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摘要

當今的處理器會透過特殊的性能分析硬體將架構相關的事件的資訊提供給使

用者。具體而言，大部分的處理器架構都有提供效能監測單位 (PMU)來記錄並且

回報硬體事件的資訊。此外，有些供應商亦會在處理器上提供其他專門的性能分

析功能，例如 Intel處理器提供的最後分支紀錄 (LBR)能夠提供最近執行的分支指

令的詳細資訊。軟體開發者可以利用這些處理器提供的功能來對自己的程式做性

能分析，並且根據分析的結果來優化程式。由於開發者越來越傾向於把程式部署

於雲端服務所提供的虛擬機器，主流的虛擬機器監測器會虛擬化這些性能分析硬

體，並且將虛擬的性能分析硬體提供給虛擬機器使用。然而，目前針對性能分析

硬體的虛擬化會導致虛擬機器頻繁的退出到虛擬機器監測器，這也大幅提升了在

虛擬機器中使用性能分析硬體的開銷。因此，這篇論文旨在優化 Intel處理器的性

能分析硬體的虛擬化的性能。我們在確保性能分析硬體被正確地多工複用的前提

下虛擬機器直接存取性能分析硬體。此外，我們也把性能分析硬體產生的中斷直

接傳遞給虛擬機器以降低頻繁取樣下造成的陷入。我們對我們在 Linux KVM虛擬

機器監測器上的實作原型進行評估，結果顯示我們能夠顯著地提高性能分析硬體

如 PMU的虛擬化效能。

關鍵字：性能分析、作業系統、虛擬化、KVM
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Abstract

Modern processors expose architectural events to users via special profiling features.

Specifically, most architectures provide a performance monitoring unit (PMU) to record

and report hardware events. Besides, vendors like Intel support customized features like

Last Branch Record (LBR), which profiles the execution of branch instructions. Devel-

opers utilize these features to profile their programs’ execution and analyze performance.

As programs are increasingly deployed to virtual machines (VMs) running on the cloud,

commodity hypervisors expose virtual profiling hardware to VMs. However, the cur-

rent virtualization support incurs frequent VM exits to the hypervisor, causing significant

overhead to VMs using the profiling hardware. This thesis aims to optimize the virtual-

ization performance of hardware profiling features on Intel processors. We multiplex the

profiling hardware to safely enable direct access from the VM. Further, we pass through

interrupts generated by the profiling hardware to VMs to avoid traps caused by frequent

samplings. Evaluation of our prototype for the Linux KVM hypervisor shows that our
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approach significantly improved the virtualization performance of PMU.

Keywords: Profiling, Operating Systems, Virtualization, KVM
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Chapter 1 Introduction

Performance is a significant concern in software development. For instance, a web

developer aims to minimize server latency to enhance user experience. To optimize a

program’s performance, developers often profile it to analyze its execution. Modern pro-

cessors feature profiling hardware to log and report architectural events during execution.

Most architectures provide a Performance Monitoring Unit (PMU) [2, 8]. Further, hard-

ware vendors like Intel support customized profiling features, such as the Last Branch

Record (LBR) [10]. A developer can utilize the profiling hardware to acquire information

about software execution, such as the occurrence of last-level misses and branch mis-

prediction or the most recently executed branch instructions on the processor. Previous

work [14] leveraged architectural events exposed by the profiling hardware to recognize

program bottlenecks. Utility software such as the Linux perf tool [11] and Intel Vtune [7]

has been introduced to assist users in configuring the profiling hardware and retrieving the

architectural profiling information.

There has been a growing shift of software deployments from in-house servers to

virtual machines (VMs) running on the cloud. To support profiling in the cloud VM en-

vironment, commodity hypervisors like Linux KVM [9] were extended to provide virtual

profiling hardware to VMs. Nevertheless, the current virtualization support incurs fre-

quent VM exits to the hypervisor, causing significant overhead to VMs using the profiling
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hardware. For example, KVM employs trap-and-emulate to virtualize VM access to the

PMU and traps performance monitoring interrupts (PMI) to the hypervisor. Additionally,

KVM implements complex operations to emulate PMU accesses and handle PMIs to en-

sure the physical resources of PMU are properly shared by every process on the host and

every virtual machine. This can drastically slow down the VM’s program to be profiled

and potentially lead to unstable or even inaccurate profiling results.

Previous works [5, 15] have attempted to optimize the virtualization performance of

PMU by granting VM direct access to the hardware. This allows VMs to configure the

PMU and retrieve profiling event states without trapping such accesses to the hypervisor.

However, these works did not optimize traps resulting from PMIs, the interrupts generated

by the profiling hardware. The hardware sends PMIs to notify the processor when an

event counter overflows to support interrupt-based sampling. PMIs are crucial because

the hardware will reset the counter to zero after the overflow. Upon receiving the PMI,

the software retrieves counters from the hardware and reset their values. Shortening the

delivery latency of PMIs leads to better accuracy in profiling results within a fixed time.

We found that PMI handling in KVM causes significant delivery latency to VMs, resulting

in poor profiling accuracy.

This thesis aims to optimize the virtualization performance of hardware profiling fea-

tures on KVM for Intel processors due to their wide adoption. Specifically, we focus on

reducing the virtualization overhead of PMU accesses and PMI while retaining functional-

ity and security. To optimize PMU virtualization, instead of employing trap-and-emulate,

we leverage a similar approach to previous work [5, 15] and allow VMs to directly access

the PMU. This eliminates most VM exits when profiling a program in VMs. We extended

KVM to multiplex the PMU states of VMs and the hypervisor host to ensure multiple

2
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entities can safely share and use the hardware. Further, we pass through PMIs to VMs

to avoid traps caused by frequent samplings. This allows VMs to handle PMIs without

hypervisor intervention. We ensure that PMIs are delivered to the intended entity.

Wemodified KVM inmainline Linux v6.9 to incorporate the proposed optimizations.

Evaluating our KVM prototype shows that the passthrough optimization reduced the cost

of micro-level operations that access the PMU by more than 20× and PMI delivery over-

head by 8×. Additionally, we ran Linux perf tool in a VM to profile the performance

of an Nginx server. We demonstrated that the optimized KVM significantly reduced the

sampling overhead, retaining the performance of the profiling workloads.

In summary, this thesis makes the following contributions: (1) we identify the sources

of profiling overhead in VMs in the current KVM implementation; the profiling overhead

primarily stems from the cost of KVM emulating VM accesses to PMU and handling

PMIs. (2) we introduce PMU and PMI passthrough to enhance virtualization performance

while preserving functionality and security.

The rest of the thesis will be organized as follows. We first discuss background

chapter 2, followed by design in chapter 3. Evaluation of our implementation will be

discussed in chapter 4. Related work and future work will be discussed in chapter 5 and

chapter 6 respectively. We conclude the thesis in chapter 7.

3
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Chapter 2 Background

2.1 Intel VMX

Intel introduced Virtual Machine Extension (VMX) to support unmodified virtual

machines. Intel VMX adds two orthogonal operation modes for CPU execution levels

(i.e., ring 0, 1, 2, 3): VMX root and non-root. The hypervisor executes in VMX root op-

eration to fully control the hardware and deprivileges VMs in VMX non-root operation,

where sensitive instructions, e.g., I/O instructions and read (RDMSR) or write (WRMSR)

to model-specific registers (MSRs) and events, such as external interrupts, cause the pro-

cessor to trap to the hypervisor in VMX root operation, a transition known as a VM exit.

The hypervisor handles VM exits and executes the VM entry instructions to resume the

VM.

