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Abstract

As venture capital (VC) firms increasingly adopt machine learning (ML) tools to
support investment decisions, concerns arise regarding the potential perpetuation of
historical biases embedded in past funding outcomes. These biases often stem from the
limited availability of quantifiable data on early-stage startups. As a result, investment
decisions depend heavily on subjective assessments of founding teams, which
introduces risks of demographic stereotyping and discrimination. To prevent the
reinforcement of such biases, ensuring fairness in ML-based decision systems is
therefore critical to mitigating systematic resource misallocation and promoting
equitable access to capital.

This study investigates fairness-aware startup early success prediction by
examining three commonly cited sources of potential biases, including geographic
region, founder gender, and race. We implement and compare three fairness-aware
approaches: feature-blind, regularization-based, and gradient reversal, each capable of
handling multiple sensitive attributes of mixed data types. Our empirical results
demonstrate that, while introducing modest trade-off in predictive performance, both
the regularization and gradient reversal methods effectively enhance fairness.

Beyond performance evaluation, this study identifies subgroups most impacted by

model biases, such as startups with over 75% female founders, and highlights which
iii
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sensitive attribute contributes most to observed disparities. The findings offer

actionable insights for both startups and VC practitioners. For startups, the adoption of

fairness-aware methods can improve fairer access to funding opportunities and foster a

more inclusive entrepreneurial landscape. For investors, these methods may help

uncover overlooked ventures and support more balanced portfolio construction.

Keywords: Fairness-aware machine learning, Startup success prediction, Startup

analytics, Algorithmic bias, Algorithmic fairness, Predictive modeling, Representation

learning, Decision support systems
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Chapter 1 Introduction
1.1 Background
Securing funding across various stages is a critical milestone in the lifecycle of
startups. In particular, early-stage venture funding, such as Series A, is regarded as a
key inflection point, as it often marks the transition from early development to scalable
growth (Hellmann & Puri, 2000). In this stage, venture capital (VC) firms play a crucial
role by providing not only financial resources but also strategic guidance to help
startups foster sustainable expansion (Bygrave & Timmons, 1992). However, the path
to success remains highly uncertain: only about one in three startups achieves initial
profits within six years of founding (Reynolds, 2016). To mitigate the inherent risk
associated with early-stage startup investments, venture capital firms are increasingly
relying on machine learning (ML) to support their investment decisions (Astebro, 2021).
Despite this trend, concerns have been raised that these data-driven systems may inherit
and even amplify historical biases embedded in past VC decisions, potentially
reproducing patterns of discrimination (Mehrabi et al., 2021).
The complexity and ambiguity of assessing nascent companies often give rise to
biases in VC decision-making. Unlike established firms, the evaluation of early-stage
startups often involves making high-stakes decisions under extreme uncertainty, as

quantifiable information, such as financial records or product traction, is typically
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unavailable (Wei et al., 2025). Consequently, investment decisions tend to rely heavily

on subjective assessments of founding teams (Corea et al., 2021). This subjectivity is

further compounded by the presence of complex social signals and information

asymmetry, which make objective evaluation particularly challenging in such

ambiguous contexts (Gompers & Lerner, 2004). To overcome these obstacles, venture

capitalists often resort to heuristics (Dale, 2015) and stereotypes (Bodenhausen & Wyer,

1985) to simplify judgment and improve decision-making efficiency, which may

introduce or reinforce potential unfairness in funding outcomes.

Various manifestations of bias have been documented in VC investment decisions.

Gender bias is one notable example, in which male investors often demonstrate less

interest in female entrepreneurs compared to equally qualified male counterparts

(Ewens & Townsend, 2020). Racial disparities have also been observed, with Black-

owned startups receiving significantly less external equity funding at founding than

White-owned firms (Fairlie et al., 2022; Paglia & Harjoto, 2014). Age bias further

skews funding decisions, as investor evaluations follow an inverted-U pattern, favoring

founders in a perceived optimal middle-age range (Matthews et al., 2024). Additionally,

geographic bias plays a role, where startups located within a VC’s home country are

more likely to receive funding, while those based abroad are often overlooked (Coval

& Moskowitz, 1999).
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In addition to the unfair treatment faced by entrepreneurs, biased VC investment

decisions also carry consequences for investors themselves. Hernandez et al. (2019)

conduct interviews with seven venture capitalists involved in early-stage funding

decisions. Most of these investors actively seek to address biases, such as gender

stereotypes, by expanding their own networks and diversifying the pool of promising

entrepreneurs beyond familiar circles. These efforts are not solely driven by ethical

considerations; rather, they also reflect a growing awareness of the potential financial

impact of unfair practices. For example, empirical evidence shows that women-led

firms can outperform male-led counterparts under comparable conditions (Gazanchyan

et al., 2017), suggesting that gender bias may lead investors to overlook high-potential

opportunities, ultimately resulting in suboptimal investment outcomes. Nonetheless,

current fairness initiatives in venture capital predominantly focus on human decision-

making, which may lack consistency and efficiency in mitigating biases (Hernandez et

al., 2019). Moreover, limited attention has been paid to incorporating fairness

considerations into machine learning systems that support VC decision-making (Te et

al., 2023a).

When machine learning models are trained on biased historical data, they risk

perpetuating or even exacerbating existing discrimination against underrepresented

groups (Mehrabi et al., 2021). Incorporating fairness into ML systems is therefore
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critical to mitigating such risks in the evaluation of startup early success, with important

significance for both entrepreneurs and investors. For startups, fairness-aware

approaches can enable more equitable access to capital and contribute to a more

inclusive entrepreneurial ecosystem (Balachandra, 2020; Ivanitzki & Rashida, 2023).

For venture capitalists, such research may help them uncover high-potential ventures

that might otherwise be overlooked due to systemic biases, thereby enhancing both the

diversity and potential returns of their investment portfolios (Hernandez et al., 2019).

Furthermore, by integrating fairness considerations into ML models, investors are better

positioned to make more informed and impartial decisions, reducing the risk of

unlawful discrimination and promoting compliance with both legal requirements and

ethical standards (Kumar et al., 2022).

1.2 Research Motivation

Despite the increasing interest in algorithmic fairness, most existing methods are

designed for general-purpose benchmark datasets that focus on individual-level

classification tasks, such as credit scoring or income level prediction, and typically

consider only one binary sensitive attribute at a time. However, these settings fail to

capture the complexities of startup early success prediction, which requires evaluating

fairness at the team level and handling multiple sensitive attributes that are often

continuous or multi-label in nature. Such characteristics make the direct application of
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existing fairness methods challenging in this domain, as most methods have limited
capability to handle multiple sensitive attributes of mixed data types, and the applicable
ones often require additional adaptation.

Moreover, prior fairness studies rarely explore performance metrics beyond
accuracy, even though metrics such as precision and recall hold particularly meaningful
implications in the context of early-stage funding prediction. As Moriarty et al. (2019)
note, from the investor's perspective, incorrectly recommending an unpromising startup
may lead to direct financial loss, while failing to recommend a promising one merely
results in a missed opportunity. This rationale underscores why many investor-oriented
systems prioritize optimizing precision. However, from the startup’s standpoint, a lower
recall of the prediction model can be far more damaging, as being wrongly rejected
leads to lost funding opportunities and stunted growth. These dual perspectives suggest
that fairness evaluations should not only focus on overall accuracy but also consider
how different metrics disproportionately impact stakeholders.

1.3 Research Objectives

In this study, we aim to explore algorithmic fairness in the context of startup early
success prediction. Specifically, we implement and compare several fairness-enhancing
methods, namely feature-blind, regularization-based training, and gradient reversal, to

assess their effectiveness in mitigating biases in startup early success prediction. We
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further evaluate the trade-off between fairness and predictive performance across

different methods, and examine their tendencies to overestimate or underestimate

certain types of startups by analyzing the prediction outcomes. Lastly, we investigate

which sensitive attribute most significantly contributes to unfairness in prediction

outcomes, thereby providing insights that may bring more equitable and responsible

investment practices for both startup founders and venture capitalists.
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Chapter 2 Literature Review
2.1 Predictive Features for Startup Early Success Prediction

Existing literature commonly classifies features used for startup early success
prediction into three major categories: company, founders, and investment. Each
reflects different dimensions of a startup’s potential in securing early-stage funding.

Company-level features describe the foundational and externally observable
attributes of the startup. These include basic characteristics such as the company’s
geographic location (e.g., country and city), industry sector, age since founding, the
presence of experienced advisors, number of launched products, and textual
descriptions of the business (Krishna et al., 2016; Sharchilev et al., 2018; Te et al.,
2023b). Although not widely adopted, one study has explored the use of media and
public attention indicators, such as the number of news mentions, breadth of domain
coverage, and topic modeling derived from Latent Dirichlet Allocation (LDA) applied
to news content (Sharchilev et al., 2018).

Founder-level features focus on the human capital embedded in the entrepreneurial
team. Commonly used variables include the number of founders, demographic
attributes, educational background (e.g., degree level and institution ranking), and prior
work experience, which serve as proxies for individual capabilities and team diversity

and are widely recognized for their impact on startup performance (Sharchilev et al.,
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2018; Te et al., 2023Db).

Investment-related features reflect the startup’s financing dynamics and the quality

of external support. These can be further divided into two subcategories. The first

pertains to funding details, such as total capital raised, number of past funding rounds,

average time interval between rounds, burn rate (i.e., spending speed), and capital

concentration (i.e., dependency on key investors). These features have been explored

across multiple studies (Krishna et al., 2016; Sharchilev et al., 2018; Te et al., 2023b;

Wei et al.,, 2025). The second subcategory encompasses investor characteristics,

including the number and types of past investors (i.e., individuals or organizations).

Some studies also consider investors’ average centrality within the historical co-

investment network and their prior success rates, capturing both the breadth and

strength of investor backing (Wei et al., 2025).

Table 1 summarizes representative features from prior studies. These categories

form the basis of the feature design in our proposed methods, which integrates both

static and dynamic signals to enable a more comprehensive prediction of early-stage

startup funding success.
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Table 1: Overview of Predictive Features Used in Prior Research on Startup

Early Success Prediction

Category Subcategory  Features Source
) Krishna et al.
Location
(2016)
Industry i
. Sharchilev et al.
Basic features  Age
(2018)
Number of products
Company . . Teetal.
Presence of experienced advisors
(2023b)
News article count )
) . e ] Sharchilev et al.
Mentions Domain-specific mentions (2018)
Topic modeling features (LDA)
Number of founders Sharchilev et al.
Demographics (2018)
Founders - .
Education Te et al.
Work experience (2023b)
Krishna et al.
2016
Total amount raised ( )_
Sharchilev et al.
) Number of rounds
Funding (2018)
) Burn rate
details . . Teetal.
Time until rounds
. . (2023b)
Capital concentration rate .
Investment Wei et al.
(2025)
Number of investors
Teetal.
Investor types
. (2023b)
Investors Total amount invested .
. Wei et al.
Average network centrality
(2025)

Investor success rate
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2.2 Existing Studies on Mitigating Unfairness in Machine Learning

Certain personal characteristics are legally recognized as impermissible bases for
discrimination and are commonly referred to in the computer science literature as
“protected” or “sensitive” attributes. Under the Federal Equal Credit Opportunity Act
(ECOA), for example, creditors are prohibited from discriminating against credit
applicants based on characteristics such as race, color, religion, national origin, sex,
marital status, or age (Chen et al., 2019). In response to growing concerns that machine
learning models may inadvertently learn and perpetuate biases associated with such
attributes, a variety of fairness-enhancing mechanisms have been developed.

