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摘要 

隨著創業投資家（VC）越來越依賴於使用機器學習來輔助他們的投資決策，

這些演算法是否會延續過去募資結果中所存在的歧視性偏見，成為了一項令人關

心的議題。這些偏見大多起因於新創公司早期缺乏足夠的可量化資料，使得投資

人進行投資決策時，往往會依賴他們對創辦人團隊的主觀判斷，而這很有可能招

致有關人口統計上的刻板印象與歧視。為了避免這類偏見在演算法中被進一步強

化，確保決策系統中的公平性是避免創業環境下的資源錯誤分配、以及平等資金

機會的關鍵。 

在本研究中，針對新創早期成功預測任務，我們考量了三種常見的潛在歧視

來源，包含地理區域、創辦人性別以及種族，並且實作與比較了三種公平性方法：

特徵遮蔽（feature-blind）、正則化法（regularization-based）與梯度反轉（gradient 

reversal）。這些方法皆可處理具有混合資料型態的多個敏感屬性（ sensitive 

attributes）。我們的實驗結果顯示，儘管提升公平性會略微影響到目標任務的預測

效能，但正則化法與梯度反轉法皆能有效改善模型公平性。 

除了比較模型表現外，本研究也進一步識別出哪些子群體最容易受到模型偏

見影響，例如創辦人中女性比例超過 75% 的新創企業是最不受基準模型的青睞

的。我們也分析了哪個敏感屬性造成了最多的模型偏見。這些研究成果可為新創

公司與創投提供實務上的見解，對新創企業而言，採用具公平措施的模型能提升

他們平等地獲得資金的機會，而不受既有歧視的影響，進而打造更具包容性的創

業環境；對投資人而言，這些模型有助於幫助他們發掘那些可能因偏見而被忽略

的投資機會，並建立更平衡的投資組合。 

關鍵字：公平性機器學習、新創公司成功預測、新創公司分析、演算法偏

見、演算法公平、預測建模、表徵學習、決策支援系統 
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Abstract 

As venture capital (VC) firms increasingly adopt machine learning (ML) tools to 

support investment decisions, concerns arise regarding the potential perpetuation of 

historical biases embedded in past funding outcomes. These biases often stem from the 

limited availability of quantifiable data on early-stage startups. As a result, investment 

decisions depend heavily on subjective assessments of founding teams, which 

introduces risks of demographic stereotyping and discrimination. To prevent the 

reinforcement of such biases, ensuring fairness in ML-based decision systems is 

therefore critical to mitigating systematic resource misallocation and promoting 

equitable access to capital. 

This study investigates fairness-aware startup early success prediction by 

examining three commonly cited sources of potential biases, including geographic 

region, founder gender, and race. We implement and compare three fairness-aware 

approaches: feature-blind, regularization-based, and gradient reversal, each capable of 

handling multiple sensitive attributes of mixed data types. Our empirical results 

demonstrate that, while introducing modest trade-off in predictive performance, both 

the regularization and gradient reversal methods effectively enhance fairness. 

Beyond performance evaluation, this study identifies subgroups most impacted by 

model biases, such as startups with over 75% female founders, and highlights which 
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sensitive attribute contributes most to observed disparities. The findings offer 

actionable insights for both startups and VC practitioners. For startups, the adoption of 

fairness-aware methods can improve fairer access to funding opportunities and foster a 

more inclusive entrepreneurial landscape. For investors, these methods may help 

uncover overlooked ventures and support more balanced portfolio construction. 

Keywords: Fairness-aware machine learning, Startup success prediction, Startup 

analytics, Algorithmic bias, Algorithmic fairness, Predictive modeling, Representation 

learning, Decision support systems 
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Chapter 1 Introduction 

1.1 Background 

Securing funding across various stages is a critical milestone in the lifecycle of 

startups. In particular, early-stage venture funding, such as Series A, is regarded as a 

key inflection point, as it often marks the transition from early development to scalable 

growth (Hellmann & Puri, 2000). In this stage, venture capital (VC) firms play a crucial 

role by providing not only financial resources but also strategic guidance to help 

startups foster sustainable expansion (Bygrave & Timmons, 1992). However, the path 

to success remains highly uncertain: only about one in three startups achieves initial 

profits within six years of founding (Reynolds, 2016). To mitigate the inherent risk 

associated with early-stage startup investments, venture capital firms are increasingly 

relying on machine learning (ML) to support their investment decisions (Astebro, 2021). 

Despite this trend, concerns have been raised that these data-driven systems may inherit 

and even amplify historical biases embedded in past VC decisions, potentially 

reproducing patterns of discrimination (Mehrabi et al., 2021). 

The complexity and ambiguity of assessing nascent companies often give rise to 

biases in VC decision-making. Unlike established firms, the evaluation of early-stage 

startups often involves making high-stakes decisions under extreme uncertainty, as 

quantifiable information, such as financial records or product traction, is typically 
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unavailable (Wei et al., 2025). Consequently, investment decisions tend to rely heavily 

on subjective assessments of founding teams (Corea et al., 2021). This subjectivity is 

further compounded by the presence of complex social signals and information 

asymmetry, which make objective evaluation particularly challenging in such 

ambiguous contexts (Gompers & Lerner, 2004). To overcome these obstacles, venture 

capitalists often resort to heuristics (Dale, 2015) and stereotypes (Bodenhausen & Wyer, 

1985) to simplify judgment and improve decision-making efficiency, which may 

introduce or reinforce potential unfairness in funding outcomes. 

Various manifestations of bias have been documented in VC investment decisions. 

Gender bias is one notable example, in which male investors often demonstrate less 

interest in female entrepreneurs compared to equally qualified male counterparts 

(Ewens & Townsend, 2020). Racial disparities have also been observed, with Black-

owned startups receiving significantly less external equity funding at founding than 

White-owned firms (Fairlie et al., 2022; Paglia & Harjoto, 2014). Age bias further 

skews funding decisions, as investor evaluations follow an inverted-U pattern, favoring 

founders in a perceived optimal middle-age range (Matthews et al., 2024). Additionally, 

geographic bias plays a role, where startups located within a VC’s home country are 

more likely to receive funding, while those based abroad are often overlooked (Coval 

& Moskowitz, 1999). 



doi:10.6342/NTU202503744

 

3 
 

In addition to the unfair treatment faced by entrepreneurs, biased VC investment 

decisions also carry consequences for investors themselves. Hernandez et al. (2019) 

conduct interviews with seven venture capitalists involved in early-stage funding 

decisions. Most of these investors actively seek to address biases, such as gender 

stereotypes, by expanding their own networks and diversifying the pool of promising 

entrepreneurs beyond familiar circles. These efforts are not solely driven by ethical 

considerations; rather, they also reflect a growing awareness of the potential financial 

impact of unfair practices. For example, empirical evidence shows that women-led 

firms can outperform male-led counterparts under comparable conditions (Gazanchyan 

et al., 2017), suggesting that gender bias may lead investors to overlook high-potential 

opportunities, ultimately resulting in suboptimal investment outcomes. Nonetheless, 

current fairness initiatives in venture capital predominantly focus on human decision-

making, which may lack consistency and efficiency in mitigating biases (Hernandez et 

al., 2019). Moreover, limited attention has been paid to incorporating fairness 

considerations into machine learning systems that support VC decision-making (Te et 

al., 2023a). 

When machine learning models are trained on biased historical data, they risk 

perpetuating or even exacerbating existing discrimination against underrepresented 

groups (Mehrabi et al., 2021). Incorporating fairness into ML systems is therefore 
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critical to mitigating such risks in the evaluation of startup early success, with important 

significance for both entrepreneurs and investors. For startups, fairness-aware 

approaches can enable more equitable access to capital and contribute to a more 

inclusive entrepreneurial ecosystem (Balachandra, 2020; Ivanitzki & Rashida, 2023). 

For venture capitalists, such research may help them uncover high-potential ventures 

that might otherwise be overlooked due to systemic biases, thereby enhancing both the 

diversity and potential returns of their investment portfolios (Hernandez et al., 2019). 

Furthermore, by integrating fairness considerations into ML models, investors are better 

positioned to make more informed and impartial decisions, reducing the risk of 

unlawful discrimination and promoting compliance with both legal requirements and 

ethical standards (Kumar et al., 2022). 

1.2 Research Motivation 

Despite the increasing interest in algorithmic fairness, most existing methods are 

designed for general-purpose benchmark datasets that focus on individual-level 

classification tasks, such as credit scoring or income level prediction, and typically 

consider only one binary sensitive attribute at a time. However, these settings fail to 

capture the complexities of startup early success prediction, which requires evaluating 

fairness at the team level and handling multiple sensitive attributes that are often 

continuous or multi-label in nature. Such characteristics make the direct application of 
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existing fairness methods challenging in this domain, as most methods have limited 

capability to handle multiple sensitive attributes of mixed data types, and the applicable 

ones often require additional adaptation. 

Moreover, prior fairness studies rarely explore performance metrics beyond 

accuracy, even though metrics such as precision and recall hold particularly meaningful 

implications in the context of early-stage funding prediction. As Moriarty et al. (2019) 

note, from the investor's perspective, incorrectly recommending an unpromising startup 

may lead to direct financial loss, while failing to recommend a promising one merely 

results in a missed opportunity. This rationale underscores why many investor-oriented 

systems prioritize optimizing precision. However, from the startup’s standpoint, a lower 

recall of the prediction model can be far more damaging, as being wrongly rejected 

leads to lost funding opportunities and stunted growth. These dual perspectives suggest 

that fairness evaluations should not only focus on overall accuracy but also consider 

how different metrics disproportionately impact stakeholders. 

1.3 Research Objectives 

In this study, we aim to explore algorithmic fairness in the context of startup early 

success prediction. Specifically, we implement and compare several fairness-enhancing 

methods, namely feature-blind, regularization-based training, and gradient reversal, to 

assess their effectiveness in mitigating biases in startup early success prediction. We 
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further evaluate the trade-off between fairness and predictive performance across 

different methods, and examine their tendencies to overestimate or underestimate 

certain types of startups by analyzing the prediction outcomes. Lastly, we investigate 

which sensitive attribute most significantly contributes to unfairness in prediction 

outcomes, thereby providing insights that may bring more equitable and responsible 

investment practices for both startup founders and venture capitalists. 
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Chapter 2 Literature Review 

2.1 Predictive Features for Startup Early Success Prediction 

Existing literature commonly classifies features used for startup early success 

prediction into three major categories: company, founders, and investment. Each 

reflects different dimensions of a startup’s potential in securing early-stage funding. 

Company-level features describe the foundational and externally observable 

attributes of the startup. These include basic characteristics such as the company’s 

geographic location (e.g., country and city), industry sector, age since founding, the 

presence of experienced advisors, number of launched products, and textual 

descriptions of the business (Krishna et al., 2016; Sharchilev et al., 2018; Te et al., 

2023b). Although not widely adopted, one study has explored the use of media and 

public attention indicators, such as the number of news mentions, breadth of domain 

coverage, and topic modeling derived from Latent Dirichlet Allocation (LDA) applied 

to news content (Sharchilev et al., 2018). 

Founder-level features focus on the human capital embedded in the entrepreneurial 

team. Commonly used variables include the number of founders, demographic 

attributes, educational background (e.g., degree level and institution ranking), and prior 

work experience, which serve as proxies for individual capabilities and team diversity 

and are widely recognized for their impact on startup performance (Sharchilev et al., 
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2018; Te et al., 2023b). 

Investment-related features reflect the startup’s financing dynamics and the quality 

of external support. These can be further divided into two subcategories. The first 

pertains to funding details, such as total capital raised, number of past funding rounds, 

average time interval between rounds, burn rate (i.e., spending speed), and capital 

concentration (i.e., dependency on key investors). These features have been explored 

across multiple studies (Krishna et al., 2016; Sharchilev et al., 2018; Te et al., 2023b; 

Wei et al., 2025). The second subcategory encompasses investor characteristics, 

including the number and types of past investors (i.e., individuals or organizations). 

Some studies also consider investors’ average centrality within the historical co-

investment network and their prior success rates, capturing both the breadth and 

strength of investor backing (Wei et al., 2025). 

Table 1 summarizes representative features from prior studies. These categories 

form the basis of the feature design in our proposed methods, which integrates both 

static and dynamic signals to enable a more comprehensive prediction of early-stage 

startup funding success. 
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Table 1: Overview of Predictive Features Used in Prior Research on Startup 

Early Success Prediction 

 Category Subcategory  Features Source 

Company 

Basic features 

Location 

Industry 

Age 

Number of products 

Presence of experienced advisors 

Krishna et al. 

(2016) 

Sharchilev et al. 

(2018) 

Te et al. 

(2023b) 

Mentions 

News article count 

Domain-specific mentions 

Topic modeling features (LDA) 

Sharchilev et al. 

(2018) 

Founders – 

Number of founders 

Demographics 

Education 

Work experience 

Sharchilev et al. 

(2018) 

Te et al. 

(2023b) 

Investment 

Funding 

details 

Total amount raised 

Number of rounds 

Burn rate 

Time until rounds 

Capital concentration rate 

Krishna et al. 

(2016) 

Sharchilev et al. 

(2018) 

Te et al. 

(2023b) 

Wei et al. 

(2025) 

Investors 

Number of investors 

Investor types 

Total amount invested 

Average network centrality 

Investor success rate 

Te et al. 

(2023b) 

Wei et al. 

(2025) 
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2.2 Existing Studies on Mitigating Unfairness in Machine Learning 

Certain personal characteristics are legally recognized as impermissible bases for 

discrimination and are commonly referred to in the computer science literature as 

“protected” or “sensitive” attributes. Under the Federal Equal Credit Opportunity Act 

(ECOA), for example, creditors are prohibited from discriminating against credit 

applicants based on characteristics such as race, color, religion, national origin, sex, 

marital status, or age (Chen et al., 2019). In response to growing concerns that machine 

learning models may inadvertently learn and perpetuate biases associated with such 

attributes, a variety of fairness-enhancing mechanisms have been developed. 

These mechanisms are typically grouped into three main categories: pre-

processing, in-processing, and post-processing, each of which focuses on a specific 

stage of the machine learning pipeline (Binns, 2018). Pre-processing techniques aim to 

mitigate biases before model training by modifying the input data. In-processing 

methods intervene during model training to incorporate fairness considerations or 

modify the learning process itself. Post-processing approaches adjust the model’s 

outputs after training to ensure fairer decision outcomes. The following sections 

provide a review of representative methods within each of these categories. 

2.2.1 Pre-Processing Methods 

Pre-processing approaches aim to mitigate biases by modifying the training data 
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before model development. One intuitive strategy within this category is to omit 

sensitive variables from the input features. However, this approach is generally 

insufficient, as sensitive information can often be inferred through correlated proxy 

features (Pedreshi et al., 2008). To better ensure fairness in the training data, Kamiran 

and Calders (2012) propose a relabeling method that modifies the class labels of 

instances located near the decision boundary and belonging to the underrepresented 

group. This adjustment seeks to reduce disparities in the predicted positive rates 

between two groups distinguished by a sensitive attribute, while preserving the overall 

predictive performance of the model. Another notable method is perturbation, 

introduced by Feldman et al. (2015). This technique modifies the distribution of input 

features based on one or more binary sensitive variables, ensuring that the resulting data 

lacks sufficient information for classifiers to infer protected attributes. By obfuscating 

the link between training data and sensitive characteristics, perturbation promotes 

fairness by limiting the potential for indirect discrimination during subsequent model 

training. 

2.2.2 In-Processing Methods 

This category of methods enforces fairness constraints during model training, 

either through architectural modifications or by incorporating regularization terms into 

the objective function. Kamishima et al. (2012) propose a fairness-aware method by 



doi:10.6342/NTU202503744

 

12 
 

extending the loss function with a regularization term that penalizes the mutual 

information between the sensitive attribute and the prediction outcome. This 

discourages the model from making decisions based on sensitive features. The 

regularization term can also be designed to reflect common fairness notions such as 

equalized odds (Zafar et al., 2017), allowing flexible control over the model's fairness 

behavior. As another line of work under this category, Zemel et al. (2013) introduce 

Learning Fair Representations (LFR), which uses probabilistic mappings to transform 

raw input features into intermediate representations defined by a set of predefined 

prototypes. These representations aim to retain essential task-relevant information 

while obscuring protected group membership. By decoupling group identity from the 

learned features, the method seeks to ensure that predicted positive outcome 

probabilities are more equitably distributed across groups. 