Intel VMX incorporates an in-memory data structure called the VirtualMachine Con-

trol Structure (VMCS). VMCS contains the CPU states of the hypervisor host and VM in

the host and VM state area. When a hypervisor enters the VM, VMX saves the hypervi-

sor’s states in the host state area and restores the VM states to the hardware from the guest

state area. Contrarily, VMX saves VM states to the guest state area on a VM exit and

restores the host states from the VMCS to the hardware. Hypervisors associate a VMCS

for each virtual CPU (vCPU). Hypervisors configure VMCS’s VM control fields to con-

4
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trol the VM’s behaviors in the non-root operation. For instance, a hypervisor can grant a

VM the privilege to handle specific operations, such as exceptions, I/O instructions, and

external interrupts, without causing VM exits. Additionally, a hypervisor can configure a

VMCS to automatically load or store registers during VM entry and exit.

2.2 Intel Performance Monitoring Unit

Intel PMU is a per-CPU-core module with several programmable MSRs and perfor-

mance monitoring counters (PMCs). The latter counts the architectural events on the core.

The PMU includes two MSRs: IA32_PERF_GLOBAL_CTRL (referred to as CTRL)

and IA32_PERF_GLOBAL_STATUS (referred to as STATUS), respectively, for soft-

ware to enable/disable and get the status of each PMC. A PMC also consists of two

MSRs, IA32_A_PMC and IA32_PERFEVTSEL (referred to as EVTSEL). IA32_A_PMC

includes the event count and a bit width value. A PMC overflow occurs when the event

count value of IA32_A_PMC exceeds the bit width value. On the other hand, the software

programs the EVTSEL to enable or disable the associated PMC and specify the event type

and the privilege level (i.e., ring 0 or ring 1-3) where the event is to be counted.

2.3 Performance Monitoring Interrupt

The software programs EVTSEL to raise a performance monitoring interrupt when

IA32_A_PMC overflows. Upon receiving the PMI, the software reads the counter value,

resets the counter value and re-enables the counter after an overflow. The x86 processors

deliver the PMI as a non-maskable interrupt (NMI). Therefore, PMIs cannot be masked by

clearing the interrupt flag (IF) of the RFLAGS register; instead, the software can configure

5
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the local APIC to mask PMIs. If the hardware is configured to generate PMI, it sends a

signal to the local APIC to inform that a PMI should be delivered. When local APIC

receives the signal, it first checks whether the PMI is masked. If the PMI is not masked,

the local APIC obtains the delivery mode of the PMI, masks the subsequent PMIs, and

delivers the PMI to the processor.

2.4 Intel Last Branch Record

Intel Last Branch Record (LBR) is a per-CPU-core module that records recent branch

instructions to a set of MSRs. The LBR consists of several entries; each entry logs the

source and destination address of a taken branch instruction to MSR_LBR_FROM and

MSR_LBR_TO. Current Intel processor implementations include no more than 32 LBR

entries. When all entries are used, LBR overwrites the least recently used entry with the

currently taken branch instruction information. This causes data loss if the software does

not retrieve the LBR record before the replacement. To resolve the issue, the software can

configure a PMC to generate a PMI before the hardware replaces an entry, allowing the

software to back up LBR records prior to replacement.

2.4.1 Performance Counters for Linux

The Performance Counters for Linux (PCL) is a kernel subsystem for performance

analysis in Linux. The PCL abstracts the underlying performance monitoring hardware

(PMU in our case) to a performance monitoring event (the perf_event structure) and pro-

vides a complete framework that includes a perf_event_open() system call, a PMI handler,

and supports context switching PMU hardware. In Linux, the software uses the profiling

6
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hardware via the PCL. If the software tries to access profiling hardware directly without

assistance of PCL, not only PMI would not be correctly handled but also the states of

PMU hardware would not be correctly saved and restored on context switch, resulting in

erroneous profiling result.

2.5 PMU and LBR Virtualization in KVM

KVM uses trap-and-emulate to virtualize VMs’ accesses to the PMU MSRs. It sets

up the VMCS to trap VMs’ MSR reads and writes to the profiling hardware to emulate

the MSR accesses. The accesses are then redirected to virtual PMU, which consists of

in-memory data structures recording the virtual states of PMU, e.g., the value of CTRL

and EVTSEL. KVM emulates the intended operation of an MSR access by analyzing and

matching its semantics. We list the recognized semantics and the associated emulation in

KVM.

• Write to PMU MSRs: KVM updates the MSR value to the virtual PMU.

• Start/Stop PMC: This is a special case for writing CTRL and EVTSEL. When a

VM writes CTRL or EVTSEL, KVM checks on the value of CTRL and EVTSEL.

If the virtual PMU is not associated to a perf_event and the value of virtual CTRL

and EVTSEL indicates that a PMC is enabled, KVM registers a perf_event to host

PCL and associate the perf_event to the virtual PMU, which utilizes host PCL to

(1) setup PMUMSRs according to virtual PMU (2) save and restore the states PMU

MSR when the VM is context switched. Contrarily, if the virtual PMU is associated

to a perf_event and the value of virtual CTRL and EVTSEL indicates that a PMC

is disabled, KVM detach the perf_event from the virtual PMU and deregisters the

7
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perf_event.

• Read from PMU MSRs: KVM retrieves the MSR value from the virtual PMU and

returns the value to VMs.

• Read PMU counters: This is a special case for reading IA32_A_PMC. If the virtual

PMU is associated to a perf_event, KVM retrieves the value from the perf_event

and updates the virtual PMU. Otherwise, KVM simply retrieves the value from the

virtual PMU.

The emulation incurs overhead to VMs’ accesses to the PMU MSRs. Even worse,

such MSR accesses occur frequently in PCL. Specifically, PCL reads and writes these

PMU MSRs when

• registering/deregistering a performance monitoring event

• reading/resetting the counter value and re-enabling the counter in the PMI handler

• saving/restoring the state of PMU MSRs of a process

Consequently, profiling with PCL in VMs can be much slower than on bare metal.

PMI handling in KVM. A PMI causes VM exit when the processor is in VMX non-

root operation, and KVM eventually invokes the PMI handler from the host PCL to handle

the PMI. The handler invokes callbacks from KVM to update the virtual PMU. If KVM

decides that the VM should be interrupted by the events from the virtual PMU hardware,

it injects a virtual PMI into the VM. Eventually, the PMI handler from the guest PCL is

invoked to update the states of perf_event in guest PCL. The whole PMI handling process

8
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in KVM involves the host PCL, guest PCL, and KVM, thus imposing significant overhead

compared to bare metal.

2.6 Non-maskable Interrupt

AnNMI is a type of interrupt that users cannot disable or ignore using the processor’s

interrupt masking mechanisms (e.g., set the interrupt disable flag). In addition to PMIs,

the hardware could send NMIs to signal critical events requiring high-priority handling

and trigger debugging and diagnosing.

NMIs can be generated by hardware. Some specialized hardware includes a watch-

dog timer that can be programmed to send NMIs to ensure the system remains alive and

responsive. If the watchdog timer expires, the system is considered down and the hard-

ware could take the configured actions such as rebooting the system. A typical example

is the Intelligent PlatformManagement Interface (IPMI), a hardware protocol that defines

interfaces for remote system management and monitoring independent of the monitored

machine. The IPMI watchdog timer includes a pre-timeout interrupt requesting the mon-

itored system dump the stack trace and other information for troubleshooting.

NMIs can also be generated by software. Specifically, the software could configure

local APIC to send an inter-processor interrupt (IPI) to target processors. Additionally, the

software could configure local APIC to specify the delivery mode of the IPI, while NMI is

one of the options. With this mechanism, the Linux kernel could send an NMI to request

target processors to dump their stack trace for troubleshooting. Furthermore, when the

Linux kernel receives the command to reboot or shut down, it might send an NMI to all

other processors to forcefully stop their execution.

9
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2.6.1 NMI Handling

In Linux, the kernel traverses the list of registered NMI handlers upon receiving an

NMI. Because there are lots of sources of NMIs, either software or hardware must provide

information about NMIs. Each NMI handler checks the information to identify an NMI’s

purpose before executing their underlying logic to handle the NMI. If an NMI is not regis-

tered by any registered NMI handlers, it is regarded as unknown. We provide a case study

for some common NMI handlers and their associated information checks found in Linux

kernel.