These mechanisms are typically grouped into three main categories: pre-
processing, in-processing, and post-processing, each of which focuses on a specific
stage of the machine learning pipeline (Binns, 2018). Pre-processing techniques aim to
mitigate biases before model training by modifying the input data. In-processing
methods intervene during model training to incorporate fairness considerations or
modify the learning process itself. Post-processing approaches adjust the model’s
outputs after training to ensure fairer decision outcomes. The following sections
provide a review of representative methods within each of these categories.

2.2.1 Pre-Processing Methods
Pre-processing approaches aim to mitigate biases by modifying the training data

10
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before model development. One intuitive strategy within this category is to omit
sensitive variables from the input features. However, this approach is generally
insufficient, as sensitive information can often be inferred through correlated proxy
features (Pedreshi et al., 2008). To better ensure fairness in the training data, Kamiran
and Calders (2012) propose a relabeling method that modifies the class labels of
instances located near the decision boundary and belonging to the underrepresented
group. This adjustment seeks to reduce disparities in the predicted positive rates
between two groups distinguished by a sensitive attribute, while preserving the overall
predictive performance of the model. Another notable method is perturbation,
introduced by Feldman et al. (2015). This technique modifies the distribution of input
features based on one or more binary sensitive variables, ensuring that the resulting data
lacks sufficient information for classifiers to infer protected attributes. By obfuscating
the link between training data and sensitive characteristics, perturbation promotes
fairness by limiting the potential for indirect discrimination during subsequent model
training.
2.2.2 In-Processing Methods

This category of methods enforces fairness constraints during model training,
either through architectural modifications or by incorporating regularization terms into
the objective function. Kamishima et al. (2012) propose a fairness-aware method by

11
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extending the loss function with a regularization term that penalizes the mutual

information between the sensitive attribute and the prediction outcome. This

discourages the model from making decisions based on sensitive features. The

regularization term can also be designed to reflect common fairness notions such as

equalized odds (Zafar et al., 2017), allowing flexible control over the model's fairness

behavior. As another line of work under this category, Zemel et al. (2013) introduce

Learning Fair Representations (LFR), which uses probabilistic mappings to transform

raw input features into intermediate representations defined by a set of predefined

prototypes. These representations aim to retain essential task-relevant information

while obscuring protected group membership. By decoupling group identity from the

learned features, the method seeks to ensure that predicted positive outcome

probabilities are more equitably distributed across groups.

In recent work, Te et al. (2023a) apply a Gradient Reversal approach to learn

representations that are invariant to sensitive attributes, particularly in the field of

startup success prediction. This technique, originally introduced for domain adaptation

(Ganin et al., 2016), involves optimizing two adversarial objectives simultaneously:

one for the main label prediction task and another for the domain classification task. In

fair classification, sensitive attributes can be analogously treated as domains, where the

goal is to ensure that learned representations are predictive of the target label but

12
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uninformative with respect to the sensitive attributes.

Accordingly, in the setting of mitigating the influence of one binary sensitive

attribute, as illustrated in Figure 1, the model architecture consists of a shared feature

extractor, a target prediction branch for the main task, and a protected attribute branch

for predicting the sensitive attribute. The core component of this architecture is the

Gradient Reversal Layer (GRL), positioned between the feature extractor and the

protected branch. The GRL is a custom layer that passes inputs forward unchanged but

multiplies the gradients by a negative scalar —A during backpropagation. This

adversarial training process forces the feature extractor to learn representations that

minimize the influence of sensitive attribute while preserving task relevance, thereby

promoting fairness in the final prediction outcomes.

13
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Figure 1: Architecture of Gradient Reversal Approach for Fair Classification
2.2.3 Post-Processing Methods

Post-processing methods focus on modifying a model’s predictions after it has
been trained, without altering the underlying training data or model parameters. Such
approaches offer practical solutions for mitigating unfairness, particularly in cases
where model retraining is not feasible. For example, Hardt et al. (2016) propose a
group-specific thresholding technique that adjusts the decision boundary for different
demographic groups. The objective is to equalize the true positive rate and false positive
rate across groups defined by a sensitive attribute, thereby promoting fairness in
classification outcomes. Building on the idea of counterfactual fairness, Lohia et al.
(2019) introduce a mechanism known as calibration. This method identifies individuals

whose predicted outcomes would differ if their sensitive attribute were changed while

holding all other features constant. The predicted labels for such individuals are then
14
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flipped to the opposite class to reduce disparities between advantaged and
disadvantaged groups.

These post-processing techniques are considered as flexible as they can be
combined with any classification algorithm. However, they may come at the cost of
limited interpretability, as fairness is enforced externally through adjustments to model
outputs that intentionally alter individual predictions rather than being learned within
the model itself (Pessach & Shmueli, 2022).

2.3 Summary and Limitations of Existing Literature

To illustrate the methodological landscape, Table 2 provides an overview of
representative fairness-enhancing techniques. Although fairness in machine learning
has received extensive attention, only a very limited number of studies have addressed
fairness in startup success prediction. Most existing fairness-enhancing methods are
designed for general-purpose benchmarks, typically handling only one binary sensitive
attribute at a time. Moreover, they often simplify continuous variables (e.g., an
individual’s age, the racial composition of a community) by binarizing them to fit
algorithmic constraints, thereby risking oversimplifying real-world demographic
nuances. These studies also predominantly focus on individual-based fairness,
assuming each prediction pertains to a single person. However, startup investment
decisions are naturally team-based, where some sensitive attributes are inherently

15
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continuous, requiring fairness notions that account for group composition. Furthermore,

as discussed in Section 1.1, multiple sensitive attributes may simultaneously contribute

to investor biases. Consequently, fairness considerations in this domain must account

for multiple sensitive attributes of mixed data types, including both categorical and

continuous variables.

16
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Table 2: Summary of Existing Approaches to Fairness in Machine Learning

Fairness Datasets: Sensitive Fairness
Source Method . .

Strategy Attribute(s) (Type) Unit
Kamiran Pre-processing Relabeling - Adult Income: gender (B) Individual,
and Calders - Communities and Crimes: Community
(2012) race (Bc)
Feldman et Pre-processing = Perturbation - Ricci dataset: race (B) Individual
al. (2015) - Adult Income: gender (B)

- German Credit: age (Bc)
Kamishima In-processing Regularization - Adult Income: gender (B) Individual
et al. (2012)
Zemel etal. | In-processing Learning Fair - Adult Income: gender (B) Individual
(2013) Representations - German Credit: age (Bc)
Teetal. In-processing Gradient - Crunchbase: region (B), Group
(2023a) Reversal gender (B), race (B),
university (B)

Hardt et al. Post-processing | Thresholding - FICO score dataset: race Individual
(2016) (B)
Lohia et al. Post-processing | Calibration - Adult Income: gender (B) Individual
(2019) or race (B)

- German Credit: gender (B)
or age (Bc)

- COMPAS: gender (B) or
age (Bc)

B: Binary; Be: Binary derived from continuous

17
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Table 3: Comparison of Fairness Methods in Handling Multiple and Mixed Type

Sensitive Attributes

Fairness Strategy  Method Multiple Mixed

Pre-processing Blind (Omit) v/ v/
| | |

Pre-processing Relabeling A X
| | |

Pre-processing Perturbation A X
| | |

In-processing Learning Fair Representations =~ A X
| | |

In-processing Regularization v/ v/
| | |

In-processing Gradient Reversal 4 4
| | |

Post-processing Thresholding X
| | |

Post-processing Calibration A X

/\: denotes limited capability

Table 3 highlights the limitations of existing methods in accommodating these

complexities. Only a few approaches are capable of handling both multiple and mixed

type sensitive attributes simultaneously. Most methods struggle to support multiple

sensitive attributes effectively because they require discrete group boundaries and aim

to obscure group membership through input manipulation, intermediate representations,

or output adjustment. This is more straightforward when there is only a single binary

sensitive attribute. Taking Kamiran and Calders’s (2012) relabeling method as an

example, they flip the negative predicted labels of female instances with prediction

scores close to 0.5, in order to balance the chance of receiving positive predictions

18
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between binary gender groups in their experiments on the Adult Income dataset.

However, when extended to more realistic scenarios involving multiple sensitive

attributes, this approach becomes impractical. When multiple sensitive attributes

interact, it is ambiguous which intersectional groups should be considered

disadvantaged, and the number of possible group combinations grows rapidly, making

group definitions and fairness optimization increasingly complex.

In the field of startup success prediction, a study by Te et al. (2023a) adapts the

Gradient Reversal framework to promote fairness. While their work is pioneering in

applying fairness-aware learning to this domain, it simplifies continuous sensitive

features by employing categorical encoding schemes. For example, team gender

composition is reduced to discrete categories such as all-male, all-female, or mixed-

gender, which may overlook finer-grained demographic variation.

These limitations collectively point to the need for more domain-specific fairness

modeling approaches that are tailored to the unique characteristics of startups and the

decision-making dynamics in venture capital. Our study builds upon prior works by

developing a fairness-aware framework that explicitly accommodates multiple

sensitive attributes and preserves richer representations of team composition, thus

providing a more realistic and inclusive approach to fairness in startup early success

prediction.
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Chapter 3 Methodology

This study comprises two major aspects: (1) startup early success prediction, and
(2) the design and evaluation of fairness-aware algorithms. For the first aspect, we
define the criterion used to determine startup early success and present a structured
overview of the predictive features, including the derivation of sensitive attributes. For
the second aspect, we describe the design of our fairness-aware learning framework,
which encompasses and compares multiple bias mitigation strategies, including feature
exclusion (Blind), fairness-constrained regularization, and Gradient Reversal. Overall,
the adapted methods aim to support equitable decision-making in VC by promoting
algorithmic fairness without substantially compromising predictive performance in
startup early success prediction.
3.1 Definition of Startup Early Success

In this study, we adopt the definition of startup early success proposed by
Sharchilev et al. (2018), which conceptualizes the task as a forward-looking prediction
of funding events. Specifically, we consider startups that have already achieved an
early-stage funding milestone, referred to as the trigger round, and aim to predict
whether they will reach the subsequent milestone, the target round, within a predefined
time window.

In our implementation, angel and seed rounds are selected as trigger rounds, while
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the Series A round serves as the target round. The prediction horizon is set to four years,

meaning that for each startup receiving angel or seed funding, we predict whether it

will obtain Series A funding within the next four years.