In recent work, Te et al. (2023a) apply a Gradient Reversal approach to learn 

representations that are invariant to sensitive attributes, particularly in the field of 

startup success prediction. This technique, originally introduced for domain adaptation 

(Ganin et al., 2016), involves optimizing two adversarial objectives simultaneously: 

one for the main label prediction task and another for the domain classification task. In 

fair classification, sensitive attributes can be analogously treated as domains, where the 

goal is to ensure that learned representations are predictive of the target label but 
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uninformative with respect to the sensitive attributes. 

Accordingly, in the setting of mitigating the influence of one binary sensitive 

attribute, as illustrated in Figure 1, the model architecture consists of a shared feature 

extractor, a target prediction branch for the main task, and a protected attribute branch 

for predicting the sensitive attribute. The core component of this architecture is the 

Gradient Reversal Layer (GRL), positioned between the feature extractor and the 

protected branch. The GRL is a custom layer that passes inputs forward unchanged but 

multiplies the gradients by a negative scalar −λ during backpropagation. This 

adversarial training process forces the feature extractor to learn representations that 

minimize the influence of sensitive attribute while preserving task relevance, thereby 

promoting fairness in the final prediction outcomes. 
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Figure 1: Architecture of Gradient Reversal Approach for Fair Classification 

2.2.3 Post-Processing Methods 

Post-processing methods focus on modifying a model’s predictions after it has 

been trained, without altering the underlying training data or model parameters. Such 

approaches offer practical solutions for mitigating unfairness, particularly in cases 

where model retraining is not feasible. For example, Hardt et al. (2016) propose a 

group-specific thresholding technique that adjusts the decision boundary for different 
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flipped to the opposite class to reduce disparities between advantaged and 

disadvantaged groups. 

These post-processing techniques are considered as flexible as they can be 

combined with any classification algorithm. However, they may come at the cost of 

limited interpretability, as fairness is enforced externally through adjustments to model 

outputs that intentionally alter individual predictions rather than being learned within 

the model itself (Pessach & Shmueli, 2022). 

2.3 Summary and Limitations of Existing Literature 

To illustrate the methodological landscape, Table 2 provides an overview of 

representative fairness-enhancing techniques. Although fairness in machine learning 

has received extensive attention, only a very limited number of studies have addressed 

fairness in startup success prediction. Most existing fairness-enhancing methods are 

designed for general-purpose benchmarks, typically handling only one binary sensitive 

attribute at a time. Moreover, they often simplify continuous variables (e.g., an 

individual’s age, the racial composition of a community) by binarizing them to fit 

algorithmic constraints, thereby risking oversimplifying real-world demographic 

nuances. These studies also predominantly focus on individual-based fairness, 

assuming each prediction pertains to a single person. However, startup investment 

decisions are naturally team-based, where some sensitive attributes are inherently 
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continuous, requiring fairness notions that account for group composition. Furthermore, 

as discussed in Section 1.1, multiple sensitive attributes may simultaneously contribute 

to investor biases. Consequently, fairness considerations in this domain must account 

for multiple sensitive attributes of mixed data types, including both categorical and 

continuous variables. 
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Table 2: Summary of Existing Approaches to Fairness in Machine Learning 

 Source 
Fairness 

Strategy 
Method 

Datasets: Sensitive 

Attribute(s) (Type) 

Fairness 

Unit 

Kamiran 

and Calders 

(2012) 

Pre-processing Relabeling - Adult Income: gender (B) 

- Communities and Crimes: 

race (Bc) 

Individual; 

Community 

Feldman et 

al. (2015) 

Pre-processing Perturbation - Ricci dataset: race (B) 

- Adult Income: gender (B) 

- German Credit: age (Bc) 

Individual 

Kamishima 

et al. (2012) 

In-processing Regularization - Adult Income: gender (B) Individual 

Zemel et al. 

(2013) 

In-processing Learning Fair 

Representations 

- Adult Income: gender (B) 

- German Credit: age (Bc) 

Individual 

Te et al. 

(2023a) 

In-processing Gradient 

Reversal 

- Crunchbase: region (B), 

gender (B), race (B), 

university (B) 

Group 

Hardt et al. 

(2016) 

Post-processing Thresholding - FICO score dataset: race 

(B) 

Individual 

Lohia et al. 

(2019) 

Post-processing Calibration - Adult Income: gender (B) 

or race (B) 

- German Credit: gender (B) 

or age (Bc) 

- COMPAS: gender (B) or 

age (Bc) 

Individual 

B: Binary; Bc: Binary derived from continuous 
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Table 3: Comparison of Fairness Methods in Handling Multiple and Mixed Type 

Sensitive Attributes 

 Fairness Strategy Method Multiple Mixed 

Pre-processing Blind (Omit) ✓  ✓  

Pre-processing Relabeling △ ✗ 

Pre-processing Perturbation △ ✗ 

In-processing Learning Fair Representations △ ✗ 

In-processing Regularization ✓ ✓ 

In-processing Gradient Reversal ✓ ✓ 

Post-processing Thresholding △ ✗ 

Post-processing Calibration △ ✗ 

△: denotes limited capability 

Table 3 highlights the limitations of existing methods in accommodating these 

complexities. Only a few approaches are capable of handling both multiple and mixed 

type sensitive attributes simultaneously. Most methods struggle to support multiple 

sensitive attributes effectively because they require discrete group boundaries and aim 

to obscure group membership through input manipulation, intermediate representations, 

or output adjustment. This is more straightforward when there is only a single binary 

sensitive attribute. Taking Kamiran and Calders’s (2012) relabeling method as an 

example, they flip the negative predicted labels of female instances with prediction 

scores close to 0.5, in order to balance the chance of receiving positive predictions 
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between binary gender groups in their experiments on the Adult Income dataset. 

However, when extended to more realistic scenarios involving multiple sensitive 

attributes, this approach becomes impractical. When multiple sensitive attributes 

interact, it is ambiguous which intersectional groups should be considered 

disadvantaged, and the number of possible group combinations grows rapidly, making 

group definitions and fairness optimization increasingly complex. 

In the field of startup success prediction, a study by Te et al. (2023a) adapts the 

Gradient Reversal framework to promote fairness. While their work is pioneering in 

applying fairness-aware learning to this domain, it simplifies continuous sensitive 

features by employing categorical encoding schemes. For example, team gender 

composition is reduced to discrete categories such as all-male, all-female, or mixed-

gender, which may overlook finer-grained demographic variation. 

These limitations collectively point to the need for more domain-specific fairness 

modeling approaches that are tailored to the unique characteristics of startups and the 

decision-making dynamics in venture capital. Our study builds upon prior works by 

developing a fairness-aware framework that explicitly accommodates multiple 

sensitive attributes and preserves richer representations of team composition, thus 

providing a more realistic and inclusive approach to fairness in startup early success 

prediction. 
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Chapter 3 Methodology 

This study comprises two major aspects: (1) startup early success prediction, and 

(2) the design and evaluation of fairness-aware algorithms. For the first aspect, we 

define the criterion used to determine startup early success and present a structured 

overview of the predictive features, including the derivation of sensitive attributes. For 

the second aspect, we describe the design of our fairness-aware learning framework, 

which encompasses and compares multiple bias mitigation strategies, including feature 

exclusion (Blind), fairness-constrained regularization, and Gradient Reversal. Overall, 

the adapted methods aim to support equitable decision-making in VC by promoting 

algorithmic fairness without substantially compromising predictive performance in 

startup early success prediction. 

3.1 Definition of Startup Early Success 

In this study, we adopt the definition of startup early success proposed by 

Sharchilev et al. (2018), which conceptualizes the task as a forward-looking prediction 

of funding events. Specifically, we consider startups that have already achieved an 

early-stage funding milestone, referred to as the trigger round, and aim to predict 

whether they will reach the subsequent milestone, the target round, within a predefined 

time window. 

In our implementation, angel and seed rounds are selected as trigger rounds, while 
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the Series A round serves as the target round. The prediction horizon is set to four years, 

meaning that for each startup receiving angel or seed funding, we predict whether it 

will obtain Series A funding within the next four years. 

3.2 Predictive Features Used in Our Research 

As reviewed in Section 2.1, our study incorporates three major categories of 

predictive features commonly employed in early-stage startup success prediction, 

particularly for forecasting Series A funding outcomes. These features are derived from 

Crunchbase, a widely used startup database that offers detailed records on company 

profiles, funding history, and individual founder information, making it especially 

suitable for analyzing fairness issues that involve sensitive personal characteristics. 

 Company-Level Features: We incorporate several basic company characteristics 

that describe the focal startup’s context and profile. These include geographic 

location attributes such as world region and U.S. state, as well as industry tags 

using categories defined by Crunchbase. In addition, we record the company age 

(measured in months from founding to the trigger round) and the number of 

advisors involved prior to the trigger event. 

 Founder-Level Features: Founder-related features capture the background of the 

startup’s founding team. Demographic attributes include gender and race, while 

educational background is recorded based on the subject field, degree level, and 
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the QS ranking of the attended university (QS Top Universities, 2024). Because 

the original data fields for degree and subject are provided as free-text entries, we 

apply a keyword-based standardization approach to unify them. This approach 

leverages a predefined list of degree levels and subject areas, which is constructed 

based on our domain expertise. Work experience is captured through job title, job 

type, years of experience, and serial entrepreneurship experience. A similar 

keyword-matching strategy used for the degree and subject fields is also applied 

to standardize job titles. Finally, to reflect the team composition of the focal startup 

founders, we aggregate these features across all founder team members, using 

ratios (e.g., proportion of female founders) or averages (e.g., average years of 

experience). 

 Investment-Related Features: Investment features are further categorized into two 

subcategories, funding details and historical investors. 

 Funding Details: This subcategory characterizes the financial development 

of the startup until the trigger round. These include trigger type (angel or 

seed), total capital raised (in USD), and number of funding rounds received. 

In addition to aggregated statistics across all funding types, we also record 

separate counts and amounts for several funding types considered likely to 

occur before Series A. These include pre-seed, seed, angel, convertible note, 
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grant, corporate round, debt financing, equity crowdfunding, product 

crowdfunding, and non-equity assistance. To better capture financial 

efficiency, we compute a burn rate by dividing total capital raised by 

company age (Krishna et al., 2016), and measure capital concentration rate 

using a prior-established formula from the literature (Wei et al., 2025), which 

captures the extent to which a startup’s funding is dominated by a small 

number of investors. 

 Historical Investors: Features related to historical investors describe the 

background and network strength of the investors who have previously 

invested in the focal startup. We include the total and average number of 

historical investors, the average amount and number of investments they have 

made, the average number of distinct organizations they have invested in, and 

the count of institutional versus individual investors. Furthermore, we 

consider both the average and maximum historical success rate of these 

investors, along with their average and total network centrality. To compute 

network centrality, we adopt the method proposed by Wei et al. (2025), which 

constructs a co-investment network where two investors are linked if they co-

invested in the same company in the same funding round. For a startup 

receiving its trigger round in year t, investor centrality is measured based on 
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the ten-year co-investment network built using data prior to year t, reflecting 

the investors' connectivity and potential influence at the time of the trigger 

round. 

To support fairness evaluation, we identify several sensitive attributes that may 

influence venture funding decisions, as discussed in Section 2.1. These include both 

categorical and continuous variables, allowing for a more nuanced assessment of 

fairness. For categorical features, we designate the world region of the startup as 

sensitive, as home bias has been documented in VC investment decision-making (Coval 

& Moskowitz, 1999) and may implicitly capture socio-cultural background associated 

with the founders (Te et al., 2023a). For continuous features, we include the 

demographic composition of the founding team, specifically the proportion of female 

founders and the proportion of non-Caucasian founders, as sensitive attributes. Since 

Crunchbase does not explicitly provide racial information, we infer race from founder 

names using an LSTM-based text classification model. Specifically, we categorize race 

into six groups: European, Hispanic, East Asian, Nordic, Celtic English, and Muslim. 

Among these, Hispanic, East Asian, and Muslim are classified as non-Caucasian for the 

purpose of our fairness analysis. Although the dataset lacks direct racial labels, racial 

composition remains a potentially visible and discriminatory factor in venture capital 

investment decision-making. It is important to note that the inferred race is only an 
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estimated value and should not be treated as ground truth. Lastly, these variables serve 

as focal points in our fairness-aware modeling strategy, enabling the mitigation of 

potential biases. 

A comprehensive list of the features employed in our methods is presented in Table 

A1 in the Appendix. The table summarizes variables under different categories and 

provides their corresponding descriptions, where sensitive features are highlighted 

using bold formatting. It also specifies whether each feature is classified as static or 

dynamic, meaning it remains constant regardless of the trigger timing, or dynamic, 

meaning it is time-dependent and the values may vary based on the trigger event. 

3.3 Fairness-Aware Modeling Approaches 

In this study, we implement and evaluate three fairness-aware methods that are 

inherently capable of handling multiple sensitive attributes of mixed types (categorical 

and continuous) as discussed in Section 2.3. These strategies aim to promote fairer 

prediction outcomes in early-stage startup success prediction, including one pre-

processing method, the Blind method, and two in-processing methods: fairness-

constrained regularization and Gradient Reversal. 

3.3.1 Blind Method 

The Blind method promotes fairness by excluding explicit sensitive attributes from 

the model input. The underlying assumption is that by removing these attributes, the 
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model is less likely to directly learn discriminatory patterns based on them, thereby 

encouraging fairer predictions. In this approach, a standard neural network is trained 

using a reduced feature set that omits the following sensitive attributes: 

 Region: Continent-level grouping of the startup’s founding location. 

 Gender: Proportion of female founders. 

 Race: Proportion of non-Caucasian founders. 

Although conceptually straightforward, this method has notable limitations. Prior 

studies have shown that merely excluding sensitive attributes may not fully eliminate 

biases, as these attributes can often be inferred indirectly from other correlated, non-

sensitive features (Pedreshi et al., 2008). Additionally, the removal of potentially 

predictive variables may lead to reduced model accuracy (Chen et al., 2018; Hajian & 

Domingo-Ferrer, 2012). 

3.3.2 Regularization Method 

The Regularization method is a fairness-aware learning approach that incorporates 

fairness constraints directly into the model's loss function (Caton & Haas, 2024). 

Different from the Blind method, which omits sensitive attributes entirely, this strategy 

allows the model to access sensitive information while introducing penalties to reduce 

discriminatory behavior during optimization. This approach seeks to retain the 

predictive value of sensitive attributes while mitigating their unfair influence on model 
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outputs. 

In particular, we add a fairness penalty term to the standard prediction loss. The 

penalty is defined as the sum of FairGap values associated with each protected attribute, 

where FairGap is a group fairness metric based on differences in mean prediction scores, 

formally defined in Section 4.2.1. The total loss function to be minimized is defined as: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑡𝑎𝑟𝑔𝑒𝑡 + 𝑤𝑟𝑒𝑔𝑖𝑜𝑛 ∙ FairGap𝑟𝑒𝑔𝑖𝑜𝑛 

                                + 𝑤𝑔𝑒𝑛𝑑𝑒𝑟 ∙ FairGap𝑔𝑒𝑛𝑑𝑒𝑟 

                        + 𝑤𝑟𝑎𝑐𝑒 ∙ FairGap𝑟𝑎𝑐𝑒, 

where 𝐿𝑡𝑎𝑟𝑔𝑒𝑡  donates the binary cross-entropy loss for the main prediction task, 

FairGap𝑎𝑡𝑡𝑟  represents the fairness metric calculated for each protected attribute 

(region, gender, and race), and 𝑤𝑎𝑡𝑡𝑟  is the predefined weight that controls the 

influence of each fairness constraint on the model's training objective. 

