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Abstract

Modern processors expose architectural events to users via special profiling features.
Specifically, most architectures provide a performance monitoring unit (PMU) to record
and report hardware events. Besides, vendors like Intel support customized features like
Last Branch Record (LBR), which profiles the execution of branch instructions. Devel-
opers utilize these features to profile their programs’ execution and analyze performance.
As programs are increasingly deployed to virtual machines (VMs) running on the cloud,
commodity hypervisors expose virtual profiling hardware to VMs. However, the cur-
rent virtualization support incurs frequent VM exits to the hypervisor, causing significant
overhead to VMs using the profiling hardware. This thesis aims to optimize the virtual-
ization performance of hardware profiling features on Intel processors. We multiplex the
profiling hardware to safely enable direct access from the VM. Further, we pass through
interrupts generated by the profiling hardware to VMs to avoid traps caused by frequent

samplings. Evaluation of our prototype for the Linux KVM hypervisor shows that our
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approach significantly improved the virtualization performance of PMU.

Keywords: Profiling, Operating Systems, Virtualization, KVM
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Chapter 1 Introduction

Performance is a significant concern in software development. For instance, a web
developer aims to minimize server latency to enhance user experience. To optimize a
program’s performance, developers often profile it to analyze its execution. Modern pro-
cessors feature profiling hardware to log and report architectural events during execution.
Most architectures provide a Performance Monitoring Unit (PMU) [2, 8]. Further, hard-
ware vendors like Intel support customized profiling features, such as the Last Branch
Record (LBR) [10]. A developer can utilize the profiling hardware to acquire information
about software execution, such as the occurrence of last-level misses and branch mis-
prediction or the most recently executed branch instructions on the processor. Previous
work [14] leveraged architectural events exposed by the profiling hardware to recognize
program bottlenecks. Utility software such as the Linux perftool [11] and Intel Vtune [7]
has been introduced to assist users in configuring the profiling hardware and retrieving the

architectural profiling information.

There has been a growing shift of software deployments from in-house servers to
virtual machines (VMs) running on the cloud. To support profiling in the cloud VM en-
vironment, commodity hypervisors like Linux KVM [9] were extended to provide virtual
profiling hardware to VMs. Nevertheless, the current virtualization support incurs fre-

quent VM exits to the hypervisor, causing significant overhead to VMs using the profiling
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hardware. For example, KVM employs trap-and-emulate to virtualize VM access to the
PMU and traps performance monitoring interrupts (PMI) to the hypervisor. Additionally,
KVM implements complex operations to emulate PMU accesses and handle PMIs to en-
sure the physical resources of PMU are properly shared by every process on the host and
every virtual machine. This can drastically slow down the VM’s program to be profiled

and potentially lead to unstable or even inaccurate profiling results.

Previous works [5, 15] have attempted to optimize the virtualization performance of
PMU by granting VM direct access to the hardware. This allows VMs to configure the
PMU and retrieve profiling event states without trapping such accesses to the hypervisor.
However, these works did not optimize traps resulting from PMIs, the interrupts generated
by the profiling hardware. The hardware sends PMIs to notify the processor when an
event counter overflows to support interrupt-based sampling. PMIs are crucial because
the hardware will reset the counter to zero after the overflow. Upon receiving the PMI,
the software retrieves counters from the hardware and reset their values. Shortening the
delivery latency of PMIs leads to better accuracy in profiling results within a fixed time.
We found that PMI handling in KVM causes significant delivery latency to VMs, resulting

in poor profiling accuracy.

This thesis aims to optimize the virtualization performance of hardware profiling fea-
tures on KVM for Intel processors due to their wide adoption. Specifically, we focus on
reducing the virtualization overhead of PMU accesses and PMI while retaining functional-
ity and security. To optimize PMU virtualization, instead of employing trap-and-emulate,
we leverage a similar approach to previous work [5, 15] and allow VMs to directly access
the PMU. This eliminates most VM exits when profiling a program in VMs. We extended

KVM to multiplex the PMU states of VMs and the hypervisor host to ensure multiple
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entities can safely share and use the hardware. Further, we pass through PMIs to VMs
to avoid traps caused by frequent samplings. This allows VMs to handle PMIs without

hypervisor intervention. We ensure that PMIs are delivered to the intended entity.

We modified KVM in mainline Linux v6.9 to incorporate the proposed optimizations.
Evaluating our KVM prototype shows that the passthrough optimization reduced the cost
of micro-level operations that access the PMU by more than 20x and PMI delivery over-
head by 8x. Additionally, we ran Linux perf tool in a VM to profile the performance
of an Nginx server. We demonstrated that the optimized KVM significantly reduced the

sampling overhead, retaining the performance of the profiling workloads.

In summary, this thesis makes the following contributions: (1) we identify the sources
of profiling overhead in VMs in the current KVM implementation; the profiling overhead
primarily stems from the cost of KVM emulating VM accesses to PMU and handling
PMIs. (2) we introduce PMU and PMI passthrough to enhance virtualization performance

while preserving functionality and security.

The rest of the thesis will be organized as follows. We first discuss background
chapter 2, followed by design in chapter 3. Evaluation of our implementation will be
discussed in chapter 4. Related work and future work will be discussed in chapter 5 and

chapter 6 respectively. We conclude the thesis in chapter 7.
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Chapter 2 Background

2.1 Intel VMX

Intel introduced Virtual Machine Extension (VMX) to support unmodified virtual
machines. Intel VMX adds two orthogonal operation modes for CPU execution levels
(i.e., ring 0, 1, 2, 3): VMX root and non-root. The hypervisor executes in VMX root op-
eration to fully control the hardware and deprivileges VMs in VMX non-root operation,
where sensitive instructions, e.g., I/O instructions and read (RDMSR) or write (WRMSR)
to model-specific registers (MSRs) and events, such as external interrupts, cause the pro-
cessor to trap to the hypervisor in VMX root operation, a transition known as a VM exit.
The hypervisor handles VM exits and executes the VM entry instructions to resume the

VM.

Intel VMX incorporates an in-memory data structure called the Virtual Machine Con-
trol Structure (VMCS). VMCS contains the CPU states of the hypervisor host and VM in
the host and VM state area. When a hypervisor enters the VM, VMX saves the hypervi-
sor’s states in the host state area and restores the VM states to the hardware from the guest
state area. Contrarily, VMX saves VM states to the guest state area on a VM exit and
restores the host states from the VMCS to the hardware. Hypervisors associate a VMCS

for each virtual CPU (vCPU). Hypervisors configure VMCS’s VM control fields to con-
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trol the VM’s behaviors in the non-root operation. For instance, a hypervisor can grant a
VM the privilege to handle specific operations, such as exceptions, I/O instructions, and
external interrupts, without causing VM exits. Additionally, a hypervisor can configure a

VMCS to automatically load or store registers during VM entry and exit.

2.2 Intel Performance Monitoring Unit

Intel PMU is a per-CPU-core module with several programmable MSRs and perfor-
mance monitoring counters (PMCs). The latter counts the architectural events on the core.
The PMU includes two MSRs: [1A32 PERF GLOBAL CTRL (referred to as CTRL)
and IA32 PERF GLOBAL STATUS (referred to as STATUS), respectively, for soft-
ware to enable/disable and get the status of each PMC. A PMC also consists of two
MSRs, IA32 A PMCand IA32 PERFEVTSEL (referred to as EVTSEL).IA32 A PMC
includes the event count and a bit width value. A PMC overflow occurs when the event
count value of [A32 A PMC exceeds the bit width value. On the other hand, the software
programs the EVTSEL to enable or disable the associated PMC and specify the event type

and the privilege level (i.e., ring 0 or ring 1-3) where the event is to be counted.

