefficient Uses Coefficient
Design Authoring -0.7478 Phase and 4D Planning -0.7089
Design Rework Design Review -0.7148 Engineering Analysis -0.7336
Coordination -0.8093 N/A
g Existing Conditions -0.7361 Sustainability Analysis -0.7308
S |Detailed Design Design Authoring -0.7144  |Codes and Standards -0.7167
§ [Schedule Delay Design Review -0.7056 N/A
g Record Modeling -0.7545
< . . Design Authoring -0.7434  |Phase and 4D Planning -0.7304
= Detailed Design Cost - - — —
£ |overrun Design Review -0.7432  |Digital Fabrication -0.7069
A Coordination -0.8496 Engineering Analysis -0.7041
Detailed Designed Design Authoring 0.74228  [Phase and 4D Planning 0.70217
Q.uantlty Compared to Design Review 0.70178  |[Engineering Analysis 0.81397
Final Installed
Quantity Coordination 0.74514 N/A
Fabrication and Site Analysis-Development -0.7398
Construction Schf:dule N/A Site Utiliz.ation for 07285
g Delay due to Design Construction
E Deficiencies 3D Location and Layout -0.7179
.g Fabrication and Cost Estimating -0.7277
g . i .
s Construction Cost Coordination 207001 |Digital Fabrication -0.7487
% |Overrun due to Construction Systems
g Design Deficiencies ; -0.737
o Design
E Construction Hours  |Existing Conditions -0.7106 Sustainability Analysis -0.7296
g |for Request for Codes and Standards
2 . Record Modeli -0.7042 . -0.7372
45 Information (RFT) ccord Modeling Compliance
E Cost Estimating -0.7284
& |Construction Hours — .
for Field Change Coordination -0.7179 Digital Fabrication -0.709
Request (FCR) Construction Systems 07131
Design )
Start-up Schedule Cost Estimating -0.7032
o0
E Delay due to Design [Record Modeling -0.7022 Phase and 4D Planning -0.7028
-g Deficiencies Codes and Standards -0.7156
é Cost Estimating -0.756
>}
S %’ Phase and 4D Planning -0.7039
>
E Startup CO.St Overrun . Digital Fabrication -0.7012
= due tq De§1gn Record Modeling -0.7661 Codes and Standards
1 Deficiencies . -0.6961
£ Compliance
7 Con_struction Systems 07107
Design
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5.4 Linear Regression Model

This iterative process involves constructing a series of regression models, wherein
input variables are systematically added or removed based on F-statistic calculations to
decide their significance or insignificance. The stepwise reduction technique was
deployed to develop multiple linear regression models for each measure of engineering
performance outputs. The details of the 52 project samples were applied to MiniTab 18
statistical software, and the models were produced as shown in Table 8 for each

performance output measure.

The predictive effectiveness of the models is assessed using statistical metrics,
including the coefficient of determination adjusted R-square of the model, as indicated in
the R-sq (adj) column. The F-test is employed to test the null hypothesis, which assumes
that the means of a specified set of normally distributed populations, all sharing the same
standard deviation, are equal. In regression analysis, the F-value serves to determine the
overall statistical significance of a regression model. When a regression model includes
multiple predictor variables (independent variables), the F-value helps to assess whether
the model as a whole explains a significant portion of the variance in the dependent
variable (the variable trying to predict). A high F-value in regression analysis implies that
the model is statistically significant and that the independent variables collectively
contribute to explaining the variation in the dependent variable. The model explains zero
variance in the dependent variables, the results shown in the F-value column are highly
significant. Thus, it can be concluded that the model explains a significant amount of the
variance. The P-value of 0.000s is much smaller than a significance level of 0.05, which
is the normal probability of rejecting the null hypothesis in statistical practice. Hence, the
null hypothesis is rejected, concluding the model is statistically significant. From the

statistical evidence, the fittest regression models with the formation of equations of inputs
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and outputs then produced and significantly created very reliable predictions for each

engineering performance measure, as shown in the third column in Table 8.

Table 8.  Multiple Regression Model for Output Measures and Input Variables
z
S Li R ion Model
fa}” Output Measures inear Regression Ylode R-sq(adj) F-Value P-Value
5 (LR)
Q
26.96 - 0.815 X4 - 1.032 X10 -
o Y1 |Design Rework 80.32% 70.37 0.000
E 1.629 X12
2 Detailed Design 12.811 - 0.303 X1 - 0.765 X3 +
Y2 75% .82 .
En Schedule Delay 0.293 X4 - 0.493 X5 73.75% 36.8 0.000
g Detailed Desi 27.31-1.202 X4 -0.912 X10 -
& v3 etailed Design Cost 7.3 0 0.9 0 R1.46% 75.68 0.000
2 Overrun 1.179 X12
E Detailed Designed ~[90.823 + 0.2268 X4 +0.3865
8 Y4 |Quantity Compared to |X7 - 0.3105 X10 + 0.2506 X11 84.48% 56.51 0.000
Final Installed Quantity |+ 0.801 X12
° Fabrication and
g Construction Schedule |21.34-1.312 X8 - 1.082 X9 +
= Y5 . 68.299 37.62 0.000
t‘ Delay due to Design ~ [0.678 X12 i
= Deficiencies
E Fabrication and
2 Construction Cost 10.765 - 0.521 X4 - 0.755 X6 +
= 0,
3 Y6 Overrun due to Design |0.441 X14 71.25% 43.12 0.000
T Deficiencies
g Construction Hours for 10.096 - 0.706 X8 + 0.501 X11
= Y7 |Request for ' ‘ ' 65.69% 33.55 0.000
s . -0.611 X14
= Information
2 .
] Construction Hours for |8.811 - 0.4674 X4 +0.3261 X5
= Y8 . 71.779 4421 0.000
Field Change Request |- 0.6091 X6 o
° Start-up Schedule
@ . 10.551 - 0.467 X6 + 0.368 X13
e Y9 |Delay due to Design 63.01% 29.96 0.000
A~ L - 0.923 X14
o Deficiencies
; Start-up Cost Overrun
s Y10 |due to Design 9.201 - 0.452 X5 - 0.3954 X6 67.77% 54.63 0.000
i Deficiencies

The analysis is a method of fitting regression models in which an automatic procedure

carried the choice of predictive variables to find the final regression equations and further

predict the engineering performance. An example of output measures for Y1 and Y2

regression models generated by stepwise regression analysis from Minitab 18 is

illustrated in Figure 7.
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Regression Analysis: Y1 versus X1, X2, X3, X4, X5, X6, X7, ... 3, X14, X15

Stepwise Selection of Terms
ato enter = 0.1, o to remove = 0.1

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value
Regression 3 2591.9 863.96 70.37 0.000
X4 1 125.6 125.63 10.23 0.002
X10 1 306.2 306.21 24.94 0.000
X12 1 253.7 253.66 20.66 0.000
Error 48 589.3 12.28

Total 51 3181.2

Model Summary

S R-sq R-sq(adj) R-sq(pred)

3.50401 81.47% 80.32% 78.61%
Coefficients
Term Coef SE Coef T-Value P-Value VIF
Constant 26.96 1.20 22.44 0.000
X4 -0.815 0.255 -3.20 0.002 2.55
X10 -1.032 0.207 -4.99 0.000 1.56
X12 -1.629 0.358 -4.55 0.000 1.87

Regression Equation
Y1 = 26.96 - 0.815 X4 - 1.032 X10 - 1.629 X12

Regression Analysis: Y2 versus X1, X2, X3, X4, X5, X6, X7, ... 3, X14, X15

Stepwise Selection of Terms
ato enter = 0.1, a to remove = 0.1

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value
Regression 4 592.23 148.057 36.82 0.000
X1 1 17.53 17.528 4.36 0.042
X3 1 75.93 75.927 18.88 0.000
X4 1 17.12 17.116 4.26 0.045
X5 1 51.05 51.046 12.69 0.001
Error 47 189.00 4.021

Total 51 781.23

Model Summary

S R-sq R-sq(adj) R-sq(pred)

2.00533 75.81% 73.75% 70.49%
Coefficients
Term Coef SE Coef T-Value P-Value VIF
Constant 12.811 0.740 17.32 0.000
X1 -0.303 0.145 -2.09 0.042 2.42
X3 -0.765 0.176 -4.35 0.000 2.87
X4 0.293 0.142 2.06 0.045 2.42
X5 -0.493 0.138 -3.56 0.001 2.43

Regression Equation
Y2 = 12.811 - 0.303 X1 - 0.765 X3 + 0.293 X4 - 0.493 X5

Figure 7.  Example of Output Measure Model from MiniTab 18 Stepwise Regression

The output variable Ys represent output measures, and Xs represent the BIM use
input attributes in regression analysis. Analysis of variance indicates the equality of

variances between factor levels, where a P-value 0.000 explains that the association
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between the responses and the inputs is statistically significant, and F-value indicates
70.37 associated with the response high significant level. Model summary shows how the
model goodness-of-fit with the data, R-sq (adj) 80.32% indicates a high percentage of
variation in output explained by the model. The coefficients describe the size and
direction of the relationship between inputs and outputs and the regression coefficient of
each input variable. Finally, the regression equations are generated, and the complete

regression analysis report for all performance outputs is attached in Appendix 5.

The LR procedure generates a series of regression models by adding or deleting an
input attribute, followed by F-statistic evaluations to decide whether such input attributes
are significant at each step. Applying the statistical stepwise reduction method showed
that the LR models were well constructed for each output attribute of the engineering

performance outputs.

5.5 MLMP Model

The engineering performance measurement prediction models in this study were
developed using the MLMP techniqgue. MLMP networks represent feedforward
multilayer neural networks trained with a backpropagation learning algorithm. These
networks consist of computational neurons organized into separate output and hidden
layers, with the connections between neurons characterized by weighting. Each neuron
incorporates an activation function that maps its summed input to its output, and bias is

another parameter calculated with the weighted inputs of the neuron.

For the implementation of MLMP, Python Keras was employed. Keras is a high-level
neural networks APl written in Python, offering a powerful and user-friendly open-source
library for developing and evaluating deep learning models. It leverages efficient

numerical computation libraries, enabling the definition and training of neural network
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models with minimal lines of code. Additionally, Keras supports both convolutional
networks and recurrent networks, as well as combinations of both. The modeling steps
using Keras, as depicted in Figure 8, involve loading the data, defining the MLMP model,
compiling the model, fitting the model to the data, evaluating the model's performance,
and predicting the outputs. This comprehensive approach utilizing MLMP with Python
Keras facilitates efficient and effective development, evaluation, and application of the
engineering performance prediction models. In the implementation process, the following

steps are performed using Python Keras:

e Data Loading: Functions and classes are defined to load and prepare the data for the

subsequent modeling stages.

e Model Definition: The MLMP model is structured as a sequence of layers, and layers

are added one by one to construct the network architecture.

e Model Compilation: The MLMP model is compiled, utilizing the efficient numerical
libraries (backend). The backend automatically selects the most optimized

representation for network training and predictions.

e Model Fitting: The compiled model is executed on the chosen dataset, undergoing

training and adaptation to the data.

e Model Evaluation: The network's performance is assessed on the dataset, which is

separated into train and test datasets to facilitate both model training and evaluation.

e Model Prediction: Predictions are generated using the trained model on the dataset.

These steps in the MLMP implementation facilitate the seamless development and
evaluation of the neural network model, ensuring its accuracy and efficiency in predicting
engineering performance outcomes. Please refer to Appendix 6 for the coding of ML in

Python.
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Data Preparation and Data Mining

A 4

Load Data to MLMP Model

» 15 input variables and 10 output variable
» Learning the model to map rows of input variables (Xs) to an output
variable (Y's) summarize as Ys = f (Xs)

A 4

Define MLMP Model

* Model expects rows of data with 15 variables (input_dim=15 argument)
» First hidden layer has 15 nodes and uses the activation function

» Second hidden layer has 10 nodes and uses the activation function

» Output layer has 10 nodes and uses the sigmoid activation function

A 4

Compile MLMP Model

» Find the best set of weights to map inputs to outputs in the dataset
» Specify the loss function to use to evaluate a set of weights
» Collect and report the classification accuracy by the metrics argument

A 4
Fit MLMP Model

» Fit model on loaded data by calling the fit( ) function on the model
« Train model in mapping of rows of input data to the output
»  Amount of error level out for model configuration and convergence

A\ 4
Evaluate MLMP Model

» Evaluate model on training dataset using the evaluate( ) function
« Generate a prediction for each input and output pair and collect scores
» Evaluate() function will return the accuracy of the model on the dataset

A 4

Model Prediction

» To generate predictions on the training dataset
« Making predictions by calling the predict( ) function on the model
» Apply a sigmoid activation function on the output layer

(Note: fit (), evaluate (), predict () are function coding in ML Python)

Figure 8.  MLMP Modeling by Python Kears

The machine learning processes develop a sequence of MLMP models for each
performance output measures. The details of the 52 project samples were applied to ANN
machine learning software, and the models were produced as shown in Table 9 for each

output measure.
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MLMP Models for Engineering Performance Measures

Table 9.

Machine Learning Multilayer Perception Models (MLMP)

Multilayer Perception Model Equation

Yi

b+ wiIX1 +w2X2 + w3X3 + wdX4 + w5X5 w6X6 + w7X7 + w8X8 + w9X9 + wi0X10 wlIX11 +wil2X12

+wi3X13 +wi4X14 + wi5X15

Example of Y1:

Y1=27.038+0.0135X1—-0.2319 X2 -0.0191 X3 —0.5388 X4 —0.1186 X5 —0.5342 X6 — 0.4048 X7 + 0.1821

X8 —0.4287 X9 + 0.6430 X10 + 0.4047 X11 —1.4968 X12 — 0.5825 X13 + 1.1374 X14 + 0.1325 X15
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W 89611~ | 961v¥'0 | 66CL0- | 6€108°0 | 1€9€9°0 EvCTo- | vOLYY'0 11980°0 £10v°0 0EEr0
W LYO¥'0 | C9691°0 | LYLISO 12€9C°0 EvLE 0" 68600~ €€€s’0 | 9ITITO 8C6€°0" r€0T0-
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The evaluation of MLMP models for regression tasks, the F-value, while important

in the context of statistical analysis and regression, but it is not typically used for directly

evaluating the performance of MLMP models. Instead, when assessing MLMP for

regression tasks, the evaluation metrics R-sq (adj) are employed. R-sq (adj) measures the
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proportion of the variance in the dependent variable that is explained by the independent

variables in the model. It quantifies the goodness of fit of the regression model. R-sq (adj)

values range from 0% to 100%, with higher values indicating a better fit of the model to

the data. R-sq (adj) is particularly relevant when assessing the performance of MLMP

models in predicting continuous numerical values. A higher R-sq (adj) value suggests that

the model is doing a better job of explaining the variability in the dependent variable.

Now, the predictive power of the models is determined through the statistical

measurement coefficient of determination and the model goodness of fit adjusted R-

square of the model as shown in the R-sq (adj) column. From the statistical evidence, the

models with the formation of equations of inputs and outputs then produced and

significantly created very reliable predictions for each engineering performance measure,

as shown in the third column in Table 10.

Table 10. MLMP Model for Output Measures

E Machine Learning Multilayer
?_an Output Measures Perception Model R-sq(adj)
3 (MLMP)
- Y1 Design Rework 99.89%
= Y2 Detailed Design Schedule Delay ) ) ) ) 99.85%
g o ] ) Machine Learning Multilayer Perception
& Y3 Detailed Design Cost Overrun Model Equation 98.94%
% 2 odel Eq
== Detailed Designed Quantity Yi=b+wiX1l+w2X2+ w3X3 +w4X4
g Y4 Compared to Final Installed + w5X5 w6X6 + w7X7 + w8X8 + w9X9 99.86%
Quantity +wl0X10 +wlIX11 +wil2X12 +
Fabrication and Construction wi3X13 + wil4X14 + wi5X15
o Y5 Schedule Delay due to Design 99.48%
= é’ Deficiencies Example of Y1:
: f-‘: Fabrication and Construction Y1=27.038+0.0135X1-0.2319 X2~
2 2 Y6 Cost Overrun due to Design 0.0191 X3 —0.5388 X4 - 0.1186 X5 — 99.88%
g3 Deficiencies 0.5342 X6 — 0.4048 X7 + 0.1821 X8 —
.§ 2 v7 Construction Hours for Request 0.4287 X9 + 0.6430 X10 + 0.4047 X11 99 80%
= 8 for Information —1.4968 X12 — 0.5825 X13 + 1.1374 X14 :
V8 Construction Hours for Field +0.1325X15 99.80%
Change Request
o Y9 Star.t-up Sche.dule. Delay due to 99 829%
‘E 2 Design Deficiencies
2 = Y10 Star.t-up Cost.Ove?rrun due to 99.66%
Design Deficiencies
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An example of output measures and regression models generated by machine learning
is illustrated in Table 10. The output variable Y represents output measures, and Xs
represent the BIM use input variables in machine learning analysis. Model summary
shows how the model goodness-of-fit with the data, R-sq (adj) of 99.89% indicates a high
percentage of variation in output explained by the model. Finally, the MLMP equations
are generated and well-constructed for each output attribute of the engineering

performance outputs.

5.6 Comparison of MLMP and LR Models

In compression of MLMP and LR models, Table 11 summarizes the performance
output measures, MLMP and LR models with the predicting equations and statistical
results. The Table lists the coefficient of determination R-sq (adj) to indicate the

statistically significant to MLMP and LR models respects the 10 performance outputs.
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Table 11.