3.3.3 Gradient Reversal Method 

Inspired by the work of Te et al. (2023a), we adopt a Gradient Reversal framework 

to mitigate biases in startup early success prediction. This method is based on an 

adversarial learning mechanism, aiming to prevent the model from capturing 

information related to sensitive attributes, including signals that may be hidden in 

correlated but non-sensitive features, during the process of representation learning. 

The model architecture consists of a feature extractor shared by two types of 

branches: a target prediction branch for predicting startup success, and multiple 
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protected attribute branches for predicting sensitive attributes such as region, gender, 

and race. To promote fairness, a Gradient Reversal Layer (GRL) is inserted between 

the feature extractor and each protected branch. During backpropagation, the GRL 

multiplies the gradient flowing into the feature extractor by a negative scalar −λ, 

thereby encouraging the model to learn representations that are predictive of the target 

but invariant to the sensitive attributes. Figure 2 illustrates the overall framework of our 

Gradient Reversal–based model. 

 

Figure 2: Architecture of Our Gradient Reversal Approach for Fair Startup 

Success Prediction 
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connected layers with hidden dimensions of 128, 64, and 32, respectively. Each layer 

is followed by batch normalization, a ReLU activation function, and a dropout layer for 

regularization. This component aims to learn latent representations from the input 

features and serves as a shared input to both the target and protected branches. The 

target branch t is a simple classifier for predicting startup success. It consists of a single 

linear layer that outputs a scalar logit, which is then passed through a sigmoid activation 

to obtain the predicted probability for binary classification. This branch is trained to 

maximize predictive performance based on the learned latent representations using a 

binary cross-entropy loss function 𝐿𝑡𝑎𝑟𝑔𝑒𝑡, which measures the discrepancy between 

the predicted probabilities and the ground truth labels. A set of protected branches, each 

denoted as 𝑝𝑎𝑡𝑡𝑟 , is built to predict certain sensitive attributes from the shared 

representation. Each protected branch is composed of a two-layer feedforward neural 

network with hidden dimensions of 16 and 8, where both layers are followed by a ReLU 

activation function. The output dimension of the second layer corresponds to the 

number of categories for categorical attributes, or one scalar for continuous ones. The 

loss function 𝐿𝑝𝑎𝑡𝑡𝑟
  for each protected attribute is defined as cross-entropy for 

categorical attributes and mean squared error (MSE) for continuous attributes. 

To enable adversarial training against sensitive attribute prediction, a Gradient 

Reversal Layer (GRL) is inserted between the feature extractor and each protected 
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branch. During forward propagation, the GRL behaves as an identity function, passing 

the learned representations unchanged to the protected branches. However, during 

backpropagation, it multiplies the gradient by a negative scalar −λ, effectively reversing 

the direction of the gradient flow. This discourages the feature extractor from encoding 

information predictive of sensitive attributes, thereby promoting fairer representations 

that are invariant to these factors. The GRL itself contains no learnable parameters. 

Finally, to regulate the strength of the adversarial signal, we adopt a scheduled λ 

strategy following the approach proposed by Ganin et al. (2016). The scalar λ is 

gradually increased throughout training according to a predefined schedule based on 

the normalized training progress 𝑝 ∈ [0, 1]: 

 λ(𝑝) = λmax ∙ (
2

1+exp(−10𝑝)
− 1) 

This schedule starts with a small λ, allowing the model to focus on learning 

predictive features in the early steps. As training progresses, λ increases and stabilizes 

near a maximum value λmax , progressively enforcing stronger fairness constraints 

through adversarial pressure. 

To further enhance training stability and ensure effective learning, we adopt a two-

stage optimization procedure using three separate optimizers: one for the feature 

extractor (Optimizer F), one for the target branch (Optimizer T), and one for the 

protected branches (Optimizer P). This training strategy is designed to decouple the 
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competing objectives of accurate prediction of the main task and fairness enhancement. 

In the first stage, we focus on the target prediction task. The binary cross-entropy loss 

𝐿𝑡𝑎𝑟𝑔𝑒𝑡 is computed from the output of the target branch then backpropagated to update 

the parameters of both the feature extractor and the target branch using Optimizer F and 

Optimizer T, respectively. In the second stage, we shift to the fairness objective. For 

each protected branch of sensitive attribute attr, the loss 𝐿𝑝𝑎𝑡𝑡𝑟
  is computed. 

Subsequently, each loss is scaled by a predefined weight 𝑤𝑎𝑡𝑡𝑟 that controls its relative 

influence, and the total protected loss 𝐿𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 is computed as a weighted sum: 

𝐿𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 = ∑ 𝑤𝑎𝑡𝑡𝑟 ∙ 𝐿𝑝𝑎𝑡𝑡𝑟

𝑎𝑡𝑡𝑟

 

The GRL is then applied to reverse the gradients of the total loss from the protected 

branches before they are backpropagated to the feature extractor. Finally, Optimizer F 

and Optimizer P are used to update the feature extractor and protected branches, 

respectively. 

This two-stage training scheme helps avoid gradient conflicts between the 

competing objectives. If a joint loss function combining the target prediction task and 

the fairness objectives is used to update the feature extractor simultaneously, it will 

receive opposing gradient signals, one from the target task that encourages preserving 

predictive information, and another from the adversarial branches that encourages 

removing sensitive attribute signals. These conflicting directions can lead to unstable 
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learning. By separating the updates into distinct stages, we are able to control the 

training signals more precisely by reinforcing predictive capacity first, then promoting 

fairness, thus enabling more stable and balanced representation learning. 
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Chapter 4 Experiments 

4.1 Data Collection 

We construct our dataset based on a snapshot of Crunchbase as of April 1, 2025, 

focusing on organizations whose primary role is classified as “company” and having a 

“Software” category tag to ensure industry relevance. To align with our four-year 

prediction horizon, we retain only those companies founded between January 1, 2011, 

and April 1, 2021, resulting in an initial pool of 312,996 candidate startups. Several 

filtering criteria are then applied to refine the dataset. First, the company must have 

received a trigger round (i.e., seed or angel round), yielding 41,194 companies. Second, 

companies that received over $10 million USD in funding within one year of founding 

or took more than four years to raise a trigger round are excluded, as the former are 

often spinoffs of large corporates and the latter, which managed to sustain operations 

for an extended period without raising early funding, may differ from the typical early-

stage startups. This results in 40,880 remaining firms. Third, companies lacking valid 

founder records are removed, leaving 11,274 candidates. After excluding firms with 

missing historical investor information, the final dataset comprises 13,592 funding 

instances from 9,206 unique startups, with 33.98% of them labeled as positive cases 

(i.e., for reaching Series A within four years). Table A2 in the Appendix provides the 

descriptive statistics of our dataset. 
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Additional preprocessing steps are applied to the data. Continuous variables 

exhibiting strong right skewness (i.e., skewness > 1) are log-transformed to mitigate 

long-tail effects and stabilize variance. To ensure consistent scaling across features and 

facilitate model convergence, all continuous variables not originally bounded within [0, 

1] are normalized to the interval of [0, 1]. For categorical features, except for sensitive 

attributes, one-hot encoding is applied to ensure compatibility with the neural network 

input structure. 

4.2 Baseline and Model Settings 

To validate the effectiveness of the fairness-aware methods investigated, we 

compare them against a baseline model referred to as Standard NN. This model is a 

standard feedforward neural network trained without incorporating any fairness 

constraints. We aim to assess improvements in fairness metrics, as well as potential 

trade-off in predictive effectiveness, by comparing the fairness-aware methods against 

this baseline setting. 

Table 4: Model Settings of Baseline and Fairness-Aware Approaches 

 Model 
Fairness 

Method 
Input Features 

Protected 

Branches 
𝛌𝐦𝐚𝐱 

Standard NN ✗ Full (incl. sensitive) ✗ ✗ 

Blind Omit Partial (excl. sensitive) ✗ ✗ 

Regularization 
FairGap 

regularization 
Full (incl. sensitive) ✗ ✗ 

Gradient 

Reversal 

Gradient 

reversal 
Partial (excl. sensitive) ✓ 3.2 
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Table 4 summarizes the model configurations of the baseline model and the three 

fairness-aware methods. Both the Standard NN and the Regularization method use the 

complete feature set as the input. In contrast, the Blind and Gradient Reversal methods 

use a version of the dataset that excludes the three sensitive attributes from the input 

features. Among the four methods, only the Gradient Reversal method requires the 

construction of protected branches and the specification of a λmax  parameter to 

regulate the strength of adversarial learning. In our experiments, λmax is set to 3.2. All 

methods share the same architecture for the feature extractor and the target prediction 

branch. Specifically, the feature extractor is implemented as three fully connected layers 

with hidden dimensions of 128, 64, and 32, each followed by batch normalization, a 

ReLU activation, and dropout (rate = 0.2). The target branch is a linear layer mapping 

the final hidden representation to a scalar logit, trained using binary cross-entropy loss. 

All methods are trained using the Adam optimizer with a learning rate of 1e-3, batch 

size of 2048, and a total of 100 epochs. The input dimension is 153 when using the 

complete dataset, and 150 when sensitive attributes are excluded. For fairness-aware 

methods that handle multiple sensitive attributes, fixed loss weights are assigned to 

each attribute: 0.3 for region, 0.8 for gender, and 0.8 for race. 
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4.3 Evaluation Design 

4.3.1 Fairness Evaluation Metrics 

Traditional fairness metrics are typically designed to compare disparities between 

binary groups, such as privileged and unprivileged populations, making them less 

suitable for continuous or multi-class sensitive attributes. Therefore, inspired by 

FairQuant (Grari et al., 2019), we propose a modified metric, FairGap, which offers 

greater flexibility in handling both continuous and categorical sensitive features. The 

original FairQuant measures disparities by dividing samples into equal-sized bins based 

on quantiles of a continuous sensitive attribute, then calculating the average absolute 

difference between each bin’s prediction mean and the global average. However, this 

may result in multiple bins containing similar or even identical values of the sensitive 

attribute, allowing majority groups with comparable attribute levels to dominate the 

fairness metric and potentially obscure disparities affecting minority groups. 

Consequently, instead of using quantile-based binning to enforce equal sample sizes, 

we group samples based on evenly spaced value intervals of the continuous sensitive 

attribute, where each interval represents a distinct group with a certain attribute range. 

This allows for more semantically meaningful groupings. Furthermore, rather than 

comparing each group to a global average, we compute pairwise absolute differences 

across all group combinations, which better aligns with the traditional notion of group 
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fairness as the disparity between any two subpopulations. Ultimately, this pairwise 

formulation naturally extends to multi-class sensitive attributes, thereby supporting a 

unified evaluation framework across attribute types. The detailed definition of FairGap 

and its extension to multi-class settings will be discussed later in this section. 

In our experiments, for continuous sensitive attributes (e.g., female founder ratio), 

we discretize samples into four groups based on their value intervals (i.e., [0, 0.25), 

[0.25, 0.5), [0.5, 0.75), and [0.75, 1]). We then compute the pairwise differences of a 

relevant fairness metric (e.g., positive prediction rate for demographic parity) across all 

group pairs and average the results to obtain the final FairGap score: 

FairGap =
2

𝑘(𝑘 − 1)
∑|𝑠𝑖 − 𝑠𝑗|

𝑖<𝑗

 

where 𝑘 is the number of bins; 𝑠𝑖 and 𝑠𝑗 denote the fairness score for group 𝑖 and j, 

respectively. 
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Table 5: FairGap Computation Example Using Gender as Sensitive Attribute 

 Group: Female 

Founder Ratio 

Positive 

Prediction 

Rate 

Absolute 

Pairwise 

Differences 

FairGap 

Computation 

A: 0–25% 0.60 

A–B: 0.10, 

A–C: 0.15, 

A–D: 0.05 Sum of all absolute 

pairwise differences: 

0.10 + 0.15 + 0.05 + 

0.05 + 0.05 + 0.10 

= 0.50 

FairGap score: 

0.50 ÷ 6 = 0.0833 

B: 25–50% 0.50 
B–C: 0.05, 

B–D: 0.05 

C: 50–75% 0.45 C–D: 0.10 

D: 75–100% 0.55 – 

To illustrate how FairGap is computed, Table 5 shows a toy example using four 

groups based on female founder ratio and their corresponding positive prediction rates. 

The pairwise absolute differences in positive prediction rates are 0.10, 0.15, 0.05, 0.05, 

0.05, and 0.10, summing to 0.50. The FairGap is calculated as the average of six group 

pairs, which in this case is approximately equal to 0.0833. 

This formulation allows FairGap to flexibly incorporate various fairness score 

definitions. In our case, we focus on positive prediction rate and report the 

corresponding FairGap scores of three sensitive attributes in our results. For categorical 

attributes such as region, we treat each category as a distinct group and apply the same 

pairwise comparison procedure. A lower FairGap score indicates smaller disparities and 
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hence greater fairness with respect to the given sensitive attribute. 

In addition to group-level fairness, we also evaluate individual-level fairness using 

the consistency metric, a commonly adopted measure in algorithmic fairness research. 

Consistency assesses whether individuals with similar attributes receive similar model 

predictions (Dwork et al., 2012). Specifically, for each instance in the dataset, the 

predicted outcome is compared against those of its k nearest neighbors in the input 

feature space: 

Consistency = 1 −
1

𝑛
∑ |𝑦̂𝑖 −

1

𝑘
∑ 𝑦̂𝑗

𝑗∈𝑁𝑘(𝑖)

|

𝑛

𝑖=1

 

In this equation, n denotes the total number of instances, 𝑦̂𝑖  represents the 

predicted label for instance i, 𝑁𝑘(𝑖) refers to the set of k nearest neighbors of instance 

i, and 𝑦̂𝑗  are the predicted labels for these neighbors. A higher consistency score 

indicates greater individual-level fairness, with a maximum score of 1 implying perfect 

consistency where every instance receives a prediction identical to those of its nearest 

neighbors. In our experiments, we set k to 5 following common practice in the literature. 

To illustrate how consistency is calculated, consider a simple example. Suppose 

an instance receives a predicted label of 1, and its five nearest neighbors have predicted 

labels of 0, 0, 0, 1, and 1. Among these neighbors, only two share the same prediction 

as the instance itself. Therefore, the individual consistency for this sample is 2 5 = 0.4. 

By computing this value for every sample in the testing set and then averaging across 
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all samples, we obtain the final consistency score, which reflects the overall individual-

level fairness of the model. 

4.3.2 Evaluation Procedure and Per ormance Metrics 

To evaluate the effectiveness of our methods on the primary prediction task, that 

is, whether a startup secures Series A funding within four years after receiving angel or 

seed financing, we adopt several standard binary classification metrics. Specifically, we 

report the following indicators: 

 Accuracy 

 AUC (area under curve) 

 Precision, Recall, and F1-score for the positive class (i.e., successful cases) 

 Precision, Recall, and F1-score for the negative class (i.e., unsuccessful cases) 

These metrics capture both general performance and class-specific behavior, which is 

particularly important given the class imbalance in our dataset. 

 All methods are evaluated using repeated 10-fold cross-validation, conducted 30 

times with different random splits. Metrics are computed independently for each fold 

and repetition, and the final results are reported as averages across all evaluations. In 

addition to predictive performance, we report the fairness metrics introduced in the 

previous subsection. A fixed decision threshold of 0.5 is used across all methods to 

determine binary predictions from output probabilities. 
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4.4 Evaluation Results 

4.4.1 Fairness-aware Methods 

Table 6 compares the baseline and fairness-aware methods across the predictive 

effectiveness and the fairness metrics. Both the Blind and Gradient Reversal (GR) 

methods result in relatively minor reductions in accuracy and AUC compared to the 

baseline, suggesting a smaller trade-off in predictive performance. In contrast, the 

Regularization (Reg.) method shows a more pronounced decline, indicating a larger 

compromise in model utility. Differences in F1-score for the positive class are more 

evident. Blind shows only a minor drop of 0.67%, whereas Gradient Reversal and 

Regularization yield larger declines of 2.7% and 5.39%, respectively. Further 

examining the precision and recall for the positive class, we observe that compared to 

the baseline, the Gradient Reversal method improves precision by 1.09%, indicating a 

better ability to correctly identify successful startups. This could help investors avoid 

incorrect positive predictions and reduce the risk of misinformed investment decisions. 