2.3 Performance Monitoring Interrupt

The software programs EVTSEL to raise a performance monitoring interrupt when
[IA32 A PMC overflows. Upon receiving the PMI, the software reads the counter value,
resets the counter value and re-enables the counter after an overflow. The x86 processors
deliver the PMI as a non-maskable interrupt (NMI). Therefore, PMIs cannot be masked by
clearing the interrupt flag (IF) of the RFLAGS register; instead, the software can configure
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the local APIC to mask PMIs. If the hardware is configured to generate PMI, it sends a
signal to the local APIC to inform that a PMI should be delivered. When local APIC
receives the signal, it first checks whether the PMI is masked. If the PMI is not masked,
the local APIC obtains the delivery mode of the PMI, masks the subsequent PMIs, and

delivers the PMI to the processor.

2.4 Intel Last Branch Record

Intel Last Branch Record (LBR) is a per-CPU-core module that records recent branch
instructions to a set of MSRs. The LBR consists of several entries; each entry logs the
source and destination address of a taken branch instruction to MSR_ LBR FROM and
MSR _LBR TO. Current Intel processor implementations include no more than 32 LBR
entries. When all entries are used, LBR overwrites the least recently used entry with the
currently taken branch instruction information. This causes data loss if the software does
not retrieve the LBR record before the replacement. To resolve the issue, the software can
configure a PMC to generate a PMI before the hardware replaces an entry, allowing the

software to back up LBR records prior to replacement.

2.4.1 Performance Counters for Linux

The Performance Counters for Linux (PCL) is a kernel subsystem for performance
analysis in Linux. The PCL abstracts the underlying performance monitoring hardware
(PMU in our case) to a performance monitoring event (the perf event structure) and pro-
vides a complete framework that includes a perf _event open() system call, a PMI handler,

and supports context switching PMU hardware. In Linux, the software uses the profiling
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hardware via the PCL. If the software tries to access profiling hardware directly without
assistance of PCL, not only PMI would not be correctly handled but also the states of
PMU hardware would not be correctly saved and restored on context switch, resulting in

erroneous profiling result.

2.5 PMU and LBR Virtualization in KVM

KVM uses trap-and-emulate to virtualize VMs’ accesses to the PMU MSRs. It sets
up the VMCS to trap VMs’ MSR reads and writes to the profiling hardware to emulate
the MSR accesses. The accesses are then redirected to virtual PMU, which consists of
in-memory data structures recording the virtual states of PMU, e.g., the value of CTRL
and EVTSEL. KVM emulates the intended operation of an MSR access by analyzing and
matching its semantics. We list the recognized semantics and the associated emulation in

KVM.

* Write to PMU MSRs: KVM updates the MSR value to the virtual PMU.

« Start/Stop PMC: This is a special case for writing CTRL and EVTSEL. When a
VM writes CTRL or EVTSEL, KVM checks on the value of CTRL and EVTSEL.
If the virtual PMU is not associated to a perf event and the value of virtual CTRL
and EVTSEL indicates that a PMC is enabled, KVM registers a perf event to host
PCL and associate the perf event to the virtual PMU, which utilizes host PCL to
(1) setup PMU MSRs according to virtual PMU (2) save and restore the states PMU
MSR when the VM is context switched. Contrarily, if the virtual PMU is associated
to a perf _event and the value of virtual CTRL and EVTSEL indicates that a PMC

is disabled, KVM detach the perf event from the virtual PMU and deregisters the

7 doi:10.6342/NTU202403471



perf event.

* Read from PMU MSRs: KVM retrieves the MSR value from the virtual PMU and

returns the value to VMs.

* Read PMU counters: This is a special case for reading IA32 A PMC. If the virtual
PMU is associated to a perf event, KVM retrieves the value from the perf event

and updates the virtual PMU. Otherwise, KVM simply retrieves the value from the

virtual PMU.

The emulation incurs overhead to VMs’ accesses to the PMU MSRs. Even worse,
such MSR accesses occur frequently in PCL. Specifically, PCL reads and writes these

PMU MSRs when

* registering/deregistering a performance monitoring event
* reading/resetting the counter value and re-enabling the counter in the PMI handler

+ saving/restoring the state of PMU MSRs of a process

Consequently, profiling with PCL in VMs can be much slower than on bare metal.

PMI handling in KVM. A PMI causes VM exit when the processor is in VMX non-
root operation, and KVM eventually invokes the PMI handler from the host PCL to handle
the PMI. The handler invokes callbacks from KVM to update the virtual PMU. If KVM
decides that the VM should be interrupted by the events from the virtual PMU hardware,
it injects a virtual PMI into the VM. Eventually, the PMI handler from the guest PCL is

invoked to update the states of perf event in guest PCL. The whole PMI handling process
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in KVM involves the host PCL, guest PCL, and KVM, thus imposing significant overhead

compared to bare metal.

2.6 Non-maskable Interrupt

An NMl is a type of interrupt that users cannot disable or ignore using the processor’s
interrupt masking mechanisms (e.g., set the interrupt disable flag). In addition to PMIs,
the hardware could send NMlIs to signal critical events requiring high-priority handling

and trigger debugging and diagnosing.

NMIs can be generated by hardware. Some specialized hardware includes a watch-
dog timer that can be programmed to send NMIs to ensure the system remains alive and
responsive. If the watchdog timer expires, the system is considered down and the hard-
ware could take the configured actions such as rebooting the system. A typical example
is the Intelligent Platform Management Interface (IPMI), a hardware protocol that defines
interfaces for remote system management and monitoring independent of the monitored
machine. The IPMI watchdog timer includes a pre-timeout interrupt requesting the mon-

itored system dump the stack trace and other information for troubleshooting.

NMIs can also be generated by software. Specifically, the software could configure
local APIC to send an inter-processor interrupt (IPI) to target processors. Additionally, the
software could configure local APIC to specify the delivery mode of the IPI, while NMI is
one of the options. With this mechanism, the Linux kernel could send an NMI to request
target processors to dump their stack trace for troubleshooting. Furthermore, when the
Linux kernel receives the command to reboot or shut down, it might send an NMI to all

other processors to forcefully stop their execution.
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2.6.1 NMI Handling

In Linux, the kernel traverses the list of registered NMI handlers upon receiving an
NMI. Because there are lots of sources of NMIs, either software or hardware must provide
information about NMIs. Each NMI handler checks the information to identify an NMI’s
purpose before executing their underlying logic to handle the NMI. If an NMI is not regis-
tered by any registered NMI handlers, it is regarded as unknown. We provide a case study
for some common NMI handlers and their associated information checks found in Linux

kernel.

* The PMI handler checks a global counter maintained by PCL and STATUS. The
counter records the number of registered performance monitoring events in the ker-
nel, and STATUS shows which PMCs overflow. If there are no registered perfor-
mance monitoring events in the kernel or STATUS indicates that no PMC over-
flows, the PMI handler would not deem the NMI as a PMI and simply skip the real

handling logics.

» The NMI handlers to dump stack trace and stop CPU’s execution are similar. They
both checks a global bitmap maintained by Linux kernel. Before a kernel thread
sends NMI to target processors, it updates the bitmap so that only bits associated
with target processors are set. Upon receiving an NMI, the NMI handlers to dump
stack trace and stop CPU’s execution checks if the corresponding bit of current

processor is set in the bitmap. If not, they skip the underlying logics.

* The NMI handler for IPMI watchdog checks several software flags in the driver.

These software flags are set upon driver initialization and user command. Besides,

10 doi:10.6342/NTU202403471



there is a flag in IPMI hardware that indicates the occurrence of pre-timeout inter-

rupt. The software could consult the IPMI hardware about the flag.

2.6.2 NMI Blocking and PMI Masking

To avoid nested NMI, when an Intel processor receives an NMI, the following NMIs
will be blocked on that processor until an interrupt return instruction, /RET, is executed. In
Linux, preemption and interrupts are disabled until all NMI handlers complete their work,
ensuring the atomic execution of NMI handling due to the criticality of NMIs. After all
NMI handlers complete their work, an /RET is executed to return from the NMI handlers
and disable NMI blocking, allowing the processor to subsequently receive NMIs. Given

the atomicity of NMI handlers, NMI blocking is always disabled outside of NMI handlers.