Summary of MLMP and LR Models

Machine Learning
o, Multilayer Linear Regression Models
;Sn Engineering Perception Models (LR)
%’ Performance Measures (MLMP)
Q .
Predict R-sq . . R-sq
P t Equat F-val
Equation (adj) redict Equation (adj) value
Y1=26.96-0.815X4 -
1 0, 0,
Design Rework E 99.89% 1,032 X10 — 1.629 X12 80.32% 70.37
2 S —
= = Y2=12.811-0.303 X1 —
G Detailed Design Schedul
S DZIZ‘ e esign Senedue = 99.85% | 0.765 X3 +0293 X4~ | 73.75% | 36.82
5 Y ) 0.493 X5
€ | Detailed Design Cost 2 Y3=2731- 1202 X4 -
a & = 49 1.46°
51 Overrun :; 98.94% 0.912 X10 —1.179 X12 81.46% 75.68
E % Y4 =90.823 +0.2268 X4
£ | Detailed Designed 2
2| Quantity Compared to + 99.86% | - 0-3865 X7~ 0.3105 84.48% | 5651
antity -ompare 5 ' X10 +0.2506 X11+0.801 | © '
Final Installed Quantity &
N X12
Fabrication and g :;
S Construction Schedule ks @ Y5=2134-1.312 X8 —
2 ) =S 99.489 68.299 37.62
‘g Delay due to Design s li E % 1.082 X9 +0.678 X12 %
£ Deficiencies ol '1.;
5 Fabrication and Eo f +
@ : < _
~ 2| Construction Cost SV Y6=10.765—-10.521 X4 —
= . 2 X 99.889 71.259 43.12
5 § Overrun due to Design ‘g § § & 0.755 X6 + 0.441 X14 &
ks Deficiencies S+ f
§ Construction Hours for E Q o Y7=10.096 —0.706 X8 +
= ) o = | 99.809 65.699 33.55
_§ Request for Information % f o o 0.501 X11 —0.611 X14 o
= Construction Hours for Eq = Y8=8.811-0.4674 X4 +
. E} 99.809 71.77% 44.21
Field Change Request p= § : o 0.3261 X5 —0.6091 X6 &
on = O
Startup Schedule Delay g+
D p=| = —
g . E —~ N Y9=10.551—-0.467 X6 +
= due to D g ~ | 99.82¢ 63.019 29.96
g | e ensn §XE %1 0.368 X13 - 0.923 X14 o
Deficiencies = = 4
Startup Cost Overrun due ST X Y10=9.201 —0.452 X5 —
S . . g = |99.66Y 67.77% 54.63
2 to Design Deficiencies § SRR % 0.3954 X6 &

The results developed by the MLMP system showed fewer deviations with much

higher R-sq (adj) of outputs than the LR models, as illustrated in Figure 9. The observed

output results were anticipated due to the inherent limitation of the LR models, which fail

to account for the nonlinear nature of the engineering design performance prediction

process. Both the accuracy of MLMP and LR models was affected by the constrained

dataset used in their construction. To enhance the efficacy of the models presented in this

study for potential industry applications, a critical aspect would involve augmenting the

size of the actual project data set to improve their performance.
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Figure 9.  R-sqg (adj) for MLMP and LR Models

5.7 Findings of LR and MLMP Models

In this study, the evaluation and prediction of engineering performance were
approached using regression and machine learning systems, considering their merits in
handling fault tolerance, modeling nonlinearity, and effectively addressing linguistic
variables. To enable a comprehensive comparison, this section explores and evaluates
both sets of models, namely linear regression models and machine learning techniques,
to be applied for engineering performance prediction in the identified four target

industrial construction sectors.

ML results in more accurate predictions and outcomes than the LR method,
automating complex tasks and processes to improve efficiency and time savings. ML can

adapt and learn from new data, making them more flexible and adaptable to changing
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conditions than LR methods. It can be easily scaled up or down to accommodate varying
levels of complexity, making them suitable for handling big data and complex problems
compared to LR methods. ML makes predictions and forecasts based on historical data,
allowing for proactive decision-making and planning. This predictive capability is
advantageous compared to conventional methods that may rely on past experiences or
assumptions with limited ability to predict future performance outcomes. ML uncovers
patterns, trends, and insights from datasets that may not be easily identifiable through

conventional methods.

Due to the substantial number of BIM use input variables, it becomes impractical to
develop regression models encompassing the entire set of inputs. To address this,
screening procedures, commonly known as exploratory variable reduction techniques, are
employed to identify potentially significant variables. In this study, the forward stepwise
procedure, widely acknowledged in practice, is used for this purpose (Neter, Wasserman,
and Kutner 1990). This approach iteratively constructs regression models, assessing the
significance of each input variable based on F-statistic calculations to determine inclusion

or exclusion.

In several study cases, the machine learning system exhibits less deviations from the
actual performance outputs compared to regression models. This outcome is reasonable
an as the expectation, as regression models do not account for the possible nonlinearity
inherent in the engineering performance prediction process. Regardless of the approach
used, the accuracy of the models, whether employing ANNSs or statistical regression, is
influenced by the limited dataset availability during model development. To enhance the
functionality of the models presented in this paper for potential industry applications,
increasing the capacity of actual project data is crucial for consideration in future research

and industry practices.
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From the statistical evidence, the MLMP and LR models, with the formation of input
and output equations, produced and significantly created a reliable scientific foundation
for validation of proposed models for each engineering performance measure, as shown

in Table 11.
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6.0 Model Validation and Implementation

The prediction models of the engineering performance presented in the above
sections of this paper has shown that the best-fit models were obtained through the MLMP
and LR analysis procedures and processes. The adjusted R-sq value maximization, model
variance minimization, and the selected attributes in the best-evaluated model are

statistically significant using F-tests and stepwise selection processes.

Figure 10 shows the process map for model validation and implementation and, later
the applications of the models. As depicted in the flowchart, three distinct data sets - the
training set, the validation set, and the pilot test set are employed for various stages,
including model training, fine-tuning, and testing. This approach ensures rigorous model
validation, implementation, and application. The dataset is divided into multiple parts,
enabling the model to be trained on one portion and its effectiveness to be tested on

another.
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Data Collection

A 4

Data Preparation and Data Mining
A\ 4 y A 4
Training Sets Validate Sets Pilot Test Sets
A 4
Train LR Train MLMP
Model Model
Model Verify
I . & Adjustment
Validate LR Validate
Model MLMP Model
A 4 A 4
Implement LR Implement |
Model MLMP Model

Model Applications

Figure 10.  Process Map for Model Validation and Implementation

6.1 Model Validation

The purpose of model validation is to validate the developed models by testing their
predictive capabilities using independent data sets and to assess the accuracy, and by
applying statistical F-test method to verify the reliability of the models. The next step is
the predictions and recommendations of the models with actual engineering performance
outcomes to evaluate its effectiveness to ensure that the models provide valuable insights

and contribute to improved engineering performance.

Two-stage test approaches were deployed to verify the accuracy of the models and
validate the developed performance prediction model. The first stage test uses the two

projects (sample 1 and 36) from the project dataset collected for comparison and the
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second stage consists of two test sets balancing the project type (sample 52 to 60) with
four test project data for each group, used for validation. Understanding that the output
measures provided by the project datasets and the data derived from the LR and MLMP
models indicated linear and nonlinear correlations for LR and MLMP, the following steps
were developed to evaluate the strength and direction of the correlation relationship by

representing a correlation coefficient.

Apply Minitab to calculate the correlation coefficients and significant levels, as
shown in Table 12, using the correlation analysis between the predicted models and actual
awarded data for each engineering performance output. Thus, in the first stage of both
test projects (sample 1 and 36) for comparing existing project data, the correlation
coefficients were 0.99912 for LR and MLMP for the test project sample 1 and 0.99989
for LR and MLMP for test project sample 36 with both P-values of 0.000s in more than

95% confidence interval, showing that the correlation coefficients are significant.

To verify the reliability of the developed models, the F-test is applied to access the
variance of the LR and MLMP models. The F-test is a statistical test used to compare the
variances of two or more populations and the test is used to assess whether the variances
of two groups are equal or they differ significantly. The F-value, also known as the F-
statistic, is the test statistic generated by the F-test. It represents the ratio of the variances
between two or more groups being compared. The F-value is calculated by dividing the
variance between groups by the variance within groups. The significance of the F-value
is assessed by comparing it to a critical F-value from a probability distribution, typically
an F-distribution. A high F-value suggests that the variances between groups are
significantly larger than the variances within groups, indicating that there may be a
significant difference between the groups being compared. In contrast, a low F-value

suggests that the variances between groups are similar, and there is no significant
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difference. Therefore, if the calculated F-statistic is greater than the critical F-value, the

null hypothesis of the alternative hypothesis is rejected, suggesting that one model is

significantly better than the other. On the other hand, if the calculated F-statistic is less

than the critical F-value, the null hypothesis is failed to reject, indicating that there is no

significant difference between the two models.

Table 12. LR and MLMP Model Validation

Compare to Existing Project Data
£ Project No 1 and No 36
o Engineering Performance
S Measures (%) Project rest1vo 1 Project Test 2 No 36
LR MLMP | *Data LR MLMP *Data
Design Rework 23.5% 27.0% 25% 22.6% 22.5% 21%
=
%ﬁ Detailed Design Schedule Delay 10.4% 10.2% 8% 11.8% 12.6% 12%
Q L
=t E Detailed Design Cost Overrun 24.0% 24.4% 20% 22.8% 24.0% 22%
§ Detailed Designed Quantity
A Compared to Final Installed 92.9% 92.8% 95% 93.8% 93.6% 91%
Quantity
- Fabrication and Construction
= Schedule Delay due to Design 9.8% 10.7% 10% 13.9% 14.3% 12%
9
g Deficiencies
% Fabrication and Construction Cost
E; E Overrun due to Design 12.1% 13.2% 15% 9.4% 9.4% 7%
BG
= » | Deficiencies
2 Construction Hours for Request
g for Infi t' 4.1% 5.8% 3% 10.5% 11.2% 10%
= or Information
=
s Construction Hours for Field
Change Request 8.3% 9.2% 8% 7.5% 8.3% 6%
1 Startup Schedule Delay due to
§ Desien Deficiencies 6.3% 7.7% 7% 9.5% 10.1% 8%
esign De
o
‘E Startup Cost Overrun due to
% Desien Deficienci 7.9% 7.6% 6% 8.3% 8.9% 8%
esign Deficiencies
Pearson Correlation Coefficient 0.99912 N/A 0.99989 N/A
Significant Level 0.000 0.000

*Data: The data is actual collected from the survey

To verify the validity of the developed models to check the variance of the

engineering performance output measures between MLMP, and LR models and compare
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the actual performance data from the survey, Figure 11 identifies the 15 performance
outputs at project design, construction, and startup phases by inputting test data set of test
sample project #1 into models. It compares to the variance to the actual data value from
the survey. The Figure shows the facts that the performance output measure prediction
for MLMP and LR for test project 1 (Project #1) is precisely matched and almost the same

value as the actual performance data from the survey.

OUTPUT PERFORMNACE MEASURES

—4&—Project Test 1 No 1 LR Project Test 1 No 1 MLMP Project Test 1 No 1 Data
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STARTUP SCHEDULE DELAY DUE TO DESIGN ‘/

DETAILED DESIGN VALUE FABRICATION AND CONSTRUCTION STARTUP AND
VALUE COMMISSIONING
VALUE

Figure 11.  Output Performance Measures for Test Project 1 in 1% Stage Validation

Figure 12 identifies the 15 performance outputs at project design, construction, and
startup phases by inputting test data set of test sample project #36 into models. It
compares to the variance to the actual data value from the survey. The Figure shows the

facts that the performance output measure prediction for MLMP and LR for test project
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2 (Project #36) is precisely matched and almost the same value as the actual performance

data from the survey.
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Figure 12.  Output Performance Measures for Test Project 2 in 1% Stage Validation

By applying F-test in Minitab, the F-value is calculated to verify the variance between
the LR models and MLMP models. As shown in Figure 13, based on the comparison of
F-statistic is 1.01805 and critical F-value is 3.17889 for test project test sample 1, the
calculated F-statistic is less than the critical F-value with the significance level of 5%,
indicating that there is no significant difference between the two models and the
conclusion about the relative performance of the two models. Thus, the acceptance of

reliability of the LR and MLMP models is reached.
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Figure 13.

F-TEST FOR VARIANCES PROJECT TEST NO 1

—&— Project Test 1 No 1 LR Project Test 1 No 1 MLMP
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ENGINEERING PERFORMANCE MEASURES

F-Test Two-Sample for Variances
Project Test No 1

LR Outputs MLMP Outputs
Mean 0.1993 0.2086
Variance 0.070278011 0.069032267
Observations 10 10
df 9 9
F 1.018045828
P(F<=f) one-tail 0.48959128
F Critical one-tail 3.178893104

Correlation Analysis
Project Test No 1

LR Outputs MLMP Outputs

LR Outputs 1
MLMP Outputs 0.99911627 1

F-test and Correlation for LR and MLMP Models for Project Test 1

For test project sample 36 as shown in Figure 14, the comparison of F-statistic is

1.01803 and critical F-value is 3.17889, the calculated F-statistic is less than the critical

F-value with the significance level of 5%, indicating that there is no significant difference

between the two models and the conclusion about the relative performance of the two

models. Thus, the acceptance of reliability of the LR and MLMP models is reached.
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Figure 14.

F-Test Two-Sample for Variances

Project Test No 36

LR Outputs MLMP Outputs
Mean 0.2101 0.2149
Variance 0.068458767 0.067246322
Observations 10 10
df 9 9
F 1.0180299
P(F<=f) one-tail 0.489600384
F Critical one-tail 3.178893104

Correlation Analysis
Project Test No 36

LR Outputs MLMP Outputs

LR Outputs
MLMP Outputs

1
0.999889582 1

F-test and Correlation for LR and MLMP Models for Project Test 36

Appling Minitab to calculate the correlation coefficients and significant levels, Table

13 summarizes the results using the correlation analysis between the predicted models

and actual awarded data for each engineering performance output. The Table shows the

second stage test for validation, which uses the two sets of test projects (samples 53 to

60) from the project dataset collected for comparison. In the second stage of the two test

project sets (samples 53 to 60), the average correlation coefficients were 0.99987 for LR

and MLMP for test project set 1 and 0.99991 for LP and MLMP for test project set 2 with

both average P-value of 0.000 in 95% confidence interval, showing that the correlation

coefficients are significant. As mentioned in the correlation analysis, the rule of thumb
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states that 0.9 to 1.0 represents a very high positive correlation (Hinkle, Wiersma, and

Jurs 2003), the correlation relationship between the test project data and developed

models is strong, positive, and linear at high acceptance and desired levels. The test

outcomes to validate the regression model showed high reliability and capability of

assessing the engineering performance measures significantly correlated with actual

project data. The stronger positive relationships for MLMP than LP explain why the

MLMP models predict more reliable results than LR.

Table 13. LR and MLMP Model Validation

Model Validation from Project Data
B No 53 to No 60
5 . .
g} Engineering Performance Test Set 1 Test Set 2
5 Measures Proj ects in Average Proj ects in Average
LR MLMP *Data LR MLMP | *Data
Design Rework 14.2% 15.3% 15% 11.3% 10.6% 11%
=
%ﬁ Detailed Design Schedule Delay 7.6% 7.5% 7% 7.1% 7.1% 7%
(=T . .
S ;: Detailed Design Cost Overrun 14.1% 14.3% 14% 11.4% 11.1% 11%
= > ) . .
8 Detailed Designed Quantity
D
) Compared to Final Installed 95.8% 95.7% 96% 96.5% 96.6% 96%
Quantity
H Fabrication and Construction
.§ Schedule Delay due to Design 11.4% 11.1% 11% 11.0% 11.3% 11%
‘2 Deficiencies
S & | Fabrication and Construction Cost
= =2 ) L 6.7% 7.2% 8% 5.7% 5.2% 5%
ERS] Overrun due to Design Deficiencies
g Construction Hours for Request for
= Information 6.3% 6.1% 6% 6.5% 6.7% 7%
Q9
-§ Construction Hours for Field
= Change Request 5.0% 5.0% 5% 4.5% 4.3% 4%
ul
2 Startup Schedule Delay due to
o . o 6.2% 6.0% 6% 6.6% 7.0% 7%
i Design Deficiencies
‘E Startup Cost Overrun due to Design
& Deficienc 5.9% 5.5% 5% 5.5% 5.9% 6%
@ eficiencies
Pearson Correlation Coefficient 0.99987 N/A 0.99991 N/A
Significant Level 0.000 0.000

*Data: The data is actual collected from the survey
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In the second stage of the validation process, to verify the validity of the developed
models and to check the variance of the engineering performance output measures
between MLMP and LR models, and compare the actual performance data from the
survey, Figure 15 identifies the 15 performance outputs at project design, construction,
and startup phases by inputting test data set of average test sample project from #52 to
#56 into models. It compares to the variance to the actual data value from the survey. The
Figure shows the facts that the performance output measure prediction for MLMP and
LR for test projects average is precisely matched and almost the same value as the actual

performance data from the survey.
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Figure 15.  Output Performance Measures for Test Project Set 1 in 2" Stage

Validation
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Similarly, in the second stage of the validation process, to verify the validity of the
developed models and to check the variance of the engineering performance output
measures between MLMP and LR models and compare the actual performance data from
the survey, Figure 16 identifies the 15 performance outputs at project design,
construction, and startup phases by inputting test data set of average test sample project
from #57 to #60 into models. It compares to the variance to the actual data value from the
survey. The Figure shows the facts that the performance output measure prediction for
MLMP and LR for test projects average set 2 is precisely matched and almost the same

value as the actual performance data from the survey.
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Figure 16.  Output Performance Measures for Test Project Set 2 in 2" Stage

Validation
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By applying F-test in Minitab, the F-value is calculated to verify the variance between
the LR models and MLMP models. As shown in Figure 17, based on the comparison of
F-statistic is 1.00132 and critical F-value is 3.17889 for test project test set 1, the
calculated F-statistic is less than the critical F-value with the significance level of 5%,
indicating that there is no significant difference between the two models and the
conclusion about the relative performance of the two models. Thus, the acceptance of

reliability of the LR and MLMP models is reached.

