
doi:10.6342/NTU202401151

國立臺灣大學電機資訊學院資訊工程學系

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master’s Thesis

優化手機影片摘要生成：運用生成式圖片轉文字模型

與 AITW資料集

Enhancing Mobile Video Captioning: Utilizing Generative
Image­to­text Transformers with AITW Dataset

蔡博揚

Po­Yang Tsai

指導教授: 廖世偉博士

Advisor: Shi­Wei Liao Ph.D.

中華民國 113年 6月

June, 2024

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Acknowledgements

經歷了許多困難，終於走到了這一步，缺少了任何人的幫助都無法完成碩士

論文。首先要謝謝廖世偉教授的協助，教授的專業領域知識給予我論文方向上的

教導，實驗室提供了我做實驗所需要的機器，協助我能順利的完成論文。接著要

感謝 UR Program的 Vincent和 Yu­Siang，幫助我決定論文的主題並給於適當的建

議，非常感謝團隊的協助。不能忘記 Google CV組可愛的團隊們，大家一起努力

前行。最後要謝謝適時和我討論的同學們，還有過去的自己，完成了這篇論文。

在此送上最真誠的謝意。

ii

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

摘要

我們提供一個有效的方法，使用生成式圖片和文字的轉換器模型來為手機影

片生成摘要，並訓練在 Android in the Wild資料集。目前手機錄影都是由人工檢視

做摘要，我們使用機器學習直接將視覺的資訊轉成文字。本論文使用的方法包含

資料的前處理及三種微調策略來改善模型，包含雙學習率、增加時間序詞嵌入，

以及可變輸入圖片解析度。實驗結果顯示微調方法明顯的提高了生成摘要的準確

度，並且凸顯視覺語言模型，在手機應用程式中自動化問題報告過程的潛力，大

量的減少人力與時間的同時提供高準確度的摘要。

關鍵字：影片摘要生成、Android in the Wild、視覺語言模型、機器學習、微調

iii

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Abstract

This paper introduces a novel approach for mobile video captioning using the Gen­

erative Image­to­text Transformer model, with the Android in the Wild dataset. The pro­

cess of summarizing mobile records is traditionally reliant on manual review. We address

this challenge by employing machine learning techniques to convert visual information

directly into texts. The methodology includes data preprocessing and three fine­tuning

strategies, such as dual learning rates, increased temporal embeddings, and variable input

image resolutions, to enhance the model’s performance. Comprehensive experimentation

shows that these fine­tuning techniques significantly improve the accuracy of generated

captions. The results highlight the potential of vision­language models to automate the

problem­reporting process in mobile applications, significantly reducing time and labor

while ensuring high accuracy.

Keywords: Video Captioning, Android in the Wild, Vision­Language Model, Machine

Learning, Fine­Tuning

iv

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Contents

Page

Acknowledgements ii

摘要 iii

Abstract iv

Contents v

List of Figures vii

List of Tables ix

Chapter 1 Introduction 1

Chapter 2 Related Work 3

2.1 Vision Language Model . 4

2.2 Mobile Video Captioning . 5

Chapter 3 Methodology 7

3.1 Model Structure . 7

3.2 Data Preprocessing . 8

3.3 Scheme . 10

3.3.1 Dual Learning Rates . 10

3.3.2 Number of Temporal Embeddings 11

3.3.3 Input Image Ratio . 12

v

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Chapter 4 Evaluation 14

4.1 Experiment Setting . 14

4.2 Result . 15

4.3 Ablation Study . 17

Chapter 5 Conclusion 19

References 20

Appendix A — Examples 26

vi

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

List of Figures

3.1 The GIT model architecture is comprised of an image encoder and a text

decoder. Input screenshots are first encoded, added with temporal embed­

dings, and then concatenated before being sent into the text decoder. . . . 8

3.2 Distribution of numbers of images per episode. Note that any count ex­

ceeding 30 was reported as 30. 11

3.3 Distribution of images by ratio of height to width 12

3.4 The examples demonstrate different approaches to image resizing and

patch division. The upper figures are original figure and 9 by 5 grid figure.