As mentioned in section 2.3, the local APIC masks PMIs before raising them to the
processor. The PMI handler in PCL unmasks PMI after finishing its work. Similar to
NMI blocking, PMI masking is always disabled outside of the PMI handler since the PMI

handler is executed atomically.

Figure 2.1 illustrates the status of NMI and PMI in a scenario where a program causes
PMC overflows, subsequently triggering a PMI signal sent as an NMI. Upon receiving the
PMI, the hardware automatically blocks the NMI and masks the PMI from the processor
core. Once the PMI handler completes its task, it unmasks the PMI. Similarly, after all
NMI handlers have finished, the kernel executes the /RET instruction to unblock the NMI.
In Linux, the NMI handling process is atomic, ensuring that NMI blocking and PMI mask-

ing are always disabled when the software is running.
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PMU overflows, All NMI handlers

receives PMI PMI handler done done, IRET
A A A
CPU Program execution PMI handler Other NMI handlers Program execution
. No Yes Yes No
PMI masking : ; ' >
. No Yes No No
NMI blocking . . . >

Figure 2.1: Timeline of NMI blocking and PMI masking
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Chapter 3 Design

As mentioned in section 2.5, MSR accesses and PMI in virtual machines cause VM
exits. These VM exits and the subsequent KVM emulation work result in significant
overhead. Intuitively, the virtualization overhead can be reduced by eliminating the VM
exits and KVM’s emulation. This thesis proposes two techniques, MSR passthrough, and
NMI passthrough, to eliminate the VM exits due to MSR accesses and PMI handling to
optimize the performance of PMU virtualization. We ensure the optimizations preserve

the security and functionalities of the host and guest OS kernel.

3.1 MSR passthrough

As mentioned in section 2.5, KVM’s trap-and-emulate incurs significant overhead to
VMs’ accesses to PMU MSRs, which turns out to slow down profiling in VMs. To reduce
the overhead of such MSR accesses, we configure VMCS to allow VMs to access the
hardware’s PMU MSRs directly. Specifically, we clear corresponding bits for PMU MSRs
in the MSR bitmap in VMCS to disable VM exits caused by VMs executing RDMSR/

WRMSR against these MSRs.

MSR passthrough eliminates the MSR emulation overhead in KVM for managing

metadata and VM states. It allows the guest PCL to manage the PMU hardware. Un-

13 doi:10.6342/NTU202403471



like KVM, which registers performance monitoring events from the host PCL to facilitate
PMU virtualization, the host PCL is detached from the vCPU thread that uses the moni-
toring hardware when employing the MSR passthrough. This means the host PCL neither
saves nor restores PMU MSR states on the hardware when the host Linux context switches

the vCPU thread. Our design delivers two goals.

» P1: Isolate host and VM MSR states.

* P2: Minimize performance impact of the isolation mechanism.

To achieve P1, we extended KVM to context switch the hardware MSRs for PMU
between the host and VMs. The VMCS supports automatically context switching MSRs
between the host and VMs. Specifically, on a VM exit, Intel VMX saves the MSR states
from the hardware to the VMCS and restores the host MSR states from the VMCS to the
hardware; VMX performs the opposite operations on VM entries. On the evaluated Intel
hardware, more than 10 relevant MSRs must be saved when used by the VM and restored
when entering the VM. Relying on VMCS for context switching these MSRs could induce

significant performance overhead.

To ensure P2, we register callback functions to Linux’s preempt notifier to context
switch MSRs whenever Linux schedules in or out a vCPU thread. The sched out call-
back saves the VM’s MSR values from the hardware when a vCPU thread is to be sched-
uled out. The sched in callback restores the saved MSR values to the hardware when a
vCPU thread is to be scheduled. Deferring the context switch for performance monitor-
ing MSRs is feasible because the host or other vCPUs do not use the MSRs before they
are re-scheduled. Compared to the VMCS-based approach, the deferral-based approach

intuitively context switches MSRs only when the vCPU does not use the states or when
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the vCPU gets executed, thus resulting in better performance.

We defer context switching all PMU MSRs except for CTRL MSR, which we con-
figure the VMCS to save and restore on VM exits and entries. This is intended to isolate
the VM and the host’s PMU usage. We aim to prevent hardware events in the hypervisor
from affecting the PMU state (i.e., [A32 A PMC) accessed by the VM. If all MSR save
and restore are deferred, PMU will keep counting and recording after the VM exits. To
address the issue, we disable the PMU on a VM exit after VMCS performs the context
switch of CTRL. This ensures that the instructions executed in KVM do not affect the
PMU state and LBR records. Nevertheless, this renders profiling KVM with PMU impos-
sible. We deem it a reasonable trade-off as most users are unlikely to profile KVM when

VM actively profiles with MSR passthrough.

3.2 PMI passthrough

As mentioned in section 2.5, the PMI handling process in KVM brings significant
overhead. To optimize the performance of PMI handling, we disabled NMI exiting in the
VM execution control field of VMCS. We configured the NMI setting because, as men-
tioned earlier, PMIs are delivered as NMIs on Intel hardware. An NMI will not cause VM
exit when the processor is in VMX non-root operation. In other words, we pass through
the PMI to VMs, allowing them to handle the PMI without KVM’s intervention. Since the
virtual machine can handle NMI without VM exit, overhead exists in the original KVM

implementation, including running host NMI handlers and NMI injection are removed.

Our design ensures the following properties to safely enable PMI passthrough.
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* P1: NMIs are handled by the intended entity.

» P2: NMI states of an entity should not affect the states of other entities.

3.2.1 Property P1

As mentioned above, disabling NMI exit in VMCS grants the VM the privilege to
handle the NMI directly. However, since NMI is widely used in the operating system,
there is a risk that an NMI not intended for the VM could be mistakenly handled by it.
This misrouting can lead to functionality and security issues. We provide a case study
about various NMI usages from section 2.6. We discuss scenarios when the host NMIs
are being delivered to VMs and the potential side effects if this occurs. We then discuss

the mechanism we introduce to ensure property P1.

For PMIs delivered as NMIs, since we context-switch MSRs, the PMCs only function
after VM entry with MSR passthrough. Consequently, every PMI that arrives in VMX
non-root operation is always targeted at the guests. Therefore, it is impossible for a PMI
intended for the host to be mistakenly handled by the guest. However, other NMIs listed in
subsection 2.6.1 are prone to the misrouting. Hence, we propose 2 different mechanisms

to solve the issue.

We first assume that NMI passthrough is used by a cooperative and benign guest VM.
Developers who deploy applications or services to VMs may leverage NMI passthrough
to acquire profiling information. In a scenario in which a VM employs NMI passthrough
when a VM receives an unknown NMI, the NMI should be targeted at the host. Thus, we
expose a hypercall for VMs to invoke and inform KVM that they have received an un-

known NMI and to redirect the NMI back to the host. When KVM receives the hypercall,
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it invokes the NMI handlers in the host kernel to handle the NMI.

We also consider a non-cooperative or malicious guest VM which would not inform
KVM of the unknown NMI. Recall that each NMI handler checks the information in soft-
ware or hardware to identify an NMI’s purpose. We observe that these information are
cleared or reset only if the underlying logic of the associated NMI handler is executed.
For instance, only the NMI handler to dump stack trace would clear the bits in the bitmap
indicating the processors that should dump their stack trace. If a target processor somehow
misses the NMI, the associated bit is not cleared until it receives next NMI and executes
the underlying logics. Consequently, we could check these information in the host kernel
when some VMs enable NMI passthrough to identify if there are lost NMlIs intended for
the host. Once the host kernel detects lost NMIs by checking these information, it invokes
NMI handlers instantly in the host kernel to handle it. Moreover, these information are
either stored in the host kernel or hardware. The VMs could not access data in the host
kernel unless there are bugs in the host kernel. Accesses to the hardware, e.g., IPMI, are
typically accomplished by I/O instructions, which are intercepted by KVM by default.
That is, KVM is able to detect such hardware accesses and analyze the semantics. As a
result, the malicious guest VMs could not modify these information to confuse the host

kernel.