• The PMI handler checks a global counter maintained by PCL and STATUS. The

counter records the number of registered performance monitoring events in the ker-

nel, and STATUS shows which PMCs overflow. If there are no registered perfor-

mance monitoring events in the kernel or STATUS indicates that no PMC over-

flows, the PMI handler would not deem the NMI as a PMI and simply skip the real

handling logics.

• The NMI handlers to dump stack trace and stop CPU’s execution are similar. They

both checks a global bitmap maintained by Linux kernel. Before a kernel thread

sends NMI to target processors, it updates the bitmap so that only bits associated

with target processors are set. Upon receiving an NMI, the NMI handlers to dump

stack trace and stop CPU’s execution checks if the corresponding bit of current

processor is set in the bitmap. If not, they skip the underlying logics.

• The NMI handler for IPMI watchdog checks several software flags in the driver.

These software flags are set upon driver initialization and user command. Besides,

10
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there is a flag in IPMI hardware that indicates the occurrence of pre-timeout inter-

rupt. The software could consult the IPMI hardware about the flag.

2.6.2 NMI Blocking and PMI Masking

To avoid nested NMI, when an Intel processor receives an NMI, the following NMIs

will be blocked on that processor until an interrupt return instruction, IRET, is executed. In

Linux, preemption and interrupts are disabled until all NMI handlers complete their work,

ensuring the atomic execution of NMI handling due to the criticality of NMIs. After all

NMI handlers complete their work, an IRET is executed to return from the NMI handlers

and disable NMI blocking, allowing the processor to subsequently receive NMIs. Given

the atomicity of NMI handlers, NMI blocking is always disabled outside of NMI handlers.

As mentioned in section 2.3, the local APIC masks PMIs before raising them to the

processor. The PMI handler in PCL unmasks PMI after finishing its work. Similar to

NMI blocking, PMI masking is always disabled outside of the PMI handler since the PMI

handler is executed atomically.

Figure 2.1 illustrates the status of NMI and PMI in a scenario where a program causes

PMC overflows, subsequently triggering a PMI signal sent as an NMI. Upon receiving the

PMI, the hardware automatically blocks the NMI and masks the PMI from the processor

core. Once the PMI handler completes its task, it unmasks the PMI. Similarly, after all

NMI handlers have finished, the kernel executes the IRET instruction to unblock the NMI.

In Linux, the NMI handling process is atomic, ensuring that NMI blocking and PMImask-

ing are always disabled when the software is running.

11



doi:10.6342/NTU202403471

Figure 2.1: Timeline of NMI blocking and PMI masking
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Chapter 3 Design

As mentioned in section 2.5, MSR accesses and PMI in virtual machines cause VM

exits. These VM exits and the subsequent KVM emulation work result in significant

overhead. Intuitively, the virtualization overhead can be reduced by eliminating the VM

exits and KVM’s emulation. This thesis proposes two techniques,MSR passthrough, and

NMI passthrough, to eliminate the VM exits due to MSR accesses and PMI handling to

optimize the performance of PMU virtualization. We ensure the optimizations preserve

the security and functionalities of the host and guest OS kernel.

3.1 MSR passthrough

As mentioned in section 2.5, KVM’s trap-and-emulate incurs significant overhead to

VMs’ accesses to PMUMSRs, which turns out to slow down profiling in VMs. To reduce

the overhead of such MSR accesses, we configure VMCS to allow VMs to access the

hardware’s PMUMSRs directly. Specifically, we clear corresponding bits for PMUMSRs

in the MSR bitmap in VMCS to disable VM exits caused by VMs executing RDMSR/

WRMSR against these MSRs.

MSR passthrough eliminates the MSR emulation overhead in KVM for managing

metadata and VM states. It allows the guest PCL to manage the PMU hardware. Un-
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like KVM, which registers performance monitoring events from the host PCL to facilitate

PMU virtualization, the host PCL is detached from the vCPU thread that uses the moni-

toring hardware when employing the MSR passthrough. This means the host PCL neither

saves nor restores PMUMSR states on the hardware when the host Linux context switches

the vCPU thread. Our design delivers two goals.

• P1: Isolate host and VM MSR states.

• P2: Minimize performance impact of the isolation mechanism.

To achieve P1, we extended KVM to context switch the hardware MSRs for PMU

between the host and VMs. The VMCS supports automatically context switching MSRs

between the host and VMs. Specifically, on a VM exit, Intel VMX saves the MSR states

from the hardware to the VMCS and restores the host MSR states from the VMCS to the

hardware; VMX performs the opposite operations on VM entries. On the evaluated Intel

hardware, more than 10 relevant MSRs must be saved when used by the VM and restored

when entering the VM. Relying on VMCS for context switching these MSRs could induce

significant performance overhead.

To ensure P2, we register callback functions to Linux’s preempt notifier to context

switch MSRs whenever Linux schedules in or out a vCPU thread. The sched_out call-

back saves the VM’s MSR values from the hardware when a vCPU thread is to be sched-

uled out. The sched_in callback restores the saved MSR values to the hardware when a

vCPU thread is to be scheduled. Deferring the context switch for performance monitor-

ing MSRs is feasible because the host or other vCPUs do not use the MSRs before they

are re-scheduled. Compared to the VMCS-based approach, the deferral-based approach

intuitively context switches MSRs only when the vCPU does not use the states or when
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the vCPU gets executed, thus resulting in better performance.

We defer context switching all PMU MSRs except for CTRL MSR, which we con-

figure the VMCS to save and restore on VM exits and entries. This is intended to isolate

the VM and the host’s PMU usage. We aim to prevent hardware events in the hypervisor

from affecting the PMU state (i.e., IA32_A_PMC) accessed by the VM. If all MSR save

and restore are deferred, PMU will keep counting and recording after the VM exits. To

address the issue, we disable the PMU on a VM exit after VMCS performs the context

switch of CTRL. This ensures that the instructions executed in KVM do not affect the

PMU state and LBR records. Nevertheless, this renders profiling KVMwith PMU impos-

sible. We deem it a reasonable trade-off as most users are unlikely to profile KVM when

VM actively profiles with MSR passthrough.

3.2 PMI passthrough

As mentioned in section 2.5, the PMI handling process in KVM brings significant

overhead. To optimize the performance of PMI handling, we disabled NMI exiting in the

VM execution control field of VMCS. We configured the NMI setting because, as men-

tioned earlier, PMIs are delivered as NMIs on Intel hardware. An NMI will not cause VM

exit when the processor is in VMX non-root operation. In other words, we pass through

the PMI to VMs, allowing them to handle the PMI without KVM’s intervention. Since the

virtual machine can handle NMI without VM exit, overhead exists in the original KVM

implementation, including running host NMI handlers and NMI injection are removed.

Our design ensures the following properties to safely enable PMI passthrough.
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• P1: NMIs are handled by the intended entity.

• P2: NMI states of an entity should not affect the states of other entities.

3.2.1 Property P1

As mentioned above, disabling NMI exit in VMCS grants the VM the privilege to

handle the NMI directly. However, since NMI is widely used in the operating system,

there is a risk that an NMI not intended for the VM could be mistakenly handled by it.

This misrouting can lead to functionality and security issues. We provide a case study

about various NMI usages from section 2.6. We discuss scenarios when the host NMIs

are being delivered to VMs and the potential side effects if this occurs. We then discuss

the mechanism we introduce to ensure property P1.

For PMIs delivered as NMIs, since we context-switchMSRs, the PMCs only function

after VM entry with MSR passthrough. Consequently, every PMI that arrives in VMX

non-root operation is always targeted at the guests. Therefore, it is impossible for a PMI

intended for the host to be mistakenly handled by the guest. However, other NMIs listed in

subsection 2.6.1 are prone to the misrouting. Hence, we propose 2 different mechanisms

to solve the issue.

We first assume that NMI passthrough is used by a cooperative and benign guest VM.