On the other hand, all fairness-aware methods show a decline in recall for the positive 

class, particularly Gradient Reversal and Regularization, suggesting a reduced capacity 

to detect promising startups, potentially overlooking viable investment opportunities. 

Additionally, improvements in recall for the negative class under Gradient Reversal and 

Regularization indicate a stronger tendency to make negative predictions. This shift 
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suggests these methods achieve fairness partly by avoiding overestimation of success 

for certain groups. We further investigate this pattern later in the next section by 

analyzing the group-wise positive prediction rates across different sensitive attributes. 

With regard to the individual-level fairness metric consistency, although the Blind 

method experiences the smallest effectiveness loss among fairness-aware methods, it 

fails to achieve improved fairness, as its consistency score declines compared to the 

baseline. By contrast, the Gradient Reversal and Regularization methods improve 

consistency by 0.0187 and 0.0395, respectively, indicating meaningful advancements 

in individual fairness. Regarding the FairGap metric, the Blind method shows limited 

improvement and even results in a higher FairGap for the race attribute, indicating 

worsened fairness. In comparison, both the Gradient Reversal and Regularization 

methods consistently reduce FairGap across all three sensitive attributes. The Gradient 

Reversal method brings the largest reduction in region FairGap, indicating the greatest 

improvement in regional fairness. Notably, the Regularization method achieves larger 

reductions in FairGap for gender and race, where the other methods show smaller 

improvements. 

One plausible explanation for these differences in group-level unfairness 

mitigation effectiveness lies in the correlation between sensitive and non-sensitive 

features. To investigate this, we compute the Pearson correlation coefficients between 
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sensitive features and non-sensitive ones. The results show relatively strong 

correlations (|r| > 0.2) between region and several non-sensitive features, including the 

network centrality of historical investors, the average number of past investments made 

by historical investors, and the state variable. In particular, the correlation between the 

North America region and the state variable reaches as high as -0.928, suggesting that 

regional information is likely embedded in other features. As for gender and race, they 

show weaker associations with non-sensitive features. The highest observed correlation 

for gender is 0.112 (with the Community and Lifestyle industry tag), and for race is 

0.073 (with the state variable). These findings suggest that even after excluding 

sensitive attributes, some information can still be indirectly inferred from remaining 

features, which limits the effectiveness of the Blind method. On the other hand, the 

Gradient Reversal method improves fairness by minimizing the presence of sensitive 

information in the learned representations, when such information is embedded within 

non-sensitive features. This explains its relatively stronger performance on regional 

fairness and weaker performance on gender and race, whose signals are less likely to 

be captured in the rest of the data. Instead, the Regularization method is unaffected by 

the underlying correlations among variables. By directly penalizing outcome disparities 

measured by FairGap for a given sensitive attribute, it can reduce group-level unfairness 

straightforwardly, regardless of whether sensitive information is embedded in the 
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features. 

Taken together, the results reveal a trade-off: the methods that achieve higher 

levels of fairness tend to bring on greater reductions in predictive effectiveness. The 

Regularization method, which shows the most comprehensive improvement in fairness 

metrics, experiences a 5.39% decrease in F1 score for the positive class and a 1% 

decrease for the negative class. These performance drops are viewed as an acceptable 

trade-off in pursuit of fairness, as the fundamental objective of fairness-aware 

algorithms is not merely to maximize classification performance, but to generate more 

equitable and socially responsible outcomes. In the long term, such methods can help 

prevent the reinforcement of historical biases and lead to more favorable results for all 

stakeholders involved. 

4.4.2 Group-wise Disparities across Sensitive Attributes 

We further examine differences in positive prediction rates across groups defined 

by sensitive attributes to assess whether the model without fairness interventions tends 

to systematically favor or disfavor certain types of startups, as well as to illustrate in 

greater detail how fairness-aware methods mitigate such disparities. For the region 

attribute, startups are categorized into four groups: North America, Europe, East Asia, 

and Other. Table 7 presents the positive prediction rates across these groups for all 

methods. In the baseline model, startups from Europe received the lowest rate of 
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positive predictions, with only 26.10% predicted to succeed, whereas 39.64% of East 

Asian startups were predicted as successful. This indicates substantial disparities in 

receiving positive predictions across regions, with a gap of 13.54% between these two 

groups. Among the more effective fairness-aware methods, namely Gradient Reversal 

and Regularization, we observe distinct mitigation patterns. The Gradient Reversal 

method does not increase the positive prediction rate of the underrepresented group; 

instead, it reduces the rate for high-scoring groups, such as East Asia and North America, 

thereby narrowing the prediction gap. Regularization exhibits a similar pattern, but with 

a slight increase in the positive rate for the European group, suggesting a more balanced 

treatment by giving relatively more opportunities to underrepresented startups. 

Table 7: Positive Prediction Rates by Region Across Methods 

 Region 

Method 

Positive Rate 

_North 

America 

Positive Rate 

_Europe 

Positive Rate 

_East Asia 

Positive Rate 

_Other 

Standard NN 38.38% 26.10% 39.64% 28.51% 

Blind 38.76% 27.13% 28.55% 28.72% 

GR 34.02% 24.89% 25.49% 26.03% 

Reg. 33.01% 26.78% 21.54% 25.03% 

Note: Red values indicate the lowest positive prediction rate among groups in the 

baseline model, while green values indicate the highest. Bold values highlight cases 

where a fairness method either increases the lowest rate or decreases the highest rate, 

thereby helping to mitigate inter-group disparity. 

To reflect varying levels of gender composition of startup teams, we divide the test 

samples into four groups according to predefined value intervals of the female founder 

ratio: <25%, 25–50%, 50–75%, and >75%, which aligns with the group settings used 
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in the FairGap calculation. As shown in Table 8, startups with the highest female 

representation (>75%) receive the lowest positive prediction rate under the baseline 

model, at only 20.68%, while those with 25–50% female composition are predicted to 

succeed most frequently, with a positive prediction rate of 43%, revealing a disparity 

of 22.32% between these two groups. All fairness-aware methods are able to increase 

the positive prediction rate for the most underrepresented group. It is noteworthy that 

both Gradient Reversal and Regularization approaches also reduce the prediction rate 

for the favored group, thus narrowing the disparity. Among these, the Regularization-

based method achieves the greatest reduction, lowering the group difference to 8.46%, 

indicating its effectiveness in mitigating gender-related prediction imbalances. 

Table 8: Positive Prediction Rates by Gender Composition Across Methods 

 Gender (female founder ratio) 

Method 
Positive Rate 

_< 25% 

Positive Rate 

_25%-50% 

Positive Rate 

_50%-75% 

Positive Rate 

_> 75 % 

Standard NN 34.59% 43.00% 29.91% 20.68% 

Blind 34.07% 45.53% 33.99% 25.74% 

GR 30.24% 41.61% 29.98% 23.40% 

Reg. 30.63% 31.37% 26.00% 22.91% 

Note: Annotations follow the same conventions as in Table 7. 

We apply a similar grouping strategy as used for the female founder ratio to divide 

the test samples based on the proportion of non-Caucasian founders. The resulting 

prediction disparities across groups are presented in Table 9. Startups with 25–50% 

non-Caucasian founders received the highest positive prediction rate of 50%, whereas 
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those with more than 75% non-Caucasian representation received the lowest, only 

30.93%. These indicates substantial disparities across demographic compositions, as 

the difference in positive prediction rates between the aforementioned two groups 

reaches 19.07%. Both the Gradient Reversal and Regularization methods address these 

disparities primarily by reducing the positive prediction rates of the favored groups, 

thereby narrowing the largest inter-group differences to 6.86%. 

Table 9: Positive Prediction Rates by Racial Composition Across Methods 

 Race (non-Caucasian founder ratio) 

Method 
Positive Rate 

_< 25% 

Positive Rate 

_25%-50% 

Positive Rate 

_50%-75% 

Positive Rate 

_> 75 % 

Standard NN 31.88% 50.00% 38.78% 30.93% 

Blind 32.10% 50.18% 39.45% 30.80% 

GR 28.55% 45.76% 34.98% 27.15% 

Reg. 30.41% 33.76% 30.48% 26.90% 

Note: Annotations follow the same conventions as in Table 7. 

The above results show that these fairness-aware methods ensure fairness mainly 

by reducing the overestimation of favored groups and addressing the underestimation 

of unfavored groups, which may arise from discriminatory biases embedded in the data. 

In this sense, the benefits of such methods lie not only in helping investors avoid biased 

decision-making and the risk of resource misallocation, but also in facilitating fairer 

access to capital for high-potential ventures that might otherwise be overlooked due to 

systemic inequities, ultimately making the entrepreneurial ecosystem more inclusive 

and equitable. 
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4.4.3 Attribution o  Prediction Un airness to Sensitive Attributes 

 In the following experiments, we aim to identify which sensitive attribute 

contributes most to prediction unfairness. To do so, we conduct controlled experiments 

where only one sensitive attribute is included in the dataset at a time, while the other 

two are excluded. This design allows us to isolate the potential impact of each sensitive 

attribute on model biases. 

As shown in Table 10, when using the Standard NN model, the consistency scores 

remain similar across all three single-attribute settings, suggesting that each sensitive 

attribute impacts comparably to individual fairness. However, when only the sensitive 

attribute gender is included, we observe the highest FairGap, indicating that gender is 

a significant source of group-level unfairness in the baseline model. 

Table 10: Impact of Isolated Sensitive Attributes on Fairness Metrics 

 Region  Gender  Race  

Method 
Consis-

tency 

FairGap_

region 

Consis-

tency 

FairGap_

gender 

Consis-

tency  

FairGap_

race 

Standard NN 0.6353 0.0956 0.6339 0.1228 0.6319 0.1136 

Blind 0.6317 0.0824 0.6331 0.1088 0.6343 0.1137 

GR 0.6459 0.0701 0.6298 0.1037 0.6293 0.1073 

Reg. 0.6309 0.0718 0.6588 0.0782 0.6544 0.0975 

Note: The bold values indicate the best performance for each metric, while underlined 

values denote the second best. For consistency, higher values indicate better 

performance; for FairGap, lower values reflect greater fairness. 

 Furthermore, applying fairness interventions to address the bias associated with 

each attribute also yields meaningful improvements. Specifically, the Gradient Reversal 

method is more effective in improving fairness related to region, while the 
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Regularization method demonstrates greater improvements in gender and race fairness. 

These findings align with the results discussed in Section 4.4.1. 

4.4.4 Impact o  Fairness Interventions on A Single Sensitive Attribute 

We conduct additional experiments to investigate whether applying fairness 

interventions to only one sensitive attribute, while all three attributes remain present in 

the dataset, would jointly harm or benefit fairness with respect to the others. As shown 

in Table 11, when fairness is enforced solely on region, the Gradient Reversal method 

improves all fairness metrics, including both consistency and group fairness across the 

other two sensitive attributes. In contrast, both the Blind and Regularization methods 

yield improvements only for region, while degrading fairness for all other metrics. 

Table 11: Impact of Fairness Interventions on Region Only 

Method Consistency FairGap_region FairGap_gender FairGap_race 

Standard 

NN 
63.04% 0.0987 0.1229 0.1105 

Blind 62.71% (↓) 0.0809 (↓) 0.1242 (↑) 0.1110 (↑) 

GR 64.08% (↑) 0.0718 (↓) 0.1158 (↓) 0.1056 (↓) 

Reg. 62.74% (↓) 0.0710 (↓) 0.1295 (↑) 0.1178 (↑) 

Note: Arrows indicate the direction of change relative to the Standard NN model: 

(↑) means an increase, (↓) means a decrease. For consistency, higher values indicate 

better performance (↑); for FairGap, lower values indicate better fairness (↓). 

Table 12 presents the experimental results when a fairness-aware method is 

applied only to gender. Again, the Gradient Reversal method demonstrates the ability 

to reduce FairGap across all three sensitive attributes, though it does not lead to 

improvements in consistency. The Regularization method, on the other hand, improves 
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fairness metrics related to gender and race, but not region. A similar pattern is observed 

in Table 13, where fairness is applied exclusively to race. Gradient Reversal improves 

all fairness metrics, while Regularization shows the same pattern that enhancing 

fairness in race and gender, but fails to improve regional fairness. 

Table 12: Impact of Fairness Interventions on Gender Only 

Method Consistency FairGap_region FairGap_gender FairGap_race 

Standard 

NN 
63.04% 0.0987 0.1229 0.1105 

Blind 63.04% (-) 0.0973 (↓) 0.1083 (↓) 0.1128 (↑) 

GR 62.79% (↓) 0.0934 (↓) 0.1062 (↓) 0.1081 (↓) 

Reg. 65.06% (↑) 0.1025 (↑) 0.0741 (↓) 0.0992 (↓) 

Note: Annotations follow the same conventions as in Table 11. 

Table 13: Impact of Fairness Interventions on Race Only 

Method Consistency FairGap_region FairGap_gender FairGap_race 

Standard 

NN 
63.04% 0.0987 0.1229 0.1105 

Blind 63.02% (↑) 0.0949 (↓) 0.1233 (↑) 0.1089 (↓) 

GR 63.34% (↑) 0.0936 (↓) 0.1187 (↓) 0.1039 (↓) 

Reg. 65.10% (↑) 0.1021 (↑) 0.0727 (↓) 0.0974 (↓) 

Note: Annotations follow the same conventions as in Table 11. 

These results highlight that the Gradient Reversal method can promote fairness 

across multiple attributes even when explicitly targeting only one. This spillover effect 

is likely attributable to the overlap or correlation among sensitive attributes. By 

mitigating the sensitive information associated with the targeted attribute in the learned 

representations, the Gradient Reversal method can also suppress correlated information 

from other attributes, thereby promoting fairness beyond the intended target. In contrast, 
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the Regularization method is effective at improving fairness for the targeted attribute 

but offers limited benefits for untargeted attributes. These findings highlight the broader 

potential of gradient reversal-based approaches in multi-attribute fairness scenarios. 
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Chapter 5 Conclusion 

5.1 Conclusion 

To address the issue of fairness in startup early success prediction, we implement 

and compare three fairness-aware methods that natively support multiple sensitive 

attributes of mixed data types: feature-blind learning, regularization-based training, and 

gradient reversal. When compared to a standard neural network model, the feature-blind 

method fails to improve fairness effectively. The Gradient Reversal method improves 

fairness across all sensitive attributes, with notable gains in individual fairness and 

regional fairness, and moderate improvements in gender and racial fairness. Besides 

enhancing consistency, the Regularization method demonstrates a more uniform 

reduction of FairGap across all sensitive attributes. Finally, although pursuing fairness 

comes with a performance trade-off, our results demonstrate that this trade-off is 

modest, suggesting that greater fairness can be achieved without severely 

compromising predictive performance. 

Building on this, our experiments further highlight that gender is the most 

significant contributor to group-level prediction unfairness. Specifically, startups with 

over 75% female representation among founders are the most disadvantaged under the 

baseline model, receiving the lowest rates of positive predictions. All three fairness-

aware methods are able to improve positive outcomes for this underprivileged group, 
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underscoring the effectiveness of these methods to mitigate gender-based bias. 

Lastly, we examine the influence of applying fairness interventions to individual 

sensitive attributes and find important differences in method behavior. The Gradient 

Reversal method demonstrates a unique advantage in its ability to simultaneously 

enhance fairness across multiple sensitive attributes, even when only one attribute was 

explicitly targeted. In contrast, the Regularization method primarily improves fairness 

for the targeted sensitive attribute, with limited impact on others. 