Performance Event Skid A Performance Event Skid [3] refers to the lag between the
occurrence of a performance event and the time it is observed or delivered to the targeted
entity (e.g., a CPU processor or monitoring software). The delivery of a PMI is an ex-
ample of a performance event skid. Specifically, a delay could exist between when a

PMC overflows and when a processor receives the PMI. This delay can cause issues in a

17 doi:10.6342/NTU202403471



PMU overflows, All NMI handlers

receives PMI VM exit VM entry PMI handler done done, IRET
A A A A A
G Program execution PMI handler PMI handler Other NMI handlersi Program execution
uest : : : : : >
: i Context switch Context switch
; A A ;
' ¢ KVM Other tasks ' KVM ' '
Host : : 1 : : : : >
PMI masking No Yes Yes Yes Yes Yes No No 5
. No Yes Yes Yes Yes Yes Yes No
NMI blocking >

Figure 3.1: Original timeline of NMI blocking and PMI masking with passthrough

virtualization context with NMI passthrough.

When a VM adopts NMI passthrough, all PMIs are expected to be sent to and handled
by the VM when PMC overflows result from hardware events during the VM’s execution.
However, we found that the host kernel sometimes receives NMIs intended for PMIs that
should be directed to VMs, thus reporting the receipt of unknown NMIs. This occurs be-
cause VM exits may happen within a performance event skid. For instance, an external
timer interrupt may arrive at the processor during a performance event skid of PMIs, caus-
ing a VM exit and resulting in the hypervisor or the host kernel receiving the PMI. The
host cannot handle the PMI because it is unaware of the VMs’ performance monitoring

events.

To resolve the issue of the host mistakenly receiving the PMI, we register an NMI
handler in the host kernel. This handler sets a flag to inform the KVM to inject a PMI into

the guest on the next VM entry.

3.2.2 Property P2

The diagram in Figure 3.1 shows that the status of NMI and PMI could be incorrectly

prolonged with NMI passthrough, violating P2. The design of NMI passthrough ensures
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PMU overflows, All NMI handlers

receives PMI VM exit VM entry PMI handler done done, IRET
A A A A A
G Program execution : PMI handler : i PMI handler ! Other NMI handlers : Program execution
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Context switch, Context switch, !
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Figure 3.2: Timeline of NMI blocking and PMI masking with passthrough after securing
P2

that P2 is preserved when NMIs and PMIs are raised to the processor when VMs employ
the mechanism are running. Specifically, we ensure these interrupts’ blocking or masking
states do not affect the host’s or other VMs’ execution. The diagram in Figure 3.2 shows
the status of NMI and PMI after P2 is secured. We discuss the detail of NMI and PMI

below.

NMI Blocking. As discussed in section 2.6, on Intel hardware, when an NMI is sent
to a processor, the hardware blocks subsequent NMIs from the processor until an /RET

instruction is executed.

KVM configures VMCS to enable NMI-exiting and intercepts all NMlIs sent to the
processor during VM execution by default. Upon receiving an NMI, KVM invokes NMI
handlers in the host Linux kernel and determines whether to inject an NMI into the VM.
The host Linux handles NMIs atomically, and thus NMI blocking is guaranteed to be
disabled after all NMI handlers in the host Linux kernel are finished. However, when
NMIs are routed directly to VMs with NMI passthrough, the guest kernel cannot handle
NMIs atomically. This is because, during the execution of a VM’s NMI handler, VM exits

can occur due to events like timer interrupts or the execution of sensitive instructions in
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NMI handlers, such as those performing memory-mapped I/Os. Since KVM must handle
these events, the trapping prolongs the duration that NMIs are blocked on the processor,
potentially causing NMI loss and compromising the host kernel’s profiling functionalities.
Due to NMI blocking, the host’s processes or threads that preempt the trapping vCPU

thread cannot receive PMIs. Consequently, the profiling result could be erroneous.

To resolve the issue caused by NMI blocking, we check the blocking by NMI bit in the
VMCS to identify whether NMI blocking is effective. If this bit is set, we unblock NMI by
executing the NMI unblock helper shown in Listing 1 in KVM outside an interrupt handler.
The helper executes IRET to unblock the NMI. In essence, IRET pops the return address,
code segment selector, RFLAGS, old stack pointer, and stack segment selector from the
stack and continues the execution. Directly executing this instruction could corrupt KVM
and lead to malfunction. Thus, we craft a fake interrupt stack to make /RET act as a NOOP
instruction; in other words, /RET causes no effect on the processor’s states after execution
except for NMI blocking. Also, NMI blocking is automatically re-enabled on VM entry
once blocking by NMI bit is set in the VMCS. Consequently, we could ensure that the

status of NMI blocking is same as before VM exit.

1 static void x86_unblock_nmi(void)

2 {

3 asm(

4 "movq %krsp, hkrax\n\t" // push updates rsp, save rsp first
5 "pushqg $0x18\n\t" // ss == 0z18
6 "pushq %%rax\n\t" // rsp

7 "pushfq\n\t" // rflags

8 "pushq $0x10\n\t" // cs == 0x10
9 "pushq $1f\n\t" // Tip

10 "iretq\n\t"

11 "1: nop\n\t"

12 :

13 :

14 ¢ "Yrax", "cc", "memory");

15 return;

16 }

Listing 1: NMI unblock helper
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PMI Masking. When PMIs are passed through to the VM, we must ensure the VM
can unmask them. This presents two challenges. First, VMs cannot unmask PMIs on
their own. Unmasking PMI requires an update to the local APIC on the hardware, which
cannot be done without a VM exit. On the other hand, KVM emulates APIC operations by
reflecting updates to a mocked APIC in memory; KVM does not update the local APIC
hardware. On KVM, VMs cannot unmask PMIs in the hardware’s local APIC. Since
PMI is masked, the processor cannot receive subsequent PMIs. To resolve this issue, we
modify the APIC emulation of KVM. If NMI passthrough is enabled and the VM attempts

to unmask PMI, KVM unmasks PMI in physical local APIC on behalf of the VM.

Second, similar to the issue of NMI blocking, interrupting the VM’s PMI handling
process delays unmasking PMIs with NMI passthrough and compromising functionalities
that depend on PMIs. To resolve the issue, we manually unmask PMI when a vCPU thread
is scheduled out, ensuring that PMI masking does not affect other tasks on the host. We
also record whether PMI was masked before the vCPU thread was scheduled out. If it was
masked, we re-mask PMI when the vCPU thread is scheduled back in. In summary, we
ensure that (1) PMI is always unmasked for other host tasks and (2) PMI remains masked

if it was masked on the last VM exit.

71 doi:10.6342/NTU202403471



Chapter 4 Evaluation

We added and modified 465 lines of C code to KVM in the mainline Linux v6.9 to

implement the proposed MSR passthrough and NMI passthrough.

4.1 Experimental Setup

All experiments are conducted on a physical machine with 2 Intel Xeon Silver 4114
10-core CPUs @2.20GHz and 192 GB DDR4 RAM. We use Ubuntu 20.04 with Linux
kernel v5.5.0 for host operating system for evaluation on bare metal. On the other hand,
we use Ubuntu 22.04 with Linux kernel v6.9 for host operating system and Ubuntu 20.04
with Linux kernel v5.5.0 for guest operating system for evaluation in virtual machines.
The virtual machines are launched by QEMU v8.0.0 with KVM acceleration. The vCPU
of the virtual machines are passthroughed from host, and the amount of vCPU is 2 in
the evaluation of subsection 4.3.1 and 1 for others, and the memory size of the virtual

machines is 4GB.
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Table 4.1: Consumed CPU Cycles for MSR Accesses. RO represents the MSR 1s read
only.