Developers who deploy applications or services to VMs may leverage NMI passthrough

to acquire profiling information. In a scenario in which a VM employs NMI passthrough

when a VM receives an unknown NMI, the NMI should be targeted at the host. Thus, we

expose a hypercall for VMs to invoke and inform KVM that they have received an un-

known NMI and to redirect the NMI back to the host. When KVM receives the hypercall,
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it invokes the NMI handlers in the host kernel to handle the NMI.

We also consider a non-cooperative or malicious guest VM which would not inform

KVM of the unknown NMI. Recall that each NMI handler checks the information in soft-

ware or hardware to identify an NMI’s purpose. We observe that these information are

cleared or reset only if the underlying logic of the associated NMI handler is executed.

For instance, only the NMI handler to dump stack trace would clear the bits in the bitmap

indicating the processors that should dump their stack trace. If a target processor somehow

misses the NMI, the associated bit is not cleared until it receives next NMI and executes

the underlying logics. Consequently, we could check these information in the host kernel

when some VMs enable NMI passthrough to identify if there are lost NMIs intended for

the host. Once the host kernel detects lost NMIs by checking these information, it invokes

NMI handlers instantly in the host kernel to handle it. Moreover, these information are

either stored in the host kernel or hardware. The VMs could not access data in the host

kernel unless there are bugs in the host kernel. Accesses to the hardware, e.g., IPMI, are

typically accomplished by I/O instructions, which are intercepted by KVM by default.

That is, KVM is able to detect such hardware accesses and analyze the semantics. As a

result, the malicious guest VMs could not modify these information to confuse the host

kernel.

Performance Event Skid A Performance Event Skid [3] refers to the lag between the

occurrence of a performance event and the time it is observed or delivered to the targeted

entity (e.g., a CPU processor or monitoring software). The delivery of a PMI is an ex-

ample of a performance event skid. Specifically, a delay could exist between when a

PMC overflows and when a processor receives the PMI. This delay can cause issues in a
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Figure 3.1: Original timeline of NMI blocking and PMI masking with passthrough

virtualization context with NMI passthrough.

When a VM adopts NMI passthrough, all PMIs are expected to be sent to and handled

by the VMwhen PMC overflows result from hardware events during the VM’s execution.

However, we found that the host kernel sometimes receives NMIs intended for PMIs that

should be directed to VMs, thus reporting the receipt of unknown NMIs. This occurs be-

cause VM exits may happen within a performance event skid. For instance, an external

timer interrupt may arrive at the processor during a performance event skid of PMIs, caus-

ing a VM exit and resulting in the hypervisor or the host kernel receiving the PMI. The

host cannot handle the PMI because it is unaware of the VMs’ performance monitoring

events.

To resolve the issue of the host mistakenly receiving the PMI, we register an NMI

handler in the host kernel. This handler sets a flag to inform the KVM to inject a PMI into

the guest on the next VM entry.

3.2.2 Property P2

The diagram in Figure 3.1 shows that the status of NMI and PMI could be incorrectly

prolonged with NMI passthrough, violating P2. The design of NMI passthrough ensures
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Figure 3.2: Timeline of NMI blocking and PMI masking with passthrough after securing
P2

that P2 is preserved when NMIs and PMIs are raised to the processor when VMs employ

the mechanism are running. Specifically, we ensure these interrupts’ blocking or masking

states do not affect the host’s or other VMs’ execution. The diagram in Figure 3.2 shows

the status of NMI and PMI after P2 is secured. We discuss the detail of NMI and PMI

below.

NMI Blocking. As discussed in section 2.6, on Intel hardware, when an NMI is sent

to a processor, the hardware blocks subsequent NMIs from the processor until an IRET

instruction is executed.

KVM configures VMCS to enable NMI-exiting and intercepts all NMIs sent to the

processor during VM execution by default. Upon receiving an NMI, KVM invokes NMI

handlers in the host Linux kernel and determines whether to inject an NMI into the VM.

The host Linux handles NMIs atomically, and thus NMI blocking is guaranteed to be

disabled after all NMI handlers in the host Linux kernel are finished. However, when

NMIs are routed directly to VMs with NMI passthrough, the guest kernel cannot handle

NMIs atomically. This is because, during the execution of a VM’s NMI handler, VM exits

can occur due to events like timer interrupts or the execution of sensitive instructions in
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NMI handlers, such as those performing memory-mapped I/Os. Since KVM must handle

these events, the trapping prolongs the duration that NMIs are blocked on the processor,

potentially causing NMI loss and compromising the host kernel’s profiling functionalities.

Due to NMI blocking, the host’s processes or threads that preempt the trapping vCPU

thread cannot receive PMIs. Consequently, the profiling result could be erroneous.

To resolve the issue caused byNMI blocking, we check the blocking by NMI bit in the

VMCS to identify whether NMI blocking is effective. If this bit is set, we unblock NMI by

executing theNMI unblock helper shown in Listing 1 in KVMoutside an interrupt handler.

The helper executes IRET to unblock the NMI. In essence, IRET pops the return address,

code segment selector, RFLAGS, old stack pointer, and stack segment selector from the

stack and continues the execution. Directly executing this instruction could corrupt KVM

and lead to malfunction. Thus, we craft a fake interrupt stack to make IRET act as aNOOP

instruction; in other words, IRET causes no effect on the processor’s states after execution

except for NMI blocking. Also, NMI blocking is automatically re-enabled on VM entry

once blocking by NMI bit is set in the VMCS. Consequently, we could ensure that the

status of NMI blocking is same as before VM exit.

1 static void x86_unblock_nmi(void)
2 {
3 asm(
4 "movq %%rsp, %%rax\n\t" // push updates rsp, save rsp first
5 "pushq $0x18\n\t" // ss == 0x18
6 "pushq %%rax\n\t" // rsp
7 "pushfq\n\t" // rflags
8 "pushq $0x10\n\t" // cs == 0x10
9 "pushq $1f\n\t" // rip
10 "iretq\n\t"
11 "1: nop\n\t"
12 :
13 :
14 : "%rax", "cc", "memory");
15 return;
16 }

Listing 1: NMI unblock helper
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PMI Masking. When PMIs are passed through to the VM, we must ensure the VM

can unmask them. This presents two challenges. First, VMs cannot unmask PMIs on

their own. Unmasking PMI requires an update to the local APIC on the hardware, which

cannot be done without a VM exit. On the other hand, KVM emulates APIC operations by

reflecting updates to a mocked APIC in memory; KVM does not update the local APIC

hardware. On KVM, VMs cannot unmask PMIs in the hardware’s local APIC. Since

PMI is masked, the processor cannot receive subsequent PMIs. To resolve this issue, we

modify the APIC emulation of KVM. If NMI passthrough is enabled and the VM attempts

to unmask PMI, KVM unmasks PMI in physical local APIC on behalf of the VM.

Second, similar to the issue of NMI blocking, interrupting the VM’s PMI handling

process delays unmasking PMIs with NMI passthrough and compromising functionalities

that depend on PMIs. To resolve the issue, we manually unmask PMI when a vCPU thread

is scheduled out, ensuring that PMI masking does not affect other tasks on the host. We

also record whether PMI was masked before the vCPU thread was scheduled out. If it was

masked, we re-mask PMI when the vCPU thread is scheduled back in. In summary, we

ensure that (1) PMI is always unmasked for other host tasks and (2) PMI remains masked

if it was masked on the last VM exit.

21



doi:10.6342/NTU202403471

Chapter 4 Evaluation

We added and modified 465 lines of C code to KVM in the mainline Linux v6.9 to

implement the proposed MSR passthrough and NMI passthrough.

4.1 Experimental Setup

All experiments are conducted on a physical machine with 2 Intel Xeon Silver 4114

10-core CPUs @2.20GHz and 192 GB DDR4 RAM. We use Ubuntu 20.04 with Linux

kernel v5.5.0 for host operating system for evaluation on bare metal. On the other hand,

we use Ubuntu 22.04 with Linux kernel v6.9 for host operating system and Ubuntu 20.04

with Linux kernel v5.5.0 for guest operating system for evaluation in virtual machines.