In conclusion, the Regularization and Gradient Reversal methods offer distinct 

advantages. The Regularization method introduces explicit penalty terms targeting the 

three sensitive attributes, making it a more direct approach for substantially reducing 

their FairGap values without relying on the presence of latent sensitive information in 

the features. On the contrary, the Gradient Reversal method adopts a softer strategy by 

aiming to remove sensitive information from the learned representation, which tends to 

preserve predictive performance better while yielding broader fairness improvements, 

including for potential sensitive attributes not explicitly considered in the model, such 

as founder age. Overall, these two methods offer complementary strengths, 

Regularization is more effective when targeting fairness on specific known attributes, 

while Gradient Reversal provides greater generalizability and flexibility across diverse 

fairness concerns. 
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5.2 Future Research Directions 

 Incorporating additional sensitive attributes 

Future research could consider a broader range of potentially discriminatory 

factors. For example, prior literature has identified founder age as another possible 

source of bias in startup investment decisions (Matthews et al., 2024). However, such 

information is unavailable in our current dataset. Expanding data sources to include 

more demographic or background-related variables could allow for a more 

comprehensive fairness analysis. This would enable fairness-aware algorithms to 

address a wider spectrum of potential biases in venture funding decisions. 

 Algorithmic advancements to mitigate performance trade-off 

The inherent trade-off between predictive performance and fairness of the 

fairness-aware methods remains a key challenge, as both fairness and predictive utility 

are critical in decision-making scenarios. Future research could explore algorithmic 

innovations aimed at reducing this trade-off. This may involve reframing how fairness 

constraints are integrated into model objectives, or designing training frameworks that 

are more adaptable to varying degrees of bias during the training process, in order to 

better harmonize fairness and predictive performance. 

 Extending fairness research to other milestones in the startup lifecycle 

Beyond the startup early success prediction, startups may encounter different 
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forms and degrees of biases at various stages of their lifecycle. Future research could 

extend fairness-aware modeling to other critical milestones, such as predictions of 

follow-on funding rounds, mergers and acquisitions (M&A), or initial public offerings 

(IPOs). These stages often involve distinct decision-making criteria and stakeholder 

dynamics, which may give rise to different patterns of biases. Investigating fairness 

across these contexts would provide a more comprehensive understanding of how 

algorithmic discrimination affects startups over time, and how mitigation strategies 

should be adapted to each phase. 
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Appendix 

Table A1 presents a comprehensive list of the features employed in our methods, 

summarizing variables under different categories and provides their corresponding 

descriptions, where sensitive features are highlighted using bold formatting. It also 

specifies whether each feature is classified as static or dynamic, meaning it remains 

constant regardless of the trigger timing, or dynamic, meaning it is time-dependent 

and the values may vary based on the trigger event. 

Table A1: Overview of Predictive Features Used in Our Methods 

Category Features Description Temporal 

Scope 

Company Region The continent-level grouping where 

the focal startup is located. 

Static 

 
State The U.S. state in which the focal 

startup is based. 

Static 

 
Industry tag A set of binary indicators 

representing the industry categories 

assigned to the startup. Each 

indicator corresponds to a specific 

tag, such as Advertising, Health 

Care, Information Technology, etc. 

Static 

 
Industry tag group Industry tags are grouped into six 

clusters based on their co-

occurrence patterns. For each 

startup, the total number of tags it 

holds in each group is computed. 

Static 

 
Age Number of months from the 

startup’s founding date to the 

trigger round. 

Dynamic 
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Number of 

advisors 

Number of advisors involved prior 

to the trigger event. 

Dynamic 

Founders Number of 

founders 

Total number of individuals in the 

founding team. 

Static 

 
Female founder 

ratio 

Proportion of female individuals 

among all founders. 

Static 

 
Non-Caucasian 

founder ratio 

Proportion of non-Caucasian 

individuals among all founders. 

Static 

 
Subject average Average number of distinct 

subjects studied across all founders. 

Static 

 
Subject A set of values representing the 

average number of founders who 

have studied in specific academic 

subject areas. Each value 

corresponds to a subject tag, such 

as Business, Engineering, 

Humanities, etc. 

Static 

 
Degree average Average number of academic 

degrees earned by all founders in 

the startup team. 

Static 

 
Degree A set of values representing the 

average number of degrees earned 

by founder team members at each 

education level (e.g., Bachelor, 

Master, PhD, or High School and 

below). 

Static 

 
Top 100 

university average 

Average number of founding team 

members who obtained degrees 

from the top 100 universities based 

on the latest QS World University 

Rankings. 

Static 

 
Job average Average number of previous jobs 

held by each founding team 

member. 

Static 

 
Job title A set of values representing the 

average number of previous jobs 

held by founding team members 

under each job title category (e.g., 

Static 
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CEO, CTO, Engineering & Tech, 

etc.).  
Job type A set of values representing the 

average number of previous jobs 

held by founding team members 

under each job type category (e.g., 

Advisor, Board Member, 

Executive, etc.). 

Static 

 
Work years 

average 

Average years of work experience 

among founding team members. 

Static 

 
Serial 

entrepreneur 

average 

Average number of previous 

companies founded by team 

members. 

Static 

Investment-

Funding 

Details 

Trigger type Indicates whether the trigger round 

is an angel or seed investment. 

Dynamic 

 
Trigger round 

index 

The sequence number of the trigger 

round within the company's overall 

funding history. 

Dynamic 

 
Number of 

funding rounds 

Total number of funding rounds the 

startup received. 

Dynamic 

 
Total funding 

amount 

Total amount of capital raised (in 

USD) by the startup. 

Dynamic 

 
Number of 

funding rounds 

(by type)  

A set of values representing the 

number of funding rounds the 

startup has received for each 

funding type considered possible 

before Series A (e.g., angel, pre-

seed, seed, etc.). 

Dynamic 

 
Total funding 

amount (by type) 

A set of values representing the 

total amount of capital raised (in 

USD) by the startup for each 

funding type considered possible 

before Series A. 

Dynamic 

 
Burn rate Startup’s capital consumption rate, 

calculated by dividing total capital 

raised by company age (in months). 

Dynamic 
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Capital 

concentration rate 

Degree of capital concentration 

across all previous funding rounds, 

reflecting the extent to which a 

small number of investors 

contributed the majority of funding. 

Dynamic 

Investment-

Historical 

Investors 

Number of 

investors 

Total number of historical investors 

who have participated in funding 

rounds up to the trigger round. 

Dynamic 

 
Average investors Average number of investors in the 

past funding rounds of the focal 

startup. 

Dynamic 

 
Number of distinct 

investors 

Total number of distinct investors 

who have participated in funding 

rounds up to the trigger round. 

Dynamic 

 
Average 

investments 

Average number of past 

investments made by the historical 

investors who have invested in the 

focal startup. 

Dynamic 

 
Average 

investments 

amount 

Average total amount (in USD) 

previously invested by the 

historical investors. 

Dynamic 

 
Average number 

of distinct 

organizations 

invested 

Average number of distinct 

organizations previously invested 

in by the historical investors. 

Dynamic 

 
Number of 

institutional 

investors 

Number of institutional 

(organization-type) investors 

among all prior investors. 

Dynamic 

 
Number of 

individual 

investors 

Number of individual (person-type) 

investors among all prior investors. 

Dynamic 

 
Number of distinct 

institutional 

investors 

Number of distinct institutional 

investors among all prior investors. 

Dynamic 

 
Number of distinct 

individual 

investors 

Number of distinct individual 

investors among all prior investors. 

Dynamic 
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Average success 

rate 

Average success rate of the 

historical investors. 

Dynamic 

 
Max success rate Maximum success rate of the 

historical investors. 

Dynamic 

 
Total network 

centrality 

Total network centrality of all 

historical investors, separately 

measured by betweenness 

centrality (BC), degree centrality 

(DC), and PageRank (PR). 

Dynamic 

 
Average network 

centrality 

Average network centrality of all 

historical investors, separately 

measured by betweenness 

centrality (BC), degree centrality 

(DC), and PageRank (PR). 

Dynamic 
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Table A2 provides the descriptive statistics of our dataset, classified into two 

categories by the label of target variable, failure and success, indicating whether a 

startup successfully secured Series A funding or not during the observation period. 

 

 

 

 



doi:10.6342/NTU202503744

 

70 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ea

tu
re

 
S

ta
ts (la

b
el =

 fa
ilu

re) 
S

ta
ts (la

b
el =

 su
ccess) 

R
eg

io
n

 
N

o
rth

 A
m

erica: 4
,8

7
9
 (5

4
.3

7
%

); E
u
ro

p
e: 

2
,3

1
0
 (2

5
.7

4
%

); E
ast A

sia: 2
0
3
 (2

.2
6
%

); 

O
th

er: 1
,5

8
2
 (1

7
.6

3
%

); 

N
o
rth

 A
m

erica: 2
,9

0
8
 (6

2
.9

7
%

); E
u
ro

p
e: 9

2
5
 

(2
0
.0

3
%

); E
ast A

sia: 1
4
0

 (3
.0

3
%

); O
th

er: 

6
4
5
 (1

3
.9

7
%

) 

S
tate 

n
o
n
-U

S
: 4

,4
3

2
 (4

9
.3

9
%

); C
A

: 2
,1

5
9
 

(2
4
.0

6
%

); N
Y

: 6
3
7
 (7

.1
0

%
); M

A
: 2

0
5
 

(2
.2

8
%

); T
X

: 1
6
1
 (1

.7
9

%
); F

L
: 1

2
8
 (1

.4
3

%
); 

o
th

er states: 1
,2

5
2
 (1

3
.9

5
%

) 

n
o
n
-U

S
: 1

,8
6
0
 (4

0
.2

8
%

); C
A

: 1
,3

4
2
 

(2
9
.0

6
%

); N
Y

: 4
8
7
 (1

0
.5

5
%

); M
A

: 1
4
6
 

(3
.1

6
%

); T
X

: 1
0
5
 (2

.2
7

%
); F

L
: 4

9
 (1

.0
6

%
); 

o
th

er states: 6
2
9

 (1
3
.6

2
%

) 

T
rig

g
er ty

p
e 

seed
: 8

,1
7
2
 (9

1
.0

6
%

); an
g
el: 8

0
2
 (8

.9
4
%

) 
seed

: 4
,4

2
3
 (9

5
.7

8
%

); an
g
el: 1

9
5
 (4

.2
2
%

) 

In
d
u
stry

 tag
_
A

d
m

in
istrativ

e S
erv

ices 
F

alse: 8
,4

3
5
 (9

3
.9

9
%

); T
ru

e: 5
3
9
 (6

.0
1
%

) 
F

alse: 4
,3

1
9
 (9

3
.5

3
%

); T
ru

e: 2
9
9
 (6

.4
7
%

) 

In
d

u
stry

 tag
_

A
d

v
ertisin

g
 

F
alse: 8

,5
4
4
 (9

5
.2

1
%

); T
ru

e: 4
3
0
 (4

.7
9
%

) 
F

alse: 4
,5

0
2
 (9

7
.4

9
%

); T
ru

e: 1
1

6
 (2

.5
1
%

) 

In
d
u
stry

 tag
_
A

g
ricu

ltu
re an

d
 F

arm
in

g
 

F
alse: 8

,8
6
7
 (9

8
.8

1
%

); T
ru

e: 1
0
7
 (1

.1
9
%

) 
F

alse: 4
,5

5
2
 (9

8
.5

7
%

); T
ru

e: 6
6
 (1

.4
3
%

) 

In
d
u
stry

 tag
_
A

p
p
s 

F
alse: 7

,1
3
5
 (7

9
.5

1
%

); T
ru

e: 1
,8

3
9
 (2

0
.4

9
%

) 
F

alse: 3
,8

5
7
 (8

3
.5

2
%

); T
ru

e: 7
6
1
 (1

6
.4

8
%

) 

In
d
u
stry

 tag
_
A

rtificial In
tellig

en
ce (A

I) 
F

alse: 6
,9

5
5
 (7

7
.5

0
%

); T
ru

e: 2
,0

1
9
 (2

2
.5

0
%

) 
F

alse: 3
,2

6
9
 (7

0
.7

9
%

); T
ru

e: 1
,3

4
9
 (2

9
.2

1
%

) 

In
d
u
stry

 tag
_
B

io
tech

n
o
lo

g
y

 
F

alse: 8
,8

3
4
 (9

8
.4

4
%

); T
ru

e: 1
4
0
 (1

.5
6
%

) 
F

alse: 4
,5

0
5
 (9

7
.5

5
%

); T
ru

e: 1
1
3
 (2

.4
5
%

) 

In
d
u
stry

 tag
_
B

lo
ck

ch
ain

 an
d
 C

ry
p
to

cu
rren

cy
 

F
alse: 8

,5
9
3
 (9

5
.7

5
%

); T
ru

e: 3
8
1
 (4

.2
5
%

) 
F

alse: 4
,4

3
3
 (9

5
.9

9
%

); T
ru

e: 1
8
5
 (4

.0
1
%

) 

In
d
u
stry

 tag
_
C

lo
th

in
g
 an

d
 A

p
p
arel 

F
alse: 8

,8
7
3
 (9

8
.8

7
%

); T
ru

e: 1
0
1
 (1

.1
3
%

) 
F

alse: 4
,5

8
1
 (9

9
.2

0
%

); T
ru

e: 3
7
 (0

.8
0
%

) 

In
d

u
stry

 tag
_

C
o

m
m

erce an
d

 S
h

o
p

p
in

g
 

F
alse: 7

,8
3
9
 (8

7
.3

5
%

); T
ru

e: 1
,1

3
5
 (1

2
.6

5
%

) 
F

alse: 4
,0

8
7
 (8

8
.5

0
%

); T
ru

e: 5
3

1
 (1

1
.5

0
%

) 

In
d
u
stry

 tag
_
C

o
m

m
u
n
ity

 an
d
 L

ifesty
le

 
F

alse: 8
,5

7
2
 (9

5
.5

2
%

); T
ru

e: 4
0
2
 (4

.4
8
%

) 
F

alse: 4
,4

5
8
 (9

6
.5

4
%

); T
ru

e: 1
6
0
 (3

.4
6
%

) 

In
d
u
stry

 tag
_
C

o
n
su

m
er E

lectro
n
ics 

F
alse: 8

,3
4
9
 (9

3
.0

4
%

); T
ru

e: 6
2
5
 (6

.9
6
%

) 
F

alse: 4
,3

1
8
 (9

3
.5

0
%

); T
ru

e: 3
0
0
 (6

.5
0
%

) 

In
d
u
stry

 tag
_
C

o
n
su

m
er G

o
o
d
s 

F
alse: 8

,8
0
0
 (9

8
.0

6
%

); T
ru

e: 1
7
4
 (1

.9
4
%

) 
F

alse: 4
,5

2
5
 (9

7
.9

9
%

); T
ru

e: 9
3
 (2

.0
1
%

) 

 

T
a
b

le A
2

: D
escrip

tiv
e S

ta
tistics o

f O
u

r D
a
ta

set b
y
 S

ta
rtu

p
 S

u
ccess L

a
b

el 



doi:10.6342/NTU202503744

 

71 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In
d
u
stry

 tag
_
C

o
n
ten

t an
d

 P
u
b
lish

in
g

 
F

alse: 8
,6

0
6
 (9

5
.9

0
%

); T
ru

e: 3
6
8
 (4

.1
0
%

) 
F

alse: 4
,4

9
0
 (9

7
.2

3
%

); T
ru

e: 1
2
8
 (2

.7
7
%

) 

In
d
u
stry

 tag
_
D

ata an
d
 A

n
aly

tics 
F

alse: 6
,0

3
5
 (6

7
.2

5
%

); T
ru

e: 2
,9

3
9
 (3

2
.7

5
%

) 
F

alse: 2
,7

5
3
 (5

9
.6

1
%

); T
ru

e: 1
,8

6
5
 (4

0
.3

9
%

) 

In
d
u
stry

 tag
_
D

esig
n

 
F

alse: 8
,5

0
0
 (9

4
.7

2
%

); T
ru

e: 4
7
4
 (5

.2
8
%

) 
F

alse: 4
,3

8
7
 (9

5
.0

0
%

); T
ru

e: 2
3
1
 (5

.0
0
%

) 