KVM Passthrough | Bare Metal
Read | Write | Read | Write | Read | Write
EVTSEL 3134 | 3200 | 143 | 219 107 186
[IA32 A PMC | 3128 | 3202 | 127 | 208 90 175
CTRL 3076 | 3134 | 123 168 87 134
STATUS 3120 | RO 122 | RO 87 RO

4.2 Performance

4.2.1 MSR Accesses

In this section, we show the elapsed cycles for a single RDMSR/WRMSR instruction
on PMU and LBR MSRs. We use KVM-unit-tests [4] to obtain elapsed cycles for RDM-
SR/WRMSR in a virtual machine. As for bare metal, we execute instructions identical to

KVM-unit-tests in a custom system call. The result is shown in Table 4.1.

In Table 4.1, we can see that KVM incurs a significant overhead for a virtual machine
to access PMU MSRs. The overhead mainly results from the trap-and-emulate process of
KVM. Moreover, it’s worth mentioning that both EVTSEL and CTRL are written to 0 in
the tests. In this case, KVM does not register or deregister any event to host PCL. That
is, the number of elapsed cycles would be much larger for KVM when the special case
of writing EVTSEL and CTRL mentioned in section 2.5 occurs because the emulation

process of KVM turns out to involve complex operations in host PCL.

On the other hand, with MSR passthrough and proper context switching of MSR,
a virtual machine can directly access PMU and LBR MSRs without KVM interposition,

which minimizes the overhead. On average, an MSR read/write operation takes 4.5%/
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7.1% of elapsed cycles of the original KVM implementation with MSR' passthrough,
which shows the effectiveness of MSR passthrough in reducing the overhead of MSR

accesses in a virtual machine.

4.2.2 Simple Program Using PCS

We measured the execution time of a simple program that uses PCL in VM and on
bare metal to show that MSR passthrough and NMI passthrough play a role in reducing
the overhead. Specifically, the program registers a performance monitoring event to count
branch instructions in ring 1-3 and runs an empty for loop with NNV iterations (i.e., N branch
instructions are executed). The performance monitoring event is configured to generate a

PMI every M branch instructions. Both M and N are adjustable. The program is expected

N
M

to receive +; PMIs during its execution. The code snippet is given in section A.1. We first
measured the execution time of the program without PMIs by setting M larger than N.
The execution time is approximately 0.2 ms both in VM and bare metal, and we deemed
this as the basic execution time of the program. The results are shown in Table 4.2. Note

that V is fixed to 100000 in this section.
Table 4.2: Execution Time of the Program Using PCL, N = 100000

Number of Only MSR | MSR + NMI
PMIs KVM Passzhrough Passthrough Bare Metal
M =200000 0 0.200 ms 0.200 ms 0.200 ms 0.200 ms
M =10000 10 0.510 ms 0.340 ms 0.271 ms 0.234 ms
M =1000 100 2.635 ms 1.281 ms 0.547 ms 0.406 ms
M =100 1000 24181 ms | 10.472 ms 3.276 ms 2.153 ms

In Table 4.2, we can see that the KVM adds considerable overhead to PMU vir-

tualization. On bare metal, handling 10/100/1000 PMIs incurs 0.034/0.206/1.953 ms of

overhead to the overhead. Handling 10/100/1000 PMIs in a VM governed by KVM incurs
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Table 4.3: Consumed CPU Cycles of a single VM exit.

KVM | NMI Passthrough | Overhead
CPUID instruction | 2981 3216 235 (7.9%)
VMCALL instruction | 2951 3174 223 (7.6%)
INL instruction 3221 3453 232 (7.2%)
OUTL instruction 3231 3464 233 (7.2%)

0.31/2.435/23.981 ms of overhead to the program, which is about 9.12/11.82/12.28 x of
the overhead on bare metal. As mentioned earlier, KVM uses trap-and-emulate to virtual-
ize VMs’ accesses to the PMU MSRs, adding significant overhead to profiling with PCL
in VMs. Since MSR passthrough allows VMs to access PMU MSRs directly, the overhead
of KVM is reduced by about 55% with MSR passthrough alone. In addition to PMU MSR
accesses, PMI handling in KVM also incurs significant overhead to PMU virtualization.
As mentioned earlier, a PMI causes VM exit, and KVM eventually invokes the PMI han-
dler from the host’ s PCL to handle the PMI. Subsequently, KVM injects a PMI to the VM,
and ultimately the PMI handler from the VM’s PCL is invoked. This lengthy PMI handling
process accounts for a great proportion of the overhead. With NMI passthrough, the PMI
handling process is simplified to invoking the PMI handler from the VM’s PCL. Compared
to enabling MSR passthrough alone, enabling MSR passthrough and NMI passthrough si-
multaneously reduces the overhead of handling 10/100/1000 PMI by 49.3%/67.9%/70.1%.
If compared to KVM, enabling MSR passthrough and NMI passthrough simultaneously
even reduces the overhead of handling 10/100/1000 PMI by 77.1%/85.7%/87.2%. In con-
clusion, we successfully reduced the profiling overhead in VMs with MSR passthrough

and NMI passthrough.
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4.2.3 VM Exit Overhead of NMI passthrough

In section 3.2, we propose several mechanisms to safely enable PMI passthrough,
some of which are enforced after every VM exit. In this section, we measure the overhead
results from these mechanisms. Specifically, the overhead below consists of the following

checks:

* NMI information
* Performance event skid

* NMI blocking

Note that PMI masking is not included because PMI masking is checked on context switch
instead of VM exit. We used KVM-unit-tests to obtain elapsed cycles of a single VM exit.

The result is shown in Table 4.3. The first column shows the reason of VM exit.

Table 4.3 shows that we add about 230 cycles to every VM exit to safely enable NMI
passthrough. Originally, KVM configures VMCS to enable NMI-exiting and intercepts
all NMI. The required works, e.g., unblock NMI, inject NMI to VMs, are guaranteed to
be carried out once an NMI arrives at the processor. Consequently, KVM does not need to
enforce these checks. On the contrary, since host could be unaware of arrival of an NMI,
enabling NMI passthrough could prevent host from taking correct action to handle an
NMI. Hence, we must enforce these checks to ensure the functionality of host. Although
these checks add overhead to VM exit, we consider it a reasonable trade-off given the
improvement on PMI handling. Moreover, it’s unnecessary to enable NMI passthrough
throughout a VM’s lifetime. It’s sufficient to enable NMI passthrough only when the VMs

need to perform profiling. In this case, we suggest the hypervisors expose a hypercall
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for the VMs to enable and disable NMI passthrough, removing the constant performance

downgrade.

4.3 Real-World Usage

Generally, any use case on bare metal is also feasible in a virtualized environment

with our work. In this section, we discuss on 2 possible real-world use cases.

4.3.1 Linux Perf Tool

An intuitive case is to use Linux perf tool [11] to profile and optimize programs in a
virtualized environment such as cloud. Thus, we experimented with simulating profiling

with the Linux perf tool in the cloud.

Simple Workload We crafted a simple workload which executes empty for loops with
different iterations in different functions and profile the workload with Linux Perf Tool.
The workload is shown in Listing 2. The execution time of each function is proportional
to the iterations executed by itself and all of its callees. For instance, function a() executes
2 x 108 iterations and calls function aa() which executes 10® iterations. The number of
iterations in the workload is 10°. Thus, the execution time that function a() accounts for
is W = 30%. We sampled the elapsed CPU cycles in ring 1-3 and capture stack

traces for the workload, which is further used to generate distribution of execution time.