3.2 Predictive Features Used in Our Research

As reviewed in Section 2.1, our study incorporates three major categories of

predictive features commonly employed in early-stage startup success prediction,

particularly for forecasting Series A funding outcomes. These features are derived from

Crunchbase, a widely used startup database that offers detailed records on company

profiles, funding history, and individual founder information, making it especially

suitable for analyzing fairness issues that involve sensitive personal characteristics.

e  Company-Level Features: We incorporate several basic company characteristics

that describe the focal startup’s context and profile. These include geographic

location attributes such as world region and U.S. state, as well as industry tags

using categories defined by Crunchbase. In addition, we record the company age

(measured in months from founding to the trigger round) and the number of

advisors involved prior to the trigger event.

*  Founder-Level Features: Founder-related features capture the background of the

startup’s founding team. Demographic attributes include gender and race, while

educational background is recorded based on the subject field, degree level, and
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the QS ranking of the attended university (QS Top Universities, 2024). Because

the original data fields for degree and subject are provided as free-text entries, we

apply a keyword-based standardization approach to unify them. This approach

leverages a predefined list of degree levels and subject areas, which is constructed

based on our domain expertise. Work experience is captured through job title, job

type, years of experience, and serial entrepreneurship experience. A similar

keyword-matching strategy used for the degree and subject fields is also applied

to standardize job titles. Finally, to reflect the team composition of the focal startup

founders, we aggregate these features across all founder team members, using

ratios (e.g., proportion of female founders) or averages (e.g., average years of

experience).

Investment-Related Features: Investment features are further categorized into two

subcategories, funding details and historical investors.

*  Funding Details: This subcategory characterizes the financial development

of the startup until the trigger round. These include trigger type (angel or

seed), total capital raised (in USD), and number of funding rounds received.

In addition to aggregated statistics across all funding types, we also record

separate counts and amounts for several funding types considered likely to

occur before Series A. These include pre-seed, seed, angel, convertible note,
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grant, corporate round, debt financing, equity crowdfunding, product

crowdfunding, and non-equity assistance. To better capture financial

efficiency, we compute a burn rate by dividing total capital raised by

company age (Krishna et al., 2016), and measure capital concentration rate

using a prior-established formula from the literature (Wei et al., 2025), which

captures the extent to which a startup’s funding is dominated by a small

number of investors.

Historical Investors: Features related to historical investors describe the

background and network strength of the investors who have previously

invested in the focal startup. We include the total and average number of

historical investors, the average amount and number of investments they have

made, the average number of distinct organizations they have invested in, and

the count of institutional versus individual investors. Furthermore, we

consider both the average and maximum historical success rate of these

investors, along with their average and total network centrality. To compute

network centrality, we adopt the method proposed by Wei et al. (2025), which

constructs a co-investment network where two investors are linked if they co-

invested in the same company in the same funding round. For a startup

receiving its trigger round in year ¢, investor centrality is measured based on
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the ten-year co-investment network built using data prior to year ¢, reflecting

the investors' connectivity and potential influence at the time of the trigger

round.

To support fairness evaluation, we identify several sensitive attributes that may

influence venture funding decisions, as discussed in Section 2.1. These include both

categorical and continuous variables, allowing for a more nuanced assessment of

fairness. For categorical features, we designate the world region of the startup as

sensitive, as home bias has been documented in VC investment decision-making (Coval

& Moskowitz, 1999) and may implicitly capture socio-cultural background associated

with the founders (Te et al., 2023a). For continuous features, we include the

demographic composition of the founding team, specifically the proportion of female

founders and the proportion of non-Caucasian founders, as sensitive attributes. Since

Crunchbase does not explicitly provide racial information, we infer race from founder

names using an LSTM-based text classification model. Specifically, we categorize race

into six groups: European, Hispanic, East Asian, Nordic, Celtic English, and Muslim.

Among these, Hispanic, East Asian, and Muslim are classified as non-Caucasian for the

purpose of our fairness analysis. Although the dataset lacks direct racial labels, racial

composition remains a potentially visible and discriminatory factor in venture capital

investment decision-making. It is important to note that the inferred race is only an
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estimated value and should not be treated as ground truth. Lastly, these variables serve
as focal points in our fairness-aware modeling strategy, enabling the mitigation of
potential biases.

A comprehensive list of the features employed in our methods is presented in Table
Al in the Appendix. The table summarizes variables under different categories and
provides their corresponding descriptions, where sensitive features are highlighted
using bold formatting. It also specifies whether each feature is classified as static or
dynamic, meaning it remains constant regardless of the trigger timing, or dynamic,
meaning it is time-dependent and the values may vary based on the trigger event.
3.3 Fairness-Aware Modeling Approaches

In this study, we implement and evaluate three fairness-aware methods that are
inherently capable of handling multiple sensitive attributes of mixed types (categorical
and continuous) as discussed in Section 2.3. These strategies aim to promote fairer
prediction outcomes in early-stage startup success prediction, including one pre-
processing method, the Blind method, and two in-processing methods: fairness-
constrained regularization and Gradient Reversal.
3.3.1 Blind Method

The Blind method promotes fairness by excluding explicit sensitive attributes from
the model input. The underlying assumption is that by removing these attributes, the
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model is less likely to directly learn discriminatory patterns based on them, thereby
encouraging fairer predictions. In this approach, a standard neural network is trained
using a reduced feature set that omits the following sensitive attributes:

*  Region: Continent-level grouping of the startup’s founding location.

*  Gender: Proportion of female founders.

*  Race: Proportion of non-Caucasian founders.

Although conceptually straightforward, this method has notable limitations. Prior
studies have shown that merely excluding sensitive attributes may not fully eliminate
biases, as these attributes can often be inferred indirectly from other correlated, non-
sensitive features (Pedreshi et al., 2008). Additionally, the removal of potentially
predictive variables may lead to reduced model accuracy (Chen et al., 2018; Hajian &
Domingo-Ferrer, 2012).

3.3.2 Regularization Method

The Regularization method is a fairness-aware learning approach that incorporates
fairness constraints directly into the model's loss function (Caton & Haas, 2024).
Different from the Blind method, which omits sensitive attributes entirely, this strategy
allows the model to access sensitive information while introducing penalties to reduce
discriminatory behavior during optimization. This approach seeks to retain the
predictive value of sensitive attributes while mitigating their unfair influence on model
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outputs.

In particular, we add a fairness penalty term to the standard prediction loss. The
penalty is defined as the sum of FairGap values associated with each protected attribute,
where FairGap is a group fairness metric based on differences in mean prediction scores,

formally defined in Section 4.2.1. The total loss function to be minimized is defined as:

Ltotal = Ltarget + Wregion ) FairGapregion
+ Wyender FairGapgender

+ Wrgce * FairGap,qce,

where Liqrger donates the binary cross-entropy loss for the main prediction task,
FairGap,:, represents the fairness metric calculated for each protected attribute
(region, gender, and race), and wg, 1s the predefined weight that controls the
influence of each fairness constraint on the model's training objective.
3.3.3 Gradient Reversal Method
Inspired by the work of Te et al. (2023a), we adopt a Gradient Reversal framework
to mitigate biases in startup early success prediction. This method is based on an
adversarial learning mechanism, aiming to prevent the model from capturing
information related to sensitive attributes, including signals that may be hidden in
correlated but non-sensitive features, during the process of representation learning.
The model architecture consists of a feature extractor shared by two types of

branches: a target prediction branch for predicting startup success, and multiple
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protected attribute branches for predicting sensitive attributes such as region, gender,
and race. To promote fairness, a Gradient Reversal Layer (GRL) is inserted between
the feature extractor and each protected branch. During backpropagation, the GRL
multiplies the gradient flowing into the feature extractor by a negative scalar —A,
thereby encouraging the model to learn representations that are predictive of the target
but invariant to the sensitive attributes. Figure 2 illustrates the overall framework of our

Gradient Reversal-based model.

aLtarget
a0,

aLtarget

a0 target branch ¢
|:> for startup success
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Figure 2: Architecture of Our Gradient Reversal Approach for Fair Startup

Success Prediction

The feature extractor f'is a feedforward neural network consisting of three fully
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connected layers with hidden dimensions of 128, 64, and 32, respectively. Each layer
is followed by batch normalization, a ReLU activation function, and a dropout layer for
regularization. This component aims to learn latent representations from the input
features and serves as a shared input to both the target and protected branches. The
target branch ¢ is a simple classifier for predicting startup success. It consists of a single
linear layer that outputs a scalar logit, which is then passed through a sigmoid activation
to obtain the predicted probability for binary classification. This branch is trained to
maximize predictive performance based on the learned latent representations using a
binary cross-entropy loss function Ly ger, Wwhich measures the discrepancy between
the predicted probabilities and the ground truth labels. A set of protected branches, each
denoted as pgur, 1S built to predict certain sensitive attributes from the shared
representation. Each protected branch is composed of a two-layer feedforward neural
network with hidden dimensions of 16 and 8, where both layers are followed by a ReLU
activation function. The output dimension of the second layer corresponds to the
number of categories for categorical attributes, or one scalar for continuous ones. The

loss function L for each protected attribute is defined as cross-entropy for

Pattr
categorical attributes and mean squared error (MSE) for continuous attributes.

To enable adversarial training against sensitive attribute prediction, a Gradient
Reversal Layer (GRL) is inserted between the feature extractor and each protected
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branch. During forward propagation, the GRL behaves as an identity function, passing
the learned representations unchanged to the protected branches. However, during
backpropagation, it multiplies the gradient by a negative scalar —A, effectively reversing
the direction of the gradient flow. This discourages the feature extractor from encoding
information predictive of sensitive attributes, thereby promoting fairer representations
that are invariant to these factors. The GRL itself contains no learnable parameters.
Finally, to regulate the strength of the adversarial signal, we adopt a scheduled A
strategy following the approach proposed by Ganin et al. (2016). The scalar A is
gradually increased throughout training according to a predefined schedule based on

the normalized training progress p € [0, 1]:

A(P) = Amax ° (m - 1)

This schedule starts with a small A, allowing the model to focus on learning
predictive features in the early steps. As training progresses, A increases and stabilizes
near a maximum value Ap .y, progressively enforcing stronger fairness constraints
through adversarial pressure.

To further enhance training stability and ensure effective learning, we adopt a two-
stage optimization procedure using three separate optimizers: one for the feature
extractor (Optimizer F), one for the target branch (Optimizer T), and one for the

protected branches (Optimizer P). This training strategy is designed to decouple the
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competing objectives of accurate prediction of the main task and fairness enhancement.
In the first stage, we focus on the target prediction task. The binary cross-entropy loss
Ligrger 1s computed from the output of the target branch then backpropagated to update
the parameters of both the feature extractor and the target branch using Optimizer F and
Optimizer T, respectively. In the second stage, we shift to the fairness objective. For

each protected branch of sensitive attribute attr, the loss L is computed.

Pattr

Subsequently, each loss is scaled by a predefined weight w,, that controls its relative

influence, and the total protected 10ss Lyrotectea 18 computed as a weighted sum:

Lyprotectea = Z Water * Lpgper

attr

The GRL is then applied to reverse the gradients of the total loss from the protected
branches before they are backpropagated to the feature extractor. Finally, Optimizer F
and Optimizer P are used to update the feature extractor and protected branches,
respectively.