In
d
u
stry

 tag
_
E

d
u
catio

n
 

F
alse: 8

,2
2
8
 (9

1
.6

9
%

); T
ru

e: 7
4

6
 (8

.3
1
%

) 
F

alse: 4
,2

8
2
 (9

2
.7

2
%

); T
ru

e: 3
3
6
 (7

.2
8
%

) 

In
d
u
stry

 tag
_
E

n
erg

y
 

F
alse: 8

,8
6
6
 (9

8
.8

0
%

); T
ru

e: 1
0
8
 (1

.2
0
%

) 
F

alse: 4
,5

4
4
 (9

8
.4

0
%

); T
ru

e: 7
4
 (1

.6
0
%

) 

In
d

u
stry

 tag
_

E
v

en
ts 

F
alse: 8

,8
2
7
 (9

8
.3

6
%

); T
ru

e: 1
4
7
 (1

.6
4
%

) 
F

alse: 4
,5

6
2
 (9

8
.7

9
%

); T
ru

e: 5
6

 (1
.2

1
%

) 

In
d
u
stry

 tag
_
F

in
an

cial S
erv

ices 
F

alse: 7
,7

0
1
 (8

5
.8

1
%

); T
ru

e: 1
,2

7
3
 (1

4
.1

9
%

) 
F

alse: 3
,7

4
5
 (8

1
.1

0
%

); T
ru

e: 8
7
3
 (1

8
.9

0
%

) 

In
d
u
stry

 tag
_
F

o
o
d
 an

d
 B

ev
erag

e
 

F
alse: 8

,7
5
4
 (9

7
.5

5
%

); T
ru

e: 2
2
0
 (2

.4
5
%

) 
F

alse: 4
,4

7
6
 (9

6
.9

3
%

); T
ru

e: 1
4
2
 (3

.0
7
%

) 

In
d
u
stry

 tag
_
G

am
in

g
 

F
alse: 8

,7
2
1
 (9

7
.1

8
%

); T
ru

e: 2
5
3
 (2

.8
2
%

) 
F

alse: 4
,5

3
1
 (9

8
.1

2
%

); T
ru

e: 8
7
 (1

.8
8
%

) 

In
d
u
stry

 tag
_
G

o
v
ern

m
en

t an
d
 M

ilitary
 

F
alse: 8

,8
8
2
 (9

8
.9

7
%

); T
ru

e: 9
2
 (1

.0
3
%

) 
F

alse: 4
,5

5
3
 (9

8
.5

9
%

); T
ru

e: 6
5
 (1

.4
1
%

) 

In
d
u
stry

 tag
_
H

ard
w

are
 

F
alse: 7

,0
3
8
 (7

8
.4

3
%

); T
ru

e: 1
,9

3
6
 (2

1
.5

7
%

) 
F

alse: 3
,7

2
3
 (8

0
.6

2
%

); T
ru

e: 8
9
5
 (1

9
.3

8
%

) 

In
d
u
stry

 tag
_
H

ealth
 C

are 
F

alse: 8
,1

5
6
 (9

0
.8

8
%

); T
ru

e: 8
1
8
 (9

.1
2
%

) 
F

alse: 4
,0

8
7
 (8

8
.5

0
%

); T
ru

e: 5
3
1
 (1

1
.5

0
%

) 

In
d
u
stry

 tag
_

In
fo

rm
atio

n
 T

ech
n
o
lo

g
y

 
F

alse: 6
,3

5
6
 (7

0
.8

3
%

); T
ru

e: 2
,6

1
8
 (2

9
.1

7
%

) 
F

alse: 3
,1

8
3
 (6

8
.9

3
%

); T
ru

e: 1
,4

3
5
 (3

1
.0

7
%

) 

In
d
u
stry

 tag
_

In
tern

et S
erv

ices 
F

alse: 6
,4

6
4
 (7

2
.0

3
%

); T
ru

e: 2
,5

1
0
 (2

7
.9

7
%

) 
F

alse: 3
,6

5
8
 (7

9
.2

1
%

); T
ru

e: 9
6
0
 (2

0
.7

9
%

) 

In
d
u
stry

 tag
_
L

en
d
in

g
 an

d
 In

v
estm

en
ts 

F
alse: 8

,7
4
2
 (9

7
.4

1
%

); T
ru

e: 2
3
2
 (2

.5
9
%

) 
F

alse: 4
,4

3
3
 (9

5
.9

9
%

); T
ru

e: 1
8
5
 (4

.0
1
%

) 

In
d
u
stry

 tag
_
M

an
u
factu

rin
g

 
F

alse: 8
,7

5
3
 (9

7
.5

4
%

); T
ru

e: 2
2
1
 (2

.4
6
%

) 
F

alse: 4
,4

5
5
 (9

6
.4

7
%

); T
ru

e: 1
6
3
 (3

.5
3
%

) 

In
d
u
stry

 tag
_
M

ed
ia an

d
 E

n
tertain

m
en

t 
F

alse: 7
,6

5
4
 (8

5
.2

9
%

); T
ru

e: 1
,3

2
0
 (1

4
.7

1
%

) 
F

alse: 4
,2

5
7
 (9

2
.1

8
%

); T
ru

e: 3
6
1
 (7

.8
2
%

) 

In
d
u
stry

 tag
_
M

essag
in

g
 an

d
 

T
eleco

m
m

u
n

icatio
n

s 

F
alse: 8

,6
3
7
 (9

6
.2

4
%

); T
ru

e: 3
3
7
 (3

.7
6
%

) 
F

alse: 4
,4

7
5
 (9

6
.9

0
%

); T
ru

e: 1
4
3
 (3

.1
0
%

) 

In
d
u
stry

 tag
_
M

o
b
ile 

F
alse: 7

,1
9
1
 (8

0
.1

3
%

); T
ru

e: 1
,7

8
3
 (1

9
.8

7
%

) 
F

alse: 3
,8

2
1
 (8

2
.7

4
%

); T
ru

e: 7
9
7
 (1

7
.2

6
%

) 

In
d
u
stry

 tag
_
M

u
sic an

d
 A

u
d
io

 
F

alse: 8
,8

1
0
 (9

8
.1

7
%

); T
ru

e: 1
6
4
 (1

.8
3
%

) 
F

alse: 4
,5

7
3
 (9

9
.0

3
%

); T
ru

e: 4
5
 (0

.9
7
%

) 

In
d
u
stry

 tag
_
N

atu
ral R

eso
u
rces 

F
alse: 8

,9
0
4
 (9

9
.2

2
%

); T
ru

e: 7
0
 (0

.7
8
%

) 
F

alse: 4
,5

8
2
 (9

9
.2

2
%

); T
ru

e: 3
6
 (0

.7
8
%

) 

 



doi:10.6342/NTU202503744

 

72 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In
d
u
stry

 tag
_
N

av
ig

atio
n
 an

d
 M

ap
p
in

g
 

F
alse: 8

,8
0
9
 (9

8
.1

6
%

); T
ru

e: 1
6
5
 (1

.8
4
%

) 
F

alse: 4
,5

5
3
 (9

8
.5

9
%

); T
ru

e: 6
5
 (1

.4
1
%

) 

In
d
u
stry

 tag
_
O

th
er 

F
alse: 7

,4
7
7
 (8

3
.3

2
%

); T
ru

e: 1
,4

9
7
 (1

6
.6

8
%

) 
F

alse: 3
,8

4
6
 (8

3
.2

8
%

); T
ru

e: 7
7
2
 (1

6
.7

2
%

) 

In
d
u
stry

 tag
_
P

ay
m

en
ts 

F
alse: 8

,3
9
7
 (9

3
.5

7
%

); T
ru

e: 5
7
7
 (6

.4
3
%

) 
F

alse: 4
,2

3
4
 (9

1
.6

8
%

); T
ru

e: 3
8
4
 (8

.3
2
%

) 

In
d
u
stry

 tag
_
P

latfo
rm

s 
F

alse: 8
,6

5
8
 (9

6
.4

8
%

); T
ru

e: 3
1
6
 (3

.5
2
%

) 
F

alse: 4
,5

2
2
 (9

7
.9

2
%

); T
ru

e: 9
6
 (2

.0
8
%

) 

In
d
u
stry

 tag
_
P

riv
acy

 an
d

 S
ecu

rity
 

F
alse: 8

,5
1
6
 (9

4
.9

0
%

); T
ru

e: 4
5
8
 (5

.1
0
%

) 
F

alse: 4
,2

8
0
 (9

2
.6

8
%

); T
ru

e: 3
3
8
 (7

.3
2
%

) 

In
d

u
stry

 tag
_

P
ro

fessio
n

al S
erv

ices 
F

alse: 8
,1

5
9
 (9

0
.9

2
%

); T
ru

e: 8
1
5
 (9

.0
8
%

) 
F

alse: 4
,1

5
8
 (9

0
.0

4
%

); T
ru

e: 4
6
0

 (9
.9

6
%

) 

In
d
u
stry

 tag
_
R

eal E
state

 
F

alse: 8
,5

5
8
 (9

5
.3

6
%

); T
ru

e: 4
1
6
 (4

.6
4
%

) 
F

alse: 4
,3

9
5
 (9

5
.1

7
%

); T
ru

e: 2
2
3
 (4

.8
3
%

) 

In
d
u
stry

 tag
_
S

ales an
d
 M

ark
etin

g
 

F
alse: 7

,8
4
9
 (8

7
.4

6
%

); T
ru

e: 1
,1

2
5
 (1

2
.5

4
%

) 
F

alse: 4
,1

3
9
 (8

9
.6

3
%

); T
ru

e: 4
7
9
 (1

0
.3

7
%

) 

In
d
u
stry

 tag
_
S

cien
ce an

d
 E

n
g
in

eerin
g

 
F

alse: 6
,8

5
5
 (7

6
.3

9
%

); T
ru

e: 2
,1

1
9
 (2

3
.6

1
%

) 
F

alse: 3
,2

2
6
 (6

9
.8

6
%

); T
ru

e: 1
,3

9
2
 (3

0
.1

4
%

) 

In
d
u
stry

 tag
_
S

o
cial Im

p
act 

F
alse: 8

,9
0
8
 (9

9
.2

6
%

); T
ru

e: 6
6
 (0

.7
4
%

) 
F

alse: 4
,5

9
5
 (9

9
.5

0
%

); T
ru

e: 2
3
 (0

.5
0
%

) 

In
d
u
stry

 tag
_
S

p
o
rts 

F
alse: 8

,7
2
3
 (9

7
.2

0
%

); T
ru

e: 2
5
1
 (2

.8
0
%

) 
F

alse: 4
,5

2
6
 (9

8
.0

1
%

); T
ru

e: 9
2
 (1

.9
9
%

) 

In
d
u
stry

 tag
_
S

u
stain

ab
ility

 
F

alse: 8
,8

6
8
 (9

8
.8

2
%

); T
ru

e: 1
0
6
 (1

.1
8
%

) 
F

alse: 4
,5

2
4
 (9

7
.9

6
%

); T
ru

e: 9
4
 (2

.0
4
%

) 

In
d
u
stry

 tag
_
T

ran
sp

o
rtatio

n
 

F
alse: 8

,3
6
9
 (9

3
.2

6
%

); T
ru

e: 6
0
5
 (6

.7
4
%

) 
F

alse: 4
,2

0
8
 (9

1
.1

2
%

); T
ru

e: 4
1
0
 (8

.8
8
%

) 

In
d
u
stry

 tag
_
T

rav
el an

d
 T

o
u
rism

 
F

alse: 8
,7

1
3
 (9

7
.0

9
%

); T
ru

e: 2
6
1
 (2

.9
1
%

) 
F

alse: 4
,5

0
2
 (9

7
.4

9
%

); T
ru

e: 1
1
6
 (2

.5
1
%

) 

In
d
u
stry

 tag
_
V

id
eo

 
F

alse: 8
,6

5
9
 (9

6
.4

9
%

); T
ru

e: 3
1
5
 (3

.5
1
%

) 
F

alse: 4
,5

0
8
 (9

7
.6

2
%

); T
ru

e: 1
1
0
 (2

.3
8
%

) 

In
d
u
stry

 tag
 g

ro
u
p
_
F

in
an

ce
 

μ
 =

 0
.7

5
, σ

 =
 1

.0
1
, m

ax
 =

 5
, m

in
 =

 0
 

μ
 =

 0
.8

, σ
 =

 1
.0

4
, m

ax
 =

 5
, m

in
 =

 0
 

In
d
u
stry

 tag
 g

ro
u
p
_
L

ifesty
le 

μ
 =

 0
.2

6
, σ

 =
 0

.5
, m

ax
 =

 3
, m

in
 =

 0
 

μ
 =

 0
.3

1
, σ

 =
 0

.5
4
, m

ax
 =

 3
, m

in
 =

 0
 

In
d
u
stry

 tag
 g

ro
u
p
_
 M

ed
iaT

ech
 

μ
 =

 1
.2

9
, σ

 =
 1

.4
4
, m

ax
 =

 8
, m

in
 =

 0
 

μ
 =

 0
.9

5
, σ

 =
 1

.2
5
, m

ax
 =

 8
, m

in
 =

 0
 

In
d

u
stry

 tag
 g

ro
u

p
_
H

ard
w

are 
μ
 =

 0
.3

6
, σ

 =
 0

.6
5
, m

ax
 =

 3
, m

in
 =

 0
 

μ
 =

 0
.3

2
, σ

 =
 0

.6
2
, m

ax
 =

 3
, m

in
 =

 0
 

In
d
u
stry

 tag
 g

ro
u
p
_
P

ro
d

u
ctio

n
 / G

reen
T

ech
 

μ
 =

 0
.3

2
, σ

 =
 0

.6
, m

ax
 =

 5
, m

in
 =

 0
 

μ
 =

 0
.4

2
, σ

 =
 0

.6
8
, m

ax
 =

 5
, m

in
 =

 0
 

In
d
u
stry

 tag
 g

ro
u
p
_
H

ig
h

-tech
 

μ
 =

 0
.9

9
, σ

 =
 1

.0
9
, m

ax
 =

 5
, m

in
 =

 0
 

μ
 =

 1
.1

9
, σ

 =
 1

.1
6
, m

ax
 =

 5
, m

in
 =

 0
 

A
g
e 

μ
 =

 1
9
.1

3
, σ

 =
 1

2
.6

4
, m

ax
 =

 4
8
, m

in
 =

 0
 

μ
 =

 1
8
.7

5
, σ

 =
 1

1
.9

4
, m

ax
 =

 4
8
, m

in
 =

 0
 

 



doi:10.6342/NTU202503744

 