F-TEST FOR VARIANCES PROJECT TEST SET NO 1

—4—Test Set 1 Test Set 1
Projects in Average LR Projects in Average MLMP
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ENGINEERING PERFORMANCE MEASURES

F-Test Two-Sample for Variances
Project Test Set No 1
LP Outputs in Average MLMP Outputs in Average

Mean 0.1732 0.1737
Variance 0.077209067 0.077107344
Observations 10 10
df 9 9
F 1.001319229
P(F<=f) one-tail 0.499232646
F Critical one-tail 3.178893104

Correlation Analysis
Project Test Set No 1
LP Outputs in Average MLMP Outputs in Average
LR Outputs 1
MLMP Outputs 0.999868813 1

Figure 17.  F-test and Correlation for LR and MLMP Models for Project Test Set 1
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For test project set 2 as shown in Figure 18, the comparison of F-statistic is 0.99731

and critical F-value is 3.14575, the calculated F-statistic is less than the critical F-value

with the significance level of 5%, indicating that there is no significant difference between

the two models and the conclusion about the relative performance of the two models.

Thus, the acceptance of reliability of the LR and MLMP models is reached.

F-TEST FOR VARIANCES PRrOJECT TEST SET NO 2
—o—Test Set 2 Test Set 2
Projects in Average LR Projects in Average MLMP
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F-Test Two-Sample for Variances
Project Test Set No 2
LP Outputs in Average MLMP Outputs in Average
Mean 0.1661 0.1658
Variance 0.079457656 0.079672178
Observations 10 10
df 9 9
F 0.997307439
P(F<=f) one-tail 0.498430679
F Critical one-tail 3.145749062
Correlation Analysis
Project Test Set No 2
LP Outputs in Average MLMP Outputs in Average
LR Outputs 1
MLMP Outputs 0.999908671 1
Figure 18.  F-test and Correlation for LR and MLMP Models for Project Test Set 2

The accuracy of the models is evaluated by applying surveyed project samples to

both LR and MLMP models as indicated in Appendix 7. This assessment involves
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evaluating their predictive capabilities using independent data sets. Furthermore, the
reliability of the models is established through a rigorous statistical analysis. The F-test
method is applied to assess the variances and significance levels of both the LR and
MLMP models. Following these validation methods, it is confirmed that both accuracy

and reliability meet acceptable standards, thus validating the models.

6.2 Model Implementation

Model implementation aims to implement the validated models and findings in
practical engineering scenarios. This step involves integrating the models into BIM
applications, decision support systems, and design workflows to assess the impact of the
implemented models on engineering performance by monitoring and evaluating the
outcomes. This step helps to determine the practical implications and benefits of utilizing

the developed models in real-world construction projects.

The primary objective of training the system with a limited dataset is to create a
platform capable of capturing the underlying relationships between project BIM use input
variables and the output of engineering performance. This enables the system to estimate
or predict performance measures when presented with a new set of input variables from
the project, leveraging the knowledge encoded in the network structure. To validate the
system's effectiveness, two separate sets of projects were chosen for testing. Notably,
none of these projects were utilized during the system's training phase. The selection of
these projects was deliberately varied to represent diverse project conditions and
corresponding performances. It is essential to acknowledge that the use of only 60
projects in the system's development had an impact on the reliability and accuracy of

predicted engineering performance output measures. With a more extensive dataset for
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training, the deviations from the targeted values could have been minimized. The

limitations of the dataset are presented in discussion section later.

As the performance models have been validated and meet the desired performance
criteria, the models are proposed to be implemented in practical applications. This could
involve integrating the model into software tools, decision support systems, or simulation
platforms used in engineering design processes. Continuously monitor the performance
model in real-world applications. Collect new data and periodically retrain or update the
model to ensure accuracy and reliability. Monitor the model's predictions and compare
them to actual performance outcomes to identify areas for improvement or recalibration.
Engage in collaborative efforts with domain experts, designers, and stakeholders to refine
the performance model. Gather feedback, incorporate new knowledge, and iterate on the

model to enhance its effectiveness and relevance.

Implementing of a performance model in engineering design aims to provide valuable
insights, predictions, or evaluations to support decision-making, optimize designs, and
improve overall performance. By leveraging data and modeling techniques, engineers
better understand of the factors that impact performance and make informed decisions to

achieve desired outcomes.

A pilot study is recommended before full implementing of the validated models. A
pilot is the trial implementation of the identified solution of the proposed models on a
reduced scale. In order the verify the models after validation, two pilot test projects are
chosen to be implemented by inputting the BIM use input data to the developed models.
As discussed in the definition of BIM input variables, the data represent the inputs of BIM
uses on implementation levels using a 10-point scale in percentage, where O represents
0% implemented, and 10 represents 100% implemented. After inputting the BIM use
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input data to validate the MLMP model, the performance output measures are generated.

Table 14 shows the implementation of the MLMP model with BIM use inputs and

performance outputs. As illustrated in the Table, 15 BIM use inputs for pilot test 1

generate 10 performance outputs measures, and the same process applies to pilot test 2.

Table 14. MLMP Model Implementation

Test | Test Test | Test
Input Variables is ;S Output Measures MLMP is ezs
. . +
X1 EX1st1.n.g 4 5 N
Conditions Y1 Design Rework ﬁ 16.2 8.2
~
X2 | Design Authoring 6 6 f
Detailed Design =
Y2 6.3 7.0
X3 | Design Review 6 6 Schedule Delay ;é
. 2
X4 | Coordination 5 7 Detailed Design Cost =
Y3 S 15.4 9.1
Overrun S
X5 | Record Modeling 4 4 = 3
Detailed Designed u% +
L Y4 | Quantity Compared to R 955 | 973
X6 | Cost Estimating > > Final Installed Quantity UTj 2
e < +
X7 Phase.and 4D 5 5 £ Fabrlcatlgn and § % 0
Planning g Ys Construction Schedule s U>S 13.2 9.5
. ] E Delay due to Design % + 3 ’ '
X8 Site Analysis- 4 6 g Deficiencies 8%+
Development = Fabricati 5 N <«
£ abrication and E EN 5
- Construction Cost st X
Site utilization- 5| ye | onswuchontost 22T | 69 | 44
X9 . 4 6 = Overrun due to Design = &
For Construction 2 _ = 3t
~ Deficiencies s, 0
Digital o 5 %S
X10 Fabrication 4 5 v7 Construction Hours for é f 3 59 6.5
, Request for Information | & < ' '
3D Location and — X
X11 4 5 o Y
Layout E f
Construction Hours for S
ineeri Y8 . S 2 4.8 3.8
X12 Engme?rmg 2 4 Field Change Request = ﬁ
Analysis 3
T +
X13 iUStfm.ablhty 4 5 Startup Schedule Delay S
Naysis Y9 | dueto Design ‘§ 5.0 7.5
Codes and S
Deficiencies +
X14 | Standards 4 3 )
Compliance Startup Cost Overrun B
Construction Y10 | due to Design j; 43 6.6
X15 . 5 5 L I
Systems Design Deficiencies =

The same implementation process applies to the LR model. After inputting the BIM

use input data to validate the LR model, the performance output measures are generated.

Table 15 shows the implementation of LR model with BIM use inputs and performance
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outputs. As illustrated in the Table below, 15 BIM use inputs for pilot test 1 generate 10

performance output measures, and the same process applies to pilot test 2.

Table 15. LR Model Implementation

Pilot Test | Test
Input Variables e Output Measures LR Model o o
Test 1/2 1 2
x1 | Existing 4| s Y1=26.96—-0.815 X4
Conditions Y1 |Design Rework —1.032X10-1.629 14.7 | 9.7
i X12
X2 Des1gn. 6 6
Authoring Detailed Deosigan Y2 =12.811 - 0.303 X1
Y2 -0.765X3+0293X4 | 6.7 | 7.0
i i hedule Del
X3 |Design Review | 6 6 Schedule Delay 0493 X5
X4 |Coordination 5 7 . . Y3=27.31-1.202 X4
Record Y3 getar'rle: Design Cost|_ o 912x10-1.179 | 145 | 95
X5 Mecc(l’rl_ 4| 4 ver X12
odeling Detailed Designed | Y4 = 90.823 +0.227 X4
i +0. X7-0.311 X1
o va Qua.ntlty Compared 0.387X7-0.3 0 955 | 96.8
X6 |Cost Estimating| 5 5 to Final Installed +0.251 X11 +0.801
Quantity X12
Phase and 4D o Fabrication and
X7 Planning > > = Construction
g Y5=21.34-1312X8
Y5 |Schedule Delay d 126 | 8.8
, , g crecduie DEY €IS |- 1,082 X9 + 0.678 X12
X8 Site Analysis- 4 P B to Design
Development g“ Deficiencies
E Fabrication and
&)
Site utilization = Y6 Construction Cost Y6=10.765—0.521 X4 62 | a9
X9 |-For 4 6 A~ Overrun due to —0.755X6+0.441 X14| '
Construction Design Deficiencies
x10 |Pigital 4 | s Construction Hours | Y7 = 10.096 — 0.706 X8
Fabrication Y7 | for Request for +0.501 X11 —0.611 64 | 6.1
X11 3D Location 4 5 Information X14
and Layout Construction Hours | Y8 =8.811 —0.4674 X4
Engineering Y8 | for Field Change +0.3261 X5 —0.6091 4.6 | 4.0
X12 ) 2 4
Analysis Request X6
xq3 |Sustainability || Startup Schedule | Y9 =10.551 - 0.467 X6
Analysis Y9 |Delay due to Design |+ 0.368 X13 —0.923 53 | 7.1
Codes and Deficiencies X14
X14 |Standards 4 3
Compliance
Startup Cost OVerrun |y, _g 501 — 0,452 X5
Construction s s Y10 |due to Design 03954 X6 54 1 53
X15 i L .
Systems Design Deficiencies

Now, the emphasis is on the successful implementation and maintaining the gains

achieved. The question is trying to answer, “How can we guarantee performance?”” From

the pilot test project process above, the engineering design performance measures are
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generated for required actions for stakeholders to assist in obtaining warnings against
potential problems. Predicting of the performance constitutes critical evaluations for

higher performance outcomes and successful project execution and delivery.
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7.0 Discussion

7.1 Evaluation of Correlation Analysis

In synthesizing the findings from the proposed first separated BIM use, which applied
the correlation method to analyze the influence of essential and enhanced BIM uses on
engineering performance measures separately, the study further reviews the frequency of
occurrence of more than 50% of each input by the outputs in three project phases. Figure
19 shows that the essential BIM uses with five inputs, design authoring, and design review
and coordination obtained 100% and 75% for the four engineering performance measures
in the engineering design phase, 50% in the construction stage, and 100% for record
modeling for both engineering performance measures in the startup phase. As for
enhanced BIM uses with ten inputs, phase and 4D planning and engineering analysis
achieved 75% in the engineering design phase, cost estimating, digital fabrication, and
construction system design achieved 50% in the construction phase. Finally, phase and
4D planning and codes and standards compliance all attained 100% occurrence in the

startup phase.
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Figure 19. Critical BIM Uses for Engineering Performance

This first approach applied a correlation method to analyze the separated BIM use.
The results show that the essential BIM uses are highly related to design phase activities,
and the enhanced BIM uses are mainly correlated with the construction phase. Figure 20
shows the essential and enhanced BIM uses highly influences the engineering
performance separately. Essential BIM meticulously addresses the foundational
requirements, chiefly concentrated on the design phase, serving as a pivotal framework
for implementing BIM. It sets the stage by establishing a minimum key requirement to

ensure BIM's effectiveness in guiding the project through the intricacies of the design

process.

The correlation analysis for BIM use input is to find the relationships of the 15
variables by two categories of 5 essential BIM uses and 10 enhanced BIM uses and to
understand their interaction. As shown in Figure 20, the high correlative BIM use inputs
for both essential and enhanced expansion at the main three phases of project execution,

and the high correlative inputs describe the influence level of the phases. The result
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confirms the suggestions in NGBO, as shown in Figure 6. The main findings are discussed

in the following section.

Project Phase Engineering Design Construction and Fabrication Startup and Commissioning

X2: Design Authoring |

Essential X3: Design Review |
BIM Uses X4: Coordination |
\ X5: Record Modeling \

X6: Cost Estimation \
\ X7: Phase and 4D Planning \

X7: Phase and 4D Planning

Ehhanced | X10: Digital Fabrication |
BIM Uses X12: Engineering Analysis |

] X14: Codes and Standards Compliance \
[ X15: Construction Systems Design |

Figure 20.  Expansion of BIM Use Inputs at Project Phases

7.2 Evaluation of Models

In synthesizing the findings from the proposed second combined BIM use approach,
which applied MLMP and LR methods to analyze the influence of combined essential
and enhanced BIM uses on engineering performance measures integrally, the frequency
of occurrence over 50% of each input by the outputs in three project phases were
reviewed. From Figure 21, the essential BIM uses with five inputs show that coordination
attained 100% and 50% for the four engineering performance measures in the engineering
design and construction phases, respectively, and 50% for the two engineering
performance measures for record modeling in the startup phase. For the enhanced BIM
uses with 10 inputs, digital fabrication and engineering analysis achieved 75% in the
engineering design phase, cost estimating was 100%, and codes and standards compliance
showed 50% in the construction phase. In the startup phase, cost estimating attained a

100% occurrence.
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The second approach of the MLMP and LR methods showed that the essential BIM
uses are highly related to design phase activities. The enhanced BIM uses are mainly
correlated with the construction phase. From Figure 21, the engineering performance is
highly influenced by BIM uses for combined essential and enhanced inputs. Enhanced
BIM seamlessly extends beyond the design phase, delving into the construction phase
with a focus on reinforcing BIM applications. This phase expands on the essential BIM
functions, aligning them with the intricacies of the construction process. It provides an
enriched set of tools and functionalities, enhancing collaboration and efficiency during

the physical realization of the project.

Reviewing the frequency of percentage occurrence of the total BIM uses in the
project phases by the performance measures for both models confirms that BIM use inputs
are highly significant for developing engineering performance prediction models.
Furthermore, coordination was presented in both models in the engineering design phase,
explaining that coordination efforts in the engineering design phase, including design
authoring and review, are significant. Coordination and cost estimation in both models in
the construction phase indicate that coordination in construction activities and cost
estimation are the main factors in construction. Recording modeling and cost estimation
were present in the startup phase for both models, demonstrating that recording and costs

are significant in the project startup phase.
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Enhanced BIM Uses
BIM Use Category

The models for BIM use input are to find the relationships of the 15 variables in two

categories of 5 essential BIM uses and 10 enhanced BIM uses and the 10 output

performance measures in three categories of 4 detailed design values, 4 fabrication and

construction values and 2 start-up and commissioning values to understand their

interaction. As shown in Figure 22, the high correlative BIM use inputs for both essential

and enhanced expand at the main three phases of project execution, and the high

correlative inputs describe the influence level of the phases. The result confirms the

suggestions in NGBO shown in Figure 6. The main findings are discussed in the following

section.
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Figure 22,

Expansion of BIM Use Inputs at Project Phases

Facilitating the performance prediction models involves ensuring that the developed

models are effectively utilized in real-world project execution scenarios to address

practical challenges and improve the decision-making process. The application of the

developed models involves two processes, performance monitoring and performance

controls.

7.3 Application for Performance Monitoring Management

Facilitating the performance prediction models involves ensuring that the developed

models are effectively utilized in real-world project execution scenarios to address

practical challenges and improve the decision-making process. The application of the

developed models involves two processes, performance monitoring and performance

controls. Figure 23 shows the suggested application process.

102

doi: 10.6342/NTU202304540



Load BIM Use Xs from Project
Database system

A

Input BIM Use Variables Xs to
LR/MLMP Models

N
Engineering Performance Ys

» Prediction from developed MLMP/LR
Models system

N

Create Engineering Performance

Measures Y's data to Performance
Monitoring System

Verify Output
Y's Measures in
Project
Database

No

Engineering Performance Measures
Ys Monitoring and Controlling
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Figure 23.  Model Application Process

The suggested process aims to integrate these models into real-world systems or
project execution scenarios. This task often requires collaboration with IT teams to ensure
a seamless transition. The project data and predictions are continuously fed back into the
models, allowing them to adapt and improve over time. This iterative process helps in
addressing practical challenges. The predictions generated by these models should be
effectively utilized to support decision-making processes, and this involves creating
dashboards, reports, or alerts for decision-makers to use. Establishing a feedback loop
with end-users and stakeholders is essential and the input helps in fine-tuning the models
and making them more practical and aligned with the project's goals. Based on feedback
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and changing project requirements, models are required to be adapted, retrained, or
improved to maintain their relevance and effectiveness. It is important to document the
models and provide training to relevant team members, ensuring that the team understand
how to interpret the predictions and make informed decisions. Thus, facilitating
performance prediction models involves a comprehensive approach that integrates data
science with real-world project execution, constant feedback, and adaptation to ensure

the models effectively address practical challenges and enhance decision-making.

Implement performance monitoring to track the accuracy and effectiveness of models
over time and regularly assess how well the model’s prediction aligns with real-world
outcomes and make necessary adjustments. This section shows that the real-world project
data was applied to the validated engineering performance models for implementation
pilot tests. From the implementation process of a pilot test and has had a chance to ensure
the performance is under control and continue. The application of performance control
allows the project team or stakeholder to identify what is essential to improve and

maintain the current performance levels based on the research.