We also measured the execution time of the workload with and without profiling.

As shown in Table 4.4 and Table 4.5, both KVM and passthrough can generate correct

profiling results. However, it costs 12.7% more overhead for KVM to finish the profiling.
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void a(void)

® 9 N L A LN~

void b(void)
9 void c(void)
10 int main() {

11 aQ; bO;

12 return O;

void aa(void)

void bb(void)

#define ITER 100000000
#define loop(x) for (int ¢ = 0; & < x; i1++)

{ loop(ITER); }

{ loop(2 * ITER);
void bbb(void) { loop(ITER); }

{ loop(2 * ITER);
{ loop(1 * ITER);

{ loop(3 * ITER); }

cQ);

aa(); %

bbb(); }
bb(); }

Listing 2: Source Code of the Simple workload

With passthrough optimization, profiling and optimization of a program is accelerated,

saving developers’ time. This also implies that KVM could generate incomplete or inac-

curate profiling result within the same time interval compared to passthrough optimization.

Nginx We run an nginx server in the virtual machine and profile the nginx worker pro-

cess by attaching the Linux perf tool to the nginx worker process. We sample the elapsed

CPU cycles in rings 1-3 with a frequency of 4000 Hz (i.e., approximately 4000 PMI will

be generated per second, which is the default frequency of Linux perf tool). Then, we use

wrk [13] to stress the nginx server for 30 seconds and obtain the throughput. We config-

ure wrk to use 1 threads and open 16 connections simultaneously. We run nginx and wrk

either in the same virtual machine for virtualized cases or in the same physical machine

for bare metal.

Table 4.4: Time Distribution of Each Function Generated by Linux Perf Tool

KVM | Passthrough | Bare Metal | Expected

a | 31.82% 31.26% 29.58% 30%
aa | 9.72% 9.82% 9.72% 10%
b | 39.02% 39.29% 39.59% 40%
bb | 29.27% 29.47% 29.14% 30%
bbb | 9.76% 9.81% 9.71% 10%
c |29.15% 29.44% 30.82% 30%
main | 100% 100% 100% 100%
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Table 4.5: Execution time of Crafted Workload

KVM | Passthrough | Bare Metal
Without Profiling | 2.36 s 2.36s 1.92s
With Profiling | 2.84 s 2.54s 2.06s
Overhead 20.3% 7.6% 7.3%

Table 4.6: Statistics of wrk Benchmark without Profiling

KVM Passthrough | Bare Metal
Average Latency 488.86 us | 494.02 us 417.52 us
Maximum Latency 3.80 ms 3.03 ms 2.76 ms
Requests per Second 32535.12 | 32120.10 36042.20
Transferred Data per Second | 2.45 GB 242 GB 2.72 GB

Table 4.6 shows the statistics of wrk benchmark without profiling. It’s worth men-
tioning that the throughput of our work is slightly lower than that of the original KVM
implementation. The main reason is that we enable MSR passthrough throughout the
lifetime of a vCPU, which requires MSR context switching and thus introducing a little

overhead (about 1.3%).

Table 4.7 shows the statistics of wrk benchmark with nginx worker process profiled
by Linux perf tool. Profiling nginx worker process in a virtual machine with the original
KVM implementation induces about 15.3% overhead, which results from abundant VM
exits due to MSR accesses and PMI and consequent emulation. As mentioned earlier,
such overhead could lead to incomplete or inaccurate profiling result within the same time

interval compared to bare metal and passthrough optimization. Also, such overhead can

Table 4.7: Statistics of wrk Benchmark with Linux Perf Tool Profiling

KVM Passthrough | Bare Metal
Average Latency 577.32us | 505.49 us 424.90 us
Maximum Latency 19.04 ms 4.08 ms 2.13 ms
Requests per Second 27573.13 | 31538.83 35943.40
Transferred Data per Second | 2.08 GB 2.38 GB 2.71 GB
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hinder real performance issue in the program if the program itself is quite latency-sensitive
and the profiling overhead results to a timeout. On the other hand, profiling nginx worker
process in a virtual machine with MSR and NMI passthrough induces only 1.8% overhead.
Although it’s still larger than the 0.3% overhead on bare metal, we eliminate VM exits
due to MSR accesses and PMI with MSR and NMI passthrough and significantly reduce
the profiling overhead caused by KVM emulation. This also implies that we reduce the
required time to generate reliable profiling result and the chance to reach the timeout of

the program compared to KVM.

In conclusion, we drastically reduces the overhead of profiling a program in a virtual
machine and generates stable and reliable profiling result in a virtual machine. Contrarily,
the original KVM implementation imposes significant overhead on profiling and could
generate less reliable profiling result and may even obscure the underlying performance

issues, which hinders the optimization progress in a virtual machine.

4.3.2 Fuzzing

Fuzzing refers to the process that provides random input data to a target program
and check if crash or memory leakage occurs. Recently, coverage-guided fuzzing, which
takes code coverage as a hint to generate input data, has been the mainstream of research
on fuzzing. [6] is a state-of-the-art coverage-guided fuzzer targeted at operating system
kernel. Based on [6], [12] moves the fuzzing process into a virtual machine and takes

advantage of virtual machine snapshot to accelerate kernel device driver fuzzing.

One common metric of code coverage is branch coverage, i.e., the taken branches di-

vided by the total branches, since more branch coverage means that more basic blocks are
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executed. From our perspectives, LBR can help and improve coverage-guided fuzzing.
First, it requires instrumentation to obtain code coverage of a program. However, instru-
mentation may be infeasible. Instrumentation inserts instructions to collect code coverage,
which enlarges program size. Ifthe disk size is limited, instrumentation should be avoided.
In this case, LBR would be a good alternative to instrumentation to collect branch cover-
age since it requires only MSR writes to enable LBR and MSR reads to obtain the branch
information. Besides, a coverage-guided fuzzer may also take LBR record as a metric in
addition to branch coverage. One main advantage of LBR is we can know the execution
order of each branch instructions, which is not shown by the branch coverage. The order
may help the fuzzer understand more about the execution of the target program and thus
the fuzzer can generate input data much more accurately, potentially enhancing the fuzzing
efficiency. Also, LBR logs more miscellaneous attributes of branch instructions such as
elapsed cycles, whether it’s a misprediction, etc., all of which provide more information
about the program execution to the fuzzer. Hence, we managed to enable LBR and obtain
complete LBR record for every executed system call with [12], which involves PMU and
LBR virtualization in ring 0. We port our work backward to v4.18.20 to match the ker-
nel version of [12]. Table 4.8 shows the number of executed test cases (i.e., system calls)
within 3 hours of Agamotto with and without LBR enabled of 7 kernel drivers. Since PMU
virtualization of v4.18.20 is much slower than that of v4.18.20 and LBR virtualization is

not supported in v4.18.20, we could not collect data for KVM.

As mentioned in section 2.4, we utilized PMU to generate a PMI every 32 taken
branch instructions to avoid LBR buffer from being overwritten by subsequent branch
instructions. We read LBR buffer and stored the content of LBR buffer in the kernel in

the guest PMI handler. We implemented an ioctl() handler in KVM to pass the content of
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Table 4.8: Number of Executed System Calls of Agamotto

%\/e\ Agamotto | Agamotto + LBR | Deduction
ar5523 7561 5624 1937 (25.6%)
btusb 8077 5889 2188 (27.1%)
go7007 7731 6243 1488 (19.2%)
pn533 7118 5774 1344 (18.9%)
181 7046 5571 1475 (20.1%)
s1470x 7452 5754 1698 (22.8%)
usx2y 7226 5587 1639 (22.7%)
Average Deduction ‘ 22.3%

LBR buffer from the VM to QEMU, which is required for [12]. As shown in Table 4.8, all
the operations above brought about 22.3% overhead in total to [12], which is acceptable
if the LBR record can help the fuzzer generate input data more accurately. Note that we
enabled LBR in every test case in the experiment, but it may be sufficient to enable LBR
only in a few test cases. For instance, enable LBR on test cases mutated from a test case
in the corpus since the execution flow would be very similar to the original one. Thus, the

overhead can be smaller if LBR is selectively enabled.