This two-stage training scheme helps avoid gradient conflicts between the
competing objectives. If a joint loss function combining the target prediction task and
the fairness objectives is used to update the feature extractor simultaneously, it will
receive opposing gradient signals, one from the target task that encourages preserving
predictive information, and another from the adversarial branches that encourages
removing sensitive attribute signals. These conflicting directions can lead to unstable
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learning. By separating the updates into distinct stages, we are able to control the

training signals more precisely by reinforcing predictive capacity first, then promoting

fairness, thus enabling more stable and balanced representation learning.
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Chapter 4 Experiments

4.1 Data Collection

We construct our dataset based on a snapshot of Crunchbase as of April 1, 2025,
focusing on organizations whose primary role is classified as “company” and having a
“Software” category tag to ensure industry relevance. To align with our four-year
prediction horizon, we retain only those companies founded between January 1, 2011,
and April 1, 2021, resulting in an initial pool of 312,996 candidate startups. Several
filtering criteria are then applied to refine the dataset. First, the company must have
received a trigger round (i.e., seed or angel round), yielding 41,194 companies. Second,
companies that received over $10 million USD in funding within one year of founding
or took more than four years to raise a trigger round are excluded, as the former are
often spinoffs of large corporates and the latter, which managed to sustain operations
for an extended period without raising early funding, may differ from the typical early-
stage startups. This results in 40,880 remaining firms. Third, companies lacking valid
founder records are removed, leaving 11,274 candidates. After excluding firms with
missing historical investor information, the final dataset comprises 13,592 funding
instances from 9,206 unique startups, with 33.98% of them labeled as positive cases
(i.e., for reaching Series A within four years). Table A2 in the Appendix provides the
descriptive statistics of our dataset.
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Additional preprocessing steps are applied to the data. Continuous variables
exhibiting strong right skewness (i.e., skewness > 1) are log-transformed to mitigate
long-tail effects and stabilize variance. To ensure consistent scaling across features and
facilitate model convergence, all continuous variables not originally bounded within [0,
1] are normalized to the interval of [0, 1]. For categorical features, except for sensitive
attributes, one-hot encoding is applied to ensure compatibility with the neural network
input structure.

4.2 Baseline and Model Settings

To validate the effectiveness of the fairness-aware methods investigated, we
compare them against a baseline model referred to as Standard NN. This model is a
standard feedforward neural network trained without incorporating any fairness
constraints. We aim to assess improvements in fairness metrics, as well as potential
trade-off in predictive effectiveness, by comparing the fairness-aware methods against

this baseline setting.

Table 4: Model Settings of Baseline and Fairness-Aware Approaches

Fairness Protected
Model Input Features Amax

Method Branches
Standard NN X Full (incl. sensitive) X X
Blind Omit Partial (excl. sensitive) X X

o FairGap . .

Regularization L Full (incl. sensitive) X X

regularization
Gradient Gradient ] .

Partial (excl. sensitive) v 3.2
Reversal reversal
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Table 4 summarizes the model configurations of the baseline model and the three

fairness-aware methods. Both the Standard NN and the Regularization method use the

complete feature set as the input. In contrast, the Blind and Gradient Reversal methods

use a version of the dataset that excludes the three sensitive attributes from the input

features. Among the four methods, only the Gradient Reversal method requires the

construction of protected branches and the specification of a A,y parameter to

regulate the strength of adversarial learning. In our experiments, A;,,x 1S setto 3.2. All

methods share the same architecture for the feature extractor and the target prediction

branch. Specifically, the feature extractor is implemented as three fully connected layers

with hidden dimensions of 128, 64, and 32, each followed by batch normalization, a

ReLU activation, and dropout (rate = 0.2). The target branch is a linear layer mapping

the final hidden representation to a scalar logit, trained using binary cross-entropy loss.

All methods are trained using the Adam optimizer with a learning rate of le-3, batch

size of 2048, and a total of 100 epochs. The input dimension is 153 when using the

complete dataset, and 150 when sensitive attributes are excluded. For fairness-aware

methods that handle multiple sensitive attributes, fixed loss weights are assigned to

each attribute: 0.3 for region, 0.8 for gender, and 0.8 for race.
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4.3 Evaluation Design
4.3.1 Fairness Evaluation Metrics

Traditional fairness metrics are typically designed to compare disparities between
binary groups, such as privileged and unprivileged populations, making them less
suitable for continuous or multi-class sensitive attributes. Therefore, inspired by
FairQuant (Grari et al., 2019), we propose a modified metric, FairGap, which offers
greater flexibility in handling both continuous and categorical sensitive features. The
original FairQuant measures disparities by dividing samples into equal-sized bins based
on quantiles of a continuous sensitive attribute, then calculating the average absolute
difference between each bin’s prediction mean and the global average. However, this
may result in multiple bins containing similar or even identical values of the sensitive
attribute, allowing majority groups with comparable attribute levels to dominate the
fairness metric and potentially obscure disparities affecting minority groups.
Consequently, instead of using quantile-based binning to enforce equal sample sizes,
we group samples based on evenly spaced value intervals of the continuous sensitive
attribute, where each interval represents a distinct group with a certain attribute range.
This allows for more semantically meaningful groupings. Furthermore, rather than
comparing each group to a global average, we compute pairwise absolute differences
across all group combinations, which better aligns with the traditional notion of group
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fairness as the disparity between any two subpopulations. Ultimately, this pairwise
formulation naturally extends to multi-class sensitive attributes, thereby supporting a
unified evaluation framework across attribute types. The detailed definition of FairGap
and its extension to multi-class settings will be discussed later in this section.

In our experiments, for continuous sensitive attributes (e.g., female founder ratio),
we discretize samples into four groups based on their value intervals (i.e., [0, 0.25),
[0.25, 0.5), [0.5, 0.75), and [0.75, 1]). We then compute the pairwise differences of a
relevant fairness metric (e.g., positive prediction rate for demographic parity) across all

group pairs and average the results to obtain the final FairGap score:

2
FairGap = WZM - sj|

i<j

where k is the number of bins; s; and s; denote the fairness score for group i and j,

respectively.
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Table 5: FairGap Computation Example Using Gender as Sensitive Attribute

Positive Absolute .
Group: Female o L FairGap
. Prediction Pairwise .
Founder Ratio i Computation
Rate Differences
[
A-B: 0.10,
A: 0-25% 0.60 A-C: 0.15,
A-D:0.05 Sum of all absolute
| pairwise differences:
B: 25-50% 0.50 B-C:0.05, 0.10+0.15+0.05 +
B-D:0.05 0.05 + 0.05 + 0.10
' =0.50
C: 50-75% 0.45 C-D:0.10 FairGap score:
0.50 + 6 =0.0833
[
D: 75-100% 0.55 -

To illustrate how FairGap is computed, Table 5 shows a toy example using four

groups based on female founder ratio and their corresponding positive prediction rates.

The pairwise absolute differences in positive prediction rates are 0.10, 0.15, 0.05, 0.05,

0.05, and 0.10, summing to 0.50. The FairGap is calculated as the average of six group

pairs, which in this case is approximately equal to 0.0833.

This formulation allows FairGap to flexibly incorporate various fairness score

definitions. In our case, we focus on positive prediction rate and report the

corresponding FairGap scores of three sensitive attributes in our results. For categorical

attributes such as region, we treat each category as a distinct group and apply the same

pairwise comparison procedure. A lower FairGap score indicates smaller disparities and
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hence greater fairness with respect to the given sensitive attribute.

In addition to group-level fairness, we also evaluate individual-level fairness using
the consistency metric, a commonly adopted measure in algorithmic fairness research.
Consistency assesses whether individuals with similar attributes receive similar model
predictions (Dwork et al., 2012). Specifically, for each instance in the dataset, the
predicted outcome is compared against those of its k& nearest neighbors in the input

feature space:

n

1 1
onsistency - Vi % i

i=1 JENR(D)

In this equation, n denotes the total number of instances, y; represents the
predicted label for instance i, N, (i) refers to the set of k£ nearest neighbors of instance
i, and y; are the predicted labels for these neighbors. A higher consistency score
indicates greater individual-level fairness, with a maximum score of 1 implying perfect
consistency where every instance receives a prediction identical to those of its nearest
neighbors. In our experiments, we set & to 5 following common practice in the literature.

To illustrate how consistency is calculated, consider a simple example. Suppose
an instance receives a predicted label of 1, and its five nearest neighbors have predicted
labels of 0, 0, 0, 1, and 1. Among these neighbors, only two share the same prediction
as the instance itself. Therefore, the individual consistency for this sample is 2/5 = 0.4.

By computing this value for every sample in the testing set and then averaging across
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all samples, we obtain the final consistency score, which reflects the overall individual-
level fairness of the model.
4.3.2 Evaluation Procedure and Performance Metrics

To evaluate the effectiveness of our methods on the primary prediction task, that
is, whether a startup secures Series A funding within four years after receiving angel or
seed financing, we adopt several standard binary classification metrics. Specifically, we
report the following indicators:

*  Accuracy

* AUC (area under curve)

*  Precision, Recall, and F1-score for the positive class (i.e., successful cases)

e Precision, Recall, and F1-score for the negative class (i.e., unsuccessful cases)
These metrics capture both general performance and class-specific behavior, which is
particularly important given the class imbalance in our dataset.

All methods are evaluated using repeated 10-fold cross-validation, conducted 30
times with different random splits. Metrics are computed independently for each fold
and repetition, and the final results are reported as averages across all evaluations. In
addition to predictive performance, we report the fairness metrics introduced in the
previous subsection. A fixed decision threshold of 0.5 is used across all methods to
determine binary predictions from output probabilities.

40

doi:10.6342/NTU202503744



Table 6: Evaluation Results of Baseline and Fairness-Aware Methods

Precision Recall Precision  Recall ! Consis- FairGap FairGap FairGap
Method Acc. AUC F1_pos F1_neg |
_pos _pos _heg _neg | tency _region _gender _race
Standard _
77.11%  82.32%  66.64% 66.16%  66.20%  82.69% 82.74% 82.65% | 0.6304 0.0987 0.1229 0.1105
NN
|
Blind 76.57%  81.75%  65.76% 65.69%  65.53%  82.39% 82.17% 82.22% _ 0.6298 0.082 0.1081 0.1121
(-0.54%) (-0.57%) (-0.88%)  (-0.47%) (-0.67%) (-0.30%)  (-0.57%)  (-0.43%) | (-0.0006)  (-0.0167) (-0.0148) (+0.0016)
GR 76.60%  81.23%  67.73% 60.19%  63.50%  80.67% 85.04% 82.74% _ 0.6491 0.0708 0.1006 0.1066
(-0.51%) (-1.09%) (+1.09%)  (-5.97%) (-2.70%) (-2.02%)  (+2.30%)  (+0.09%) | (+0.0187)  (-0.0279) (-0.0223)  (-0.0039)
Reg. 75.05%  79.48%  65.41% 57.34%  60.81%  79.41% 84.17% 81.65% | 0.6699 0.0778 0.0714 0.0501
(-2.06%) (-2.84%) (-1.23%)  (-8.82%) (-5.39%) (-3.28%)  (+1.43%) (-1.00%) | (+0.0395)  (-0.0209) (-0.0515) (-0.0604)
_

Note: The bold values indicate the best performance for each metric, while underlined values denote the second best. For metrics from accuracy

to consistency, higher values indicate better performance; for FairGap, lower values reflect greater fairness. Values in parentheses represent the

difference from the Standard NN model for the corresponding metric.
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4.4 Evaluation Results

4.4.1 Fairness-aware Methods

Table 6 compares the baseline and fairness-aware methods across the predictive

effectiveness and the fairness metrics. Both the Blind and Gradient Reversal (GR)

methods result in relatively minor reductions in accuracy and AUC compared to the

baseline, suggesting a smaller trade-off in predictive performance. In contrast, the

Regularization (Reg.) method shows a more pronounced decline, indicating a larger

compromise in model utility. Differences in F1-score for the positive class are more

evident. Blind shows only a minor drop of 0.67%, whereas Gradient Reversal and

Regularization yield larger declines of 2.7% and 5.39%, respectively. Further

examining the precision and recall for the positive class, we observe that compared to

the baseline, the Gradient Reversal method improves precision by 1.09%, indicating a

better ability to correctly identify successful startups. This could help investors avoid

incorrect positive predictions and reduce the risk of misinformed investment decisions.