Table 16 shows the application of the goal and acceptance levels for each engineering
performance output measures for pilot test 1. As illustrated in the Table, the engineering
performance output are listed with the definition of each measurement. Two control
targets are identified as the goal of aiming result and the acceptance level of desired
control limit. After applying BIM use variables X1 to X15 to MLMP and LR models, the
performance measure output Y1 to Y10 can be generated as indicated in Table 16 of pilot
test 1. Further applications or recommendations can be developed for performance control

purposes.
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Table 16. Pilot Test 1 Application

Engineering Performance Output Measures Target Pilot Project 1
Goal | Acceptance | MLMP LR
Measures Definition
" i (%) | Level (%) (%) (%)
Design R« k H 1
Y1 | Design Rework esign Rework Hours/Tota 0 25 16.2 14.7
Design Hours
. . Days of Design Schedule
Detailed D .
Y2 ctal ed Lesign Delay/Total Design Schedule 0 0.0 6.3 6.7
Schedule Delay
Days
Detailed Desi Desi i
Y3 etailed Design Cost esign CosF Overmr? in 0 0.0 154 14.5
Overrun $/Total Design Cost in $
Detailed Desi
Qlelt;itietd Czsr;gr;er: d Issue for Construction
Y4 Yy Lomp Designed Quantity/Final 100 95.0 95.5 95.5
to Final Installed .
. Installed Quantity
Quantity
Fabrication and Days of Fabrication and
Construction Construction Schedule Delay
Y5 | Schedule Delay due due to Design Deficiencies/ 0 0.0 13.2 12.6
to Design Total Fabrication and
Deficiencies Construction Days
. Fabrication and Construction
Fabrication and .
Construction Cost Cost Overrun due to Design
Y6 Deficiencies in $/Total 0 0.0 6.9 6.2
Overrun due to . .
. .. Fabrication and Construction
Design Deficiencies .
Costin $
Construction Hours Construction Hours for
Y7 | for Request for Request for Information/ Total 0 5.0 5.9 6.4
Information Construction Hours
Construction Hours Construction Hours for Field
Y8 | for Field Change Change Request/Total 0 2.5 4.8 4.6
Request Construction Hours
D f Start-up Schedul
Start-up Schedule DZ{: © due ?f) ];5 i Cn edule
Y9 | Delay due to Design y cue & 0 2.0 5.0 53
L Deficiencies/ Total Start-up
Deficiencies
Days
Start-up Cost Start-up Cost Overrun due to
Y10 | Overrun due to Design Deficiencies in $/Total 0 0.0 43 5.4
Design Deficiencies Start-up Cost in $

To have better compassion of the goal, acceptance level and the actual engineering

performance output measures, Figure 24 shows the variation of the pilot test 1. The

engineering performance output measures of Y1 to Y10 are shown in X-axis and actual

values are shown in Y-axis. The results show that the strength of performance prediction

for MLMP and LR models is almost the same. The acceptance level and the control target

are also identified to display the variation of actual performance measurements.
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Figure 24.

Pilot Test 1 for Performance Measures for MLMP and LR Models

In Figure 24, each predicted output measure value generated by the model has two

reference points for applying engineering performance measures. These reference points

are the acceptance level and the target values. The acceptance level represents the level

of performance that can be tolerated, while the target is the ideal control goal. For

instance, consider the engineering performance output measure Y1, which is design

rework calculated by comparing design rework hours to total design hours. In the Figure,

the acceptance level is set at 2.5%, and the control target is 0%. During the evaluation

and measurement, the MLMP generated a value of 16.2%, while LR generated 14.7%,

indicating a high level of rework hours at current evaluating period. In real-world

applications, corrective actions are necessary to mitigate the high design rework risk.
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Continuous monitoring of the performance moving range after corrective efforts with the

acceptance level and control limit is suggested in the design execution and management.

Table 17 shows the application of the goal and acceptance levels for each engineering
performance output measures for pilot test 2. As illustrated in the Table, the engineering
performance output are listed with the definition of each measurement. Two control
targets are identified as the goal of aiming result and the acceptance level of desired
control limit. After applying BIM use variables X1 to X15 to MLMP and LR models, the
performance measure output Y1 to Y10 can be generated as indicated in Table 17 of pilot
test 2. Further applications or recommendations can be developed for performance control

purposes.
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Table 17. Pilot Test 2 Application

Engineering Performance Output Measures Target Pilot Project 2
Goal | Acceptance | MLMP LR
Measures Definition
" e %) | Level (%) | (%) | (%)
Design R k Hi 1 Desi
Y1 |Design Rework esign Rework Hours/Total Design 0 2.5 8.2 9.7
Hours
Detailed Design Days of Design Schedule
Y2 . 0 0.0 7.0 7.0
Schedule Delay Delay/Total Design Schedule Days
3 Detailed Design Cost Des?gn Cost Qvermn in $/Total 0 0.0 o1 0.5
Overrun Design Cost in $
Detailed Designed
Quantity Compared to | Issue for Construction Designed
Y4 | . . 100 95.0 97.3 96.8
Final Installed Quantity/Final Installed Quantity
Quantity
Fabrication and Days of Fabrication and
i hedul i hedule Del
vs Construction Scl f:du e Con.structlon .Sc jcdu e Delay due to 0 0.0 9.5 2.8
Delay due to Design | Design Deficiencies/ Total
Deficiencies Fabrication and Construction Days
Fabrication and Fabrication and Construction Cost
Construction Cost Overrun due to Design Deficiencies
Y6 . . . 0 0.0 4.4 4.9
Overrun due to Design |in $/Total Fabrication and
Deficiencies Construction Cost in $
Construction Hours for | Construction Hours for Request for
Y7 |Request for Information/ Total Construction 0 5.0 6.5 6.1
Information Hours
Construction Hours for Construction Hours for Field
Y8 . Change Request/Total Construction 0 2.5 3.8 4.0
Field Change Request
Hours
Start-up Schedule Days of Start-up Schedule Delay
Y9 | Delay due to Design due to Design Deficiencies/Total 0 2.0 7.5 7.1
Deficiencies Start-up Days
Start-up Cost Overrun | Start-up Cost Overrun due to Design
Y10 |due to Design Deficiencies in $/Total Start-up Cost| 0 0.0 6.6 53
Deficiencies in$

To have better compassion of the goal, acceptance level and the actual engineering

performance output measures, Figure 25 shows the variation of the pilot test 2. The

engineering performance output measures of Y1 to Y10 are shown in X-axis and actual

values are shown in Y-axis. The results show that the strength of performance prediction

for MLMP and LR models is almost the same. The acceptance level and the control target

are also identified to display the actual performance measurements.

108

doi: 10.6342/NTU202304540



PILOT PERFORMANCE MEASURES

100.0% —4— Pilot Test 2 MLMP Pilot Test 2 LR Pilot Test 2 Target Acceptable Level
. 0

90.0%
80.0%
70.0% \
60.0%
50.0%
40.0%
30.0%
20.0%
10.0% N —
0.0%

/
=

|
/
J
|
|
/
\
|

DESIGN REWORK

REQUEST (FCR)
DEFICIENCIES
DEFICIENCIES

DETAILED DESIGN COST OVERRUN
INFORMATION (RFI)

DETAILED DESIGN SCHEDULE DELAY

DETAILED DESIGNED QUANTITY COMPARED TO
FINAL INSTALLED QUANTITY
FABRICATION AND CONSTRUCTION SCHEDULE
DELAY DUE TO DESIGN DEFICIENCIES

DUE TO DESIGN DEFICIENCIES
CONSTRUCTION HOURS FOR REQUEST FOR
CONSTRUCTION HOURS FOR FIELD CHANGE
STARTUP SCHEDULE DELAY DUE TO DESIGN
STARTUP COST OVERRUN DUE TO DESIGN

FABRICATION AND CONSTRUCTION COST OVERRUN

DETAILED DESIGN VALUE FABRICATION AND CONSTRUCTION STARTUP AND
VALUE COMMISSIONING
VALUE

Figure 25.  Pilot Test 2 for Performance Measures for MLMP and LR Models

As shown in Figure 25, for instance, the two reference points, acceptance level and
target values are also applicable to engineering performance output measure Y4. The
measure Y4 represents the detailed design quantity compared to the final construction
installed quantity, measuring the effectiveness of the design quantity. In this case, the
Figure displays an acceptance level of 95% and a control target of 100%. During the
evaluation and measurement, the MLMP generated 97.3%, and LR generated 96.8%,
indicating good design quality at the current evaluating period, surpassing the acceptance
level but still falling short of the control target. In real-world implementations, corrective
actions should be considered to address the accuracy of design and construction quantity.
Continuous monitoring of the performance moving range after corrective efforts with the
acceptance level and control limit is suggested in the quantity control and management.

109

doi: 10.6342/NTU202304540



7.4 Application for Performance Control Management

The engineering performance control is proposed to interpretate the ongoing
monitoring or process controls needed to ensure that process owners sustain the gains of
the engineering performance prediction process. The effective and precision performance
control also plays a crucial part in fulfilling the requirements for strengthening the ability
of project to keep the solutions in place. The control chart is general applied as a practical
management tool to performance control. The control chart as specialized run chart is
recommended to control and monitor the performance and provide a systematic way to
evaluate engineering performance continuously by monitoring key performance metrics
and enabling data driven decision-making (McCary et al. 2005). By maintaining a stable
process and addressing variations as they arise, the decision makers can optimize the
engineering operations for better quality and efficiency. Facilitating control charts to
effectively manage a process involves various steps and considerations. To facilitate the

use of control charts for process management, the major consideration and steps are,

e Select the Engineering Performance Metric: Identify metrics that align with project
goals and customer requirements. Consider both leading and lagging performance
indicators, focusing on what is most critical and collaborate with stakeholders to

define which metrics are most relevant.

e Collect Project Data: Set up a data collection process with defined data sources and
methods. Ensure the data quality and consistency by using standardized measurement
procedures and collect data at regular intervals, but do not overwhelm the process

with excessive data points.

e Determine Control Limits: Consider the process stability and available historical data

when setting control limits. Choose the appropriate control chart type, such as X-bar
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and R-chart, X-bar and S-chart, or individual/moving range (I-MR) charts based on
the data characteristics. Understand that control limits may need adjustment over time

as the process improves.

Create the Control Chart: Use specialized software or templates to create accurate and
visually clear control charts. Ensure the chart is accessible to relevant team members
through a centralized platform. Consider implementing automated data collection and

chart generation for real-time monitoring.

Define Responsibilities: Clearly outline the responsibility for data collection, chart
maintenance, and problem-solving. Designate roles for reviewing and analyzing the
chart, including a process owner or champion. Encourage team members to take

ownership of their roles and be proactive in maintaining the chart.

Regular Monitoring: Choose the appropriate review frequency based on the process’s
nature and the criticality of the metric. Schedule regular meetings or check-ins to
review the chart, share insights, and track progress. Develop a standardized process

for reviewing data and reacting to out-of-control situations.

Data Analysis: Implement statistical analysis tools to identify trends, cycles, or
special causes of variation. Apply statistical process control techniques like control
chart pattern recognition. Conduct hypothesis testing if necessary to confirm the

significance of observed variations.

Root Cause Analysis: Utilize methods 5 Whys or Fishbone cause and effect diagrams
to identify the underlying causes of process variations. Encourage cross-functional
teams to collaborate in root cause analysis. Focus on addressing root causes rather

than just the symptoms of a problem.
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e Take Corrective Actions: Develop an action plan to address identified root causes and
bring the process back into control. Track the progress and effectiveness of corrective
actions and adjust them as needed. Ensure communication and accountability for

implementing corrective actions.

e Continual Improvement: Encourage a culture of continuous improvement within the
team. Share best practices, lessons learned, and successful improvements across the
organization. Consider process reengineering or major changes based on the

cumulative insights from control charts.

e Documentation: Maintain a comprehensive and easily accessible record of all control
chart data, findings, and actions taken. Use documentation to track the historical

performance of the process and reference it for future analysis and audits.

e Communication: Establish regular communication channels to keep team members
informed about control chart status and updates. Encourage open dialogue and
feedback to address concerns or suggestions for improvement. Share success stories

and achievements related to process management through control charts.

The control chart as specialized run chart is recommended to control and monitor the
performance. In a control chart, the Y axis is the metric of output measures, and the X
axis is the time or sample point in time series. There are three statistically calculated lines
are imposed for control propose, a center line in an average of output measures, upper or
lower control limits to identify acceptance levels, and a target line to specify the control

targets.

Figure 26 illustrates the example of the performance control for output measure Y2.
The definition of output measure Y2 is a detailed design schedule delay and calculated
by the days of design schedule delay divided by total design schedule days. The chart
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shows the variation of performance measure output Y2 from the beginning of the project
in term of sample # where the measurement frequency of cycle can be defined by the
control and monitoring propose. The blue dotted line is the average of the performance
measure output during the evaluation period and can be compared to the variation of each
measurement. The red solid line is the control limit, where specifies the acceptance level
at performance measure output. The green line is the control target of the measurement,
which identify the aim of the control result. This pilot project applies the performance
measure output Y2 from the prediction of the MLMP model by inputting BIM use
variables X1 to X15 as indicated in MLMP model implementation in Table 14. The
performance of detailed design delay varied from 6.3% to 2.4%. Here, 6.3% is above
control limit 6.0%, and 2.4% is under control limit, and the performance moving over a
10 checking points is approaching the target at 0.0%. The pilot application indicates that

the project takes the required actions to control the performance to the desired outcome.

Control Chart for Performance Measure Y2
Detailed Design Schedule Delay

10.0% -
§, —— Output Ys  ------- Output Avg ——CL Target
g 9.0% 4
= 04 -
g o T0% 670
= 6.5% :
s 7.0% 1 6.3% 0 6.4% ¢ 10
T2 6.0% | 5.6%
[a .U70
25 B
2 g 5.0% +
[<F]
é % 4.0% - 3.5%
c @ 0/
S 3.0% - 26%  24%
<&}
2 20% |
o
S 1.0%
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0.0% T T T T T T ‘ T T

1 2 3 4 5 6 7 8 9 10
Sample #

Figure 26.  Control Chart Performance Measures Y2
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Figure 27 shows the example of the performance control for output measure Y4. The
definition of output measure Y4 is a detailed designed quantity compared to the final
installed quantity and calculated by the issue for construction designed quantity divided
by the final installed quantity. The chart shows the variation of performance measure
output Y4 from the beginning of the project in terms of sample number, where the
measurement frequency of the cycle can be defined by the control and monitoring
purpose. This pilot project applies the performance measure output Y4 from the
prediction of the MLMP model by inputting BIM use variables X1 to X15 as indicated in
LR model implementation in Table 15. The performance of the detailed designed quantity
compared to the final installed quantity varied from 95.5% to 101.0%. Here, 95.5% is
above control limit of 95.0%, and 101% is above control limit, and the performance
moving over 10 checking points is approaching the target at 100.0%. The pilot application
indicates that the project takes the required actions to control the performance to the

desired outcome.

Control Chart for Performance Measure Y4
Detailed Designed Quantity Compared to Final Installed Quantity
110.0% ~
—&— Output YS  ===---- Output Avg ——CL

Target

05.0% 2.3% 2.1% 01.7% 3%
02.3% 59

100.0% - 98 7%

0,
955%  95.7% 96.4%

1 2 3 4 5 6 7 8 9 10
Sample #

Installed Quantity

95.0% -

Issue for Construction Designed Quantity/Final

90.0%

Figure 27.  Control Chart Performance Measures Y4
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7.5 Statistical and Hypothesis Tests

This research utilizes the use of statistical and hypothesis tests for model validation,
specifically highlighting the adjusted R-squared coefficient of determination and the F-
test for variance. This discussion sets the stage for a deeper exploration of these tests in
the following sections, emphasizing their importance and relevance in the context of

regression analysis and the linear regression and machine learning models.

7.5.1 Adjusted R-squared

R-squared also known as the coefficient of determination, is a statistical measure to
assess the goodness of fit of a regression model. It quantifies the proportion of the
variance in the dependent variables (Ys) that can be explained by the independent
variables (Xs) in a linear regression model. It helps to understand how well the
independent variables can account for the variations in the dependent variable. R-squared
is between 0 and 1, representing the percentage of the variation in the dependent variable
Y that is explained by the independent variables X. An R-squared value of 0 means that
the independent variables do not explain any of the variation in Y, while an R-squared
value of 1 means that all the variation in Y can be explained by the independent variables

(Downing and Clark 2003).

In LR model, Y = a + bX1 + ¢cX2 + dX3 + ... + Xn is a multiple linear regression
model. Here 'a’ represents the intercept or constant term, and 'b', 'c’, 'd’, ..., 'Xn" are the
coefficients associated with each of the independent variables. These coefficients indicate
the strength and direction of the relationship between each X variable and the dependent
variable Y. Now, an R-squared value of 90% as in LR model, it means that 90% of the
variability in the dependent variable Y can be attributed to the influence of the

independent variables X1, X2, X3, ..., Xn. In other words, these independent variables
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collectively account for a significant portion of the observed variations in Y. It considers

the trade-off between model complexity and goodness of fit.

In this research, the adjusted R-squared is used to evaluate the developed models. An
adjusted R-squared is a modified version of the standard R-squared that considers the
number of independent variables in a regression model. Adjusted R-squared is calculated
using the same principles as R-squared, but it incorporates the number of independent
variables in the model. It is designed to balance the need for a good fit with the risk of
overfitting. While R-squared defines how well the independent variables explain the
variance in the dependent variable, adjusted R-squared offers a more nuanced view by
penalizing the inclusion of unnecessary or irrelevant independent variables. A higher
adjusted R-squared suggests that a larger proportion of the variation in the dependent
variable is explained by the independent variables while penalizing the inclusion of
unnecessary variables. When comparing models, a higher adjusted R-squared indicates a

better model fit.

When comparing different regression models, the adjusted R-squared is a helpful
criterion. A model with a higher adjusted R-squared, indicating a better fit while
considering the number of independent variables included. Adjusted R-squared is not a
definitive measure for model selection. It should be used in conjunction with other model
evaluation techniques and domain knowledge. It assumes that all variables included in
the model are relevant and correctly specified. An adjusted R-squared is a valuable tool
for assessing the goodness of fit of a regression model while considering the trade-off
between model complexity and model performance. It helps address the issue of
overfitting by penalizing models with excessive independent variables. When comparing
models, a higher adjusted R-squared indicates a better model fit while considering the

number of independent variables in the model. However, it should be used in combination
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with other evaluation metrics and domain knowledge to make well-informed decisions

about model selection and refinement.

7.5.2 F-Test in Machine Learning

The F-test is typically used in the context of statistical hypothesis testing to compare
the variances of two or more groups or to compare the fits of different models. In machine
learning, it can be used for certain tasks, but its application is different from traditional
statistical hypothesis testing. The F-test can be used to assess the relevance of different
variables in the machine learning model and the F-statistic and associated F-value can be
computed to determine whether a particular feature significantly contributes to the

predictive power of the model (Downing and Clark 2003).