The virtual machines are launched by QEMU v8.0.0 with KVM acceleration. The vCPU

of the virtual machines are passthroughed from host, and the amount of vCPU is 2 in

the evaluation of subsection 4.3.1 and 1 for others, and the memory size of the virtual

machines is 4GB.
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Table 4.1: Consumed CPU Cycles for MSR Accesses. RO represents the MSR is read
only.

KVM Passthrough Bare Metal
Read Write Read Write Read Write

EVTSEL 3134 3200 143 219 107 186
IA32_A_PMC 3128 3202 127 208 90 175

CTRL 3076 3134 123 168 87 134
STATUS 3120 RO 122 RO 87 RO

4.2 Performance

4.2.1 MSR Accesses

In this section, we show the elapsed cycles for a single RDMSR/WRMSR instruction

on PMU and LBR MSRs. We use KVM-unit-tests [4] to obtain elapsed cycles for RDM-

SR/WRMSR in a virtual machine. As for bare metal, we execute instructions identical to

KVM-unit-tests in a custom system call. The result is shown in Table 4.1.

In Table 4.1, we can see that KVM incurs a significant overhead for a virtual machine

to access PMUMSRs. The overhead mainly results from the trap-and-emulate process of

KVM. Moreover, it’s worth mentioning that both EVTSEL and CTRL are written to 0 in

the tests. In this case, KVM does not register or deregister any event to host PCL. That

is, the number of elapsed cycles would be much larger for KVM when the special case

of writing EVTSEL and CTRL mentioned in section 2.5 occurs because the emulation

process of KVM turns out to involve complex operations in host PCL.

On the other hand, with MSR passthrough and proper context switching of MSR,

a virtual machine can directly access PMU and LBR MSRs without KVM interposition,

which minimizes the overhead. On average, an MSR read/write operation takes 4.5%/
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7.1% of elapsed cycles of the original KVM implementation with MSR passthrough,

which shows the effectiveness of MSR passthrough in reducing the overhead of MSR

accesses in a virtual machine.

4.2.2 Simple Program Using PCS

We measured the execution time of a simple program that uses PCL in VM and on

bare metal to show that MSR passthrough and NMI passthrough play a role in reducing

the overhead. Specifically, the program registers a performance monitoring event to count

branch instructions in ring 1-3 and runs an empty for loop withN iterations (i.e.,N branch

instructions are executed). The performance monitoring event is configured to generate a

PMI everyM branch instructions. BothM andN are adjustable. The program is expected

to receive N
M
PMIs during its execution. The code snippet is given in section A.1. We first

measured the execution time of the program without PMIs by setting M larger than N .

The execution time is approximately 0.2 ms both in VM and bare metal, and we deemed

this as the basic execution time of the program. The results are shown in Table 4.2. Note

that N is fixed to 100000 in this section.

Table 4.2: Execution Time of the Program Using PCL, N = 100000

Number of
PMIs KVM Only MSR

Passthrough
MSR + NMI
Passthrough Bare Metal

M = 200000 0 0.200 ms 0.200 ms 0.200 ms 0.200 ms
M = 10000 10 0.510 ms 0.340 ms 0.271 ms 0.234 ms
M = 1000 100 2.635 ms 1.281 ms 0.547 ms 0.406 ms
M = 100 1000 24.181 ms 10.472 ms 3.276 ms 2.153 ms

In Table 4.2, we can see that the KVM adds considerable overhead to PMU vir-

tualization. On bare metal, handling 10/100/1000 PMIs incurs 0.034/0.206/1.953 ms of

overhead to the overhead. Handling 10/100/1000 PMIs in a VM governed by KVM incurs
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Table 4.3: Consumed CPU Cycles of a single VM exit.

KVM NMI Passthrough Overhead
CPUID instruction 2981 3216 235 (7.9%)

VMCALL instruction 2951 3174 223 (7.6%)
INL instruction 3221 3453 232 (7.2%)
OUTL instruction 3231 3464 233 (7.2%)

0.31/2.435/23.981 ms of overhead to the program, which is about 9.12/11.82/12.28× of

the overhead on bare metal. As mentioned earlier, KVM uses trap-and-emulate to virtual-

ize VMs’ accesses to the PMU MSRs, adding significant overhead to profiling with PCL

in VMs. SinceMSR passthrough allows VMs to access PMUMSRs directly, the overhead

of KVM is reduced by about 55%with MSR passthrough alone. In addition to PMUMSR

accesses, PMI handling in KVM also incurs significant overhead to PMU virtualization.

As mentioned earlier, a PMI causes VM exit, and KVM eventually invokes the PMI han-

dler from the host＇s PCL to handle the PMI. Subsequently, KVM injects a PMI to the VM,

and ultimately the PMI handler from theVM’s PCL is invoked. This lengthy PMI handling

process accounts for a great proportion of the overhead. With NMI passthrough, the PMI

handling process is simplified to invoking the PMI handler from the VM’s PCL. Compared

to enabling MSR passthrough alone, enabling MSR passthrough and NMI passthrough si-

multaneously reduces the overhead of handling 10/100/1000 PMI by 49.3%/67.9%/70.1%.

If compared to KVM, enabling MSR passthrough and NMI passthrough simultaneously

even reduces the overhead of handling 10/100/1000 PMI by 77.1%/85.7%/87.2%. In con-

clusion, we successfully reduced the profiling overhead in VMs with MSR passthrough

and NMI passthrough.
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4.2.3 VM Exit Overhead of NMI passthrough

In section 3.2, we propose several mechanisms to safely enable PMI passthrough,

some of which are enforced after every VM exit. In this section, we measure the overhead

results from these mechanisms. Specifically, the overhead below consists of the following

checks:

• NMI information

• Performance event skid

• NMI blocking

Note that PMI masking is not included because PMI masking is checked on context switch

instead of VM exit. We used KVM-unit-tests to obtain elapsed cycles of a single VM exit.

The result is shown in Table 4.3. The first column shows the reason of VM exit.

Table 4.3 shows that we add about 230 cycles to every VM exit to safely enable NMI

passthrough. Originally, KVM configures VMCS to enable NMI-exiting and intercepts

all NMI. The required works, e.g., unblock NMI, inject NMI to VMs, are guaranteed to

be carried out once an NMI arrives at the processor. Consequently, KVM does not need to

enforce these checks. On the contrary, since host could be unaware of arrival of an NMI,

enabling NMI passthrough could prevent host from taking correct action to handle an

NMI. Hence, we must enforce these checks to ensure the functionality of host. Although

these checks add overhead to VM exit, we consider it a reasonable trade-off given the

improvement on PMI handling. Moreover, it’s unnecessary to enable NMI passthrough

throughout a VM’s lifetime. It’s sufficient to enable NMI passthrough only when the VMs

need to perform profiling. In this case, we suggest the hypervisors expose a hypercall
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for the VMs to enable and disable NMI passthrough, removing the constant performance

downgrade.

4.3 Real-World Usage

Generally, any use case on bare metal is also feasible in a virtualized environment

with our work. In this section, we discuss on 2 possible real-world use cases.

4.3.1 Linux Perf Tool

An intuitive case is to use Linux perf tool [11] to profile and optimize programs in a

virtualized environment such as cloud. Thus, we experimented with simulating profiling

with the Linux perf tool in the cloud.

Simple Workload We crafted a simple workload which executes empty for loops with

different iterations in different functions and profile the workload with Linux Perf Tool.

The workload is shown in Listing 2. The execution time of each function is proportional

to the iterations executed by itself and all of its callees. For instance, function a() executes

2 × 108 iterations and calls function aa() which executes 108 iterations. The number of

iterations in the workload is 109. Thus, the execution time that function a() accounts for

is 108+2×108

109
= 30%. We sampled the elapsed CPU cycles in ring 1-3 and capture stack

traces for the workload, which is further used to generate distribution of execution time.