The lower figures are resized square figure and 7 by 7 grid figure. 13

A.1 Example 1 of random start episodes shows the first figure starting at the

last scene of the previous episode. 27

A.2 Example 1 of missing episodes features our model accurately generating

captions for scenes where a figure appears to be entering the ’improve

location accuracy’ page. The episodes seems to miss a figure toggling off

the button. 28

A.3 Example 2 of missing episodes shows our model generating captions for

scenes where a figure appears to be opening the toolbar. The episodes

seems to miss the following steps. 29

A.4 An example from the install category demonstrates the model’s ability

to predict visual information. However, the screenshots lack of actions

related to ”forgot password”. 30

vii

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

A.5 An example from the general category shows that themodel recognizes the

query ’google the capital’ but fails to identify the specific location. Using

an optical character recognition module might address this deficiency. . . 31

A.6 An example from the google_apps category. The model predicts seeking

for the events, although there remains a slight semantic gap. 32

A.7 An example from the web shopping category shows that the model under­

stands the shopping steps and recognizes the specific product. 33

viii

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

List of Tables

3.1 Categories of AITW . 9

4.1 The numbers of deleted and remaining episodes. 15

4.2 The scores of normal and modified subset of AITW. 16

4.3 The scores from applying a single method to the AITW dataset. For

brevity, we denote dual learning rate, variable resolution inputs, and eight

temporal embeddings as ” 2 LR”, ”Pix” and ”8 Img” respectively. 16

4.4 The ablation study on the AITW dataset. We refer to dual learning rate,

variable resolution inputs, and eight temporal embeddings as ’2 LR’, ’Pix’,

and ’8 Img’ respectively for simplicity. 18

ix

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Chapter 1 Introduction

With the advancements in technology, smartphones have been pervasive, profoundly

impacting how we communicate, work, and entertain ourselves. As users increasingly

rely on these devices, the number of problems has also increased, highlighting a press­

ing need for efficient problem­reporting mechanisms. Users typically record screens to

demonstrate the problems and submit videos to developers. Manually reviewing the video,

on the other hand, is not only time­consuming but also requires a large amount of human

resources. To tackle this problem, we adopt an established model to transform mobile

recordings into natural language captions. This approach aims to reduce the time and

labor involved in manual video reviews while providing a concise summary of reported

issues. Machine learning has advanced significant breakthroughs across various areas,

especially in vision and language domains [6, 7, 19, 24, 28, 31]. Based on these funda­

mental advances, vision­language models [1, 13, 24, 35] have emerged as prominent tools

to cope with more complex challenges, such as image captioning [17] and visual question

answering [8]. Nevertheless, as machine learning models’ size increases, training large

models from scratch requires enormous computational time and resources. Consequently,

it is common practice for researchers to release pre­trained model weights alongside new

models. Utilizing pre­trained model weights not only facilitates transfer learning but also

enhances performance due to large and diverse datasets [11, 25]. On the other hand, nu­

1

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

merous datasets [5, 14, 33] pertain to mobile application screenshots, but there remains a

deficiency in datasets comprising mobile screen recordings. Recently, Google launched

Android in the Wild (AITW)[27], addressing the demand for extensive datasets that in­

clude mobile recordings. AITW offers an extensive collection of mobile recordings for

research and development purposes. For the video captioning task, we use the Generative

Image­to­text Transformer (GIT), introduced by Google in 2022, as our pre­trainedmodel,

along with AITW as our dataset. The main reason we chose GIT is that its simple structure

aligns perfectly with AITW’s visual data. GIT only consists of an image encoder and a text

decoder, and it has achieved state­of­the­art performance on various tasks without other

input features like audio or optical character recognition. The model’s adeptness at distill­

ing visual data into textual descriptions without auxiliary inputs makes it well­suited for

our objective. We have implemented various fine­tuning strategies, such as dual learning

rates, adjusting the number of temporal embeddings, and variable resolution inputs.

Here is a summary of this paper’s primary contribution:

• In the video captioning domain, we present an original application of high­level

instructions and mobile screenshots.

• We conducted a comprehensive analysis of the AITW dataset and refined it.

• We explore three fine­tuning methods to enhance the model performance.

2

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Chapter 2 Related Work

In the 2010s, VGG [29] and ResNet [10] respectively introduced deeper networks and

residual connections, leading to considerable improvements in image processing tasks.

The success of VGG encouraged the development of larger models. After that, ResNet’s

use of residual blocks effectively fixed the vanishing gradient problem and made it possi­

ble to build deeper neural network architectures. These two models aided the groundwork

for image processing techniques and influenced later vision­languagemodel development.

In 2015, the initial development of the vision­language deep learning models combined a

convolutional neural network for image processing with recurrent neural network (RNN)

or long short­term memory network (LSTM) [32] for text processing. This model struc­

ture first employed an image encoder and a text decoder. Recent vision­language models

have adopted this architecture, resulting in significant improvements. In 2017, Google

presented the attention mechanisms in Transformer [31] and also adopted the residual

blocks from ResNet. Transformer replaced RNN and has since contributed to both the

vision and language fields.

3

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

2.1 Vision Language Model

A type of deep learning model known as the vision­language model extracts visual

information from images or videos and produces texts that are readable texts. by humans.

The application includes image captioning, visual question answering, and other tasks

based on questions about visual content. With recent advances in both the vision and

language domains, vision­language models have made significant progress.