In this research, the two developed models applied F-test to assess whether the
differences in their performance are statistically significant. It is important that the
application of the F-test in machine learning often depends on the specific problem and
context. However, the application of F-test is tailored to the specific needs and objectives

of machine learning evaluation with Pros and Cons.

The Pros of using F-test in machine learning:

e Feature Selection: The F-test can help identify which features are most relevant for a
predictive model, allowing to reduce the dimensionality of the data and potentially

improve model performance and interpretability.

e Model Comparison: It provides a statistical basis for comparing the performance of
different models or distinct groups of features, helping to make informed decisions in

model selection.
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ANOVA for Regression Analysis: In regression analysis, the F-test allows to
determine whether groups of predictor variables collectively have a significant impact

on the target variable, providing insights into the overall importance of feature groups.

Statistical Significance: It helps to determine whether observed differences between
groups or models are statistically significant, which can be important for making

robust and data-driven decisions.

The Cons of using F-test in machine learning:

Assumptions: The F-test relies on certain assumptions, such as the assumption of
normally distributed errors and homoscedasticity. Homoscedasticity is the spread of
data points is consistent throughout a regression analysis, indicating a stable level of
variance, and this assumption is important for reliable linear regression models.

Violations of these assumptions can lead to incorrect results or interpretations.

Limited to Linear Models: The F-test is commonly associated with linear models, and
its applicability to more complex and nonlinear models like deep neural networks may
be limited. For such models, other methods like cross-validation may be more
appropriate for model comparison. Cross-validation is a technique used in machine
learning and statistics to assess how well a predictive model can perform on an
independent dataset. This process is repeated several times, and the performance
metrics are averaged to help in obtaining a more robust estimate of a model's

performance and reduces the risk of overfitting.

Subjectivity: Determining the appropriate significance level for the F-test can be

subjective and may lead to different results based on the chosen significance level.

Multiple Comparisons: If the multiple F-tests is performed on different variables or

models, it need to adjust for multiple comparisons to control the multiplicity error rate
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to avoid of making a Type | error (false positive). The adjustments help maintain an
acceptable overall significance level when conducting multiple tests, reducing the

likelihood of incorrectly rejecting a null hypothesis in any individual test.

Model Overfitting: Over-reliance on the F-test for variable selection can lead to
overfitting if not used judiciously. Removing features solely based on F-scores can

lead to loss of valuable information.
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8.0 Conclusions and Recommendations

This dissertation presents a comprehensive exploration of engineering productivity
knowledge, encompassing motivation, background, and methodology. Through fruitful
collaboration with industry stakeholders, the study successfully achieved several key
objectives. As defined at the beginning of this research included the assessment of current
BIM utilization in engineering processes and the identification of performance,
development of methodologies for quantifying and correlating of BIM use and
performance, application of machine learning models to identify predictive capabilities
and the MLMP and LR modeling and development an assessment of the prediction,
validation and implantation of the developed models, and application to contribute the
findings. The conclusions drawn from the awareness of constraints and the potential
impact with limitations defined. The research findings are summarized herein, shedding
light on significant insights and implications for the field with inherent constraints and
boundaries that affect the research. Additionally, the dissertation offers recommendations
for future research endeavors, highlighting areas where investigation could yield valuable

contributions to the domain of engineering performance knowledge.

Through this scholarly work, the research aims to enrich the understanding of
engineering performance and its multifaceted dynamics. By collaborating closely with
industry partners, this study seeks to bridge the gap between academia and practice,
fostering a more holistic and evidence-based approach to enhance project engineering
performance. The conclusions and recommendations provided herein aim to inspire and

guide future researchers in their pursuit of continued advancement in this vital area.
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8.1 Limitations

Several limitations were observed in the proposed BIM implementation. The first
limitation is the selection criteria of the engineering performance output measures. These
chosen performance output measures were insufficient during the project execution cycle
before the actual operation of the completed plants or facilities. Practically, it is almost
difficult and time-consuming to obtain comprehensive lifecycle data for projects from the
planning phase through the operation and maintenance period. Thus, adding performance
attributes and measures depicting the operation and maintenance phases to the existing
dataset of variables to develop a more accurate engineering performance assessment

prediction model is necessary.

The second limitation is the inadequate applicable data and the difficulty of data
collection. The dataset of 60 industrial construction project samples used in this study is
minimal for total data amount and valuable quality. However, the group of 60 project
sample data was considered very successful despite the data collection difficulties.
Although the samples were limited, this study remains acceptable by the triangulation
concept (Hammersley and Atkinson 2007). The concept explains that the information on
a single phenomenon should be collected from at least three distinct and separated sources
to recognize the difference in the information. The project data applied in the study were
collected from 4 distinct industry sectors of power, oil and gas, transportation, and high-
tech facility, which represented different specific types of facilities over different regions.
Since these industrial facilities for data collection are highly specialized functions for
different industrial purposes, various project types exist in different modes.
Notwithstanding the limited data, the high R-sq (adj) and high assessment power

indicated the applicability of the models.
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The third limitation pertains to the restricted application of the developed models,
which are primarily recommended for EPC projects that implement BIM right from the
planning stage. Since the engineering prediction models rely on data collected from EPC
projects utilizing BIM as a management tool, when dealing with projects that either don't
use BIM or use it only partially, the absence of complete BIM data inputs may result in
deviations, potentially leading to inaccurate performance predictions. This limitation
underscores the importance of a comprehensive BIM adoption within EPC projects, as it
forms the foundation for accurate performance predictions using the developed models.
In cases where BIM is not fully integrated, the quality and completeness of data inputs
may suffer, and this deficiency can compromise the precision of the output performance
forecasts. The limitation underscores a critical dependency on the consistent and
comprehensive use of BIM in EPC projects. When BIM is not universally embraced, there
is a higher likelihood of disparities in data collection, and this, in turn, can introduce errors
or inaccuracies in the performance predictions derived from the engineering models. It is
essential to recognize that the efficacy of the developed models is contingent on the extent
to which BIM is employed in EPC projects. The models may not yield accurate
predictions for projects that do not fully embrace BIM, potentially leading to deviations
in performance expectations due to incomplete or inconsistent data inputs. The third
limitation emphasizes that the success of the developed models hinges on the pervasive
utilization of BIM in EPC projects. When BIM adoption is partial or absent, there is a
risk of encountering discrepancies in the collection of BIM-related data, which can
introduce inaccuracies in the performance predictions, highlighting the need for a

standardized BIM approach in these projects.
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8.2 Conclusions

Evaluating and predicting project performance in construction projects is essential
for all stakeholders to deliver to the facility owners. During a project’s life cycle, the
engineering design process plays a critical role and is regarded as a significant driving
force for the overall project performance. BIM use is now considered a substantial factor
in the project execution outcomes. With the implementation of BIM use in project
execution to facilitate the engineering process recently, adding BIM applications to the

engineering design performance evaluation is necessary.

Previous research on this related study has been insufficient because of the
imprecision definition of project performance and the complexity of data collection for
studying engineering performance. The purpose of this study was to establish a generic
framework for constructing comprehensive relationships between BIM use and the

overall engineering project performance.

The first objective of the study was to explore generic models that could delineate the
statistical correlation between engineering input variables by using BIM and overall
project performance output measures through MLMP and LR. The model could further
examine the influential degree of project input variables by using BIM on output
engineering performance measure. Existing data from 60 industrial finished projects with
15 BIM use input variables and targeted 10 engineering performance output measures

were utilized to construct the proposed models.

The modeling results indicate a high correlation between input variables and output
measures with 0.7 to 0.9 Pearson’s positive correlation coefficients or -0.7 to -0.9
Pearson’s negative correlation coefficients as shown in Table 7. The method of

correlating MLMP and LR with combined BIM-use results in 70% on average of high
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goodness of fit R-sq (adj) values and an acceptable level of P-value of 0.000s. Table 11
summarizes MLMP and LR models with the prediction equations and their statistical
results, MLMP is in the range of 99.48%~99.94% while LR is in the range of
63.01%~84.48%. Figure 9 depicts that MLMP shows fewer deviations with much higher

R-sq (adj) of outputs than the LR models’.

Moreover, the graphical evaluation shows that the essential BIM uses are highly
related to design activities, and the enhanced BIM uses are correlated with construction
phase as indicated in Figure 19 of the critical BIM uses for engineering performance.
Moreover, Figure 20 of the expansion of BIM uses at project phase demonstrates the high
correlative BIM use inputs for both essential and enhanced expansion at the three phases

of project execution, and the influence level of the phases.

The second objective of the study was verifying the validity and reliability of the
proposed models and to check the variance of the engineering performance output
measures through MLMP and LR models and compare their actual performance data with

the data of overall 60 projects.

The validation process contains two stages. the F-test was applied to access the
variances of the LR and MLMP models in the 1st stage. The average values of 15 output
performance measures identified at project design, construction, and startup phases from
two selected individual project #1 and project #36 were input into proposed models
separately. Their variances were compared. Figure 11 and Figure 12 depict that they are
highly matched. Furthermore, F-test clearly indicates that there is no significant
difference between the proposed model and the individual project’s as shown in Figure
13 and Figure 14. The results are significantly equivalent on 95% confidence level of
reliability.
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In the second stage of validation process, the average values of 15 output
performance measures identified at project design, construction, and startup phases from
the original 60 project data set were compared with average values of two testing sample
group projects of #52 to #56 and from #57 to #60. By the same token, signified in Table
13, Figure 15, Figure 16, Figure 17 and Figure 18, there is no significant difference
between the proposed model and the group project’s. Thus, the models in this research

are validated.

In conclusion, the prediction of engineering performance emerges as a vital
component for effective project control and management. Previous attempts in this
research areas were somewhat limited, largely due to the inherent complexity and
imprecision in engineering performance. This study employed machine learning systems,
specifically ANNSs, to estimate engineering performance by considering various project
attributes and conditions affecting performance. The utilization of ANNs allowed for both

learning capabilities and flexible variable descriptions within Al-based modeling.

The implemented system focused on the identified target industrial sector in this
study, and the application of ANNs for predicting engineering performance demonstrated
promising results. The reliability and accuracy of the models can be enhanced by
expanding the project database. Additionally, these models hold potential for practical
applications, including performance comparisons, risk identification, sensitivity analyses

of project attributes and conditions, tradeoff evaluations, and more.

By leveraging the power of machine learning and ANNSs, the research can take
significant strides in refining the understanding of engineering performance prediction.

These advancements could contribute to more informed decision-making and ultimately
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may lead to more efficient and successful project outcomes within the construction

industry.

Future research and data collection efforts in this area could theoretically enrich the
knowledge and strengthen the applicability of Al-based models in construction project

management. The experience and knowledge can be applied to the future new projects.

8.3 Recommendations

This dissertation presents a pragmatic approach to constructing engineering
performance evaluation models, investigating the correlation between BIM use and
performance measures, and implementing and applying performance prediction. The
study offers valuable recommendations for construction stakeholders seeking to measure
and predict engineering performance using BIM applications in project execution.
Despite limitations due to the sample size of the data, the following action items are

proposed:

e Focus on Implementing Essential and Enhanced BIM Uses: Emphasize the adoption
of both essential and enhanced BIM uses identified in this study. The clear guidelines

provided by the BIM use inputs will drive engineering performance outcomes.

e Examine the Relative Importance of Influence Factors: Future research is suggested
to explore the relative importance of factors affecting engineering performance. Due
to the limited data sample size and missing values in this study, a comprehensive
multivariate analysis could not be conducted. Enhancing the dataset will enable more

in-depth analysis to facilitate benchmarking efforts.

e Apply Prediction Models for Performance Monitoring: Utilize the prediction model

to measure and evaluate engineering performance during project execution. Real-time
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project progress and performance monitoring will enable proactive measures to

address issues promptly, enhancing the overall success of engineering design.

e Improve Decision-Making and Risk Management: Incorporate performance models
to predict and evaluate design outcomes, leading to improved performance and
efficiency in engineering projects. Quantifying the potential impact of design choices
on project performance will enhance decision-making and risk management

processes.

e Scalable and Adaptable Solutions: Performance models can be applied across various
engineering and construction projects and industries. These models provide scalable
and adaptable solutions, optimizing resource allocation and cost management,

ensuring project efficiency while adhering to budget constraints.

By following these recommendations, construction stakeholders can leverage the
power of BIM applications and performance models to achieve enhanced project
outcomes, improved decision-making, and more efficient resource management. The
ongoing pursuit of data collection and analysis will further strengthen the effectiveness
of these models in project execution and performance evaluation within the construction
industry. The findings suggest several key research questions and recommendations as

follows:

e Prioritizing BIM Use Factors and Engineering Performance Measures: How can BIM
use factors and engineering performance measures be effectively prioritized to

enhance engineering performance evaluation and prediction efforts?

e Data Acquisition and Weighting During Project Life Cycle: What methods can be
employed to acquire data throughout the project life cycle, and how should the

weighting of data from different phases be determined?
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e Measuring BIM Use Factors and Engineering Performance Measures: How can the
measurement of BIM use factors and engineering performance measures be
consistently applied during each phase of a project execution cycle, considering their

varying values?

e Applying Performance Analysis Results to Improve Project Management: How can
the analysis results of engineering performance correlations be practically applied to

enhance project management and decision-making throughout project life cycles?

e Applicability of Performance Models Across Industry Sectors: How can the
performance models be effectively applied to various industry sectors while

maintaining reliable and trustworthy prediction capabilities?

Addressing these research questions will not only contribute to advancing the field of
engineering performance evaluation and prediction but also provide valuable insights for
practical application in diverse construction projects and industry sectors. Future research
is suggested to base on the questions and recommendations to extent this study and further

contribute to the body of knowledge.

8.4 Research Contributions

This research constitutes a structured and comprehensive approach in collaboration
with construction industry practitioners to synthesize BIM use factors and engineering
performance metrics, encompassing diverse measures, and employs these metrics to
construct predictive models that enrich the body of knowledge. This study offers
significant contributions to both research and practical applications in the realm of BIM
application for engineering performance within the construction industry, achieved
through the development of genetic models with predictive capabilities. The specific

contributions are outlined below:
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e Development of High-Level BIM Use Factors and Engineering Performance Indices:
The research successfully developed high-level BIM use factors and engineering
performance indices, enabling the synthesis of metrics with distinct units to facilitate

effective management of engineering performance.

e Unpacking the Complexity of Engineering Performance: Through comprehensive
analysis, the study revealed insights into the complex relationships between
engineering performance and BIM use factors, advancing the understanding of

engineering performance factors and their interdependencies.

e Knowledge for Engineering Performance Improvement: The investigation
encompassed a systematic exploration of information dependencies among BIM use
factors and engineering performance, identification of quantifiable measures for
future research, and knowledge the direct impact of BIM use factors on project

performance, all contributing to enhancing engineering performance.

e Implementation of MLMP and Statistical-Based Models: The research effectively
presented the application of MLMP statistical-based systems utilizing the surveyed
and collected project dataset, offering two models for predicting engineering

performance outcomes in the industrial construction projects.

e Potential for Future Improvement: The research highlights the potential for refining
the developed genetic models by augmenting the multi-dimensional project database,

which could enhance the accuracy and reliability of the predictive models.

Overall, the contributions of this study enable engineers and designers to make more
informed decisions, optimize design processes, enhance project performance, and foster
sustainable and efficient construction practices. The integration of BIM performance
models has the potential to revolutionize the engineering industry, making it more data-
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driven, collaborative, and capable of delivering innovative and successful projects. By
leveraging the predictive capabilities of the proposed models, the construction industry
can embark on a transformative journey towards improved project outcomes and
heightened project performance. The experience gained in this research can be applied

and beneficial to new projects.

8.5 Future Research

In pursuing of an effective and user-friendly engineering performance prediction
model, future research endeavors will be directed towards encapsulating the developed
generic model into a software package. This approach aims to invite BIM users to test the
model using their project data, thereby ensuring practical applicability and user
acceptance. A pilot test of the engineering performance prediction software has already
been conducted with selective EPC or contractors who participated in the survey, and the
preliminary feedback has been positive. To optimize the model's performance, specific
guidance shall be provided for collecting data from various construction tasks. While raw
data may exist in some form, it must undergo distillation and tailoring before being fed
into the predictive model. Future research is suggested to conduct and interpret test results
and unlock the full potential of BIM as a valuable tool in construction tasks, promoting

wider implementation across the industry.

Future efforts are suggested to focus on addressing the limitations identified in
current proposed study. The collection of life-cycle data of construction projects will be
contingent on data availability and facility owners' willingness to release such data. In
cases where the model scope is limited to project phases preceding the operation phase,
a practical plan of project data collection and data mining can be developed. With ample

data from construction projects of the similar facility type, the ML method could be better
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trained, leading to more reliable and precise predictions. The system's customization,
including appropriate input and output variables selection, can facilitate both internal and
external benchmarking of facility owners and AEC companies. However, the validity of
predicted engineering performance measures remains subject to the consolidation of more

tailored project data in the future.