It’s also feasible to enable and collect LBR as a hint before the fuzzing process. A
common issue for fuzzing is that the fuzzer struggles to generate test cases to pass specific
branches, which limits the effectiveness of fuzzing. Thus, one may run the fuzzing process
on the initial corpus (i.e., test cases) with LBR enabled in advance to identify branches
that could hinder the fuzzing process so that the fuzzer can generate or mutate a test case

that passes the branch more efficiently with the information.
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4.4 Functionality and Security

In section 3.1 and section 3.2, we discussed properties to be secured to safely enable
MSR passthrough and NMI passthrough. We conducted several experiments to prove that
the properties are successfully secured. In this section, we discuss on the detail and the

result of the conducted experiments.

4.4.1 MSR passthrough

In section 3.1, we introduced 2 goals for MSR passthrough:

* P1: Isolate host and VM MSR states.

* P2: Minimize performance impact of the isolation mechanism.

Since P2 is not relevant to functionality, we would only discuss P1 here. We conducted
2 experiments to show that P1 is secured. In the first experiment, we launched 2 VMs
and forced them to run on the same physical CPU. We wrote an MSR involved in MSR
passthrough in the first VM and wrote the same MSR in the second VM. We then read the
MSR in the first VM. Without MSR context switching in section 3.1, the first VM read
the value written by the second VM, showing that the MSRs are not properly isolated and
multiplexed between multiple VMs. Contrarily, the first VM read the value written by
itself with MSR context switching in section 3.1, showing that we successfully isolate and

multiplex the MSRs between multiple VMs.

The second experiment is quite similar to the previous one, except that the second
VM is replaced by a host process. We performed identical steps to above and obtained the
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same result, showing that we also properly isolate and multiplex the MSRs between VMs

and host processes. In conclusion, we successfully secure P1.

4.4.2 NMI passthrough

In section 3.2, we introduced 2 properties that must be secured:

* P1: NMIs are handled by the intended entity.

» P2: NMI states of an entity should not affect the states of other entities.

In this section, we prove that both P1 and P2 are secured with our design.

P1. We conducted the following experiments to show that NMIs are handled by the
intended entity. In cases of performance event skid, we utilize guest PCL in the VM to
generate a fixed amount of PMIs. Originally, it’s possible for a PMI to be mistakenly
received by host due to performance event skid. In this case, the underlying logic of host
PMI handler may not be executed since host PCL is detached from the vCPU thread when
employing MSR passthrough, leaving PMI masked in local APIC. As a result, the VM
cannot receive subsequent PMIs. We observed that it is common for VMs to be impacted
by performance event skid. However, with our solution in section 3.2, we could correctly
detect performance event skid and inject NMI back to VMs, and VMs are never affected

by the performance event skid.

In cases of VMs mistakenly handling NMIs intended for host, we conducted exper-
iments to show that the problem is solvable for both benign and malicious VMs. In this

experiment, we used NMIs to dump stack trace as an example. We sent NMIs to dump
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stack trace to the processor that the VM ran on and checked if host could always detect
it. For benign VMs, we invoked the hypercall mentioned in section 3.2 when the VM
encounters an unknown NMI. For malicious VMs, we relied on NMI information checks
mentioned in section 3.2 after VM exit. Specifically, we checked the global bitmap indi-
cating the processors that should dump their stack trace and reported the occurrence of an
NMI if the associated bit of the processor that the VM ran on was set in the global bitmap.
As a result, our design successfully detects the NMIs to dump stack trace for both benign

and malicious VMs.

P2. We conducted the following experiments to show that the status of NMI blocking
and PMI masking matches to Figure 3.2. In cases of NMI blocking, we ran a VM and
utilize guest PCL to generate a PMI in the VM. We invoked a special hypercall in the
VM’s NMI handler to force a VM exit before the VM finishes all the NMI handlers. In
the special hypercall handler, we utilized host PCL to generate a PMI. The implementation
of the special hypercall handler is given in section A.2. Without invoking NMI unblock
helper in Listing 1, NMI is blocked when KVM is handling the hypercall (as KVM in
Figure 3.1). In this case, the processor could not receive the PMI, and the host PCL could
not update the counter value. Consequently, the host PCL gave a wrong counter value.
Contrarily, our design invokes NMI unblock helper in Listing 1 after VM exit if it detects
a VM exit within guest NMI handlers. In this case, the process received the PMI correctly,
and the host PCL updated the counter value in the PMI handler. As a result, the host PCL
gave the correct counter value, showing that we successfully avoid the NMI blocking from

being prolonged.

In cases of PMI masking, we ran a VM and pin the VM to a specific physical CPU.

35 doi:10.6342/NTU202403471



We ran another process, Pp,s, Which executed the program used in subsection 4.2.2 in
host with M = 10000, N = 100000000. We make N much larger compared to subsec-
tion 4.2.2 to prolong the execution time of Pp,s. As mentioned in subsection 4.2.2, Py,
is expected to receive % = 10000 PMIs. We forced P, to run on the same physical
CPU as the VM. After Py, started its execution, we masked PMI in the VM and waited

for Py, to complete its execution.

Without unmasking PMI during context switch, the status of PMI masking is similar
to Figure 3.1. Before PMI is masked by the VM, Py, could receive PMIs normally. After
that, PMI is masked for the remaining execution time of Py, (as other tasks in Figure 3.1),
preventing Py, from receiving subsequent PMIs. As a result, Py, received less than
10000 PMlIs. Contrarily, our design unmask PMI on context switch and the status of PMI
masking is similar to Figure 3.2. Therefore, PMI is unmasked throughout the execution of
Pros as Figure 2.1 shows. As a result, Py, could always receive 10000 PMIs, showing

that we successfully prevent the PMI masking from being prolonged.
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Chapter 5 Related Work

KVM [9], as a baseline of our implementation, has provided a trap-and-emulate
method to virtualize PMU MSR accesses, which incurs significant overhead in a virtual
machine. Additionally, PMI causes VM exit in KVM by default, which causes KVM
to invoke NMI handler in host kernel and then inject NMI to virtual machine. The PMI
handling process of KVM brings lots of overhead. On the other hand, our work manages
to reduce the overhead of PMU virtualization of KVM by simultaneously enabling MSR
passthrough and NMI passthrough, both of which makes impact on the performance of

using PMU in a virtual machine.

[5] implements MSR passthrough to accelerate PMU virtualization and proposes two
timing to context switch MSRs: (1) VM entry and VM exit (2) vCPU thread switch. The
former is achieved by VMCS as mentioned in section 3.1. The latter context switches
MSR values only when the KVM switches from one vCPU to another vCPU, which is to-
tally different from context switching MSR on process context switching (i.e., via Linux
preempt notifier or host PCL). Specifically, if a context switch occurs between a vCPU and
a host process, [5] does not context switch MSRs. In this case, the instructions executed
by host process affect the PMC counters. Consequently, the MSR states are not isolated
between host and VMs, violating P1 mentioned in section 3.1. Contrarily, our work con-

text switches CTRL by the VMCS and other MSRs by Linux preempt notifier, striking
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a balance between overhead and functionality. Additionally, [5] lacks performance com-
parison to the PMU virtualization of KVM, while we conduct a thorough experiment to
show the effectiveness of MSR passthrough against the KVM implementation. Also, PMI
handling process of [5] is identical to KVM. Thus, the overhead for PMI handling in [5]
is still considerable. On the other hand, our work implements NMI passthrough together
with MSR passthrough to further enhance the performance of PMU virtualization, which

brings significant performance improvement.