In 2020, Vision Transformer (ViT) [7] applied the attention architecture, originally

designed for natural language processing, in the vision domain. ViT introduced an algo­

rithm that splits an image into multiple patches. Transformer blocks view these patches

as words and process them for training. ViT eventually became the foundation of modern

vision­language models [9, 19, 30]. In 2021, OpenAI presented Contrastive Language–

Image Pretraining (CLIP) [24], which bridges the gap between computer vision and natural

language understanding. CLIP uses contrastive learning [4] and leverages a large amount

of image­text data pairs from the internet for pre­training. CLIP functions by creating a

high­dimensional feature mapping that aligns image­text pairs with related concepts. Re­

searchers can easily adapt the pre­trained image­to­text module for various tasks. In 2022,

Microsoft proposed the Generative Image­to­text Transformer (GIT) [35]. It consists of

an image encoder and a text decoder. The image component is a CLIP module while the

text component is a Transformer module. Despite its relatively simple and straightfor­

ward structure, GIT achieved state­of­the­art performance across numerous datasets, such

as COCO [17] and MSVD [3], as well as tasks, such as image captioning and video cap­

tioning. In this paper, we chose GIT as our base model because of its ability to transfer

learning and effectiveness in translating images into languages.

4

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

2.2 Mobile Video Captioning

Datasets comprisingmobile screenshots, such as [5, 14, 33], have facilitated advance­

ments in analyzing smartphone user interfaces (UI) and behaviors [1, 15]. Although these

datasets provide invaluable insights into UI designs or descriptive text, there remains a

gap in the field. Specifically, there is a deficiency in datasets that offer a large volume

of data accompanied by general prompts. The gap underscores the pressing need for a

dataset, specifically for video captioning tasks, that connects user interactions with com­

mands. To address this critical gap, Google introduced Android in the Wild (AITW) [27]

in 2023. This dataset is designed for training device­control models that can interpret nat­

ural language commands or screenshots and perform the corresponding actions. Before

the advent of AITW, existing datasets (e.g. UIBert [2]) were limited to step­by­step com­

mands specifying particular UI elements. AITW, in contrast, employs concise commands

that describe high­level goals, marking a significant shift away from the limitations of

previous datasets. You can see this when you ask a question (e.g. ”When is my next meet­

ing?”) or issue a command (e.g.”Check Android version”). AITW’s extensive volume,

consisting of up to 700,000 records with a total of 5,600,000 screenshots, is another no­

table contribution. The abundance of data enhances the model’s ability to understand user

commands. This collection not only provides comprehensive user interactions but also

enriches each interaction with detailed contextual data. Each screenshot contains several

fields: episode­id, episode­length, goal­info, action­type, annotations­positions and

other digital information. Because we want to build a model capable of analyzing users’

mobile screen records, our focus is particularly on goal­info, which serves as the high­

level prompt describing the sequence of screenshots. We expect our model to understand

5

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

the screen records and provide explanations for them. Therefore, we utilized the goal­info

data as ground truth and screenshots as inputs to train our video captioning model.

6

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Chapter 3 Methodology

Our objective is to develop a model capable of converting video inputs into textual

prompts. We choose the GIT model [35] as the base model and fine­tune the model on

the AITW dataset [27]. This process involves an initial analysis and preprocessing of

the AITW dataset, followed by strategies to enhance the fine­tuning process. We chose

the GIT model primarily because of its straightforward architecture, which is ideal for the

visual data in the AITWdataset. Without relying on additional input features such as audio

or optical character recognition, the GIT model, which consists only of an image encoder

and a text decoder, has shown state­of­the­art performance across a variety of tasks.

3.1 Model Structure

The GIT model structure is composed of an image encoder and a text decoder as

shown in Figure 3.1. The image encoder takes raw images as input and generates en­

coded features. They are then combined with temporal embeddings and fed into a text

decoder to produce the text description. The image encoder is a CLIP­based [24] encoder

and has already been pre­trained on contrastive learning tasks. This is because recent

studies show that contrastive learning models work very well [4, 36]. The text decoder

is a transformer module [31], which consists of multiple transformer blocks. Each block

7

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Figure 3.1: The GIT model architecture is comprised of an image encoder and a text
decoder. Input screenshots are first encoded, added with temporal embeddings, and then
concatenated before being sent into the text decoder.

is composed of one self­attention layer and one feed­forward layer and is randomly ini­

tialized, in accordance with the experiment findings [34]. Moreover, the functionality of

temporal embeddings [26] is to capture time­dependent patterns. The original paper con­

figures the GIT model with six temporal embeddings, meaning it can accepts a maximum

of six input images.

3.2 Data Preprocessing

For our study, we used Android in the Wild (AITW) [27], which was introduced by

Google. Before delving into the training details, we provide a brief overview of the data

format. AITW encompasses up to 700,000 episodes with a total of 5,600,000 screenshots.

8

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

The dataset is divided into five sections: {GoogleApps, Install, WebShopping, General,

Single}. It is important to note that Single, which includes only single­step tasks, is ex­

cluded from our study because it contradicts our requirement for video data. Descriptions

of the categories are shown in Table 3.1.