Enhancing engineering performance validation and reliability forecasts through BIM
uses will be a focal point of future research. One approach is to apply artificial intelligence
methods and deep learning algorithms to enable computers to simulate thinking processes
and learn directly from data without relying on pre-defined models. As the number of
data samples for the learning process increases, these algorithms can improve
implementation performance. Advanced Al methods can be applied by enhancing
predictive capabilities and optimizing system parameters. The technique enables the
model to learn complex patterns, adapt to changing conditions, and provide more accurate
assessments of performance in diverse engineering scenarios. Another area of
investigation is the application of cross-validation for the developed models. This
technique, widely used in machine learning, assesses the predictive accuracy and
reliability of the models by dividing the data into multiple subsets and iteratively training
and testing the model on different subsets. Cross-validation can ensure that the model
generalizes well to new data and help identify potential data issues, thus enhancing the
predictive accuracy and reliability of the models. Lastly, including a multi-dimensional
data structure in the evaluation model will be explored. The current study excluded
owner-related BIM uses such as asset management, disaster planning and management,
and space management. Incorporating these aspects into the engineering performance
model through lifecycle data integration could provide valuable insights and benefit

analysis.
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The future research agenda aims to elevate the field of engineering performance
prediction by leveraging cutting-edge methodologies, optimizing data utilization, and
expanding the scope of BIM applications to enhance construction practices and project

outcomes.
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Appendix 1
Top 100 Contractor List (1/2)

ENR 2017 Top 400 Contractors 1-100

Companies are ranked by construction revenue in 2016 in ($) millions. Those with subsidiaries () are listed by company rank, which may
be found on the ENR website at www.ENR.com. Firms not ranked last year are designated as **. Some markets may not add up to 100%

due to omission of the “other” miscellaneous market category. NA = “not available.” Page 1 of 2
RANK 2017 RANK 2016 FIRM
1 1 BECHTEL, San Francisco, Calif.{
2 2 FLUOR CORP.,, Irving, Texast
3 3 THE TURNER CORP., New York, N.Y.
4 4 CB&I LLC, The Woodlands, Texast
5 6 AECOM, Los Angeles, Calif.{
6 5 KIEWIT CORP., Omaha, Neb. T
7 7 SKANSKA USA INC., New York, N.Y.T
8 8 PCL CONSTRUCTION ENTERPRISES INC., Denver, Colo.T
9 10 TUTOR PERINI CORP., Sylmar, Calif.{
10 9 THE WHITING-TURNER CONTRACTING CO., Baltimore, Md.
11 11 THE WALSH GROUP LTD., Chicago, IlL.}
12 15 CLARK GROUP, Bethesda, Md.t
13 14 GILBANE BUILDING CO., Providence, R.1.
14 12 BALFOUR BEATTY US, Dallas, Texast
15 17 STRUCTURE TONE, New York, N.Y.t
16 20 DPR CONSTRUCTION, Redwood City, Calif.
17 24 SWINERTON INC., San Francisco, Calif.
18 18 MORTENSON CONSTRUCTION, Minneapolis, Minn.}
19 19 HENSEL PHELPS, Greeley, Colo.t
20 25 MCCARTHY HOLDINGS INC., St. Louis, Mo.}
21 13 JACOBS, Dallas, Texas
22 22 ZACHRY GROUP, San Antonio, Texas}
23 26 JE DUNN CONSTRUCTION GROUP, Kansas City, Mo.
24 21 LENDLEASE, New York, N.Y.{
25 30 HOLDER CONSTRUCTION CO., Atlanta, Ga.
26 27 SUFFOLK CONSTRUCTION CO., Boston, Mass.}
27 23 TURNER INDUSTRIES GROUP LLC, Baton Rouge, La.}
28 28 GRANITE CONSTRUCTION INC., Watsonville, Calif.{
29 35 BARTON MALOW CO., Southfield, Mich.
30 29 BRASFIELD & GORRIE LLC, Birmingham, Ala.
31 * DRAGADOS NORTH AMERICA, New York, N.Y.+
32 16 KBR, Houston, Texas
33 37 AUSTIN INDUSTRIES, Dallas, Texast
34 31 ALBERICI-FLINTCO, St. Louis, Mo.}
35 33 PRIMORIS SERVICES CORP., Dallas, Texas}
36 34 MICHELS CORP., Brownsville, Wis.
37 42 CHINA CONSTRUCTION AMERICA/PLAZA CONSTR., Jersey City, N.J.t
38 46 CLAYCO INC., Chicago, Il
39 36 THE YATES COS. INC., Philadelphia, Miss.t
40 56 DEVCON CONSTRUCTION INC., Milpitas, Calif.
41 40 BLACK & VEATCH, Overland Park, Kan.}
42 43 OHL USA INC., College Point, N.Y.+
43 52 WEBCOR CONSTR. DBA WEBCOR BUILDERS, San Francisco, Calif.{
44 71 AMEC FOSTER WHEELER, Atlanta, Ga.t
45 38 PERFORMANCE CONTRACTORS INC., Baton Rouge, La.
46 okl WOOD GROUP, Houston, Texas
47 44 MANHATTAN CONSTRUCTION GROUP, Naples, Fla.t
48 62 HATHAWAY DINWIDDIE CONSTRUCTION CO., San Francisco, Calif.
49 47 HOFFMAN CORP.,, Portland, Ore.t
50 41 WALBRIDGE, Detroit, Mich.}
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Appendix 1
Top 100 Contractor List (2/2)

Companies are ranked by construction revenue in 2016 in ($) millions. Those with subsidiaries () are listed by company rank, which may
be found on the ENR website at www.ENR.com. Firms not ranked last year are designated as **. Some markets may not add up to 100%

ENR 2017 Top 400 Contractors 1-100

due to omission of the “other” miscellaneous market category. NA = “not available.” Page 2 of 2
RANK 2017 RANK 2016 FIRM
51 51 RYAN COS. US INC., Minneapolis, Minn.
52 45 LANE INDUSTRIES INC., Cheshire, Conn.T
53 57 LAYTON CONSTRUCTION CO. LLC, Sandy, Utah
54 53 COLAS INC., Morristown, N.J.T
55 68 HITT CONTRACTING INC., Falls Church, Va.
56 49 MATRIX SERVICE CO., Tulsa, Okla.}
57 59 SHAWMUT DESIGN AND CONSTRUCTION, Boston, Mass.
58 75 BL HARBERT INTERNATIONAL, Birmingham, Ala.
59 60 MESSER CONSTRUCTION CO., Cincinnati, Ohio
60 39 DAY & ZIMMERMANN, Philadelphia, Pa.}
61 il MOSS & ASSOCIATES LLC, Fort Lauderdale, Fla.
62 32 DAVID E. HARVEY BUILDERS INC., Houston, Texas}
63 50 FLATIRON CONSTRUCTION CORP., Broomfield, Colo.}
64 67 PEPPER CONSTRUCTION GROUP, Chicago, IlL.¥
65 64 HUNTER ROBERTS CONSTRUCTION GROUP LLC, New York, N.Y.
66 il CENTURI CONSTRUCTION GROUP, Phoenix, Ariz.}
67 79 CONSIGLI BUILDING GROUP INC., Milford, MA
68 66 GRAY CONSTRUCTION, Lexington, Ky.
69 82 EMJ CORP., Chattanooga, Tenn.t
70 65 THE WEITZ CO., Des Moines, lowat
71 70 KOKOSING INC., Westerville, Ohiot
72 93 ARCO CONSTRUCTION COS., St. Louis, Mo.}
73 55 BURNS & MCDONNELL, Kansas City, Mo.
74 61 THE BECK GROUP, Dallas, Texas
75 91 CHOATE CONSTRUCTION CO., Atlanta, Ga.
76 89 BIG-D CONSTRUCTION CORP., Salt Lake City, Utaht
77 78 ROBINS & MORTON, Birmingham, Ala.
78 74 POWER CONSTRUCTION CO. LLC, Chicago, IlI.
79 85 CROSSLAND CONSTRUCTION CO. INC., Columbus, Kan.
80 72 THE BOLDT CO., Appleton, Wis.
81 63 FERROVIAL US CONSTRUCTION CORP., Austin, Texast
82 134 CLUNE CONSTRUCTION CO., Chicago, Ill.
83 86 SELLEN CONSTRUCTION CO., Seattle, Wash.
84 88 AVALONBAY COMMUNITIES INC., Arlington, Va.
85 101 OKLAND CONSTRUCTION CO. INC., Salt Lake City, Utah
86 il CORE CONSTRUCTION GROUP, Phoenix, Ariz.
87 104 MIRON CONSTRUCTION CO. INC., Neenah, Wis.
88 83 JAMES G. DAVIS CONSTRUCTION CORP., Rockville, Md.
89 98 THE MCSHANE COS., Rosemont, 1L
90 81 PJ DICK - TRUMBULL - LINDY PAVING, Pittsburgh, Pa.}
91 112 ALSTON CONSTRUCTION, Atlanta, Ga.
92 73 AEGION CORP., Chesterfield, Mo.
93 69 AMES CONSTRUCTION INC., Burnsville, Minn.
94 54 M+W GROUP, Albany, N.Y.
95 58 S&B ENGINEERS AND CONSTRUCTORS LTD., Houston, Texas}
96 129 E.E. REED CONSTRUCTION LP, Sugar Land, Texast
97 77 SUNDT CONSTRUCTION INC., Tempe, Ariz.
98 90 LEVEL 10 CONSTRUCTION, Sunnyvale, Calif.
99 160 FORTIS CONSTRUCTION INC., Portland, Ore.
100 96 WEEKS MARINE INC., Cranford, N.J.¥
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Appendix 3
Survey Samples (Project Sample 1-1)
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Appendix 3
Survey Samples (Project Sample 1-2)
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Appendix 3
Survey Samples (Project Sample 1-3)
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Appendix 3
Survey Samples (Project Sample 2-1)

0 o,

%C %0 %0 () () 0TA

asn ui1so) dn-1eis [e301/dsn ul sappuapyaq udisag 01 anp unuIdAQ 150) dn-1els sapuaPIRQ USIsaQg 01 aNP UNLIBAAQ 350D dn-1iels

(%)

9 9 %) sAeq dn-1ieis |e10] /sapuanyaqg udisag o1 anp Aejag a|npayds dn-uels jo sAe

% %0 %0 (%) sheq dn-1iess e10] /sauapyaQ udisa@ 01 anp Aejag a|npayds dn-uels § | sapusiiyaq uisag 01 anp Aejag a|npatps dn-uiers| A

(%)
%T %T %0 (%)s4noH uo11041su0) [e101/(¥YD4) 1sanbay a8uey) p|al4 104 SINOH UOIIONIISUOD (44) 159nbay SBUEYD PO 03 SINCH :o_t:bm:ow 8A
%C %T %0 (%)s4noH uo112NJIISUO) 8101 /(14Y) UOIIBWIOU| J0) 1SONbAY JOJ SINOH UOIIINIISUOD (%) (14) LA

: : ’ UO|1BWJO4U| 40} 3S3Nb3Y 40} SINOH UOIINIISUOD)

. o . (%) @SN ul 350D UOIPNJIISUOD pue uolledligey (%) sapuanaqg udissq
%E Ll %0 |B201/@SN Ul $31PUBRYAQ udISaQ 01 NP UNIIBAQ 150D UOIDNIISUOD PUB UOIIEIIIGe] [ 01 9NP UNJISAQ 10D UOIIINJIISUOD PpUB UOoI1edLIge, oA

. o 0 (%) sAe@ uononuIsuo) pue uonedliged |e101/S31DUBDIAQ (%) sapuapiyag udiseq 01
%E %0 %0 ugisag 031 anp Ae[aQg a|nNPaydS UOIIPNIISUO) pue uolledliged jo sheg| anp Aejag 9|npPayds UOIPPNIISUO) pue uolledlige SA

(%) Auenp pajjeisu

9 9 9 %) Axlauenp paj|eisu| |euld/Ayzuenp paudisag uoldNIISUOD J04 ANSS
%S %S %0 (%) Amuenp pajjeisu| euld/Anueny pausisa@ uondNIISUO) Jo) | jeuty 03 pasiedwo Ayuenp pausisag pa|ielsa VA
%0T %0T %0 (%) asn u13s0) udisaq |e101/ASN Ul UNLIBAQ 350D uIsaQ (%) unuianQ 350D udisaq pajieldd| €A
%ST %01 %0 (%) sAea snpaypds usisaq |eroL/Aejaq@ a|npayas usisaq jo sheq (%) Aeja@ anpayos usisaq pajiesd| A
%SG %S %0 (%) sinoH usisaq |e101/SINOH yiomay udisag (%) d4omay udiseq| TA
uondiazsaq a|qelepn sa|qelep indinQ
1ana1
9|dwex o8.e,
| 3 soueydasoy bt 1 $3JNSE3|\] ddUBW.I0JIdd Sudauisug

sa|qeuep indinQg

dudl4adxa AnoA 03 Sulpiodde adueidadne ay) Indul aseald T Med

8 :(s4eap) sasn NIg ul 2duaadxy

G :(s4eap) Aasnpuj ul aduaniadxy
09V :Auedwo)

Ja8euel 109(oud BL

997 Wo] :dweN

uonewuojul JnoA Indui aseald ‘0 HMed
YJIETDIOL 9y} U[gY PUE ST3UUUdTI

noA indui asea|d ‘Asanuns jo syed € aJe a4ay] 'SpPoylIaw dIs11e1s pue |y Aq pamalnaa aq ||Im sdiysuolie|as ayi ‘@duewJsoad Suusauisus Jo sajqeliea andino QT pue uonedidde

NI J0 S3jAelieA Indul GT Suisn Ag *souewloyiad Suluaaui8us ay3 s1oae 33(oad 3yl ul Sasn |19 Moy Jo dualadxa JnoA Supjse st Apnis siyy "Assnpul uoipNIISUOd Y3 Ul suollesado

pue ‘uoipnaisuod ‘ugisap yoeoisdde am moy padueyd sey uoiiedijdde |A|g ‘SieaA 1ua29Y "2ouewopiad udisap Sulaauidua uo sasn |Ag 40 1dewl ayl Suipnis SI YdJeasad siy|
yaJeasay ay) jo asoding

€ JO T Med uonejuawa|dwy g JO JUSWISSISSY IUBWIO04Idd Suliaauidu] jo Asaning

153

10.6342/NTU202304540

doi:



Appendix 3
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|9pO Ul udisaq swaisAs
I T T T [4 T T € T T sisAjeuy waisAs Aesodwauo) uo112nIIsu0) STX
Soueldwo)
T T T T [4 T T € T T [SPOIA 404 S3PO) 4O UOIEPI|EA spJepuels| pyTx
pue sapo)
|9POIA Ul papn|oul sisAjeuy
U U U E U U U £ £ E sjuawia|3 udisaq a|qeuleisns eureisns €1X
|SPOA Ul pasn
A
€ € T T € € T € € € uonenwis wazshs SunssuiBu3 sishjeuy SunaauiBua| ¢TX
Sa1|qUIassy noAe]
© £ £ £ © € © € 3 £ NoAeT 01§ N Jo uonodung pue uoneso7 ge X
uonewojul 10 uonedqed |ens
T T T T T T T € T T 1eQ 19 Suisn Aq 31eaLqesaId 1edliqed |eusigl 0TX _
=]
Pappy Ue|d Uo1INIISUOD) uo[39N115U0) T
4 4 T T k4 4 T € T 1 10} |00 UONEIIUNWWOY eX =z
i)
=
Elsle] 35N 5|00 )
T 4 T T T 4 T T T T [9PO Ul p: 1001 SI9 -sisAjeuy a1 8X s
Pappy 3npayss Suluueld i
£ £ v U £ £ © v v U pue awi| Jo uoisuawiq Qv pue aseyd X m
4 < 4 [4 [4 4 14 T T T €1eQ 350 pue QLN d1esdusn Sunews3yisod| 9x m
a
|9pOIAl Ut Indul uonewIOu|
El
T T [4 [4 T T T T T T Jeuonsuny pue [esishyd UIISPOIAl p4023Y|  SX
k4 4 € € 4 k4 € v v v $S320.d U0130933Q Yyse|d UOlIBUIPIOOD | X
£ £ v v £ £ v £ 1 £ MU mamoy udisaa|  ex
[3POIN %00T/%06/09/0€ ’ )
$53201q UBIs3Q Suuoyiny usisa
€ € 14 14 14 4 14 14 T € Ul pas() 001 /a1BMIOS NI uoyiny usiseg| X
[SPOA Ut papnjdout
T T 4 T 4 € 0 € T € uonew.oju| pue AoWo3D | suompuo) Bunsixa|  IX
sanl|19e4/911S unsixy
S9|qelIA INIF
uonduasaq ajqenen
sa|qenen Indu|
A
0 0 (%) (%) (149)| (%) sa1ouapyaa| (%) sa1uayea (%) Aaaueno (%) =0
salualyaq| sausIPYRQ pajjelsu] euy (%) Aejea s _
(¥D4) 1s9nbay uollewsou| usisaq 01 anp udisag 03 anp unuIdAQ (%) JUBDJIUSIS JON =T
ugisaq 03 usisaq 03 paJedwo) 3|npayas 11US1 n=
a8ueyd pjal4 Joj1senbay UNLIBAQ 150D Aeja@ a|npayas 150D Jiomay uedIusIs /nI =¢
anp unuaAQ| 01 anp Aejag Aymuenp udisaq 318J8DOIN =
104 SINOH 104 SINOH uo13dNIISU0) uondNIISU0) ugisag ugisag 1EJ9pON =¢
150D 3|npayds pausisaq pajielad Sic =
uondNIsU0)|  uonrdNIISUO)| pue uoledugey pue uoneslgey pajielag uBdIUSIS =
dn-ueis dn-ueis palteyag uediudis AJap =5
OTA 6A 8A LA 9A SA A €A A A 'S 40 31835 Ul S|aA3] uedyuBls 3y

S2INSE3|A ddueWIOMad SulaauiSu] -s3jqeren Inding

Indut ‘syndino pue syndul USSMIS UOIIER|A. 3Y) 31BN|BAS 3Sed|d

2oualadxa anoA 03 Suipiodde [aA9) jJuedyiudis ays andul aseald "z Med

€ J0 7 Med uoizejuawajdwi |Al1g JO JUSWISSISSY IIUBWI0HID Sulaauisu] jo Alaning

154

10.6342/NTU202304540

doi:



Appendix 3
Survey Samples (Project Sample 2-3)
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Appendix 3
Survey Samples (Project Sample 3-1)
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Appendix 3
Survey Samples (Project Sample 3-2)
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Appendix 3
Survey Samples (Project Sample 3-3)
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Appendix 4
Correlation Analysis MiniTab Report (1/2)