On the other hand, all fairness-aware methods show a decline in recall for the positive

class, particularly Gradient Reversal and Regularization, suggesting a reduced capacity

to detect promising startups, potentially overlooking viable investment opportunities.

Additionally, improvements in recall for the negative class under Gradient Reversal and

Regularization indicate a stronger tendency to make negative predictions. This shift
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suggests these methods achieve fairness partly by avoiding overestimation of success

for certain groups. We further investigate this pattern later in the next section by

analyzing the group-wise positive prediction rates across different sensitive attributes.

With regard to the individual-level fairness metric consistency, although the Blind

method experiences the smallest effectiveness loss among fairness-aware methods, it

fails to achieve improved fairness, as its consistency score declines compared to the

baseline. By contrast, the Gradient Reversal and Regularization methods improve

consistency by 0.0187 and 0.0395, respectively, indicating meaningful advancements

in individual fairness. Regarding the FairGap metric, the Blind method shows limited

improvement and even results in a higher FairGap for the race attribute, indicating

worsened fairness. In comparison, both the Gradient Reversal and Regularization

methods consistently reduce FairGap across all three sensitive attributes. The Gradient

Reversal method brings the largest reduction in region FairGap, indicating the greatest

improvement in regional fairness. Notably, the Regularization method achieves larger

reductions in FairGap for gender and race, where the other methods show smaller

improvements.

One plausible explanation for these differences in group-level unfairness

mitigation effectiveness lies in the correlation between sensitive and non-sensitive

features. To investigate this, we compute the Pearson correlation coefficients between

43

doi:10.6342/NTU202503744



sensitive features and non-sensitive ones. The results show relatively strong

correlations (|7 > 0.2) between region and several non-sensitive features, including the

network centrality of historical investors, the average number of past investments made

by historical investors, and the state variable. In particular, the correlation between the

North America region and the state variable reaches as high as -0.928, suggesting that

regional information is likely embedded in other features. As for gender and race, they

show weaker associations with non-sensitive features. The highest observed correlation

for gender is 0.112 (with the Community and Lifestyle industry tag), and for race is

0.073 (with the state variable). These findings suggest that even after excluding

sensitive attributes, some information can still be indirectly inferred from remaining

features, which limits the effectiveness of the Blind method. On the other hand, the

Gradient Reversal method improves fairness by minimizing the presence of sensitive

information in the learned representations, when such information is embedded within

non-sensitive features. This explains its relatively stronger performance on regional

fairness and weaker performance on gender and race, whose signals are less likely to

be captured in the rest of the data. Instead, the Regularization method is unaffected by

the underlying correlations among variables. By directly penalizing outcome disparities

measured by FairGap for a given sensitive attribute, it can reduce group-level unfairness

straightforwardly, regardless of whether sensitive information is embedded in the
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features.

Taken together, the results reveal a trade-off: the methods that achieve higher
levels of fairness tend to bring on greater reductions in predictive effectiveness. The
Regularization method, which shows the most comprehensive improvement in fairness
metrics, experiences a 5.39% decrease in F1 score for the positive class and a 1%
decrease for the negative class. These performance drops are viewed as an acceptable
trade-off in pursuit of fairness, as the fundamental objective of fairness-aware
algorithms is not merely to maximize classification performance, but to generate more
equitable and socially responsible outcomes. In the long term, such methods can help
prevent the reinforcement of historical biases and lead to more favorable results for all
stakeholders involved.

4.4.2 Group-wise Disparities across Sensitive Attributes

We further examine differences in positive prediction rates across groups defined
by sensitive attributes to assess whether the model without fairness interventions tends
to systematically favor or disfavor certain types of startups, as well as to illustrate in
greater detail how fairness-aware methods mitigate such disparities. For the region
attribute, startups are categorized into four groups: North America, Europe, East Asia,
and Other. Table 7 presents the positive prediction rates across these groups for all
methods. In the baseline model, startups from Europe received the lowest rate of
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positive predictions, with only 26.10% predicted to succeed, whereas 39.64% of East

Asian startups were predicted as successful. This indicates substantial disparities in

receiving positive predictions across regions, with a gap of 13.54% between these two

groups. Among the more effective fairness-aware methods, namely Gradient Reversal

and Regularization, we observe distinct mitigation patterns. The Gradient Reversal

method does not increase the positive prediction rate of the underrepresented group;

instead, it reduces the rate for high-scoring groups, such as East Asia and North America,

thereby narrowing the prediction gap. Regularization exhibits a similar pattern, but with

a slight increase in the positive rate for the European group, suggesting a more balanced

treatment by giving relatively more opportunities to underrepresented startups.

Table 7: Positive Prediction Rates by Region Across Methods

Region

Positive Rate  Positive Rate  Positive Rate  Positive Rate
Method _North _Europe _East Asia _Other

America
Standard NN  38.38% 26.10% 39.64% 28.51%
Blind 38.76% 27.13% 28.55% 28.72%
GR 34.02% 24.89% 25.49% 26.03%
Reg. 33.01% 26.78% 21.54% 25.03%

Note: Red values indicate the lowest positive prediction rate among groups in the
baseline model, while green values indicate the highest. Bold values highlight cases
where a fairness method either increases the lowest rate or decreases the highest rate,
thereby helping to mitigate inter-group disparity.

To reflect varying levels of gender composition of startup teams, we divide the test

samples into four groups according to predefined value intervals of the female founder

ratio: <25%, 25-50%, 50-75%, and >75%, which aligns with the group settings used
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in the FairGap calculation. As shown in Table 8, startups with the highest female
representation (>75%) receive the lowest positive prediction rate under the baseline
model, at only 20.68%, while those with 25-50% female composition are predicted to
succeed most frequently, with a positive prediction rate of 43%, revealing a disparity
of 22.32% between these two groups. All fairness-aware methods are able to increase
the positive prediction rate for the most underrepresented group. It is noteworthy that
both Gradient Reversal and Regularization approaches also reduce the prediction rate
for the favored group, thus narrowing the disparity. Among these, the Regularization-
based method achieves the greatest reduction, lowering the group difference to 8.46%,

indicating its effectiveness in mitigating gender-related prediction imbalances.

Table 8: Positive Prediction Rates by Gender Composition Across Methods

Gender (female founder ratio)
Positive Rate  Positive Rate  Positive Rate  Positive Rate

Method

< 25% 2506-50%  _50%-75% _>75%
Standard NN 34.59% 43.00% 29.91% 20.68%
Blind 34.07% 45.53% 33.99% 25.74%
GR 30.24% 41.61% 29.98% 23.40%
Reg. 30.63% 31.37% 26.00% 22.91%

Note: Annotations follow the same conventions as in Table 7.

We apply a similar grouping strategy as used for the female founder ratio to divide
the test samples based on the proportion of non-Caucasian founders. The resulting
prediction disparities across groups are presented in Table 9. Startups with 25-50%

non-Caucasian founders received the highest positive prediction rate of 50%, whereas
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those with more than 75% non-Caucasian representation received the lowest, only
30.93%. These indicates substantial disparities across demographic compositions, as
the difference in positive prediction rates between the aforementioned two groups
reaches 19.07%. Both the Gradient Reversal and Regularization methods address these
disparities primarily by reducing the positive prediction rates of the favored groups,

thereby narrowing the largest inter-group differences to 6.86%.

Table 9: Positive Prediction Rates by Racial Composition Across Methods

Race (non-Caucasian founder ratio)
Positive Rate  Positive Rate  Positive Rate  Positive Rate

Method

_<25% _25%-50% _50%-75% >75%
Standard NN 31.88% 50.00% 38.78% 30.93%
Blind 32.10% 50.18% 39.45% 30.80%
GR 28.55% 45.76% 34.98% 27.15%
Reg. 30.41% 33.76% 30.48% 26.90%

Note: Annotations follow the same conventions as in Table 7.

The above results show that these fairness-aware methods ensure fairness mainly
by reducing the overestimation of favored groups and addressing the underestimation
of unfavored groups, which may arise from discriminatory biases embedded in the data.
In this sense, the benefits of such methods lie not only in helping investors avoid biased
decision-making and the risk of resource misallocation, but also in facilitating fairer
access to capital for high-potential ventures that might otherwise be overlooked due to
systemic inequities, ultimately making the entrepreneurial ecosystem more inclusive

and equitable.
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4.4.3 Attribution of Prediction Unfairness to Sensitive Attributes

In the following experiments, we aim to identify which sensitive attribute
contributes most to prediction unfairness. To do so, we conduct controlled experiments
where only one sensitive attribute is included in the dataset at a time, while the other
two are excluded. This design allows us to isolate the potential impact of each sensitive
attribute on model biases.

As shown in Table 10, when using the Standard NN model, the consistency scores
remain similar across all three single-attribute settings, suggesting that each sensitive
attribute impacts comparably to individual fairness. However, when only the sensitive
attribute gender is included, we observe the highest FairGap, indicating that gender is

a significant source of group-level unfairness in the baseline model.

Table 10: Impact of Isolated Sensitive Attributes on Fairness Metrics

Region Gender Race

Consis- FairGap_ Consis- FairGap_ Consis- FairGap_
Method .

tency region tency gender tency race
Standard NN 0.6353 0.0956 0.6339 0.1228 0.6319 0.1136
Blind 0.6317 0.0824 0.6331 0.1088 0.6343 0.1137
GR 0.6459 0.0701 0.6298 0.1037 0.6293 0.1073
Reg. 0.6309 0.0718 0.6588 0.0782 0.6544 0.0975

Note: The bold values indicate the best performance for each metric, while underlined
values denote the second best. For consistency, higher values indicate better
performance; for FairGap, lower values reflect greater fairness.

Furthermore, applying fairness interventions to address the bias associated with

each attribute also yields meaningful improvements. Specifically, the Gradient Reversal

method is more effective in improving fairness related to region, while the
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Regularization method demonstrates greater improvements in gender and race fairness.

These findings align with the results discussed in Section 4.4.1.