Table 3.1: Categories of AITW

Name Description

GOOGLE APPS Google apps tasks
INSTALL App installation and login tasks
WEB SHOPPING Web shopping tasks
GENERAL Misc web/app tasks

Each episode in the dataset represents a sequence of screenshots illustrating an in­

struction’s steps. While each screenshot contains fifteen fields, only some fields are rel­

evant to our topic, as detailed below. The key points are images and goal_info, which

serve as training inputs and ground truth.

episode_id: The episode’s unique identifier from which the example is taken.

episode_length: The total count of steps in the episode.

goal_info: The natural language instruction demonstrated by the episode.

image/channels, image/height, image/width: The number of channels, height, andwidth

of the screenshot.

step_id: The zero­indexed step number of the example within the episode (e.g., if step_id

is 4, this is the fifth step of the episode).

During our experiments, we observed that some episodes within the dataset were

missing screenshots. The number of missing ones varied, with some episodes lacking

9

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

one or two screenshots, while others were missing up to half of their screenshots. Ac­

cording to our observations, the missing screenshots typically occur in the latter part of

the episodes, which is a factor that could potentially impact the training performance of

our model because the latter part shows the final steps of the tasks. To assess the impact

of these missing episodes on model accuracy, we conducted a trial using a subset of the

dataset. The findings confirmed our hypothesis that missing screenshots adversely affect

performance. Section 4.2 provides additional information. We discovered that approxi­

mately 100,000 episodes were missing from the dataset, leaving about 500,000 episodes

intact. These 500,000 episodes serve as the setting for the remaining experiments.

3.3 Scheme

In this section, we cover three fine­tuning methods.

3.3.1 Dual Learning Rates

We have implemented a dual learnings rate in our model, inspired by referenced pa­

pers [18, 35]. Dual learning rates refers to training different modules at different learning

rates. Transfer learning typically freezes the pre­trained model components while training

the newly added modules. For our analysis, the learning rate of the text decoder and the

temporal embeddings are five times that of the image encoder. The image encoder is not

frozen but is trained at a smaller pace because it needs to adapt to features not present in

its pre­training data, such as mobile screenshots. On the other hand, the new text decoder

and temporal embeddings undergo training at a faster pace.

10

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Figure 3.2: Distribution of numbers of images per episode. Note that any count exceeding
30 was reported as 30.

3.3.2 Number of Temporal Embeddings

We conducted tests using different numbers of temporal embeddings to determine

an optimal configuration. Designed for image­related tasks such as image captioning and

visual question answering, the original GIT model treats multiple images concatenated

as a video when adapted to the video domain. Curious about the rationale behind using

six images, we reached out to the authors. Their response indicated that the choice of six

images was arbitrary and lacking in specific significance. Given this insight, we decided to

select the number of images based on statistical analysis, aiming to find the most effective

configuration for our video domain adaptation. According to statistics from AITW, both

the median and average number of screenshots per episode are 8, but the most frequently

occurring number of screenshots is 6, as shown in Figure 3.2. As a result, we decided to

set the number of temporal embeddings at 6 and 8 for our analysis. Note that we reported

any count above 30 was reported as 30 in our data presentation.

11

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Figure 3.3: Distribution of images by ratio of height to width

3.3.3 Input Image Ratio

For the screenshots, we have implemented variable resolution inputs. The method

of variable resolution inputs was introduced by Google in the paper: ”Pix2Struct: Screen­

shot Parsing as Pretraining for Visual Language Understanding” [12]. The image encoder

scales the input image to a predefined resolution, which is 224 by 224 in our case. This

process would distort the image input resolution because mobile screens are usually rect­

angles instead of squares, thus affecting the recognition of documents, UIs, and icons on

mobiles. To address this issue, we then show the steps to find the most appropriate resolu­

tion and the strategy to divide patches. The pre­trained model divides images into patches

of 16x16 pixels. When applied to a standard image size of 224x224 pixels, this results in

an arrangement of 14x14 patches, totaling 196 squares. To better accommodate the aspect

ratios of our dataset’s screenshots, we sought a configuration as close as possible to this

196­patch setup. We first counted the aspect ratio of all screenshots; the result is shown in

12

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Figure 3.4: The examples demonstrate different approaches to image resizing and patch
division. The upper figures are original figure and 9 by 5 grid figure. The lower figures
are resized square figure and 7 by 7 grid figure.

Figure 3.3 We found that most of the images’ ratios are 1.78, which is close to 1.8 or 9:5.

Other images have ratios equal to or greater than 2. Note that 9 multiplied by 5 equals 45,

which is the closest number to 49. By doubling the 9x5 ratio, we get 18 by 10 patches,

resulting in 180 patches, a close approximation to 196. We adjusted the input resolution

to 288x160 pixels by multiplying the number of patches (18 and 10) by the patch size of

16. This resolution accommodates the aspect ratios prevalent in our dataset while closely

aligning with the encoder’s capabilities. In Figure 3.4, we present the example figures.