We also measured the execution time of the workload with and without profiling.

As shown in Table 4.4 and Table 4.5, both KVMand passthrough can generate correct

profiling results. However, it costs 12.7% more overhead for KVM to finish the profiling.
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1 #define ITER 100000000
2 #define loop(x) for (int i = 0; i < x; i++)
3
4 void aa(void) { loop(ITER); }
5 void a(void) { loop(2 * ITER); aa(); }
6 void bbb(void) { loop(ITER); }
7 void bb(void) { loop(2 * ITER); bbb(); }
8 void b(void) { loop(1 * ITER); bb(); }
9 void c(void) { loop(3 * ITER); }
10 int main() {
11 a(); b(); c();
12 return 0;
13 }
14

Listing 2: Source Code of the Simple workload

With passthrough optimization, profiling and optimization of a program is accelerated,

saving developers’ time. This also implies that KVM could generate incomplete or inac-

curate profiling result within the same time interval compared to passthrough optimization.

Nginx We run an nginx server in the virtual machine and profile the nginx worker pro-

cess by attaching the Linux perf tool to the nginx worker process. We sample the elapsed

CPU cycles in rings 1-3 with a frequency of 4000 Hz (i.e., approximately 4000 PMI will

be generated per second, which is the default frequency of Linux perf tool). Then, we use

wrk [13] to stress the nginx server for 30 seconds and obtain the throughput. We config-

ure wrk to use 1 threads and open 16 connections simultaneously. We run nginx and wrk

either in the same virtual machine for virtualized cases or in the same physical machine

for bare metal.

Table 4.4: Time Distribution of Each Function Generated by Linux Perf Tool

KVM Passthrough Bare Metal Expected
a 31.82% 31.26% 29.58% 30%
aa 9.72% 9.82% 9.72% 10%
b 39.02% 39.29% 39.59% 40%
bb 29.27% 29.47% 29.14% 30%
bbb 9.76% 9.81% 9.71% 10%
c 29.15% 29.44% 30.82% 30%

main 100% 100% 100% 100%
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Table 4.5: Execution time of Crafted Workload

KVM Passthrough Bare Metal
Without Profiling 2.36 s 2.36 s 1.92 s
With Profiling 2.84 s 2.54 s 2.06 s
Overhead 20.3% 7.6% 7.3%

Table 4.6: Statistics of wrk Benchmark without Profiling

KVM Passthrough Bare Metal
Average Latency 488.86 us 494.02 us 417.52 us
Maximum Latency 3.80 ms 3.03 ms 2.76 ms
Requests per Second 32535.12 32120.10 36042.20

Transferred Data per Second 2.45 GB 2.42 GB 2.72 GB

Table 4.6 shows the statistics of wrk benchmark without profiling. It’s worth men-

tioning that the throughput of our work is slightly lower than that of the original KVM

implementation. The main reason is that we enable MSR passthrough throughout the

lifetime of a vCPU, which requires MSR context switching and thus introducing a little

overhead (about 1.3%).

Table 4.7 shows the statistics of wrk benchmark with nginx worker process profiled

by Linux perf tool. Profiling nginx worker process in a virtual machine with the original

KVM implementation induces about 15.3% overhead, which results from abundant VM

exits due to MSR accesses and PMI and consequent emulation. As mentioned earlier,

such overhead could lead to incomplete or inaccurate profiling result within the same time

interval compared to bare metal and passthrough optimization. Also, such overhead can

Table 4.7: Statistics of wrk Benchmark with Linux Perf Tool Profiling

KVM Passthrough Bare Metal
Average Latency 577.32 us 505.49 us 424.90 us
Maximum Latency 19.04 ms 4.08 ms 2.13 ms
Requests per Second 27573.13 31538.83 35943.40

Transferred Data per Second 2.08 GB 2.38 GB 2.71 GB
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hinder real performance issue in the program if the program itself is quite latency-sensitive

and the profiling overhead results to a timeout. On the other hand, profiling nginx worker

process in a virtual machine withMSR and NMI passthrough induces only 1.8% overhead.

Although it’s still larger than the 0.3% overhead on bare metal, we eliminate VM exits

due to MSR accesses and PMI with MSR and NMI passthrough and significantly reduce

the profiling overhead caused by KVM emulation. This also implies that we reduce the

required time to generate reliable profiling result and the chance to reach the timeout of

the program compared to KVM.

In conclusion, we drastically reduces the overhead of profiling a program in a virtual

machine and generates stable and reliable profiling result in a virtual machine. Contrarily,

the original KVM implementation imposes significant overhead on profiling and could

generate less reliable profiling result and may even obscure the underlying performance

issues, which hinders the optimization progress in a virtual machine.

4.3.2 Fuzzing

Fuzzing refers to the process that provides random input data to a target program

and check if crash or memory leakage occurs. Recently, coverage-guided fuzzing, which

takes code coverage as a hint to generate input data, has been the mainstream of research

on fuzzing. [6] is a state-of-the-art coverage-guided fuzzer targeted at operating system

kernel. Based on [6], [12] moves the fuzzing process into a virtual machine and takes

advantage of virtual machine snapshot to accelerate kernel device driver fuzzing.

One common metric of code coverage is branch coverage, i.e., the taken branches di-

vided by the total branches, since more branch coverage means that more basic blocks are
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executed. From our perspectives, LBR can help and improve coverage-guided fuzzing.

First, it requires instrumentation to obtain code coverage of a program. However, instru-

mentationmay be infeasible. Instrumentation inserts instructions to collect code coverage,

which enlarges program size. If the disk size is limited, instrumentation should be avoided.

In this case, LBR would be a good alternative to instrumentation to collect branch cover-

age since it requires only MSR writes to enable LBR and MSR reads to obtain the branch

information. Besides, a coverage-guided fuzzer may also take LBR record as a metric in

addition to branch coverage. One main advantage of LBR is we can know the execution

order of each branch instructions, which is not shown by the branch coverage. The order

may help the fuzzer understand more about the execution of the target program and thus

the fuzzer can generate input data muchmore accurately, potentially enhancing the fuzzing

efficiency. Also, LBR logs more miscellaneous attributes of branch instructions such as

elapsed cycles, whether it’s a misprediction, etc., all of which provide more information

about the program execution to the fuzzer. Hence, we managed to enable LBR and obtain

complete LBR record for every executed system call with [12], which involves PMU and

LBR virtualization in ring 0. We port our work backward to v4.18.20 to match the ker-

nel version of [12]. Table 4.8 shows the number of executed test cases (i.e., system calls)

within 3 hours of Agamotto with and without LBR enabled of 7 kernel drivers. Since PMU

virtualization of v4.18.20 is much slower than that of v4.18.20 and LBR virtualization is

not supported in v4.18.20, we could not collect data for KVM.

As mentioned in section 2.4, we utilized PMU to generate a PMI every 32 taken

branch instructions to avoid LBR buffer from being overwritten by subsequent branch

instructions. We read LBR buffer and stored the content of LBR buffer in the kernel in

the guest PMI handler. We implemented an ioctl() handler in KVM to pass the content of
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Table 4.8: Number of Executed System Calls of Agamotto

Driver Agamotto Agamotto + LBR Deduction
ar5523 7561 5624 1937 (25.6%)
btusb 8077 5889 2188 (27.1%)
go7007 7731 6243 1488 (19.2%)
pn533 7118 5774 1344 (18.9%)
rsi 7046 5571 1475 (20.1%)

si470x 7452 5754 1698 (22.8%)
usx2y 7226 5587 1639 (22.7%)

Average Deduction 22.3%

LBR buffer from the VM to QEMU, which is required for [12]. As shown in Table 4.8, all

the operations above brought about 22.3% overhead in total to [12], which is acceptable

if the LBR record can help the fuzzer generate input data more accurately. Note that we

enabled LBR in every test case in the experiment, but it may be sufficient to enable LBR

only in a few test cases. For instance, enable LBR on test cases mutated from a test case

in the corpus since the execution flow would be very similar to the original one. Thus, the

overhead can be smaller if LBR is selectively enabled.