[15] also managed to accelerate PMU virtualization by MSR passthrough. Compared
to [5] and our work, [15] only context switches MSRs with VMCS (i.e., on every VM entry
and VM exit), which can incur more overhead than context switching MSR with Linux
preempt notifier as we do. Besides, [15] does not propose NMI passthrough to enhance the
performance of PMI handling. Instead, [15] configure local APIC so that PMI is delivered
as a maskable interrupt instead of an NMI before VM entry and implement a PMI handler
to inject PMI to the virtual machine. In this case, When a PMI (delivered as a maskable
interrupt) arrives in VMX non-root operation, VM exit occurs and KVM invoke the PMI
handler provided by [15]. As a result, KVM injects a PMI to guest, but the injected PMI is
delivered as an NMI. However, PMI still cause VM exit and requires KVM to inject PMI
in [15], while our work not only eliminates VM exit due to PMI but also spare the work

to inject a PMI.

[1] grants virtual machines power to handle maskable interrupts without VM exits.
Although the concept of [1] is similar to NMI passthrough, there are several key differ-
ences between maskable interrupt and NMI which causes different challenges for NMI
passthrough. Firstly, all NMI sources share a single interrupt handler. Unlike [1] can

determine each maskable interrupt should or should not cause VM exit by maintaining
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a shadow IDT, we cannot simply have PMI handled without VM exit while other NMI
sources still cause VM exit. Besides, there are no mechanisms to set the processor affinity
of NMI, and thus we cannot redirect critical NMlIs to a dedicated processor. Last but not
least, there are some additional side effects for NMI such as NMI blocking. In section 4.4,

we addressed these challenges and verified that our solutions are feasible.
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Chapter 6 Future Work

Fine-Grained MSR Passthrough Currently, we enable MSR passthrough throughout a
virtual machine’s lifetime, which introduces the demand to context switch MSRs and thus
a little overhead. It would be better to enable MSR passthrough in a more fine-grained

manner in three aspects: virtual machine, amount of MSR and time.

In terms of virtual machine, we can make whether to enable MSR passthrough a
parameter for virtual machine creation so that the VM which does not need to utilize
PMU can be free from the overhead of context switch MSRs. Moreover, as mentioned in
section 3.1, we cannot profile KVM with PMU with MSR passthrough. With the ability to
optionally enable MSR passthrough for a VM, we can choose to disable MSR passthrough

when we want to profile KVM.

In terms of amount of MSR, we can let VMs specify the MSRs to be passthroughed.
For instance, if a VM only needs to utilize one PMC within PMU, other PMC MSRs
within PMU should not be passthroughed. In this case, we reduce the amount of MSRs to

be context switched, lowering the overhead of MSR passthrough.

In terms of time, if MSR passthrough is enabled on demand like NMI passthrough,
we only need to context switch MSRs when MSR passthrough is enabled. Thus, context

switch MSR is only needed when the virtual machine is utilizing PMU, removing the un-
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necessary overhead when the virtual machine does not need to access PMU. However,
guest PCL performs several checks to obtain information about PMU when the guest ker-
nel is booting. If MSR passthrough is not enabled when guest is booting, some checks in
guest PCL may fail, preventing VMs from utilizing PMU and other profiling hardware.
Thus, it’s challenging to enable MSR passthrough in a fine-grained manner in terms of

time. We deem this a problem to be solved in future.

Alternative to NMI  Currently, we do not change the default delivery mode of PMI and
thus PMI is delivered as an NMI. Thus, we disable NMI-exiting in VMCS to reduce the
overhead of PMI. Given NMI is used for some critical condition, it’s an option to deliver
PMI as a maskable interrupt like [15] does. In this case, we can combine the effort of [1] to
passthrough only the vector of PMI. However, Linux kernel assumes that PMI is delivered
as an NMI. Thus, guest kernel must be modified to correctly handle PMI in this case. Also,
this removes the ability to profile the performance of interrupt handler since PMI cannot

be handled within an interrupt handler if it’s delivered as a maskable interrupt.
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Chapter 7 Conclusions

This thesis presents and implements MSR passthrough and NMI passthrough in KVM
v6.9 to enhance performance of KVM PMU virtualization. In essence, MSR passthrough
and NMI passthrough allow virtual machines to access PMU MSRs and handle PMIs
respectively, which significantly reduces the overhead of VM exits and complex emu-
lation due to accesses to PMU MSRs and PMI handling in virtual machines. Although
MSR passthrough and NMI passthrough brings several side effects which could lead to
functionality issues and security issues, we propose and implement solutions to these side
effects. With these solutions, MSR passthrough and NMI passthrough will not compro-
mise functionality and security of host and guest. Besides, we evaluate the performance
of MSR passthrough and NMI passthrough and compare the performance to the original
KVM implementation. As a result, we significantly improve the performance of accesses
to PMU MSRs and PMI handling in virtual machines and thus reduce the profiling over-
head in virtual machines. Additionally, we show the practicality of MSR passthrough and
NMI passthrough by profiling nginx in a virtual machine. Last but not least, we conduct

several experiments to verify the effectiveness our solutions to the side effects.
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A.1 Simple Program Using PCL
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Appendix A — Code Snippets For

Performance Analysis

#define M 100

#define N 100000

int perf_event_open(struct perf_event_attr *attr, pid_t pid, int cpu,

int

int

int group_fd, unsigned long flags)

return syscall(SYS_perf_event_open, attr, pid, cpu, group_fd, flags);

start_nmi_passthrough(void)

int ret;
asm volatile("vmcall" : "=a"(ret) : "a"(13));

return ret;

end_nmi_passthrough(void)

int ret;
asm volatile("vmcall" : "=a"(ret) : "a"(14));

return ret;

main() {

int perf_fd;

long long count;

struct timespec ts_start, ts_end, ts_diff;

struct perf_event_attr attr = {
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28 .type = PERF_TYPE_HARDWARE,

29 .size = sizeof(sturct perf_event_attr),

30 .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS,
31 .exclude_kernel = 1,

32 .disabled = 1,

33 .sample_period = M,

34 1

35

36 clock_gettime (CLOCK_MONOTONIC, &ts_start);

37 start_nmi_passthrough() ;

38 perf_fd = perf_event_open(&attr, 0, -1, -1, 0);
39 ioctl(perf_fd, PERF_EVENT_IOC_ENABLE, 0);

40 for (int i = 0; i < N; i++) {}

41 ioctl(perf_fd, PERF_EVENT_IOC_DISABLE, 0);

42 end_nmi_passthrough();

43 clock_gettime (CLOCK_MONOTONIC, &ts_end);

44 ts_diff = diff(ts_start, ts_end);

45 read(perf_fd, &count, sizeof (count));

46 printf("count = %11d, time = %1lds + %ldns\n", count, ts_diff.tv_sec, ts_diff.tv_nsec);
47 close(perf_£fd);

48 return O;

49 }

A.2 Hypercall to Test NMI Unblocking

1 static int hc_test_nmi_unblocking(void)

2 {

3 volatile int i;

4 u32 intr;

5 u64 value, enabled, running;

[3 struct perf_event *event;

7 struct perf_event_attr attr = {

8 .type = PERF_TYPE_HARDWARE,

9 .size = sizeof(sturct perf_event_attr),

10 .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS,
11 .exclude_user = 1,

12 .disabled = 1,

13 .sample_period = 1000

14 };

15

16 // Make sure NMI blocking is in effect

17 intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
18 assert(intr & GUEST_INSR_STATE_NMI);
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// Register sampling event

event = perf_event_create_kernel_counter(&attr, -1, current, NULL, NULL);
perf_event_enable(event) ;

for (i = 0; i < 1001; i++) {}

perf_event_disable(event);

value = perf_event_read_value(event, &enabled, &running);

pr_info("[Test NMI Unblock] count = %1llu\n", value);

return O;
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