13

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Chapter 4 Evaluation

4.1 Experiment Setting

We conducted all experiments on an Nvidia GeForce RTX 4090 GPU. We employed

the Android in the Wild [27] dataset, allocating 80% for training and 20% for validation.

Given the GPU’s memory constraints, we chose the smaller GIT­Base model from the two

versions proposed in the GIT model [35]. The image encoder was pre­trained [36] while

the text decoder was randomly initialized with six transformer blocks. The hidden dimen­

sion was 768, similar to BERT [6], and the model had 0.7 billion model parameters. We

utilized the Pytorch [23] framework. The batch size is 32. Under the standard settings,

including eight temporal embeddings and variable resolution inputs, the learning rate was

5e­5. In the dual learning rate scenario, the learning rate of the image encoder was 1e­5

while the text decoder and the temporal embeddings were 5e­5. The training utilized the

AdamW optimizer [20] with a weight decay of 1e­5 and a cosine decay to zero, including

a warm­up phase. Each configuration ran for three epochs. To assess the model’s perfor­

mance, we applied the BLEU­4, CIDEr, and ROUGE­L metrics[16, 21, 22], which are

commonly used in language generation tasks.

One critical issue was how to select six input screenshots for an episode. At first, we

randomly chose six screenshots, but soon realized that earlier screenshots were often irrel­

14

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

evant to the task, as shown in Figure A.1. After reviewing the original paper, we noticed

they reset the environment to a random starting screen for each episode. Consequently,

we selected the last six screenshots of an episode as our training inputs.

Another issue was that we found that the AITW dataset missed some of the screen­

shots in some episodes when we compared the generated captions to the screenshots.

The detailed examples can be found in Figure A.2 and A.3. Therefore, we deleted these

episodes, and Table 4.1 displays the number of remaining episodes after the deletion of

missing episodes. To verify the impact of this deletion, we have trained the standard set­

ting on a subset of AITW. The subset represented one­eightieth of the data in AITW,

reducing the training time. We compared performance between the original and modified

subsets using different learning rates. The best results were obtained at 5e­5, as shown in

Table 4.2. At optimal learning rates like 5e­5 and 2.5e­5, the model performed slightly

better on the modified subset. Notably, for other learning rates, the performance differed

significantly. For subsequent experiments, we utilized the modified AITW dataset.

Table 4.1: The numbers of deleted and remaining episodes.

Name Deleted Remaining (Episodes)

GOOGLE APPS 88,406 537,136
INSTALL 5,109 20,651

WEB SHOPPING 1,176 26,885
GENERAL 3,636 5,840

4.2 Result

We evaluated the proposed methods, dual learning rate, eight temporal embeddings,

and variable resolution inputs on the AITW dataset. Table 4.3 shows the results. Since

we could not find any relevant reference papers, we established the standard setting as the

15

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Table 4.2: The scores of normal and modified subset of AITW.

Learning Rate BLEU­4 CIDEr ROUGE­L

Original Subset

7.5e­5 49.5 41.0 60.3
5.0e­5 60.5 50.8 67.9
2.5e­5 59.5 50.0 67.4
1.0e­5 53.1 43.7 62.7

Modified Subset

7.5e­5 55.5 45.2 64.0
5.0e­5 61.1 50.1 68.7
2.5e­5 60.2 49.9 68.6
1.0e­5 58.5 47.7 67.1

baseline.

Table 4.3: The scores from applying a single method to the AITW dataset. For brevity,
we denote dual learning rate, variable resolution inputs, and eight temporal embeddings
as ” 2 LR”, ”Pix” and ”8 Img” respectively.

Method BLEU­4 CIDEr ROUGE­L

Standard 64.6 57.1 72.7
2 LR 66.7 58.5 73.8
Pix 64.3 56.6 72.4
8 Img 69.5 58.4 74.3

The dual learning rate setup, with 1e­5 for the image encoder and 5e­5 for the tem­

poral embeddings and the text decoder. The results suggest that different modules require

specific learning rates to achieve better performance. A lower learning rate is suitable for

the pre­trained module. The text decoder with a larger learning rate processes relatively

simple sentence templates from the AITW dataset effectively. In contrast, the image en­

coder deals with the more complex task of recognizing patterns in mobile screenshots,

which requires a finer adjustment.

The eight temporal embeddings significantly improved the BLEU­4 score and slightly

increased the CIDEr and ROUGE­L scores compared to the baseline, achieving the best

scores. We set the number of temporal embeddings from six to eight depending on the

16

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

average number of screenshots per episode. The possible reason why the BLEU­4 score

getting better is that the BLEU­4 score emphasizes the correct order of texts, while CIDEr

and ROUGE­L focus on the occurrence of texts in sentences. The increase in embeddings

likely enhanced the model’s ability to accurately construct the sentences by extracting

more visual information from the episodes. The choice of frames was another possible

factor for the higher performance on eight temporal embeddings. The current choice of

the latter frames is heuristic and requires further improvement. We leave this as future

work.