4.4.4 Impact of Fairness Interventions on A Single Sensitive Attribute

We conduct additional experiments to investigate whether applying fairness
interventions to only one sensitive attribute, while all three attributes remain present in
the dataset, would jointly harm or benefit fairness with respect to the others. As shown
in Table 11, when fairness is enforced solely on region, the Gradient Reversal method
improves all fairness metrics, including both consistency and group fairness across the
other two sensitive attributes. In contrast, both the Blind and Regularization methods

yield improvements only for region, while degrading fairness for all other metrics.

Table 11: Impact of Fairness Interventions on Region Only

Method Consistency FairGap_region FairGap _gender FairGap _race
Standard

N 63.04% 0.0987 0.1229 0.1105

Blind 62.71%(})  0.0809 (|) 0.1242 (1) 0.1110 (1)
GR 64.08% (1) 0.0718 (|) 0.1158 (]) 0.1056 ()
Reg. 62.74% (1) 0.0710(}) 0.1295 (1) 0.1178 (1)

Note: Arrows indicate the direction of change relative to the Standard NN model:
(1) means an increase, (] ) means a decrease. For consistency, higher values indicate
better performance (1); for FairGap, lower values indicate better fairness (]).

Table 12 presents the experimental results when a fairness-aware method is
applied only to gender. Again, the Gradient Reversal method demonstrates the ability
to reduce FairGap across all three sensitive attributes, though it does not lead to
improvements in consistency. The Regularization method, on the other hand, improves

50

doi:10.6342/NTU202503744



fairness metrics related to gender and race, but not region. A similar pattern is observed

in Table 13, where fairness is applied exclusively to race. Gradient Reversal improves

all fairness metrics, while Regularization shows the same pattern that enhancing

fairness in race and gender, but fails to improve regional fairness.

Table 12: Impact of Fairness Interventions on Gender Only

Method Consistency FairGap_region FairGap gender FairGap race
Standard

N 63.04% 0.0987 0.1229 0.1105

Blind 63.04% (-)  0.0973(}) 0.1083 (}) 0.1128 (1)
GR 62.79% (})  0.0934 (}) 0.1062 (}) 0.1081 (})
Reg. 65.06% (1) 0.1025 (1) 0.0741 (|) 0.0992 (|)

Note: Annotations follow the same conventions as in Table 11.

Table 13: Impact of Fairness Interventions on Race Only

Method Consistency FairGap_region FairGap _gender FairGap _race
Standard

N 63.04% 0.0987 0.1229 0.1105

Blind 63.02% (1) 0.0949 (|) 0.1233 (1) 0.1089 (})
GR 63.34% (1) 0.0936 (|) 0.1187 (]) 0.1039 (})
Reg. 65.10% (1) 0.1021 (1) 0.0727 (}) 0.0974 (|)

Note: Annotations follow the same conventions as in Table 11.

These results highlight that the Gradient Reversal method can promote fairness

across multiple attributes even when explicitly targeting only one. This spillover effect

is likely attributable to the overlap or correlation among sensitive attributes. By

mitigating the sensitive information associated with the targeted attribute in the learned

representations, the Gradient Reversal method can also suppress correlated information

from other attributes, thereby promoting fairness beyond the intended target. In contrast,
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the Regularization method is effective at improving fairness for the targeted attribute

but offers limited benefits for untargeted attributes. These findings highlight the broader

potential of gradient reversal-based approaches in multi-attribute fairness scenarios.
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Chapter 5 Conclusion
5.1 Conclusion

To address the issue of fairness in startup early success prediction, we implement
and compare three fairness-aware methods that natively support multiple sensitive
attributes of mixed data types: feature-blind learning, regularization-based training, and
gradient reversal. When compared to a standard neural network model, the feature-blind
method fails to improve fairness effectively. The Gradient Reversal method improves
fairness across all sensitive attributes, with notable gains in individual fairness and
regional fairness, and moderate improvements in gender and racial fairness. Besides
enhancing consistency, the Regularization method demonstrates a more uniform
reduction of FairGap across all sensitive attributes. Finally, although pursuing fairness
comes with a performance trade-off, our results demonstrate that this trade-off is
modest, suggesting that greater fairness can be achieved without severely
compromising predictive performance.

Building on this, our experiments further highlight that gender is the most
significant contributor to group-level prediction unfairness. Specifically, startups with
over 75% female representation among founders are the most disadvantaged under the
baseline model, receiving the lowest rates of positive predictions. All three fairness-
aware methods are able to improve positive outcomes for this underprivileged group,
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underscoring the effectiveness of these methods to mitigate gender-based bias.

Lastly, we examine the influence of applying fairness interventions to individual

sensitive attributes and find important differences in method behavior. The Gradient

Reversal method demonstrates a unique advantage in its ability to simultaneously

enhance fairness across multiple sensitive attributes, even when only one attribute was

explicitly targeted. In contrast, the Regularization method primarily improves fairness

for the targeted sensitive attribute, with limited impact on others.

In conclusion, the Regularization and Gradient Reversal methods offer distinct

advantages. The Regularization method introduces explicit penalty terms targeting the

three sensitive attributes, making it a more direct approach for substantially reducing

their FairGap values without relying on the presence of latent sensitive information in

the features. On the contrary, the Gradient Reversal method adopts a softer strategy by

aiming to remove sensitive information from the learned representation, which tends to

preserve predictive performance better while yielding broader fairness improvements,

including for potential sensitive attributes not explicitly considered in the model, such

as founder age. Overall, these two methods offer complementary strengths,

Regularization is more effective when targeting fairness on specific known attributes,

while Gradient Reversal provides greater generalizability and flexibility across diverse

fairness concerns.
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5.2 Future Research Directions

* Incorporating additional sensitive attributes

Future research could consider a broader range of potentially discriminatory

factors. For example, prior literature has identified founder age as another possible

source of bias in startup investment decisions (Matthews et al., 2024). However, such

information is unavailable in our current dataset. Expanding data sources to include

more demographic or background-related variables could allow for a more

comprehensive fairness analysis. This would enable fairness-aware algorithms to

address a wider spectrum of potential biases in venture funding decisions.

¢ Algorithmic advancements to mitigate performance trade-off

The inherent trade-off between predictive performance and fairness of the

fairness-aware methods remains a key challenge, as both fairness and predictive utility

are critical in decision-making scenarios. Future research could explore algorithmic

innovations aimed at reducing this trade-off. This may involve reframing how fairness

constraints are integrated into model objectives, or designing training frameworks that

are more adaptable to varying degrees of bias during the training process, in order to

better harmonize fairness and predictive performance.

¢  Extending fairness research to other milestones in the startup lifecycle

Beyond the startup early success prediction, startups may encounter different
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forms and degrees of biases at various stages of their lifecycle. Future research could

extend fairness-aware modeling to other critical milestones, such as predictions of

follow-on funding rounds, mergers and acquisitions (M&A), or initial public offerings

(IPOs). These stages often involve distinct decision-making criteria and stakeholder

dynamics, which may give rise to different patterns of biases. Investigating fairness

across these contexts would provide a more comprehensive understanding of how

algorithmic discrimination affects startups over time, and how mitigation strategies

should be adapted to each phase.
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Appendix

Table A1 presents a comprehensive list of the features employed in our methods,
summarizing variables under different categories and provides their corresponding
descriptions, where sensitive features are highlighted using bold formatting. It also
specifies whether each feature is classified as static or dynamic, meaning it remains
constant regardless of the trigger timing, or dynamic, meaning it is time-dependent

and the values may vary based on the trigger event.

Table Al: Overview of Predictive Features Used in Our Methods

Category  Features Description Temporal
Scope
Company  Region The continent-level grouping where  Static
the focal startup is located.
State The U.S. state in which the focal Static
startup is based.
Industry tag A set of binary indicators Static

representing the industry categories
assigned to the startup. Each
indicator corresponds to a specific
tag, such as Advertising, Health
Care, Information Technology, etc.
Industry tag group  Industry tags are grouped into six Static
clusters based on their co-
occurrence patterns. For each
startup, the total number of tags it
holds in each group is computed.
Age Number of months from the Dynamic

startup’s founding date to the
trigger round.
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Number of Number of advisors involved prior ~ Dynamic
advisors to the trigger event.
Founders Number of Total number of individuals in the ~ Static
founders founding team.
Female founder  Proportion of female individuals Static
ratio among all founders.
Non-Caucasian Proportion of non-Caucasian Static
founder ratio individuals among all founders.
Subject average Average number of distinct Static
subjects studied across all founders.
Subject A set of values representing the Static
average number of founders who
have studied in specific academic
subject areas. Each value
corresponds to a subject tag, such
as Business, Engineering,
Humanities, etc.
Degree average Average number of academic Static
degrees earned by all founders in
the startup team.
Degree A set of values representing the Static
average number of degrees earned
by founder team members at each
education level (e.g., Bachelor,
Master, PhD, or High School and
below).
Top 100 Average number of founding team  Static
university average members who obtained degrees
from the top 100 universities based
on the latest QS World University
Rankings.
Job average Average number of previous jobs Static
held by each founding team
member.
Job title A set of values representing the Static

average number of previous jobs
held by founding team members
under each job title category (e.g.,
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CEO, CTO, Engineering & Tech,
etc.).

Job type A set of values representing the Static
average number of previous jobs
held by founding team members
under each job type category (e.g.,
Advisor, Board Member,
Executive, etc.).
Work years Average years of work experience  Static
average among founding team members.
Serial Average number of previous Static
entrepreneur companies founded by team
average members.
Investment- Trigger type Indicates whether the trigger round  Dynamic
Funding is an angel or seed investment.
Details
Trigger round The sequence number of the trigger Dynamic
index round within the company's overall
funding history.
Number of Total number of funding rounds the Dynamic
funding rounds startup received.
Total funding Total amount of capital raised (in Dynamic
amount USD) by the startup.
Number of A set of values representing the Dynamic
funding rounds number of funding rounds the
(by type) startup has received for each
funding type considered possible
before Series A (e.g., angel, pre-
seed, seed, etc.).
Total funding A set of values representing the Dynamic
amount (by type)  total amount of capital raised (in
USD) by the startup for each
funding type considered possible
before Series A.
Burn rate Startup’s capital consumption rate, Dynamic

calculated by dividing total capital
raised by company age (in months).

66

doi:10.6342/NTU202503744



Investment-
Historical
Investors

Capital Degree of capital concentration Dynamic
concentration rate  across all previous funding rounds,
reflecting the extent to which a
small number of investors
contributed the majority of funding.
Number of Total number of historical investors Dynamic
investors who have participated in funding
rounds up to the trigger round.
Average investors  Average number of investors in the  Dynamic
past funding rounds of the focal
startup.
Number of distinct Total number of distinct investors ~ Dynamic
investors who have participated in funding
rounds up to the trigger round.
Average Average number of past Dynamic
investments investments made by the historical
investors who have invested in the
focal startup.
Average Average total amount (in USD) Dynamic
investments previously invested by the
amount historical investors.
Average number  Average number of distinct Dynamic
of distinct organizations previously invested
organizations in by the historical investors.
invested
Number of Number of institutional Dynamic
institutional (organization-type) investors
investors among all prior investors.
Number of Number of individual (person-type) Dynamic
individual investors among all prior investors.
investors
Number of distinct Number of distinct institutional Dynamic
institutional investors among all prior investors.
investors
Number of distinct Number of distinct individual Dynamic

individual
investors

investors among all prior investors.
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Average success
rate

Average success rate of the
historical investors.