Correlation: X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

X2 0.6000
0.0000
X3 0.5150  0.8970
0.0000  0.0000
X4 0.2110  0.7310  0.7160
0.1320  0.0000  0.0000
X5 0.7040  0.6200  0.5590  0.4460
0.0000  0.0000  0.0000 0.0010
X6 0.3610 0.5400 0.5860 0.5620  0.6780
0.0090  0.0000  0.0000  0.0000  0.0000
X7 0.4510 0.7120 0.7530  0.7020 0.8160  0.6950
0.0010  0.0000  0.0000  0.0000 0.0000  0.0000
X8 0.4340 0.3670 0.3050 0.1970 0.3160 0.1960  0.2800
0.0010  0.0070  0.0280  0.1620  0.0220  0.1640  0.0450
X9 -0.1450 0.0680 0.0070  0.1410 -0.1810 -0.0090 -0.0630  0.6090
0.3060 0.6340 0.9630 0.3180 0.1990 0.9470 0.6570  0.0000
X10 0.3940 05390 05260 0.5940 0.6230 0.8740 0.6670  0.2550  0.0870
0.0040  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0690 0.5410
X11 -0.0680  0.0420 -0.0390 0.0310 -0.1460 -0.0720 -0.0900  0.6290 0.8690  0.0120
0.6330 0.7680 0.7820 0.8270  0.3000  0.6100  0.5270  0.0000  0.0000  0.9340
X12 0.3020 0.6630 0.6240 0.6780 0.3540 0.2900 0.5750 0.0980 -0.0680  0.3420 -0.1830
0.0290 0.0000  0.0000 0.0000 0.0100 0.0370 0.0000 0.4900 0.6300 0.0130  0.1940
X13 0.8590 0.5810 05310 0.2970 0.7710 0.4870 0.5990  0.4940 -0.1000 0.4480 -0.0350  0.3250
0.0000 0.0000 0.0000 0.0330 0.0000 0.0000 0.0000 0.0000 0.4810 0.0010 0.8040  0.0190
X14 06670 05290 05700 0.3750 0.8460 0.6190 0.7520 0.2700 -0.2830  0.5120 -0.2230  0.3610  0.8150
0.0000 0.0000  0.0000 0.0060 0.0000 0.0000 0.0000 0.0530 0.0420 0.0000 0.1120  0.0090  0.0000
X15 03720 0.5850 05550 0.6500 0.6440 0.8700 0.6810 0.2450 0.0930 0.8880 0.0680  0.2740  0.4440  0.5500
0.0070  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0800 0.5130 0.0000 0.6340 0.0490 0.0010  0.0000
Y1 -0.3570 -0.7480 -0.7180 -0.8090 -0.5180 -0.6580 -0.7090 -0.2510 -0.1160 -0.7080  0.0310 -0.7340 -0.4210 -0.4060 -0.6490
0.0090 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0730 0.4140 0.0000 0.8260  0.0000 0.0020  0.0030  0.0000
Y2 -0.7360 -0.7140 -0.7060 -0.3750 -0.7540 -0.5800 -0.6610 -0.4110 0.1780 -0.5160 0.1270 -0.3380 -0.7310 -0.7160 -0.5170
0.0000  0.0000  0.0000 0.0060 0.0000 0.0000 0.0000 0.0030 0.2060 0.0000 0.3710 0.0140 0.0000  0.0000  0.0000
Y3 -0.3220 -0.7430 -0.7430 -0.8500 -0.5260 -0.6840 -0.7300 -0.2880 -0.0990 -0.7070  0.0540 -0.7040 -0.4270 -0.4580 -0.6470
0.0200  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0380 0.4870 0.0000 0.7030  0.0000 0.0020  0.0010  0.0000
Y4 0.3610  0.7420  0.7020  0.7450 0.4920  0.2990 0.7020 0.2950  0.1270 0.3110 0.0870  0.8140 0.4240  0.4410 0.3680
0.0090 0.0000  0.0000 0.0000 0.0000 0.0310 0.0000 0.0340 0.3700 0.0250  0.5410  0.0000  0.0020  0.0010  0.0070
Y5 -0.0600 -0.0790 -0.0960 0.0030 0.0280 -0.0380 -0.0260 -0.7400 -0.7290 -0.1460 -0.7180 0.1580 -0.1020  0.0740 -0.0940
0.6750 0.5780 0.4990 0.9840 0.8460 0.7870 0.8560  0.0000  0.0000 0.3030  0.0000 0.2630 0.4710  0.6020  0.5050
Y6  -0.2140 -0.5600 -0.5320 -0.7000 -0.4060 -0.7280 -0.5380 -0.1000 -0.1010 -0.7490  0.0020 -0.4330 -0.2400 -0.2460 -0.7370
0.1270  0.0000  0.0000 0.0000 0.0030  0.0000 0.0000 0.4790 0.4770 0.0000 = 0.9900 0.0010 0.0870  0.0790  0.0000
Y7 -0.7110 -0.5630 -0.6000 -0.3080 -0.7040 -0.5010 -0.5700 -0.4680  0.0870 -0.4350 0.1210 -0.2560 -0.7300 -0.7370 -0.4100
0.0000  0.0000  0.0000 0.0260 0.0000 0.0000 0.0000 0.0000 0.5380 0.0010 0.3920 0.0670  0.0000  0.0000  0.0030
Y8 -0.0790 -0.5400 -0.5840 -0.7180 -0.3380 -0.7280 -0.5230 -0.1010 -0.1080 -0.7090  0.0390 -0.3790 -0.2000 -0.2730 -0.7130
0.5800  0.0000  0.0000 0.0000 0.0140  0.0000 0.0000 0.4780 0.4470 0.0000 0.7860  0.0060 0.1540  0.0500  0.0000
Y9 -0.3870 -0.4880 -0.5860 -0.4090 -0.7020 -0.7030 -0.7030 -0.2090  0.1780 -0.5930  0.1150 -0.2300 -0.4760 -0.7160 -0.6100
0.0050 0.0000 0.0000 0.0030 0.0000 0.0000 0.0000 0.1370 0.2070  0.0000  0.4150  0.1020 0.0000  0.0000  0.0000
Y10 -0.4380 -0.5500 -0.5700 -0.4220 -0.7660 -0.7560 -0.7040 -0.1960 0.1570 -0.7010  0.1080 -0.2090 -0.4820 -0.6960 -0.7110
0.0010  0.0000  0.0000 0.0020 0.0000  0.0000 0.0000 0.1630 0.2660 0.0000  0.4470 0.1360 0.0000  0.0000  0.0000
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Appendix 4
Correlation Analysis MiniTab Report (2/2)

Correlation: Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

Y2 0.5540
0.0000
Y3 0.9510  0.5620
0.0000  0.0000
Y4 -0.7010 -0.4250 -0.6820
0.0000  0.0020  0.0000
Y5 0.0970  0.1730  0.1370 -0.0220
0.4920  0.2210 0.3330 0.8770
Y6 0.8260 0.3730  0.7900 -0.3800 = 0.0360
0.0000  0.0060  0.0000 0.0050 0.7990
Y7 0.3810 0.8260  0.4590 -0.3370  0.1460  0.2590
0.0050  0.0000  0.0010 0.0150 0.3010  0.0640
Y8 0.7920  0.4030 0.8380 -0.3440 0.1040 0.8970  0.3220
0.0000  0.0030 0.0000 0.0130 0.4630  0.0000  0.0200
Y9 0.4560  0.7390  0.5240 -0.2770 0.0880  0.4300  0.6950 0.4920
0.0010  0.0000 0.0000 0.0470 0.5340 0.0010  0.0000 0.0000
Y10 04770 0.7660 0.5100 -0.2780 0.0770  0.4540  0.6680 0.5090  0.8870
0.0000  0.0000 0.0000 0.0460 0.5880  0.0010  0.0000 0.0000  0.0000
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Regression Analysis: Y1 versus X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15

Stepwise Selection of Terms

a to enter = 0.1, o to remove = 0.1
Analysis of Variance

Appendix 5
Regression Analysis MiniTab Report (1/5)

Source DF AdjSS AdjMS F-Value P-Value

Regression 3 2591.9 863.96 70.37 0.000
X4 1 125.6 125.63 10.23 0.002
X10 1 306.2 306.21 24.94 0.000
X12 1 253.7 253.66 20.66 0.000

Error 48 589.3 12.28

Total 51  3181.2

Model Summary

S R-sq R-sq(adj)

R-sq(pred)

350401 81.47%
Coefficients

80.32%

78.61%

Term Coef SE Coef T-Value P-Value VIF
Constant 26.96 1.20 22.44 0.000

X4 -0.815 0.255 -3.20 0.002 2.55
X10 -1.032 0.207 -4.99 0.000 1.56
X12 -1.629 0.358 -4.55 0.000 1.87

Regression Equation

Yl =

26.96 - 0.815 X4 - 1.032 X10 - 1.629 X12
Fits and Diagnostics for Unusual Observations

Obs Y1 Fit Resid Std Resid
3 2000 13.27 6.73 2.06 R
21 300 11.04 -8.04 237 R
31 200 936 -7.36 -2.14 R
R Large residual

Regression Analysis: Y2 versus X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15

Stepwise Selection of Terms

o to enter = 0.1, o to remove = 0.1
Analysis of Variance

Source DF AdjSS AdjMS F-Value P-Value
Regression 4 59223 148057 36.82 0.000
X1 1 1753 17528 4.36 0.042
X3 1 7593 75.927 18.88 0.000
X4 1 1712 17.116 4.26 0.045
X5 1 5105  51.046 12.69 0.001
Error 47 189.00 4.021
Total 51 78123
Model Summary
S R-sq R-sq(adj) R-sq(pred)
2.00533 75.81% 73.75% 70.49%
Coefficients
Term Coef SE Coef T-Value P-Value VIF
Constant  12.811 0.740 17.32 0.000
X1 -0.303 0.145 -2.09 0.042 2.42
X3 -0.765 0.176 -4.35 0.000 2.87
X4 0.293 0.142 2.06 0.045 2.42
X5 -0.493 0.138 -3.56 0.001 243
Regression Equation
Y2 = 12.811-0.303 X1-0.765 X3 +0.293 X4 - 0.493 X5

Fits and Diagnostics for Unusual Observations

Obs Y2

Fit Resid Std Resid

52 16.000 11.835
R Large residual

4.165 217 R
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Regression Analysis: Y3 versus X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15

Stepwise Selection of Terms

a to enter = 0.05, o to remove = 0.05
Analysis of Variance

Appendix 5
Regression Analysis MiniTab Report (2/5)

Source DF AdjSS AdjMS F-Value P-Value
Regression 3 26977 899.25 75.68 0.000
X4 1 273.4 273.42 23.01 0.000
X10 1 239.1 239.14 20.13 0.000
X12 1 132.8 132.80 11.18 0.002
Error 48 570.3 11.88
Total 51 32681
Model Summary
S R-sq R-sq(adj) R-sq(pred)
3.44699  82.55% 81.46% 79.65%
Coefficients
Term Coef SE Coef T-Value P-Value VIF
Constant 27.31 1.18 23.12 0.000
X4 -1.202 0.251 -4.80 0.000 2.55
X10 -0.912 0.203 -4.49 0.000 1.56
X12 -1.179 0.353 -3.34 0.002 1.87
Regression Equation
Y3 = 27.31-1.202 X4-0.912 X10-1.179 X12

Fits and Diagnostics for Unusual Observations
Fit Resid Std Resid

Obs

Y3

17 13.00 2041 -741

31 3.00

9.92 -6.92

R Large residual

Regression Analysis: Y4 versus X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15

-223 R
-205 R

Stepwise Selection of Terms

a to enter = 0.05, a to remove = 0.05
Analysis of Variance

Source DF AdjSS AdjMS F-Value P-Value
Regression 5 345052  69.010 56.51 0.000
X4 1 8438 8.438 6.91 0.012
X7 1 32038 32038 26.23 0.000
X10 121702 21702 17.77 0.000
X11 1 17976 17.976 14.72 0.000
X12 1 53667  53.667 43.94 0.000
Error 46 56.179 1.221
Total 51 401.231
Model Summary
S R-sq R-sq(adj) R-sq(pred)
110512 86.00% 84.48% 82.26%
Coefficients
Term Coef SE Coef T-Value P-Value VIF
Constant  90.823 0.497 182.71 0.000
X4 0.2268  0.0863 2.63 0.012 2.94
X7 0.3865  0.0755 5.12 0.000 2.64
X10 03105  0.0737 422 0.000 2.00
X11 0.2506  0.0653 3.84 0.000 1.10
X12 0.801 0.121 6.63 0.000 2.14
Regression Equation
Y4 = 90.823+0.2268 X4 +0.3865 X7 - 0.3105 X10 + 0.2506 X11 + 0.801 X12

Fits and Diagnostics for Unusual Observations

Obs

Y4

Fit Resid Std Resid

27 100.000 97.889
36 91.000 93.794

R Large residual

2111
-2.794

2.01 R
-263 R
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Regression Analysis: Y5 versus X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15

Appendix 5
Regression Analysis MiniTab Report (3/5)

Stepwise Selection of Terms

o to enter = 0.05, a to remove = 0.05
Analysis of Variance

Source DF AdjSS AdjMS F-Value P-Value

Regression 3 1773.06 591.02 37.62 0.000
X8 1 40196 401.96 25.58 0.000
X9 1 25444 254.44 16.19 0.000
X12 1 79.17 79.17 5.04 0.029

Error 48 75417 15.71

Total 51 2527.23

Model Summary
S R-sq R-sq(adj) R-sq(pred)

3.96382 70.16% 68.29% 64.79%
Coefficients

Term Coef SE Coef T-Value P-Value VIF
Constant  21.34 1.66 12.85 0.000

X8 -1.312 0.259 -5.06 0.000 1.64
X9 -1.082 0.269 -4.02 0.000 1.63
X12 0.678 0.302 2.24 0.029 1.04
Regression Equation

Y5 = 21.34-1312X8-1.082 X9 +0.678 X12

Fits and Diagnostics for Unusual Observations

Obs Y5 Fit Resid Std Resid

28 500 1374 -8.74
R Large residual

Regression Analysis: Y6 versus X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15

-238 R

Stepwise Selection of Terms

a to enter = 0.05, o to remove = 0.05
Analysis of Variance

Source DF AdjSS AdjMS F-Value P-Value

Regression 3 49512  165.040 43.12 0.000
X4 1 89.60 89.603 23.41 0.000
X6 1 162.22 162.215 42.38 0.000
X14 1 51.48 51.483 13.45 0.001

Error 48  183.71 3.827

Total 51 67883

Model Summary
S R-sq R-sq(adj) R-sq(pred)

1.95633  72.94%
Coefficients

71.25% 68.09%

Term Coef SE Coef T-Value P-Value VIF

Constant  10.765 0673 16.00 0.000

X4 -0.521 0.108 -4.84 0.000 146
X6 -0.755 0.116 -6.51 0.000 2.04
X14 0.441 0.120 3.67 0001 162
Regression Equation

Y6 = 10.765-0.521 X4 - 0.755 X6 + 0.441 X14

Fits and Diagnostics for Unusual Observations

Obs Y6

Fit Resid Std Resid

3 10.000 5.007
4 5000 0.528
34 5.000 8.888

R Large residual

4.993 2.68 R
4.472 238 R
-3.888 -205 R
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Regression Analysis: Y7 versus X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15

Stepwise Selection of Terms

a to enter = 0.05, o to remove = 0.05

Analysis of Va

riance

Appendix 5
Regression Analysis MinitTab Report (4/5)

Source DF AdjSS AdjMS F-Value P-Value
Regression 3 41965  139.883 33.55 0.000
X8 1 81.66 81.657 19.59 0.000
X11 1 34.60 34.596 8.30 0.006
X14 1 107.50  107.497 25.79 0.000
Error 48  200.10 4.169
Total 51  619.75
Model Summary
S R-sq R-sq(adj) R-sq(pred)
2.04176 67.71% 65.69% 62.17%
Coefficients
Term Coef SE Coef T-Value P-Value VIF
Constant 10.096 0.822 12.28 0.000
X8 -0.706 0.160 -4.43 0.000 2.34
X11 0.501 0.174 2.88 0.006 2.28
X14 -0.611 0.120 -5.08 0.000 1.49
Regression Equation
Y7 = 10.096 - 0.706 X8 + 0.501 X11 - 0.611 X14

Fits and Diagnostics for Unusual Observations

Obs Y7

Fit Resid Std Resid

24 4000 8.670
43 2000 7.735
52 14.000 9.075

R Large residua

Regression Analysis: Y8 versus X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15

Stepwise Selection of Terms

-4.670
-5.735
4.925

o to enter = 0.05, a to remove = 0.05

Analysis of Va

riance

-240 R
-293 R
251 R

Source DF AdjSS AdjMS F-Value P-Value
Regression 3 33024 110.082 4421 0.000
X4 1 7135 71354 28.66 0.000
X5 1 28.96 28.956 11.63 0.001
X6 1 98.26 98.262 39.47 0.000
Error 48 11951 2.490
Total 51  449.75
Model Summary
S R-sq R-sq(adj) R-sq(pred)
1.57788  73.43% 71.77% 69.45%
Coefficients
Term Coef SE Coef T-Value P-Value VIF
Constant 8.811 0.531 16.58 0.000
X4 -0.4674 0.0873 -5.35 0.000 1.48
X5 0.3261 0.0956 341 0.001 1.87
X6 -0.6091 0.0969 -6.28 0.000 2.19
Regression Equation
Y8 = 8.811-0.4674 X4 +0.3261 X5 - 0.6091 X6

Fits and Diagnostics for Unusual Observations

Obs Y8

Fit Resid Std Resid

4 3.000 -0.040  3.040
31 2000 5201 -3.201
34 4000 7.126 -3.126

R Large residual

202 R
-2.05 R
-204 R
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Regression Analysis: Y9 versus X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15

Stepwise Selection of Terms

o to enter = 0.05, o to remove = 0.05
Analysis of Variance

Appendix 5
Regression Analysis MiniTab Report (5/5)

Source DF AdjSS AdjMS F-Value P-Value
Regression 3 48191 160.637 29.96 0.000
X6 1 7791 77910 14.53 0.000
X13 1 2203 22032 411 0.048
X14 1 99.00  99.004 18.46 0.000
Error 48 257.40 5.362
Total 51 739.31
Model Summary
S R-sq R-sq(adj) R-sq(pred)
2.31569 65.18% 63.01% 60.33%
Coefficients
Term Coef SE Coef T-Value P-Value VIF
Constant  10.551 0.627 16.84 0.000
X6 -0.467 0.122 -381 0.000 162
X13 0.368 0.181 2.03 0.048 2.9
X14 -0.923 0.215 -4.30 0.000 3.69
Regression Equation
Y9 = 10.551-0.467 X6 + 0.368 X13 - 0.923 X14
Fits and Diagnostics for Unusual Observations
Obs Y9 Fit Resid Std Resid
14 3000 8050 -5.050 225 R
33 7.000 7.267 -0.267 013 X
44 18000 9529  8.471 376 R
52 18.000 9529  8.471 376 R

R Large residual
X Unusual X

Regression Analysis: Y10 versus X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15

Stepwise Selection of Terms

o to enter = 0.05, o to remove = 0.05
Analysis of Variance

Source DF AdjSS AdjMS F-Value P-Value
Regression 2 32685 163424 54.63 0.000
X5 1 56.24 56.237 18.80 0.000
X6 1 49.01 49.013 16.38 0.000
Error 49 146.59 2.992
Total 51 47344
Model Summary

S R-sq R-sq(adj) R-sq(pred)
1.72966  69.04% 67.77% 64.55%
Coefficients
Term Coef SE Coef T-Value P-Value VIF
Constant 9.201 0.442 20.83 0.000
X5 -0.452 0.104 -4.34 0.000 1.85
X6 -0.3954 0.0977 -4.05 0.000 1.85

Regression Equation
Y10 = 9.201-0.452 X5 -0.3954 X6

Fits and Diagnostics for Unusual Observations

Obs Y10 Fit Resid Std Resid
14 2.000 6.095 -4.095 -250 R
28 1.000 4.401 -3.401 -2.08 R
44 12.000 8.354  3.646 216 R
52 12.000 8.354  3.646 216 R

R Large residual
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Appendix 6
Coding of Machine Learning Modeling in Python with Keras (1/6)

The code is to establish the main equation of MLMP and predict after the MLMP equation
is established.