The variable resolution inputs lowered all scores relative to the baseline, indicating

that this method was ineffective in our experiments. A possible reason is that the reso­

lution changes did not improve the image encoder’s performance or optimize the model

weight utilization. The original input size was 224x224 pixels, totaling 50,176 pixels,

while our method used 288x160, totaling 46,080 pixels. This trade­off did not yield any

improvements. In the following section, we explore all combinations of our methods to

evaluate their effectiveness.

4.3 Ablation Study

Table 4.4 analyzes the importance of each method on the AITW dataset. When ap­

plying the dual learning rate, the image encoder’s learning rate was 1e­5 while the text

decoders and the temporal embeddings’ learning rates were 5e­5.

Eight temporal embeddings. This method’s score strongly improves compared to

the baseline and further enhances the outcomes when combined with variable resolution

inputs and dual learning rates. The result shows that eight temporal embeddings is themost

17

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

effective solution. Dual learning rate. Employing only the dual learning rate achieves

modest results. It improves the scores for the other two methods as well. Variable reso­

lution inputs. While this method alone is ineffective for this task, when combined with

all methods, it achieves the highest scores among all metrics.

Table 4.4: The ablation study on the AITW dataset. We refer to dual learning rate, variable
resolution inputs, and eight temporal embeddings as ’2 LR’, ’Pix’, and ’8 Img’ respectively
for simplicity.

Method BLEU­4 CIDEr ROUGE­L

Standard 64.6 57.1 72.7
2 LR 66.7 58.5 73.8
Pix 64.3 56.6 72.4
8 Img 69.5 58.4 74.3

2 LR + 8 Img 70.5 58.9 74.7
Pix + 8 Img 69.2 58.1 73.9
2 LR + Pix 66.1 58.1 73.8

2 LR + Pix + 8 Img 70.7 59.5 74.9

18

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Chapter 5 Conclusion

In this paper, we employ the GIT model to train on the AITW dataset, marking

the first application of high­level instructions and mobile screenshots in the video cap­

tioning domain. We conduct a comprehensive analysis of the AITW dataset and refine

it accordingly. Additionally, we explore three fine­tuning methods aimed at enhancing

model performance. The adjustment of temporal embeddings yields the most significant

improvement, whereas the dual learning rate method achieves a modest enhancement as

well. The variable resolution input, however, has minimal impact. These findings provide

a foundation for further research in mobile video captioning. We still have room for im­

provements, such as frame selection and additional module adjustments, which we leave

for future work.

19

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

References

[1] G. Baechler, S. Sunkara, M. Wang, F. Zubach, H. Mansoor, V. Etter, V. Cărbune,

J. Lin, J. Chen, and A. Sharma. Screenai: A vision­language model for ui and info­

graphics understanding. arXiv preprint arXiv:2402.04615, 2024.

[2] C. Bai, X. Zang, Y. Xu, S. Sunkara, A. Rastogi, J. Chen, and B. A. y Arcas. Uibert:

Learning generic multimodal representations for ui understanding. In International

Joint Conference on Artificial Intelligence, 2021.

[3] D. Chen and W. Dolan. Collecting highly parallel data for paraphrase evalua­

tion. In D. Lin, Y. Matsumoto, and R. Mihalcea, editors, Proceedings of the 49th

AnnualMeeting of theAssociation for Computational Linguistics: HumanLanguage

Technologies, pages 190–200, Portland, Oregon, USA, June 2011. Association for

Computational Linguistics.

[4] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for con­

trastive learning of visual representations. In H. D. III and A. Singh, editors,

Proceedings of the 37th International Conference on Machine Learning, volume 119

of Proceedings of Machine Learning Research, pages 1597–1607. PMLR, 13–18 Jul

2020.

[5] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li, J. Nichols, and

20

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

R. Kumar. Rico: A mobile app dataset for building data­driven design applications.

In Proceedings of the 30th Annual ACM Symposium on User Interface Software and

Technology, UIST ’17, page 845–854, New York, NY, USA, 2017. Association for

Computing Machinery.

[6] J. Devlin, M.­W. Chang, K. Lee, and K. Toutanova. BERT: Pre­training of deep

bidirectional transformers for language understanding. In J. Burstein, C. Doran,

and T. Solorio, editors, Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,

Minnesota, June 2019. Association for Computational Linguistics.

[7] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,

M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An

image is worth 16x16 words: Transformers for image recognition at scale. ICLR,

2021.