Dynamic

Max success rate

Maximum success rate of the
historical investors.

Dynamic

Total network
centrality

Total network centrality of all
historical investors, separately
measured by betweenness
centrality (BC), degree centrality
(DC), and PageRank (PR).

Dynamic

Average network
centrality

Average network centrality of all
historical investors, separately
measured by betweenness
centrality (BC), degree centrality
(DC), and PageRank (PR).

Dynamic
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Table A2 provides the descriptive statistics of our dataset, classified into two

categories by the label of target variable, failure and success, indicating whether a

startup successfully secured Series A funding or not during the observation period.
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Table A2: Descriptive Statistics of Our Dataset by Startup Success Label

Feature Stats (label = failure) Stats (label = success)

Region North America: 4,879 (54.37%); Europe: North America: 2,908 (62.97%); Europe: 925
2,310 (25.74%); East Asia: 203 (2.26%); (20.03%); East Asia: 140 (3.03%); Other:
Other: 1,582 (17.63%); 645 (13.97%)

State non-US: 4,432 (49.39%); CA: 2,159 non-US: 1,860 (40.28%); CA: 1,342
(24.06%); NY: 637 (7.10%); MA: 205 (29.06%); NY: 487 (10.55%); MA: 146
(2.28%); TX: 161 (1.79%); FL: 128 (1.43%); | (3.16%); TX: 105 (2.27%); FL: 49 (1.06%);
other states: 1,252 (13.95%) other states: 629 (13.62%)

Trigger type seed: 8,172 (91.06%); angel: 802 (8.94%) seed: 4,423 (95.78%); angel: 195 (4.22%)

Industry tag_Administrative Services

False: 8,435 (93.99%); True: 539 (6.01%)

False: 4,319 (93.53%); True: 299 (6.47%)

Industry tag_Advertising

False: 8,544 (95.21%); True: 430 (4.79%)

False: 4,502 (97.49%); True: 116 (2.51%)

Industry tag_Agriculture and Farming

False: 8,867 (98.81%); True: 107 (1.19%)

False: 4,552 (98.57%); True: 66 (1.43%)

Industry tag_Apps

False: 7,135 (79.51%); True: 1,839 (20.49%)

False: 3,857 (83.52%); True: 761 (16.48%)

Industry tag_Artificial Intelligence (Al)

False: 6,955 (77.50%); True: 2,019 (22.50%)

False: 3,269 (70.79%); True: 1,349 (29.21%)

Industry tag_Biotechnology

False: 8,834 (98.44%); True: 140 (1.56%)

False: 4,505 (97.55%); True: 113 (2.45%)

Industry tag_Blockchain and Cryptocurrency

False: 8,593 (95.75%); True: 381 (4.25%)

False: 4,433 (95.99%); True: 185 (4.01%)

Industry tag_Clothing and Apparel

False: 8,873 (98.87%); True: 101 (1.13%)

False: 4,581 (99.20%); True: 37 (0.80%)

Industry tag_Commerce and Shopping

False: 7,839 (87.35%); True: 1,135 (12.65%)

False: 4,087 (88.50%); True: 531 (11.50%)

Industry tag_Community and Lifestyle

False: 8,572 (95.52%); True: 402 (4.48%)

False: 4,458 (96.54%); True: 160 (3.46%)

Industry tag_Consumer Electronics

False: 8,349 (93.04%); True: 625 (6.96%)

False: 4,318 (93.50%); True: 300 (6.50%)

Industry tag_Consumer Goods

False: 8,800 (98.06%); True: 174 (1.94%)

False: 4,525 (97.99%); True: 93 (2.01%)
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Industry tag_Content and Publishing False: 8,606 (95.90%); True: 368 (4.10%) False: 4,490 (97.23%); True: 128 (2.77%)
Industry tag_Data and Analytics False: 6,035 (67.25%); True: 2,939 (32.75%) | False: 2,753 (59.61%); True: 1,865 (40.39%)
Industry tag_Design False: 8,500 (94.72%); True: 474 (5.28%) False: 4,387 (95.00%); True: 231 (5.00%)
Industry tag_Education False: 8,228 (91.69%); True: 746 (8.31%) False: 4,282 (92.72%); True: 336 (7.28%)
Industry tag_Energy False: 8,866 (98.80%); True: 108 (1.20%) False: 4,544 (98.40%); True: 74 (1.60%)
Industry tag_Events False: 8,827 (98.36%); True: 147 (1.64%) False: 4,562 (98.79%); True: 56 (1.21%)
Industry tag_Financial Services False: 7,701 (85.81%); True: 1,273 (14.19%) | False: 3,745 (81.10%); True: 873 (18.90%)
Industry tag_Food and Beverage False: 8,754 (97.55%); True: 220 (2.45%) False: 4,476 (96.93%); True: 142 (3.07%)
Industry tag_Gaming False: 8,721 (97.18%); True: 253 (2.82%) False: 4,531 (98.12%); True: 87 (1.88%)
Industry tag_Government and Military False: 8,882 (98.97%); True: 92 (1.03%) False: 4,553 (98.59%); True: 65 (1.41%)
Industry tag_Hardware False: 7,038 (78.43%); True: 1,936 (21.57%) | False: 3,723 (80.62%); True: 895 (19.38%)
Industry tag_Health Care False: 8,156 (90.88%); True: 818 (9.12%) False: 4,087 (88.50%); True: 531 (11.50%)
Industry tag_Information Technology False: 6,356 (70.83%); True: 2,618 (29.17%) | False: 3,183 (68.93%); True: 1,435 (31.07%)
Industry tag_Internet Services False: 6,464 (72.03%); True: 2,510 (27.97%) | False: 3,658 (79.21%); True: 960 (20.79%)
Industry tag_Lending and Investments False: 8,742 (97.41%); True: 232 (2.59%) False: 4,433 (95.99%); True: 185 (4.01%)
Industry tag_Manufacturing False: 8,753 (97.54%); True: 221 (2.46%) False: 4,455 (96.47%); True: 163 (3.53%)
Industry tag_Media and Entertainment False: 7,654 (85.29%); True: 1,320 (14.71%) | False: 4,257 (92.18%); True: 361 (7.82%)
Industry tag_Messaging and False: 8,637 (96.24%); True: 337 (3.76%) False: 4,475 (96.90%); True: 143 (3.10%)
Telecommunications

Industry tag_Mobile False: 7,191 (80.13%); True: 1,783 (19.87%) | False: 3,821 (82.74%); True: 797 (17.26%)
Industry tag_Music and Audio False: 8,810 (98.17%); True: 164 (1.83%) False: 4,573 (99.03%); True: 45 (0.97%)
Industry tag_Natural Resources False: 8,904 (99.22%); True: 70 (0.78%) False: 4,582 (99.22%); True: 36 (0.78%)
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Industry tag_Navigation and Mapping False: 8,809 (98.16%); True: 165 (1.84%) False: 4,553 (98.59%); True: 65 (1.41%)
Industry tag_Other False: 7,477 (83.32%); True: 1,497 (16.68%) | False: 3,846 (83.28%); True: 772 (16.72%)
Industry tag_Payments False: 8,397 (93.57%); True: 577 (6.43%) False: 4,234 (91.68%); True: 384 (8.32%)
Industry tag_Platforms False: 8,658 (96.48%); True: 316 (3.52%) False: 4,522 (97.92%); True: 96 (2.08%)
Industry tag_Privacy and Security False: 8,516 (94.90%); True: 458 (5.10%) False: 4,280 (92.68%); True: 338 (7.32%)
Industry tag_Professional Services False: 8,159 (90.92%); True: 815 (9.08%) False: 4,158 (90.04%); True: 460 (9.96%)
Industry tag_Real Estate False: 8,558 (95.36%); True: 416 (4.64%) False: 4,395 (95.17%); True: 223 (4.83%)
Industry tag_Sales and Marketing False: 7,849 (87.46%); True: 1,125 (12.54%) | False: 4,139 (89.63%); True: 479 (10.37%)
Industry tag_Science and Engineering False: 6,855 (76.39%); True: 2,119 (23.61%) | False: 3,226 (69.86%); True: 1,392 (30.14%)
Industry tag_Social Impact False: 8,908 (99.26%); True: 66 (0.74%) False: 4,595 (99.50%); True: 23 (0.50%)
Industry tag_Sports False: 8,723 (97.20%); True: 251 (2.80%) False: 4,526 (98.01%); True: 92 (1.99%)
Industry tag_Sustainability False: 8,868 (98.82%); True: 106 (1.18%) False: 4,524 (97.96%); True: 94 (2.04%)
Industry tag_Transportation False: 8,369 (93.26%); True: 605 (6.74%) False: 4,208 (91.12%); True: 410 (8.88%)
Industry tag_Travel and Tourism False: 8,713 (97.09%); True: 261 (2.91%) False: 4,502 (97.49%); True: 116 (2.51%)
Industry tag_Video False: 8,659 (96.49%); True: 315 (3.51%) False: 4,508 (97.62%); True: 110 (2.38%)

Industry tag group_Finance

pu=0.75,6=1.01, max =5, min=0

n=0.8,6=1.04, max =5, min=0

Industry tag group_Lifestyle

pn=0.26,6=0.5 max=3, mn=0

n=0.31,6=0.54, max =3, min =0

Industry tag group_ MediaTech

p=129,6=1.44, max =8, min =0

n=0.95,6=1.25 max =8, min=0

Industry tag group_Hardware

p=0.36,c=0.65 max =3, min =0

n=0.32,6=0.62, max =3, min=0

Industry tag group_Production / GreenTech

pn=0.32,6=0.6, max =5, min=0

n=0.42,6=0.68, max =5, min =0

Industry tag group_High-tech

n=0.99,c6=1.09, max =5, min =0

u=1.19,6=1.16, max =5 min=0

Age

pu=19.13, 6 = 12.64, max =48, min =0

n=18.75, 0 =11.94, max =48, min =0
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Number of advisors