73 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N
u
m

b
er o

f ad
v
iso

rs 
μ
 =

 0
.0

8
, σ

 =
 0

.3
1
, m

ax
 =

 4
, m

in
 =

 0
 

μ
 =

 0
.0

9
, σ

 =
 0

.3
3
, m

ax
 =

 3
, m

in
 =

 0
 

N
u
m

b
er o

f fo
u
n
d

ers 
μ
 =

 1
.7

8
, σ

 =
 0

.8
6
, m

ax
 =

 8
, m

in
 =

 1
 

μ
 =

 2
.0

7
, σ

 =
 0

.9
6
, m

ax
 =

 1
0
, m

in
 =

 1
 

F
em

ale fo
u
n
d
er ratio

 
μ
 =

 0
.1

1
, σ

 =
 0

.2
7
, m

ax
 =

 1
, m

in
 =

 0
 

μ
 =

 0
.0

9
, σ

 =
 0

.2
3
, m

ax
 =

 1
, m

in
 =

 0
 

N
o
n
-C

au
casian

 fo
u
n
d
er ratio

 
μ
 =

 0
.3

, σ
 =

 0
.4

, m
ax

 =
 1

, m
in

 =
 0

 
μ
 =

 0
.3

, σ
 =

 0
.3

9
, m

ax
 =

 1
, m

in
 =

 0
 

S
u
b
ject av

erag
e 

μ
 =

 0
.4

9
, σ

 =
 0

.4
7
, m

ax
 =

 3
, m

in
 =

 0
 

μ
 =

 0
.5

6
, σ

 =
 0

.4
5
, m

ax
 =

 2
, m

in
 =

 0
 

S
u

b
ject_

B
io

lo
g

y
/H

ealth
 

μ
 =

 0
.0

1
, σ

 =
 0

.1
, m

ax
 =

 2
, m

in
 =

 0
 

μ
 =

 0
.0

1
, σ

 =
 0

.0
8
, m

ax
 =

 1
, m

in
 =

 0
 

S
u
b
ject_

B
u
sin

ess 
μ
 =

 0
.1

4
, σ

 =
 0

.3
1
, m

ax
 =

 3
, m

in
 =

 0
 

μ
 =

 0
.1

5
, σ

 =
 0

.3
1
, m

ax
 =

 2
, m

in
 =

 0
 

S
u
b
ject_

C
S

/IT
 

μ
 =

 0
.1

5
, σ

 =
 0

.3
2
, m

ax
 =

 3
, m

in
 =

 0
 

μ
 =

 0
.1

7
, σ

 =
 0

.3
2
, m

ax
 =

 2
, m

in
 =

 0
 

S
u
b
ject_

E
n
g
in

eerin
g

 
μ
 =

 0
.0

7
, σ

 =
 0

.2
3
, m

ax
 =

 3
, m

in
 =

 0
 

μ
 =

 0
.0

9
, σ

 =
 0

.2
4
, m

ax
 =

 2
, m

in
 =

 0
 

S
u
b
ject_

H
u
m

an
ities 

μ
 =

 0
.0

2
, σ

 =
 0

.1
2
, m

ax
 =

 2
, m

in
 =

 0
 

μ
 =

 0
.0

1
, σ

 =
 0

.1
, m

ax
 =

 1
, m

in
 =

 0
 

S
u
b
ject_

L
aw

 
μ
 =

 0
.0

1
, σ

 =
 0

.0
8
, m

ax
 =

 2
, m

in
 =

 0
 

μ
 =

 0
.0

1
, σ

 =
 0

.0
7
, m

ax
 =

 1
, m

in
 =

 0
 

S
u
b
ject_

M
ath

/P
h
y
sics 

μ
 =

 0
.0

2
, σ

 =
 0

.1
1
, m

ax
 =

 2
, m

in
 =

 0
 

μ
 =

 0
.0

2
, σ

 =
 0

.1
2
, m

ax
 =

 1
, m

in
 =

 0
 

S
u
b
ject_

M
ed

ia/C
o
m

m
 

μ
 =

 0
.0

1
, σ

 =
 0

.0
7
, m

ax
 =

 1
, m

in
 =

 0
 

μ
 =

 0
.0

1
, σ

 =
 0

.0
7
, m

ax
 =

 2
, m

in
 =

 0
 

S
u
b
ject_

O
th

er 
μ
 =

 0
.0

5
, σ

 =
 0

.1
9
, m

ax
 =

 2
, m

in
 =

 0
 

μ
 =

 0
.0

6
, σ

 =
 0

.2
, m

ax
 =

 2
, m

in
 =

 0
 

S
u
b
ject_

S
o
cialS

ci 
μ
 =

 0
.0

4
, σ

 =
 0

.1
6
, m

ax
 =

 2
, m

in
 =

 0
 

μ
 =

 0
.0

4
, σ

 =
 0

.1
7
, m

ax
 =

 2
, m

in
 =

 0
 

D
eg

ree av
erag

e 
μ
 =

 0
.5

1
, σ

 =
 0

.5
, m

ax
 =

 4
, m

in
 =

 0
 

μ
 =

 0
.5

8
, σ

 =
 0

.4
8
, m

ax
 =

 3
, m

in
 =

 0
 

D
eg

ree_
B

ach
elo

r 
μ
 =

 0
.2

4
, σ

 =
 0

.4
, m

ax
 =

 3
, m

in
 =

 0
 

μ
 =

 0
.2

7
, σ

 =
 0

.3
9
, m

ax
 =

 3
, m

in
 =

 0
 

D
eg

ree_
H

ig
h
 sch

o
o
l o

r b
elo

w
 

μ
 =

 0
.0

4
, σ

 =
 0

.1
8
, m

ax
 =

 3
, m

in
 =

 0
 

μ
 =

 0
.0

3
, σ

 =
 0

.1
5
, m

ax
 =

 2
, m

in
 =

 0
 

D
eg

ree_
M

aster 
μ
 =

 0
.1

9
, σ

 =
 0

.3
9
, m

ax
 =

 4
, m

in
 =

 0
 

μ
 =

 0
.2

2
, σ

 =
 0

.3
8
, m

ax
 =

 3
, m

in
 =

 0
 

D
eg

ree_
P

h
D

 
μ
 =

 0
.0

4
, σ

 =
 0

.1
8
, m

ax
 =

 2
, m

in
 =

 0
 

μ
 =

 0
.0

6
, σ

 =
 0

.2
, m

ax
 =

 2
, m

in
 =

 0
 

T
o
p
 1

0
0
 u

n
iv

ersity
 av

erag
e 

μ
 =

 0
.1

, σ
 =

 0
.2

8
, m

ax
 =

 2
, m

in
 =

 0
 

μ
 =

 0
.1

5
, σ

 =
 0

.3
1
, m

ax
 =

 2
, m

in
 =

 0
 

Jo
b
 av

erag
e 

μ
 =

 1
.8

7
, σ

 =
 1

.7
8
, m

ax
 =

 2
2
, m

in
 =

 0
 

μ
 =

 2
.0

8
, σ

 =
 1

.9
7
, m

ax
 =

 3
1
, m

in
 =

 0
 

 



doi:10.6342/NTU202503744

 

74 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jo
b
 title_

C
E

O
 

μ
 =

 0
.5

4
, σ

 =
 0

.6
2
, m

ax
 =

 6
, m

in
 =

 0
 

μ
 =

 0
.5

, σ
 =

 0
.5

9
, m

ax
 =

 4
, m

in
 =

 0
 

Jo
b
 title_

C
F

O
 

μ
 =

 0
.0

1
, σ

 =
 0

.0
7
, m

ax
 =

 1
, m

in
 =

 0
 

μ
 =

 0
.0

1
, σ

 =
 0

.0
8
, m

ax
 =

 3
, m

in
 =

 0
 

Jo
b
 title_

C
IO

 
μ
 =

 0
.0

1
, σ

 =
 0

.0
7
, m

ax
 =

 2
, m

in
 =

 0
 

μ
 =

 0
.0

0
4
5
, σ

 =
 0

.0
6
, m

ax
 =

 1
, m

in
 =

 0
 

Jo
b
 title_

C
M

O
 

μ
 =

 0
.0

1
, σ

 =
 0

.1
1
, m

ax
 =

 3
, m

in
 =

 0
 

μ
 =

 0
.0

1
, σ

 =
 0

.1
1
, m

ax
 =

 3
, m

in
 =

 0
 

Jo
b
 title_

C
O

O
 

μ
 =

 0
.0

6
, σ

 =
 0

.2
1
, m

ax
 =

 3
, m

in
 =

 0
 

μ
 =

 0
.0

5
, σ

 =
 0

.1
8
, m

ax
 =

 2
, m

in
 =

 0
 

Jo
b

 title_
C

P
O

 
μ
 =

 0
.0

1
, σ

 =
 0

.1
, m

ax
 =

 2
, m

in
 =

 0
 

μ
 =

 0
.0

2
, σ

 =
 0

.0
9
, m

ax
 =

 1
, m

in
 =

 0
 

Jo
b
 title_

C
S

O
 

μ
 =

 0
.0

1
, σ

 =
 0

.0
6
, m

ax
 =

 1
, m

in
 =

 0
 

μ
 =

 0
.0

1
, σ

 =
 0

.0
7
, m

ax
 =

 1
, m

in
 =

 0
 

Jo
b
 title_

C
T

O
 

μ
 =

 0
.3

1
, σ

 =
 0

.5
4
, m

ax
 =

 5
, m

in
 =

 0
 

μ
 =

 0
.3

4
, σ

 =
 0

.5
5
, m

ax
 =

 6
, m

in
 =

 0
 

Jo
b
 title_

E
d
u
catio

n
 / R

esearch
 

μ
 =

 0
.0

3
, σ

 =
 0

.1
9
, m

ax
 =

 4
, m

in
 =

 0
 

μ
 =

 0
.0

5
, σ

 =
 0

.2
1
, m

ax
 =

 3
, m

in
 =

 0
 

Jo
b
 title_

E
n
g
in

eerin
g
 / T

ech
 

μ
 =

 0
.1

3
, σ

 =
 0

.3
9
, m

ax
 =

 6
, m

in
 =

 0
 

μ
 =

 0
.1

5
, σ

 =
 0

.4
, m

ax
 =

 6
, m

in
 =

 0
 

Jo
b
 title_

E
x
ecu

tiv
e / M

an
ag

em
en

t 
μ
 =

 0
.2

2
, σ

 =
 0

.6
5
, m

ax
 =

 1
9
, m

in
 =

 0
 

μ
 =

 0
.3

1
, σ

 =
 0

.7
1
, m

ax
 =

 1
0
, m

in
 =

 0
 

Jo
b
 title_

E
x
tern

al A
d
v
iso

r 
μ
 =

 0
.1

8
, σ

 =
 0

.5
7
, m

ax
 =

 1
2
, m

in
 =

 0
 

μ
 =

 0
.2

1
, σ

 =
 0

.6
1
, m

ax
 =

 2
1
, m

in
 =

 0
 

Jo
b
 title_

F
in

an
ce / H

R
 / A

d
m

in
 

μ
 =

 0
.0

1
, σ

 =
 0

.1
, m

ax
 =

 3
, m

in
 =

 0
 

μ
 =

 0
.0

1
, σ

 =
 0

.0
8
, m

ax
 =

 2
, m

in
 =

 0
 

Jo
b
 title_

M
ark

etin
g
 / S

ales 
μ
 =

 0
.0

4
, σ

 =
 0

.2
, m

ax
 =

 4
, m

in
 =

 0
 

μ
 =

 0
.0

4
, σ

 =
 0

.2
1
, m

ax
 =

 4
, m

in
 =

 0
 

Jo
b
 title_

O
p
eratio

n
s / P

M
 / C

u
sto

m
er 

μ
 =

 0
.0

8
, σ

 =
 0

.2
9
, m

ax
 =

 4
, m

in
 =

 0
 

μ
 =

 0
.1

, σ
 =

 0
.3

, m
ax

 =
 3

, m
in

 =
 0

 

Jo
b
 title_

O
th

er 
μ
 =

 0
.1

6
, σ

 =
 0

.4
4
, m

ax
 =

 1
4
, m

in
 =

 0
 

μ
 =

 0
.2

, σ
 =

 0
.5

1
, m

ax
 =

 8
, m

in
 =

 0
 

Jo
b
 title_

P
ro

d
u
ct / D

esig
n
 / C

o
n
ten

t 
μ
 =

 0
.0

7
, σ

 =
 0

.2
8
, m

ax
 =

 5
, m

in
 =

 0
 

μ
 =

 0
.0

8
, σ

 =
 0

.2
9
, m

ax
 =

 4
, m

in
 =

 0
 

Jo
b
 ty

p
e_

ad
v
iso

r 
μ
 =

 0
.1

1
, σ

 =
 0

.4
6
, m

ax
 =

 9
, m

in
 =

 0
 

μ
 =

 0
.1

4
, σ

 =
 0

.5
1
, m

ax
 =

 1
2
, m

in
 =

 0
 

Jo
b

 ty
p

e_
B

o
ard

 m
em

b
er 

μ
 =

 0
.1

2
, σ

 =
 0

.5
1
, m

ax
 =

 1
7
, m

in
 =

 0
 

μ
 =

 0
.1

7
, σ

 =
 0

.5
6
, m

ax
 =

 1
2
, m

in
 =

 0
 

Jo
b
 ty

p
e_

B
o
ard

 o
b
serv

er 
μ
 =

 0
., σ

 =
 0

.0
6
, m

ax
 =

 4
, m

in
 =

 0
 

μ
 =

 0
.0

1
, σ

 =
 0

.0
8
, m

ax
 =

 2
, m

in
 =

 0
 

Jo
b
 ty

p
e_

E
m

p
lo

y
ee 

μ
 =

 0
.4

5
, σ

 =
 0

.8
, m

ax
 =

 8
, m

in
 =

 0
 

μ
 =

 0
.5

5
, σ

 =
 0

.9
3
, m

ax
 =

 1
0
, m

in
 =

 0
 

Jo
b
 ty

p
e_

E
x
ecu

tiv
e 

μ
 =

 1
.1

9
, σ

 =
 1

.0
3
, m

ax
 =

 1
6
, m

in
 =

 0
 

μ
 =

 1
.2

1
, σ

 =
 1

.0
1
, m

ax
 =

 1
1
, m

in
 =

 0
 

 



doi:10.6342/NTU202503744

 

75 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W
o
rk

 y
ears av

erag
e
 

μ
 =

 3
.8

6
, σ

 =
 4

.7
6
, m

ax
 =

 5
7
, m

in
 =

 0
 

μ
 =

 4
.2

, σ
 =

 4
.8

9
, m

ax
 =

 5
8
, m

in
 =

 0
 

S
erial en

trep
ren

eu
r av

erag
e 

μ
 =

 0
.4

7
, σ

 =
 0

.7
8
, m

ax
 =

 1
0
, m

in
 =

 0
 

μ
 =

 0
.4

6
, σ

 =
 0

.7
1
, m

ax
 =

 8
, m

in
 =

 0
 

T
rig

g
er ro

u
n
d
 in

d
ex

 
μ
 =

 1
.4

3
, σ

 =
 0

.7
6
, m

ax
 =

 7
, m

in
 =

 1
 

μ
 =

 1
.4

6
, σ

 =
 0

.7
5
, m

ax
 =

 7
, m

in
 =

 1
 

N
u
m

b
er o

f fu
n
d
in

g
 ro

u
n

d
s 

μ
 =

 1
.9

2
, σ

 =
 1

.2
1
, m

ax
 =

 1
2
, m

in
 =

 1
 

μ
 =

 1
.9

4
, σ

 =
 1

.1
6
, m

ax
 =

 9
, m

in
 =

 1
 

T
o
tal fu

n
d
in

g
 am

o
u
n
t 

μ
 =

 1
,1

0
8
,4

8
6
.5

7
, σ

 =
 1

,8
9
1
,7

5
3
.2

2
, m

ax
 =

 

4
0
,8

2
8
,0

7
3
, m

in
 =

 0
 

μ
 =

 2
,2

7
8
,1

3
0
.0

4
, σ

 =
 2

,6
7
2
,6

5
8
.7

8
, m

ax
 =

 