[8] Y. Goyal, T. Khot, D. Summers­Stay, D. Batra, and D. Parikh. Making the v in vqa

matter: Elevating the role of image understanding in visual question answering. In

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

6325–6334, Los Alamitos, CA, USA, jul 2017. IEEE Computer Society.

[9] K. He, X. Chen, S. Xie, Y. Li, P. Doll’ar, and R. B. Girshick. Masked autoencoders

are scalable vision learners. 2022 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 15979–15988, 2021.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

CVPR, 2016.

21

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

[11] D. Hendrycks, K. Lee, and M. Mazeika. Using pre­training can improve model

robustness and uncertainty. In K. Chaudhuri and R. Salakhutdinov, editors,

Proceedings of the 36th International Conference on Machine Learning, volume 97

of Proceedings ofMachine Learning Research, pages 2712–2721. PMLR, 09–15 Jun

2019.

[12] K. Lee, M. Joshi, I. Turc, H. Hu, F. Liu, J. Eisenschlos, U. Khandelwal, P. Shaw,

M.­W. Chang, and K. Toutanova. Pix2struct: Screenshot parsing as pretraining for

visual language understanding. arXiv preprint arXiv:2210.03347, 2022.

[13] J. Li, D. Li, C. Xiong, and S. C. H. Hoi. Blip: Bootstrapping language­image pre­

training for unified vision­language understanding and generation. In International

Conference on Machine Learning, 2022.

[14] Y. Li, J. He, X. Zhou, Y. Zhang, and J. Baldridge. Mapping natural language in­

structions to mobile ui action sequences. arXiv preprint arXiv:2005.03776, 2020.

[15] Y.­P. Y. Lik­Hang Lee and P. Hui. Perceived user reachability in mobile uis us­

ing data analytics and machine learning. International Journal of Human–Computer

Interaction, 0(0):1–24, 2024.

[16] C.­Y. Lin. ROUGE: A package for automatic evaluation of summaries. In Text

Summarization Branches Out, pages 74–81, Barcelona, Spain, July 2004. Associa­

tion for Computational Linguistics.

[17] T.­Y. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and

C. L. Zitnick. Microsoft coco: Common objects in context. In European Conference

on Computer Vision, 2014.

22

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

[18] E. Liner and R. Miikkulainen. Improving neural network learning through dual

variable learning rates. In 2021 International Joint Conference on Neural Networks

(IJCNN), pages 1–7, 2021.

[19] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin trans­

former: Hierarchical vision transformer using shifted windows. 2021 IEEE/CVF

International Conference on Computer Vision (ICCV), pages 9992–10002, 2021.

[20] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International

Conference on Learning Representations, 2019.

[21] G. Oliveira dos Santos, E. L. Colombini, and S. Avila. CIDEr­R: Robust consensus­

based image description evaluation. In W. Xu, A. Ritter, T. Baldwin, and

A. Rahimi, editors, Proceedings of the Seventh Workshop on Noisy User­generated

Text (W­NUT 2021), pages 351–360, Online, Nov. 2021. Association for Computa­

tional Linguistics.

[22] K. Papineni, S. Roukos, T. Ward, and W.­J. Zhu. Bleu: a method for automatic

evaluation of machine translation. In P. Isabelle, E. Charniak, and D. Lin, edi­

tors, Proceedings of the 40th Annual Meeting of the Association for Computational

Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA, July 2002. Associa­

tion for Computational Linguistics.

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Rai­

son, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Py­

torch: An imperative style, high­performance deep learning library. In Advances in

23

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Neural Information Processing Systems 32, pages 8024–8035. Curran Associates,

Inc., 2019.

[24] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,

A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable

visual models from natural language supervision. arXiv preprint arXiv:2103.00020,

2021.

[25] A. Radford and K. Narasimhan. Improving language understanding by generative

pre­training. In arxiv, 2018.

[26] V. Ramanathan, K. D. Tang, G. Mori, and L. Fei­Fei. Learning temporal embed­

dings for complex video analysis. 2015 IEEE International Conference on Computer

Vision (ICCV), pages 4471–4479, 2015.

[27] C. Rawles, A. Li, D. Rodriguez, O. Riva, and T. P. Lillicrap. Androidinthewild:

A large­scale dataset for android device control. In Thirty­seventh Conference on

Neural Information Processing Systems Datasets and Benchmarks Track, 2023.

[28] S. Ren, K. He, R. Girshick, and J. Sun. Faster r­cnn: Towards real­time object detec­

tionwith region proposal networks. In C. Cortes, N. Lawrence, D. Lee,M. Sugiyama,

and R. Garnett, editors, Advances in Neural Information Processing Systems, vol­

ume 28. Curran Associates, Inc., 2015.

[29] K. Simonyan and A. Zisserman:. Very deep convolutional networks for large­scale

image recognition. ICLR, 2015.