u=0.08,c=0.31, max =4, min =0

u=0.09,6=0.33, max =3, min =0

Number of founders

u=1.78,6=0.86, max = 8, min = 1

u=2.07,6=0.96, max = 10, min = 1

Female founder ratio

pu=0.11,6=0.27, max =1, min=0

u=0.09,6=0.23, max =1, min =0

Non-Caucasian founder ratio

p=03,6=04, max=1, min=0

n=0.3,6=0.39, max =1, min=0

Subject average

pn=0.49,6=0.47, max =3, min =0

u=0.56, 6 =0.45, max =2, min =0

Subject_Biology/Health

p=0.01,6=0.1, max =2, min=0

n=0.01,6=0.08, max =1, min=0

Subject_Business

p=0.14,6=0.31, max =3, min =0

n=0.15,6=0.31, max =2, min =0

Subject_CS/IT

p=0.156=0.32, max =3, min =0

n=0.17,6=0.32, max =2, min = 0

Subject_Engineering

p=0.07,6=0.23, max =3, min =0

n=0.09,6=0.24, max =2, min =0

Subject_Humanities

u=0.02,6=0.12, max =2, min =0

n=0.01,6=0.1, max=1, min=0

Subject_Law

pu=0.01,6=0.08, max =2, min=0

nu=0.01,6=0.07, max =1, min =0

Subject_Math/Physics

pu=0.02,6=0.11, max =2, min =0

n=0.02,6=0.12, max =1, min =0

Subject_Media/Comm

p=0.01,6=0.07, max =1, min=0

nu=0.01,6=0.07, max =2, min =0

Subject_Other

pu=0.05,6=0.19, max =2, min=0

n=0.06,6=0.2, max =2, min=0

Subject_SocialSci

n=0.04,6=0.16, max =2, min =0

n=0.04,6=0.17, max =2, min = 0

Degree average

p=0.51,6=0.5 max=4, mn=0

n=0.58,6=0.48, max =3, min =0

Degree_Bachelor

p=024,6=04 max=3, mn=0

n=0.27,6=0.39, max =3, min =0

Degree_High school or below

p=0.04,6=0.18, max = 3, min =0

n=0.03,6=0.15, max =2, min =0

Degree_Master

pn=0.19,6=0.39, max =4, min =0

n=0.22,6=0.38, max =3, min=0

Degree_PhD

u=0.04,6=0.18, max =2, min = 0

n=0.06,6=0.2, max =2, min =0

Top 100 university average

p=0.1,6=0.28, max =2, min =0

n=0.15,6=0.31, max =2, min =0

Job average

u=1.87,6=1.78, max =22, min =0

n=2.08,6=197, max =31, min=0
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Job title_ CEO u=10.54, 6 =0.62, max = 6, min =0 u=0.5,6=0.59, max =4, min=0
Job title. CFO u=0.01,6=0.07, max =1, min=0 u=0.01,6=0.08, max =3, min =0
Job title_ CIO u=0.01,6=0.07, max =2, min=0 u=10.0045, 6 =0.06, max = 1, min =0
Job title_ CMO u=0.01,6=0.11, max =3, min=0 u=0.01,6=0.11, max =3, min=0
Job title_ COO u=0.06,6=0.21, max =3, min=0 u=0.05,06=0.18 max =2, min =0
Job title_ CPO u=0.01,06=0.1, max =2, min =0 n=0.02,6=0.09, max =1, min=0
Job title_CSO p=10.01,6=0.06, max = 1, min =0 u=0.01,6=0.07, max = 1, min =0
Job title_ CTO u=0.31,6=0.54, max =5, min =0 u=0.34, 6 =0.55, max = 6, min =0

Job title_Education / Research

pu=0.03,6=0.19, max =4, min=0

n=0.05,6=0.21, max =3, min =0

Job title_Engineering / Tech

pu=0.13,6=0.39, max =6, min=0

n=0.15,6=0.4, max =6, min=0

Job title_Executive / Management

pu=0.22,6=0.65 max =19, min =0

nu=0.31,6=0.71, max =10, min =0

Job title_External Advisor

u=0.18,6=0.57, max = 12, min = 0

n=0.21,6=0.61, max =21, min=0

Job title_Finance / HR / Admin

pu=0.01,6=0.1, max =3, min =0

u=0.01, 6 =0.08, max =2, min =0

Job title_Marketing / Sales

pn=0.04,6=0.2, max=4, mn=0

n=0.04,6=0.21, max =4, min=0

Job title_Operations / PM / Customer

p=0.08, c=0.29, max =4, min =0

n=0.1,0=03, max=3, mn=0

Job title_Other

p=0.16,c6=0.44, max = 14, min =0

n=0.2,06=0.51, max =8 min=0

Job title_Product / Design / Content

pn=0.07,6=0.28, max =5, min =0

n=0.08, 6 =0.29, max =4, min =0

Job type_advisor

p=0.11,6=0.46, max =9, min =0

n=0.14,6=0.51, max =12, min =0

Job type_Board member

pn=0.12,6=0.51, max =17, min=0

nu=0.17,6=0.56, max = 12, min =0

Job type_Board observer

pu=0.,6=0.06, max =4, min=0

n=0.01,6=0.08, max =2, min =0

Job type_Employee

nu=0.45,6=0.8, max =8, min =0

n=0.55,6=0.93, max =10, min=0

Job type_Executive

p=1.19,6=1.03, max =16, min =0

u=121,6=1.01,max=11, min=0
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Work years average

u=3.86,6=4.76, max = 57, min =0

nu=4.206=4.89, max =58, min =0

Serial entrepreneur average

nu=0.47,6=0.78, max = 10, min =0

u=0.46,6=0.71, max = §, min =0

Trigger round index

u=143,6=0.76, max =7, min = 1

u=1.46,6=0.75, max =7, min =1

Number of funding rounds

p=192,6=1.21, max =12, min =1

nu=194,6=1.16, max =9, min = 1

Total funding amount

n=1,108,486.57, 6 = 1,891,753.22, max =
40,828,073, min =0

n=2,278,130.04, c = 2,672,658.78, max =
58,710,343, min =0

Number of funding rounds_Angel

p=0.17,6=0.46, max = 5, min = 0

n=0.11,06=0.39, max =5, min=0

Number of funding rounds_Convertible note

p=0.05,c6=0.25 max =4, min =0

n=0.05,6=0.25 max =3, min =0

Number of funding rounds_Corporate round

p=0.0009,c=0.03, max =1, min =0

u=0.0009, 6 =0.03, max =1, min =0

Number of funding rounds_Debt financing

p=0.02,6=0.14, max =3, min =0

n=0.02,6=0.17, max =4, min =0

Number of funding rounds_Equity
crowdfunding

pu=0.01,6=0.1, max = 6, min =0

n=0.0017,6=0.04, max =1, min=0

Number of funding rounds_Grant

u=0.06,c6=0.31, max =6, min =0

u=0.06,6=0.31, max =4, min=0

Number of funding rounds_Non equity
assistance

pu=0.05,6=0.25 max =3, min=0

u=0.05,6=0.23, max =4, min =0

Number of funding rounds_Pre seed

u=0.19,6=0.52, max =5, min=0

n=0.2,6=0.46, max =4, min=0

Number of funding rounds_Product
crowdfunding

u=0.0047,c=0.07, max =2, min =0

nu=0.01,6=0.07, max =1, min =0

Number of funding rounds_Seed

p=1.37,6=0.85, max =7, min=0

nu=144,6=0.79, max =6, min =0

Total funding amount_Angel

pn=59,916.05, c = 356,634.76, max =
16,884,057, min = 0

n=062,246.42, c =345,121.51, max =
7,100,000, min =0
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Total funding amount_Convertible note

u=11,498.29, c = 142,796.55, max =
5,000,000, min =0

pn=14,487.33,6=157,810.11, max =
4,478,000, min = 0

Total funding amount_Corporate round

u=3,413.72, 6 =301,121.56, max =
28,505,763, min =0

n=0,6=0,max =0, min=0

Total funding amount_Debt financing

pn=2_8,479.93, 6 =198,251.17, max =
15,250,000, min =0

pn=26,762.67, c = 633,935.39, max =
33,157,402, min =0

Total funding amount_Equity crowdfunding

pn=3,294.99, 6 =96,817.42, max =
7,966,138, min =0

p=953.57,6=29,591.17, max = 1,215,465,

min =0

Total funding amount_Grant

pn=11,065.38, c = 140,183.99, max =
8,000,000, min =0

p=16,585.55,6=152,259.19, max =
3,793,696, min =0

Total funding amount_Non equity assistance

pu=2,202.88, 6 =97,000.56, max =
6,353,366, min =0

p=95.89, 6 =2,879.46, max = 157,547, min
=0

Total funding amount_Pre seed

n=42,674.81, c =207,855.62, max =
4,000,000, min =0

pn=65,215.06,6=317,217.66, max =
5,790,935, min =0

Total funding amount_Product crowdfunding

n=1,966.33, c =45,632.15, max =
1,700,000, min = 0

pn=2,482.43,0=57,296.48, max =
2,000,000, min =0

Total funding amount_Seed

n=963,974.21,6=1,736,210.61, max =
40,828,073, min =0

p=2,089,301.11, 6 =2,505,161.72, max =
58,710,343, min =0

Burn rate

n=137,260.79, c = 1,094,544.98, max =
54,720,000, min = 0

u=240,098.94, 6 = 1,226,937.83, max =
48,640,000, min =0

Capital concentration rate

n=042,6=0.39, max=1,mn=0

u=0.34,6=033, max=1,min=0

Number of investors

nu=3.61,6=3.7, max =40, min=0

u=>5.48,6=>5.29, max = 84, min =0
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Average investors

pu=22,06=2.02, max =32, min =0

nw=3.24,6=3., max =84, min=0

Number of distinct investors

u=2.83,6=3.02, max =41, min=0

nu=4.42,6=4.22, max =55 min=0

Average investments

p=289.75, 6 =201.02, max = 2,281, min =0

= 84.55,6=155.52, max = 2,036, min = 0

Average investments amount

pn=>52,574,882.46, c = 170,560,764.46, max
=5,470,119,343, min =0

u=106,094,246.35, c = 328,435,604.97,
max = 10,734,190,065, min =0

Average number of distinct organizations
invested

p=71.4,06=156.8, max = 1,677, min =0

n=65.31,06=120.87, max = 1,504, min =0

Number of institutional investors

p=2.64,c=2.72, max =26, min =0

n=3.98, 6 =3.64, max =40, min =0

Number of individual investors

p=0.89,c6=2.03, max =28, min =0

n=1.506=2.97 max =64, min =0

Number of distinct institutional investors

p=2.36,c6=2.3 max =23, min=0

n=3.54,6=2.99, max =28, min =0

Number of distinct individual investors

u=0.84, c = 1.89, max =24, min =0

n=143,6=2.79, max =64, min =0

Average success rate

u=0.07,6=0.1, max =1, min =0

n=0.1,6=0.11, max =1, min =0

Max success rate

pu=0.15,6=0.21,max =1, min =0

nu=0.2506=0.25 max =1, min=0

Total network centrality BC

p=0.0046, c =0.0103, max = 0.1068, min =
0

n=0.0072,6=0.0131, max = 0.1326, min =
0

Total network centrality_ DC

n=0.1953, 6 =0.4229, max = 5.1404, min =
0

n=0.3529,6=0.6061, max = 5.6413, min =
0

Total network centrality PR

p=10.001, 6 =0.0019, max = 0.026, min =0

n=0.0017,c=0.0027, max = 0.0324, min =
0

Average network centrality BC

pu=0.0013, 6 =0.0037, max = 0.0397, min =
0

n=0.0013, 6 =0.0028, max = 0.0397, min =
0

Average network centrality DC

p=0.0508,5=0.1201, max = 1, min =0

n=0.0611,6=0.1093, max = 1, min =0
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Average network centrality PR

p=0.0003, ¢ = 0.0005, max = 0.0049, min =
0

u=0.0003, 6 =0.0005, max = 0.0053, min =
0
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