# cnn_pecl.py

# coding: utf-8

import os

import numpy as np

from private.pecl.common_pecl import load_data, getTrainAndTestData, getTrainAndTestData6
from keras.utils import np_utils

from keras.models import load_model

from keras.models import Sequential

from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
import pandas as pd

from private.pecl.common_pecl import show_train_history

if _name__=="__main__"

np.random.seed(10)

pathName = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file_ )))) + "\\source\\"
dirName = "peclSave\\"

fileName = pathName + dirName + "data.pickle"

X, Y¥1, yv2, yv3, yv4, yy5, yy6, yy7, yy8, yy9, yy10 = load_data(fileName)

v = [yvL, yv2, yy3, yv4, vy5, yv6, yy7, yy8, yy9, yy10]

index =9

outputValue =5

(x_train, y_train), (x_test, y_test) = getTrainAndTestData(x,y[index], probility=0.85)

# (x_train, y_train), (x_test, y_test) = getTrainAndTestData6(x,y[index], probility=0.85)
x_train4D = x_train.reshape(x_train.shape[0],3,5,1).astype('float32')

x_test4D = x_test.reshape(x_test.shape[0],3,5,1).astype('float32’)
print(x_train4D.shape, x_test4D.shape)

x_traindD_normalize = x_train4D
x_test4D_normalize = x_test4D

y_trainOneHot = np_utils.to_categorical(y_train)
y_testOneHot = np_utils.to_categorical(y_test)

# model = load_model(pathName + dirName + "y" + str{index + 1) + "model.h5")
model = Sequential()

model.add(Conv2D(filters=16, kernel_size=(2,2), padding='same’, input_shape=(3,5,1), activation="relu'))
model.add(MaxPooling2D(pool_size=(1,1)))
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model.add(Conv2D(filters=16, kernel_size=(2,2), padding='same’, activation="relu'))
model.add(MaxPooling2D(pool_size=(1,1)))

model.add(Dropout(0.05))

model.add(Flatten())

model.add(Dense(units=32, activation="relu'))

model.add(Dropout(0.05))

model.add(Dense(units=outputValue, activation="softmax'))

model.compile(loss="categorical_crossentropy', optimizer="adam', metrics=["accuracy'])

train_history = model.fit(x=x_train4D_normalize, y=y_trainOneHot, validation_split=0.2, epochs=2000,
batch_size=5000, verbose=2)

model.save(pathName + dirName +"y" + str(index + 1) + "model.h5")

nn

show_train_history(train_history, 'acc’, 'val_acc', pathName + dirName +"y" + str(index + 1) +"_acc.jpg")

show_train_history(train_history, 'loss', 'val_loss', pathName + dirName +"y" + str(index + 1) + "_loss.jpg")

# scores = model.evaluate(x_test4D_normalize, y_testOneHot)
# print()

# print('accuracy ="', scores[1])

# prediction = model.predict_classes(x_test4D_normalize)
predictionAll = model.predict_classes(x.reshape(x.shape[0],3,5,1).astype('float32'))
print(x.shape, predictionAll)

np.savetxt(pathName + dirName + "y" + str(index + 1) + "_prediction.txt", predictionAll)
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Appendix 6
Coding of Machine Learning Modeling in Python with Keras (2/6)

The code is created to include:

1. Read the original data (the original EXCEL data has been converted into a pickle file)

2. Divide the original data into training data and test data for MLMP training

3. Establish various verification methods (such as least square method R-square, mean
square error MSE, root mean square error RMSE)

# common_pecl.py

# coding: utf-8

import os, pickle

import numpy as np

import matplotlib.pylab as plt

from keras import backend as K

def load_data(fileName):
with open(fileName, 'rb') as f:
%, ¥1,¥2, y3, y4,¥5, 6, y7, y8, y9, y10 = pickle.load(f)
return x, y1, y2, y3, y4,y5, y6, y7, y8, y9, y10

def load_rawdata(fileName):
with open(fileName, 'rb') as f:
X, y = pickle.load(f)

return x, y

def getTrainAndTestData(x, y, probility=0.85):
msk = np.random.rand(len(x)) < probility
x_train = x[msk]; y_train = y[msk]
x_test =x["msk]; y_test = y[~*msk]

return (x_train, y_train), (x_test, y_test)

def getTrainAndTestDatab(x, y, probility=0.85):
xx = np.concatenate((x[1:14], x[15:]))
yy = np.concatenate((y[1:14], y[15:]))
msk = np.random.rand(len(yy)) < probility
X_train = np.concatenate((xx[msk], x[[0]])); y_train = np.concatenate((yy[msk], y[[0]]))

x_test = np.concatenate((xx[*msk], x[[14]])); y_test = np.concatenate((yy[~msk], y[[14]]))
return (x_train, y_train), (x_test, y_test)

def show_train_history(train_history, train, validation, saveName):
plt.plot(train_history.history[train])
plt.plot(train_history.history[validation])
plt.title('Train History')
plt.ylabel(train)
plt.xlabel('Epoch’)
plt.legend(['train’, 'validation'], loc="upper left')

# plt.show()
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plt.savefig(saveName, dpi=300, bbox_inches="tight')

def r_square(y_true, y_pred):
SS_res= K.sum(K.square(y_true-y_pred))
SS_tot = K.sum(K.square(y_true - K.mean(y_true)))
return (1 - SS_res/(SS_tot + K.epsilon()))

def rsqrt(y_true, y_pred):
correlation_matrix = np.corrcoef(y_true, y_pred)
correlation_xy = correlation_matrix[0,1]
r_squared = correlation_xy**2

return r_squared

def mse(y_true, y_pred):
return np.sum(np.power((y_true.reshape(-1,1) - y_pred.reshape(-1,1)),2))/len(y_true.reshape(-1,1))

def rmse(y_true, y_pred):
return np.sqrt(mse(y_true, y_pred))

def mae(y_true, y_pred):
return np.sum(np.abs(y_true.reshape(-1,1) - y_pred.reshape(-1,1)))/len(y_true.reshape(-1,1))

if_name__=="'__main__"

pathName = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file_ )))) +
"\\source\\"

dirName = "peclSave\\"

fileName = pathName + dirName + "data.pickle"

x,v1,vy2,y3,y4,y5,y6,y7,y8,y9, yl0 = load_data(fileName)

y=y6

(x_train, y_train), (x_test, y_test) = getTrainAndTestData6(x, y, probility=0.85)

print(x_train.shape, y_test.shape)
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Appendix 6
Coding of Machine Learning Modeling in Python with Keras (3/6)

The code is to import the original data of the EXCEL file and convert the data into a

pickle file for subsequent modeling (the main reason is that it is time-consuming to read

the EXCEL file).

# DataProcessing.py
# coding: utf-8
import os, pickle

import numpy as np

def getFormat():
a=0

return a
def getTrainAndTestData(x, y, probility=0.85):

msk = np.random.rand(len(x)) < probility
x_train = x[msk]; y_train = y[msk]
x_test =x["msk]; y_test = y[~*msk]

return (x_train, y_train), (x_test, y_test)
if __name__=="__main__":

pathName = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file_ )))) + "\\source\\"
dirName ="pecl\\"
outputFileDir = "peclSave\\"
outputFileName = "data.pickle"

fileName = "data.txt"

with open(pathName + dirName + fileName, 'r') as file:

lines = file.readlines()

x =[Eyl=[Ly2=[Ly3=[Lvy4=1;y5=1

ye=[Ly7=[Ly8=[y9=[kvylo=[]

for idx, line in enumerate(lines):
x.append([float(i) for i in line.split(",")[0:15]])
yl.append(float(line.split(",")[15]))
y2.append(float(line.split(",")[16]))
y3.append(float(line.split(",")[17]))
y4.append(float(line.split(",")[18]))
y5.append(float(line.split(",")[19]))
y6.append(float(line.split(",")[20]))
y7.append(float(line.split(",")[21]))
y8.append(float(line.split(",")[22]))
y9.append(float(line.split(",")[23]))
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y10.append(float(line.split(",")[24]))
x = np.array(x); y1 = np.array(y1); y2 = np.array(y2); y3 = np.array(y3)
y4 = np.array(y4); y5 = np.array(y5); y6 = np.array(y6); y7 = np.array(y7)

y8 = np.array(y8); y9 = np.array(y9); y10 = np.array(y10)

with open(pathName + outputFileDir + outputFileName, 'wb') as handle:

pickle.dump((x, y1,y2, y3, y4,y5, v6, y7, y8, y9, y10), handle)

with open(pathName + outputFileDir + outputFileName, 'rb') as f:

xx, ¥y1, yy2, vy3, yy4, yy5, yy6, yy7, yy8, yy9, yy10 = pickle.load(f)

(x_train, y_train), (x_test, y_test) = getTrainAndTestData(xx, yy1, probility=0.9)

print(x_train.shape, y_train.shape)
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Appendix 6
Coding of Machine Learning Modeling in Python with Keras (4/6)

The code is to save all the parameters into the file (.h5) after completing the MLMP
simulation and perform multiple verifications to find the best MLMP model (the main
reason is that the random distribution of the normal distribution is placed at the beginning
of the establishment of the MLMP model. The numerical value is not the best MLMP
mode after one training is completed, so it is necessary to find the final MLMP mode after

multiple calculations).

# LinearRegression.py

#coding = utf-8

# Multilayer Perceptron, MLP

import os

from private.pecl.common_pecl import load_rawdata, getTrainAndTestData, rsqrt, mse, rmse, mae
import numpy as np

from keras.models import load_model

from keras.models import Sequential

from keras.layers import Dense
if_name__=="__main__":

np.random.seed(29999)

pathName = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file_ }))) +
"\\source\\"

dirName = "peclSave\\"

fileName = pathName + dirName + "rawdata.pickle"

x, ¥ = load_rawdata(fileName)

(x_train, y_train), (x_test, y_test) = getTrainAndTestData(x,y, probility=0.95)

print(x_train.shape, x_test.shape)

print(y_train.shape, y_test.shape)
# model = load_model(pathName + dirName + "linear_regression_maodel.h5")

model = Sequential()
model.add(Dense(output_dim=10,input_dim=15))

# model.add(Dense(units=15, input_shape=(15,), activation="relu'))
# model.add(Dense(units=40, activation="relu'))

# model.add(Dense(units=10, activation="relu"))

# model.compile(loss="mse',optimizer='adam’, metrics=[r_square])

model.compile(loss="mse',optimizer="sgd')

print("start training")

for step in range(100001):
cost = model.train_on_batch(x_train, y_train)
if step % 2000 == 0:

print("train cost: {}".format(cost))
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print("start testing")

cost = model.evaluate(x_test, y test, batch_size=4000)
print("test cost: {}".format(cost))

W, b = model.layers[0].get_weights()

print("Weights = {}, bias = {}".format(W,b))

model.save(pathName + dirName + "linear_regression_model.h5")
y_pred = model.predict(x) # y predict
print(y_test.shape, y_pred.shape)

print("y_pred = {}".format(y_pred))

print("R2 = {}, MSE = {}, RMSE = {}, MAE = {}".format(rsqrt(y, y_pred), mse(y, y_pred), rmse(y, y_pred),
maely, y_pred)))
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Appendix 6
Coding of Machine Learning Modeling in Python with Keras (5/6)

# LinearRegressionTest.py
#coding = utf-8

import numpy as np

from keras.models import Sequential
from keras.layers import Dense

from private.pecl.common_pecl import r_square

np.random.seed(1337)

X1 = np.linspace(-10,10,200)

np.random.shuffle(X1)

X2 = np.linspace(-20,5,200)

np.random.shuffle(X2)

¥1=0.5% (X1 +X2) + 2 + np.random.normal(0, 0.05, (200,))
Y2 =0.5* (X1 + X2) *0.15 + np.random.normal(0, 0.05, (200,))

X = np.concatenate(([X1],[X2]), axis=0)
X=XT

Y = np.concatenate(([Y1],[Y2]), axis=0)
Y=YT

print(X.shape, Y.shape)

X_train, Y_train = X[:160], Y[:160]
X_test, Y_test = X[160:], Y[160:]

model = Sequential()

model.add({Dense(output_dim=2,input_dim=2))
model.compile(loss="mse',optimizer='adam’, metrics=[r_square])

print("start training")
for step in range(10001):
cost = model.train_on_batch(X_train, Y_train) #

if step % 500 == 0: print("train cost: {}".format(cost))

print("start testing")

cost = model.evaluate(X_test, Y_test, batch_size=40)
print("test cost: {}".format(cost))

W, b = model.layers[0].get_weights()
print{"Weights = {}, bias = {}".format(w,b))

Y_pred = model.predict(X_test) # Y predict
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Appendix 6
Coding of Machine Learning Modeling in Python with Keras (6/6)

# RawdataProcessing.py
# coding: utf-8
import os, pickle

import numpy as np

def getTrainAndTestData(x, y, probility=0.85):
msk = np.random.rand(len(x)) < probility
x_train = x[msk]; y_train = y[msk]
x_test =x[“msk]; y_test = y[*msk]
return (x_train, y_train), (x_test, y_test)

if _name__=="__main__":

pathName = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file_ )))) +
"\\source\\"

dirName ="pecl\\"

outputFileDir = "peclSave\\"

outputFileName = "rawdata.pickle"

fileName = "rawdata.txt"
with open(pathName + dirName + fileName, 'r') as file: lines = file.readlines()

x =[hy=1

for idx, line in enumerate(lines):
x.append([float(i) for i in line.split(",")[0:15]])
y.append([float(i) for i in line.split(",")[15:]])

x = np.array(x); y = np.array(y)

print(x)

print(y)

with open(pathName + outputFileDir + outputFileName, 'wb') as handle:

pickle.dump((x, y), handle)

with open(pathName + outputFileDir + outputFileName, 'rb') as f:

xx, yy = pickle.load(f)
(x_train, y_train), (x_test, y_test) = getTrainAndTestData(xx, yy, probility=0.9)

print(x_train.shape, y_train.shape)

print(x_test.shape, y_test.shape)
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Appendix 7

F-test and Correlation for LR and MLMP Models (1/2)

F-Test Two-Sample for Variances

Project Test No 1

LR Outputs MLMP Outputs
Mean 0.1993 0.2086
Variance 0.070278011 0.069032267
Observations 10 10
df 9 9
F 1.018045828
P(F<=f) one-tail 0.48959128
F Critical one-tail 3.178893104

Correlation Analysis

Project Test No 1

LR Outputs MLMP Outputs
LR Outputs 1
MLMP Outputs 0.99911627 1

F-Test Two-Sample for Variances
Project Test No 36

LR Outputs MLMP Outputs
Mean 0.2101 0.2149
Variance 0.068458767 0.067246322
Observations 10 10
df 9 9
F 1.0180299
P(F<=f) one-tail 0.489600384
F Critical one-tail 3.178893104

Correlation Analysis

Project Test No 36
LR Outputs MLMP Outputs
LR Outputs 1
MLMP Outputs 0.999889582 1
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Appendix 7

F-test and Correlation for LR and MLMP Models (2/2)

F-Test Two-Sample for Variances
Project Test Set No 1

LP Outputs in Average MLMP Outputs in Average

Mean

Variance
Observations

df

F

P(F<=f) one-tail
F Critical one-tail

0.1732 0.1737

0.077209067 0.077107344

10 10

9 9
1.001319229
0.499232646
3.178893104

Correlation Analysis
Project Test Set No 1

LP Outputs in Average MLMP Outputs in Average

LR Outputs 1
MLMP Outputs 0.999868813 1

F-Test Two-Sample for Variances

Project Test Set No 2

LP Outputs in Average MLMP Outputs in Average
Mean 0.1661 0.1658
Variance 0.079457656 0.079672178
Observations 10 10
df 9 9
F 0.997307439
P(F<=f) one-tail 0.498430679
F Critical one-tail 3.145749062

Correlation Analysis
Project Test Set No 2

LP Outputs in Average MLMP Outputs in Average

LR Outputs
MLMP Outputs

1
0.999908671 1
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