[30] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jegou. Training

data­efficient image transformers and distillation through attention. In M. Meila

24

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

and T. Zhang, editors, Proceedings of the 38th International Conference on Machine

Learning, volume 139 of Proceedings of Machine Learning Research, pages 10347–

10357. PMLR, 18–24 Jul 2021.

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser,

and I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio,

H.Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural

Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[32] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image

caption generator. In CVPR, pages 3156–3164. IEEE Computer Society, 2015.

[33] B. Wang, G. Li, X. Zhou, Z. Chen, T. Grossman, and Y. Li. Screen2Words: Au­

tomatic Mobile UI Summarization With Multimodal Learning. In The 34th Annual

ACM Symposium on User Interface Software and Technology. ACM, Oct. 2021.

[34] J. Wang, X. Hu, P. Zhang, X. Li, L. Wang, L. Zhang, J. Gao, and Z. Liu. Minivlm:

A smaller and faster vision­language model. ArXiv, abs/2012.06946, 2020.

[35] J. Wang, Z. Yang, X. Hu, L. Li, K. Lin, Z. Gan, Z. Liu, C. Liu, and L. Wang.

Git: A generative image­to­text transformer for vision and language. arXiv preprint

arXiv:2205.14100, 2022.

[36] L. Yuan, D. Chen, Y.­L. Chen, N. C. F. Codella, X. Dai, J. Gao, H. Hu, X. Huang,

B. Li, C. Li, C. Liu, M. Liu, Z. Liu, Y. Lu, Y. Shi, L.Wang, J.Wang, B. Xiao, Z. Xiao,

J. Yang, M. Zeng, L. Zhou, and P. Zhang. Florence: A new foundation model for

computer vision. ArXiv, abs/2111.11432, 2021.

25

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Appendix A — Examples

We provide several illustrative examples in this chapter. As described in the AITW

paper [27], each episode starts from a randomly selected screen. Upon observing many

contiguous episodes, we discovered that an episode might begin where another has ended.

Therefore, the starting screenshot is irrelevant to the task. Examples of random start

screenshots are depicted in Figure A.1.

One critical issue may affect the training is the missing episodes. When examining

the generated captions alongside the screenshots, we found that our model sometimes

generated correct captions but the screenshots contradicted the goal_info. This difference

may be attributed to some episodes lacking the latter screenshots, which contains the steps

displaying operations. Instances of episodes missing screenshots are shown in Figure A.2

and A.3.

We give one example for each of four categories in Figure A.4, A.5, A.6 and A.7.

The generated captions may be partially the same to the goal_info in these examples. We

would discuss the possible reasons and further solutions.

26

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Goal_info: check out phone information.
Figure A.1: Example 1 of random start episodes shows the first figure starting at the last
scene of the previous episode.

27

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Goal_info: turn off improve location accuracy.
Prediction : turn on improve location accuracy.

Figure A.2: Example 1 of missing episodes features our model accurately generating cap­
tions for scenes where a figure appears to be entering the ’improve location accuracy’
page. The episodes seems to miss a figure toggling off the button.

28

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Goal_info: open chrome and create a bookmark for the current page.
Prediction : read, delete, or share a saved page in the chrome app.

Figure A.3: Example 2 of missing episodes shows our model generating captions for
scenes where a figure appears to be opening the toolbar. The episodes seems to miss
the following steps.

29

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Goal_info: open app ” adobe acrobat reader ” (install if not already installed), go to
login, and select forgot password.

Prediction : open app ” adobe acrobat reader ” (install if not already installed) and go to
login screen.

Figure A.4: An example from the install category demonstrates the model’s ability to
predict visual information. However, the screenshots lack of actions related to ”forgot
password”.

30

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Goal_info: google the capital of canada.
Prediction : google the capital of panama.

Figure A.5: An example from the general category shows that the model recognizes the
query ’google the capital’ but fails to identify the specific location. Using an optical char­
acter recognition module might address this deficiency.

31

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Goal_info: when is my next appointment?
Prediction : do i have any events this weekend?

Figure A.6: An example from the google_apps category. The model predicts seeking for
the events, although there remains a slight semantic gap.

32

http://dx.doi.org/10.6342/NTU202401151

doi:10.6342/NTU202401151

Goal_info: add ” bose quietcomfort 35 ” to the cart on newegg. com, then select
checkout.

Prediction : search for bose quietcomfort 35 on newegg. com, select the first entry, and
add it to the cart.

Figure A.7: An example from the web shopping category shows that the model under­
stands the shopping steps and recognizes the specific product.

33

http://dx.doi.org/10.6342/NTU202401151

	Acknowledgements
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Related Work
	Vision Language Model
	Mobile Video Captioning

	Methodology
	Model Structure
	Data Preprocessing
	Scheme
	Dual Learning Rates
	Number of Temporal Embeddings
	Input Image Ratio

	Evaluation
	Experiment Setting
	Result
	Ablation Study

	Conclusion
	References
	Appendix A — Examples