It’s also feasible to enable and collect LBR as a hint before the fuzzing process. A

common issue for fuzzing is that the fuzzer struggles to generate test cases to pass specific

branches, which limits the effectiveness of fuzzing. Thus, one may run the fuzzing process

on the initial corpus (i.e., test cases) with LBR enabled in advance to identify branches

that could hinder the fuzzing process so that the fuzzer can generate or mutate a test case

that passes the branch more efficiently with the information.
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4.4 Functionality and Security

In section 3.1 and section 3.2, we discussed properties to be secured to safely enable

MSR passthrough and NMI passthrough. We conducted several experiments to prove that

the properties are successfully secured. In this section, we discuss on the detail and the

result of the conducted experiments.

4.4.1 MSR passthrough

In section 3.1, we introduced 2 goals for MSR passthrough:

• P1: Isolate host and VM MSR states.

• P2: Minimize performance impact of the isolation mechanism.

Since P2 is not relevant to functionality, we would only discuss P1 here. We conducted

2 experiments to show that P1 is secured. In the first experiment, we launched 2 VMs

and forced them to run on the same physical CPU. We wrote an MSR involved in MSR

passthrough in the first VM and wrote the same MSR in the second VM. We then read the

MSR in the first VM. Without MSR context switching in section 3.1, the first VM read

the value written by the second VM, showing that the MSRs are not properly isolated and

multiplexed between multiple VMs. Contrarily, the first VM read the value written by

itself with MSR context switching in section 3.1, showing that we successfully isolate and

multiplex the MSRs between multiple VMs.

The second experiment is quite similar to the previous one, except that the second

VM is replaced by a host process. We performed identical steps to above and obtained the
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same result, showing that we also properly isolate and multiplex the MSRs between VMs

and host processes. In conclusion, we successfully secure P1.

4.4.2 NMI passthrough

In section 3.2, we introduced 2 properties that must be secured:

• P1: NMIs are handled by the intended entity.

• P2: NMI states of an entity should not affect the states of other entities.

In this section, we prove that both P1 and P2 are secured with our design.

P1. We conducted the following experiments to show that NMIs are handled by the

intended entity. In cases of performance event skid, we utilize guest PCL in the VM to

generate a fixed amount of PMIs. Originally, it’s possible for a PMI to be mistakenly

received by host due to performance event skid. In this case, the underlying logic of host

PMI handler may not be executed since host PCL is detached from the vCPU thread when

employing MSR passthrough, leaving PMI masked in local APIC. As a result, the VM

cannot receive subsequent PMIs. We observed that it is common for VMs to be impacted

by performance event skid. However, with our solution in section 3.2, we could correctly

detect performance event skid and inject NMI back to VMs, and VMs are never affected

by the performance event skid.

In cases of VMs mistakenly handling NMIs intended for host, we conducted exper-

iments to show that the problem is solvable for both benign and malicious VMs. In this

experiment, we used NMIs to dump stack trace as an example. We sent NMIs to dump
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stack trace to the processor that the VM ran on and checked if host could always detect

it. For benign VMs, we invoked the hypercall mentioned in section 3.2 when the VM

encounters an unknown NMI. For malicious VMs, we relied on NMI information checks

mentioned in section 3.2 after VM exit. Specifically, we checked the global bitmap indi-

cating the processors that should dump their stack trace and reported the occurrence of an

NMI if the associated bit of the processor that the VM ran on was set in the global bitmap.

As a result, our design successfully detects the NMIs to dump stack trace for both benign

and malicious VMs.

P2. We conducted the following experiments to show that the status of NMI blocking

and PMI masking matches to Figure 3.2. In cases of NMI blocking, we ran a VM and

utilize guest PCL to generate a PMI in the VM. We invoked a special hypercall in the

VM’s NMI handler to force a VM exit before the VM finishes all the NMI handlers. In

the special hypercall handler, we utilized host PCL to generate a PMI. The implementation

of the special hypercall handler is given in section A.2. Without invoking NMI unblock

helper in Listing 1, NMI is blocked when KVM is handling the hypercall (as KVM in

Figure 3.1). In this case, the processor could not receive the PMI, and the host PCL could

not update the counter value. Consequently, the host PCL gave a wrong counter value.

Contrarily, our design invokes NMI unblock helper in Listing 1 after VM exit if it detects

a VM exit within guest NMI handlers. In this case, the process received the PMI correctly,

and the host PCL updated the counter value in the PMI handler. As a result, the host PCL

gave the correct counter value, showing that we successfully avoid the NMI blocking from

being prolonged.

In cases of PMI masking, we ran a VM and pin the VM to a specific physical CPU.
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We ran another process, PHost, which executed the program used in subsection 4.2.2 in

host with M = 10000, N = 100000000. We make N much larger compared to subsec-

tion 4.2.2 to prolong the execution time of PHost. As mentioned in subsection 4.2.2, PHost

is expected to receive N
M

= 10000 PMIs. We forced PHost to run on the same physical

CPU as the VM. After PHost started its execution, we masked PMI in the VM and waited

for PHost to complete its execution.

Without unmasking PMI during context switch, the status of PMI masking is similar

to Figure 3.1. Before PMI is masked by the VM,PHost could receive PMIs normally. After

that, PMI ismasked for the remaining execution time ofPHost (as other tasks in Figure 3.1),

preventing PHost from receiving subsequent PMIs. As a result, PHost received less than

10000 PMIs. Contrarily, our design unmask PMI on context switch and the status of PMI

masking is similar to Figure 3.2. Therefore, PMI is unmasked throughout the execution of

PHost as Figure 2.1 shows. As a result, PHost could always receive 10000 PMIs, showing

that we successfully prevent the PMI masking from being prolonged.
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Chapter 5 Related Work

KVM [9], as a baseline of our implementation, has provided a trap-and-emulate

method to virtualize PMU MSR accesses, which incurs significant overhead in a virtual

machine. Additionally, PMI causes VM exit in KVM by default, which causes KVM

to invoke NMI handler in host kernel and then inject NMI to virtual machine. The PMI

handling process of KVM brings lots of overhead. On the other hand, our work manages

to reduce the overhead of PMU virtualization of KVM by simultaneously enabling MSR

passthrough and NMI passthrough, both of which makes impact on the performance of

using PMU in a virtual machine.

[5] implements MSR passthrough to accelerate PMU virtualization and proposes two

timing to context switch MSRs: (1) VM entry and VM exit (2) vCPU thread switch. The

former is achieved by VMCS as mentioned in section 3.1. The latter context switches

MSR values only when the KVM switches from one vCPU to another vCPU, which is to-

tally different from context switching MSR on process context switching (i.e., via Linux

preempt notifier or host PCL). Specifically, if a context switch occurs between a vCPU and

a host process, [5] does not context switch MSRs. In this case, the instructions executed

by host process affect the PMC counters. Consequently, the MSR states are not isolated

between host and VMs, violating P1 mentioned in section 3.1. Contrarily, our work con-

text switches CTRL by the VMCS and other MSRs by Linux preempt notifier, striking
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a balance between overhead and functionality. Additionally, [5] lacks performance com-

parison to the PMU virtualization of KVM, while we conduct a thorough experiment to

show the effectiveness of MSR passthrough against the KVM implementation. Also, PMI

handling process of [5] is identical to KVM. Thus, the overhead for PMI handling in [5]

is still considerable. On the other hand, our work implements NMI passthrough together

with MSR passthrough to further enhance the performance of PMU virtualization, which

brings significant performance improvement.