5
8
,7

1
0
,3

4
3
, m

in
 =

 0
 

N
u
m

b
er o

f fu
n
d
in

g
 ro

u
n

d
s_

A
n
g
el 

μ
 =

 0
.1

7
, σ

 =
 0

.4
6
, m

ax
 =

 5
, m

in
 =

 0
 

μ
 =

 0
.1

1
, σ

 =
 0

.3
9
, m

ax
 =

 5
, m

in
 =

 0
 

N
u
m

b
er o

f fu
n
d
in

g
 ro

u
n

d
s_

C
o
n
v
ertib

le n
o
te 

μ
 =

 0
.0

5
, σ

 =
 0

.2
5
, m

ax
 =

 4
, m

in
 =

 0
 

μ
 =

 0
.0

5
, σ

 =
 0

.2
5
, m

ax
 =

 3
, m

in
 =

 0
 

N
u
m

b
er o

f fu
n
d
in

g
 ro

u
n

d
s_

C
o
rp

o
rate ro

u
n
d

 
μ
 =

 0
.0

0
0
9
, σ

 =
 0

.0
3
, m

ax
 =

 1
, m

in
 =

 0
 

μ
 =

 0
.0

0
0
9
, σ

 =
 0

.0
3
, m

ax
 =

 1
, m

in
 =

 0
 

N
u
m

b
er o

f fu
n
d
in

g
 ro

u
n

d
s_

D
eb

t fin
an

cin
g

 
μ
 =

 0
.0

2
, σ

 =
 0

.1
4
, m

ax
 =

 3
, m

in
 =

 0
 

μ
 =

 0
.0

2
, σ

 =
 0

.1
7
, m

ax
 =

 4
, m

in
 =

 0
 

N
u
m

b
er o

f fu
n
d
in

g
 ro

u
n

d
s_

E
q
u
ity

 

cro
w

d
fu

n
d
in

g
 

μ
 =

 0
.0

1
, σ

 =
 0

.1
, m

ax
 =

 6
, m

in
 =

 0
 

μ
 =

 0
.0

0
1
7
, σ

 =
 0

.0
4
, m

ax
 =

 1
, m

in
 =

 0
 

N
u

m
b

er o
f fu

n
d

in
g
 ro

u
n

d
s_

G
ran

t 
μ
 =

 0
.0

6
, σ

 =
 0

.3
1
, m

ax
 =

 6
, m

in
 =

 0
 

μ
 =

 0
.0

6
, σ

 =
 0

.3
1
, m

ax
 =

 4
, m

in
 =

 0
 

N
u
m

b
er o

f fu
n
d
in

g
 ro

u
n

d
s_

N
o
n
 eq

u
ity

 

assistan
ce 

μ
 =

 0
.0

5
, σ

 =
 0

.2
5
, m

ax
 =

 3
, m

in
 =

 0
 

μ
 =

 0
.0

5
, σ

 =
 0

.2
3
, m

ax
 =

 4
, m

in
 =

 0
 

N
u
m

b
er o

f fu
n
d
in

g
 ro

u
n

d
s_

P
re seed

 
μ
 =

 0
.1

9
, σ

 =
 0

.5
2
, m

ax
 =

 5
, m

in
 =

 0
 

μ
 =

 0
.2

, σ
 =

 0
.4

6
, m

ax
 =

 4
, m

in
 =

 0
 

N
u
m

b
er o

f fu
n
d
in

g
 ro

u
n

d
s_

P
ro

d
u
ct 

cro
w

d
fu

n
d
in

g
 

μ
 =

 0
.0

0
4
7
, σ

 =
 0

.0
7
, m

ax
 =

 2
, m

in
 =

 0
 

μ
 =

 0
.0

1
, σ

 =
 0

.0
7
, m

ax
 =

 1
, m

in
 =

 0
 

N
u
m

b
er o

f fu
n
d
in

g
 ro

u
n

d
s_

S
eed

 
μ
 =

 1
.3

7
, σ

 =
 0

.8
5
, m

ax
 =

 7
, m

in
 =

 0
 

μ
 =

 1
.4

4
, σ

 =
 0

.7
9
, m

ax
 =

 6
, m

in
 =

 0
 

T
o
tal fu

n
d
in

g
 am

o
u
n
t_

A
n
g
el 

μ
 =

 5
9
,9

1
6
.0

5
, σ

 =
 3

5
6
,6

3
4
.7

6
, m

ax
 =

 

1
6
,8

8
4
,0

5
7
, m

in
 =

 0
 

μ
 =

 6
2
,2

4
6
.4

2
, σ

 =
 3

4
5
,1

2
1
.5

1
, m

ax
 =

 

7
,1

0
0
,0

0
0
, m

in
 =

 0
 

 



doi:10.6342/NTU202503744

 

76 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T
o
tal fu

n
d
in

g
 am

o
u
n
t_

C
o
n
v
ertib

le n
o
te

 
μ
 =

 1
1
,4

9
8
.2

9
, σ

 =
 1

4
2
,7

9
6
.5

5
, m

ax
 =

 

5
,0

0
0
,0

0
0
, m

in
 =

 0
 

μ
 =

 1
4
,4

8
7
.3

3
, σ

 =
 1

5
7
,8

1
0
.1

1
, m

ax
 =

 

4
,4

7
8
,0

0
0
, m

in
 =

 0
 

T
o
tal fu

n
d
in

g
 am

o
u
n
t_

C
o
rp

o
rate ro

u
n

d
 

μ
 =

 3
,4

1
3
.7

2
, σ

 =
 3

0
1
,1

2
1
.5

6
, m

ax
 =

 

2
8
,5

0
5
,7

6
3
, m

in
 =

 0
 

μ
 =

 0
, σ

 =
 0

, m
ax

 =
 0

, m
in

 =
 0

 

T
o
tal fu

n
d
in

g
 am

o
u
n
t_

D
eb

t fin
an

cin
g

 
μ
 =

 8
,4

7
9
.9

3
, σ

 =
 1

9
8
,2

5
1
.1

7
, m

ax
 =

 

1
5
,2

5
0
,0

0
0
, m

in
 =

 0
 

μ
 =

 2
6
,7

6
2
.6

7
, σ

 =
 6

3
3
,9

3
5
.3

9
, m

ax
 =

 

3
3
,1

5
7
,4

0
2
, m

in
 =

 0
 

T
o
tal fu

n
d
in

g
 am

o
u
n
t_

E
q
u
ity

 cro
w

d
fu

n
d
in

g
 

μ
 =

 3
,2

9
4
.9

9
, σ

 =
 9

6
,8

1
7
.4

2
, m

ax
 =

 

7
,9

6
6
,1

3
8
, m

in
 =

 0
 

μ
 =

 9
5
3
.5

7
, σ

 =
 2

9
,5

9
1
.1

7
, m

ax
 =

 1
,2

1
5
,4

6
5
, 

m
in

 =
 0

 

T
o
tal fu

n
d
in

g
 am

o
u
n
t_

G
ran

t 
μ
 =

 1
1
,0

6
5
.3

8
, σ

 =
 1

4
0
,1

8
3
.9

9
, m

ax
 =

 

8
,0

0
0
,0

0
0
, m

in
 =

 0
 

μ
 =

 1
6
,5

8
5
.5

5
, σ

 =
 1

5
2
,2

5
9
.1

9
, m

ax
 =

 

3
,7

9
3
,6

9
6
, m

in
 =

 0
 

T
o
tal fu

n
d
in

g
 am

o
u
n
t_

N
o
n
 eq

u
ity

 assistan
ce

 
μ
 =

 2
,2

0
2
.8

8
, σ

 =
 9

7
,0

0
0
.5

6
, m

ax
 =

 

6
,3

5
3
,3

6
6
, m

in
 =

 0
 

μ
 =

 9
5
.8

9
, σ

 =
 2

,8
7
9
.4

6
, m

ax
 =

 1
5
7
,5

4
7
, m

in
 

=
 0

 

T
o
tal fu

n
d

in
g

 am
o

u
n

t_
P

re seed
 

μ
 =

 4
2
,6

7
4
.8

1
, σ

 =
 2

0
7
,8

5
5
.6

2
, m

ax
 =

 

4
,0

0
0
,0

0
0
, m

in
 =

 0
 

μ
 =

 6
5
,2

1
5
.0

6
, σ

 =
 3

1
7
,2

1
7
.6

6
, m

ax
 =

 

5
,7

9
0
,9

3
5
, m

in
 =

 0
 

T
o
tal fu

n
d
in

g
 am

o
u
n
t_

P
ro

d
u
ct cro

w
d
fu

n
d
in

g
 

μ
 =

 1
,9

6
6
.3

3
, σ

 =
 4

5
,6

3
2
.1

5
, m

ax
 =

 

1
,7

0
0
,0

0
0
, m

in
 =

 0
 

μ
 =

 2
,4

8
2
.4

3
, σ

 =
 5

7
,2

9
6
.4

8
, m

ax
 =

 

2
,0

0
0
,0

0
0
, m

in
 =

 0
 

T
o
tal fu

n
d
in

g
 am

o
u
n
t_

S
eed

 
μ
 =

 9
6
3
,9

7
4
.2

1
, σ

 =
 1

,7
3
6
,2

1
0
.6

1
, m

ax
 =

 

4
0
,8

2
8
,0

7
3
, m

in
 =

 0
 

μ
 =

 2
,0

8
9
,3

0
1
.1

1
, σ

 =
 2

,5
0
5
,1

6
1
.7

2
, m

ax
 =

 

5
8
,7

1
0
,3

4
3
, m

in
 =

 0
 

B
u
rn

 rate 
μ
 =

 1
3
7
,2

6
0
.7

9
, σ

 =
 1

,0
9
4
,5

4
4
.9

8
, m

ax
 =

 

5
4
,7

2
0
,0

0
0
, m

in
 =

 0
 

μ
 =

 2
4
0
,0

9
8
.9

4
, σ

 =
 1

,2
2
6
,9

3
7
.8

3
, m

ax
 =

 

4
8
,6

4
0
,0

0
0
, m

in
 =

 0
 

C
ap

ital co
n
cen

tratio
n
 rate 

μ
 =

 0
.4

2
, σ

 =
 0

.3
9
, m

ax
 =

 1
, m

in
 =

 0
 

μ
 =

 0
.3

4
, σ

 =
 0

.3
3
, m

ax
 =

 1
, m

in
 =

 0
 

N
u
m

b
er o

f in
v
esto

rs 
μ
 =

 3
.6

1
, σ

 =
 3

.7
, m

ax
 =

 4
0
, m

in
 =

 0
 

μ
 =

 5
.4

8
, σ

 =
 5

.2
9
, m

ax
 =

 8
4
, m

in
 =

 0
 

 



doi:10.6342/NTU202503744

 

77 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A
v
erag

e in
v
esto

rs 
μ
 =

 2
.2

, σ
 =

 2
.0

2
, m

ax
 =

 3
2
, m

in
 =

 0
 

μ
 =

 3
.2

4
, σ

 =
 3

., m
ax

 =
 8

4
, m

in
 =

 0
 

N
u
m

b
er o

f d
istin

ct in
v
esto

rs 
μ
 =

 2
.8

3
, σ

 =
 3

.0
2
, m

ax
 =

 4
1
, m

in
 =

 0
 

μ
 =

 4
.4

2
, σ

 =
 4

.2
2
, m

ax
 =

 5
5
, m

in
 =

 0
 

A
v
erag

e in
v
estm

en
ts 

μ
 =

 8
9
.7

5
, σ

 =
 2

0
1
.0

2
, m

ax
 =

 2
,2

8
1
, m

in
 =

 0
 

μ
 =

 8
4
.5

5
, σ

 =
 1

5
5
.5

2
, m

ax
 =

 2
,0

3
6
, m

in
 =

 0
 

A
v
erag

e in
v
estm

en
ts am

o
u
n
t 

μ
 =

 5
2
,5

7
4
,8

8
2
.4

6
, σ

 =
 1

7
0
,5

6
0
,7

6
4
.4

6
, m

ax
 

=
 5

,4
7
0
,1

1
9
,3

4
3
, m

in
 =

 0
 

μ
 =

 1
0
6
,0

9
4
,2

4
6
.3

5
, σ

 =
 3

2
8
,4

3
5
,6

0
4
.9

7
, 

m
ax

 =
 1

0
,7

3
4
,1

9
0
,0

6
5
, m

in
 =

 0
 

A
v

erag
e n

u
m

b
er o

f d
istin

ct o
rg

an
izatio

n
s 

in
v
ested

 

μ
 =

 7
1
.4

, σ
 =

 1
5
6
.8

, m
ax

 =
 1

,6
7
7
, m

in
 =

 0
 

μ
 =

 6
5
.3

1
, σ

 =
 1

2
0
.8

7
, m

ax
 =

 1
,5

0
4
, m

in
 =

 0
 

N
u
m

b
er o

f in
stitu

tio
n
al in

v
esto

rs 
μ
 =

 2
.6

4
, σ

 =
 2

.7
2
, m

ax
 =

 2
6
, m

in
 =

 0
 

μ
 =

 3
.9

8
, σ

 =
 3

.6
4
, m

ax
 =

 4
0
, m

in
 =

 0
 

N
u
m

b
er o

f in
d
iv

id
u
al in

v
esto

rs 
μ
 =

 0
.8

9
, σ

 =
 2

.0
3
, m

ax
 =

 2
8
, m

in
 =

 0
 

μ
 =

 1
.5

, σ
 =

 2
.9

7
, m

ax
 =

 6
4
, m

in
 =

 0
 

N
u
m

b
er o

f d
istin

ct in
stitu

tio
n
al in

v
esto

rs 
μ
 =

 2
.3

6
, σ

 =
 2

.3
, m

ax
 =

 2
3
, m

in
 =

 0
 

μ
 =

 3
.5

4
, σ

 =
 2

.9
9
, m

ax
 =

 2
8
, m

in
 =

 0
 

N
u
m

b
er o

f d
istin

ct in
d
iv

id
u
al in

v
esto

rs 
μ
 =

 0
.8

4
, σ

 =
 1

.8
9
, m

ax
 =

 2
4
, m

in
 =

 0
 

μ
 =

 1
.4

3
, σ

 =
 2

.7
9
, m

ax
 =

 6
4
, m

in
 =

 0
 

A
v
erag

e su
ccess rate

 
μ
 =

 0
.0

7
, σ

 =
 0

.1
, m

ax
 =

 1
, m

in
 =

 0
 

μ
 =

 0
.1

, σ
 =

 0
.1

1
, m

ax
 =

 1
, m

in
 =

 0
 

M
ax

 su
ccess rate 

μ
 =

 0
.1

5
, σ

 =
 0

.2
1
, m

ax
 =

 1
, m

in
 =

 0
 

μ
 =

 0
.2

5
, σ

 =
 0

.2
5
, m

ax
 =

 1
, m

in
 =

 0
 

T
o
tal n

etw
o
rk

 cen
trality

_
B

C
 

μ
 =

 0
.0

0
4
6
, σ

 =
 0

.0
1
0
3
, m

ax
 =

 0
.1

0
6
8
, m

in
 =

 

0
 

μ
 =

 0
.0

0
7
2
, σ

 =
 0

.0
1
3
1
, m

ax
 =

 0
.1

3
2
6
, m

in
 =

 

0
 

T
o
tal n

etw
o
rk

 cen
trality

_
D

C
 

μ
 =

 0
.1

9
5
3
, σ

 =
 0

.4
2
2
9
, m

ax
 =

 5
.1

4
0
4
, m

in
 =

 

0
 

μ
 =

 0
.3

5
2
9
, σ

 =
 0

.6
0
6
1
, m

ax
 =

 5
.6

4
1
3
, m

in
 =

 

0
 

T
o
tal n

etw
o
rk

 cen
trality

_
P

R
 

μ
 =

 0
.0

0
1
, σ

 =
 0

.0
0
1
9
, m

ax
 =

 0
.0

2
6
, m

in
 =

 0
 

μ
 =

 0
.0

0
1
7
, σ

 =
 0

.0
0
2
7
, m

ax
 =

 0
.0

3
2
4
, m

in
 =

 

0
 

A
v
erag

e n
etw

o
rk

 cen
trality

_
B

C
 

μ
 =

 0
.0

0
1
3
, σ

 =
 0

.0
0
3
7
, m

ax
 =

 0
.0

3
9
7
, m

in
 =

 

0
 

μ
 =

 0
.0

0
1
3
, σ

 =
 0

.0
0
2
8
, m

ax
 =

 0
.0

3
9
7
, m

in
 =

 

0
 

A
v
erag

e n
etw

o
rk

 cen
trality

_
D

C
 

μ
 =

 0
.0

5
0
8
, σ

 =
 0

.1
2
0
1
, m

ax
 =

 1
, m

in
 =

 0
 

μ
 =

 0
.0

6
1
1
, σ

 =
 0

.1
0
9
3
, m

ax
 =

 1
, m

in
 =

 0
 

 



doi:10.6342/NTU202503744

 

78 
 

 

 

 

 

 

 

 

 

A
v
erag

e n
etw

o
rk

 cen
trality

_
P

R
 

μ
 =

 0
.0

0
0
3
, σ

 =
 0

.0
0
0
5
, m

ax
 =

 0
.0

0
4
9
, m

in
 =

 

0
 

μ
 =

 0
.0

0
0
3
, σ

 =
 0

.0
0
0
5
, m

ax
 =

 0
.0

0
5
3
, m

in
 =

 

0
 

 