[15] also managed to accelerate PMU virtualization byMSR passthrough. Compared

to [5] and our work, [15] only context switchesMSRswith VMCS (i.e., on every VM entry

and VM exit), which can incur more overhead than context switching MSR with Linux

preempt notifier as we do. Besides, [15] does not propose NMI passthrough to enhance the

performance of PMI handling. Instead, [15] configure local APIC so that PMI is delivered

as a maskable interrupt instead of an NMI before VM entry and implement a PMI handler

to inject PMI to the virtual machine. In this case, When a PMI (delivered as a maskable

interrupt) arrives in VMX non-root operation, VM exit occurs and KVM invoke the PMI

handler provided by [15]. As a result, KVM injects a PMI to guest, but the injected PMI is

delivered as an NMI. However, PMI still cause VM exit and requires KVM to inject PMI

in [15], while our work not only eliminates VM exit due to PMI but also spare the work

to inject a PMI.

[1] grants virtual machines power to handle maskable interrupts without VM exits.

Although the concept of [1] is similar to NMI passthrough, there are several key differ-

ences between maskable interrupt and NMI which causes different challenges for NMI

passthrough. Firstly, all NMI sources share a single interrupt handler. Unlike [1] can

determine each maskable interrupt should or should not cause VM exit by maintaining
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a shadow IDT, we cannot simply have PMI handled without VM exit while other NMI

sources still cause VM exit. Besides, there are no mechanisms to set the processor affinity

of NMI, and thus we cannot redirect critical NMIs to a dedicated processor. Last but not

least, there are some additional side effects for NMI such as NMI blocking. In section 4.4,

we addressed these challenges and verified that our solutions are feasible.
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Chapter 6 Future Work

Fine-GrainedMSR Passthrough Currently, we enable MSR passthrough throughout a

virtual machine’s lifetime, which introduces the demand to context switch MSRs and thus

a little overhead. It would be better to enable MSR passthrough in a more fine-grained

manner in three aspects: virtual machine, amount of MSR and time.

In terms of virtual machine, we can make whether to enable MSR passthrough a

parameter for virtual machine creation so that the VM which does not need to utilize

PMU can be free from the overhead of context switch MSRs. Moreover, as mentioned in

section 3.1, we cannot profile KVMwith PMUwith MSR passthrough. With the ability to

optionally enable MSR passthrough for a VM, we can choose to disable MSR passthrough

when we want to profile KVM.

In terms of amount of MSR, we can let VMs specify the MSRs to be passthroughed.

For instance, if a VM only needs to utilize one PMC within PMU, other PMC MSRs

within PMU should not be passthroughed. In this case, we reduce the amount of MSRs to

be context switched, lowering the overhead of MSR passthrough.

In terms of time, if MSR passthrough is enabled on demand like NMI passthrough,

we only need to context switch MSRs when MSR passthrough is enabled. Thus, context

switch MSR is only needed when the virtual machine is utilizing PMU, removing the un-
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necessary overhead when the virtual machine does not need to access PMU. However,

guest PCL performs several checks to obtain information about PMU when the guest ker-

nel is booting. If MSR passthrough is not enabled when guest is booting, some checks in

guest PCL may fail, preventing VMs from utilizing PMU and other profiling hardware.

Thus, it’s challenging to enable MSR passthrough in a fine-grained manner in terms of

time. We deem this a problem to be solved in future.

Alternative to NMI Currently, we do not change the default delivery mode of PMI and

thus PMI is delivered as an NMI. Thus, we disable NMI-exiting in VMCS to reduce the

overhead of PMI. Given NMI is used for some critical condition, it’s an option to deliver

PMI as a maskable interrupt like [15] does. In this case, we can combine the effort of [1] to

passthrough only the vector of PMI. However, Linux kernel assumes that PMI is delivered

as an NMI. Thus, guest kernel must be modified to correctly handle PMI in this case. Also,

this removes the ability to profile the performance of interrupt handler since PMI cannot

be handled within an interrupt handler if it’s delivered as a maskable interrupt.
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Chapter 7 Conclusions

This thesis presents and implementsMSRpassthrough andNMI passthrough inKVM

v6.9 to enhance performance of KVM PMU virtualization. In essence, MSR passthrough

and NMI passthrough allow virtual machines to access PMU MSRs and handle PMIs

respectively, which significantly reduces the overhead of VM exits and complex emu-

lation due to accesses to PMU MSRs and PMI handling in virtual machines. Although

MSR passthrough and NMI passthrough brings several side effects which could lead to

functionality issues and security issues, we propose and implement solutions to these side

effects. With these solutions, MSR passthrough and NMI passthrough will not compro-

mise functionality and security of host and guest. Besides, we evaluate the performance

of MSR passthrough and NMI passthrough and compare the performance to the original

KVM implementation. As a result, we significantly improve the performance of accesses

to PMU MSRs and PMI handling in virtual machines and thus reduce the profiling over-

head in virtual machines. Additionally, we show the practicality of MSR passthrough and

NMI passthrough by profiling nginx in a virtual machine. Last but not least, we conduct

several experiments to verify the effectiveness our solutions to the side effects.
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Appendix A — Code Snippets For

Performance Analysis

A.1 Simple Program Using PCL

1 #define M 100

2 #define N 100000

3 int perf_event_open(struct perf_event_attr *attr, pid_t pid, int cpu,

4 int group_fd, unsigned long flags)

5 {

6 return syscall(SYS_perf_event_open, attr, pid, cpu, group_fd, flags);

7 }

8

9 int start_nmi_passthrough(void)

10 {

11 int ret;

12 asm volatile("vmcall" : "=a"(ret) : "a"(13));

13 return ret;

14 }

15

16 int end_nmi_passthrough(void)

17 {

18 int ret;

19 asm volatile("vmcall" : "=a"(ret) : "a"(14));

20 return ret;

21 }

22

23 int main() {

24 int perf_fd;

25 long long count;

26 struct timespec ts_start, ts_end, ts_diff;

27 struct perf_event_attr attr = {
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28 .type = PERF_TYPE_HARDWARE,

29 .size = sizeof(sturct perf_event_attr),

30 .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS,

31 .exclude_kernel = 1,

32 .disabled = 1,

33 .sample_period = M,

34 };

35

36 clock_gettime(CLOCK_MONOTONIC, &ts_start);

37 start_nmi_passthrough();

38 perf_fd = perf_event_open(&attr, 0, -1, -1, 0);

39 ioctl(perf_fd, PERF_EVENT_IOC_ENABLE, 0);

40 for (int i = 0; i < N; i++) {}

41 ioctl(perf_fd, PERF_EVENT_IOC_DISABLE, 0);

42 end_nmi_passthrough();

43 clock_gettime(CLOCK_MONOTONIC, &ts_end);

44 ts_diff = diff(ts_start, ts_end);

45 read(perf_fd, &count, sizeof(count));

46 printf("count = %lld, time = %lds + %ldns\n", count, ts_diff.tv_sec, ts_diff.tv_nsec);

47 close(perf_fd);

48 return 0;

49 }

A.2 Hypercall to Test NMI Unblocking

1 static int hc_test_nmi_unblocking(void)

2 {

3 volatile int i;

4 u32 intr;

5 u64 value, enabled, running;

6 struct perf_event *event;

7 struct perf_event_attr attr = {

8 .type = PERF_TYPE_HARDWARE,

9 .size = sizeof(sturct perf_event_attr),

10 .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS,

11 .exclude_user = 1,

12 .disabled = 1,

13 .sample_period = 1000

14 };

15

16 // Make sure NMI blocking is in effect

17 intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);

18 assert(intr & GUEST_INSR_STATE_NMI);
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19

20 // Register sampling event

21 event = perf_event_create_kernel_counter(&attr, -1, current, NULL, NULL);

22 perf_event_enable(event);

23 for (i = 0; i < 1001; i++) {}

24 perf_event_disable(event);

25 value = perf_event_read_value(event, &enabled, &running);

26 pr_info("[Test NMI Unblock] count = %llu\n", value);

27

28 return 0;

29 }
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