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Abstract

In [LNS20], the authors designed two zero-knowledge protocols for integer relations.
The underlying rings of the two lattice-based protocols possess many CRT slots,
which has a negative effect on soundness error. One is for proving that the third
secret integer is the sum of two other secret integers, while the other is the mul-
tiplicative version. Based on the foundation laid by [LNP22], we construct two
zero-knowledge protocols dealing with the original problem without the previous
requirement for the underlying ring. Moreover, we generalize the addition protocol
from sum of two integers to sum of k integers, dependent of bits representing our
secret ones.

Keywords: Lattice-based zero-knowledge protocol for integer relations, ABDLOP

commitment scheme, Commit-and-prove protocol, MSIS, Extended-MLWE
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1 Introduction

For lattice-based cryptography, one of the fundamental hardness assumptions is

that finding a low-norm s such that

As=t (mod q) (I)

is computationally hard. In earlier times, Stern [Ste94] used a combinatorial algo-
rithm for exactly proving (I) to prove that ||s||o is bounded via exposing a ran-
dom permutation of s. However, the soundness of those protocols exploiting this
technique was 2/3, and thus, they had to repeat about 200 times to reach a negli-
gible soundness error. Repeating the protocol leads to more than 1 megabyte (e.g.
[LNSW13)) in proof size.

Another more algebraic method for exactly proving (0) is to make use of lattice-
based commitments and zero-knowledge proofs about committed values to show the
relation between the coefficients of s and a bound of [|s||«. The advent of such
kind of protocols (e.g. [BLS19, ESLL19]) reduced the proof size to the order of
a number of hundred kilobytes. The recent work of [ALS20, ENS20] created effi-
cient zero-knowledge proof systems for proving products of polynomials over a ring
and linear relationships among the CRT coefficients of committed values. Subse-
quently, [LNS20] building on [ALS20, ENS20] developed efficient zero-knowledge
proofs peculiarly designed for integer addition and multiplication respectively. Yet,
this approach has a potential factor to deter its efficiency. An incompatibility arises
due to the simultaneous need for the underlying ring to possess numerous CRT slots

and the requirement for the protocol to have a negligible soundness error. Therefore,
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a segment of the protocol must be reiterated to enhance soundness. Unlike the pre-
vious approach, [LNP22] proposed a lattice-based commitment scheme combining
the Ajtai [Ajt96] commitment scheme as well as BDLOP [BDL*18&] one. There is no
requirement for this protocol to recommit to s in Chinese Remainder Theorem form:;
hence we do not have a requirement having an impact on the soundness. Moreover,
not needing to commit s in the BDLOP way cuts down on the proof size.

In this paper, our main result is to design an efficient zero-knowledge protocol
building on [LNS2(, LNP22] for arbitrary sums of integer addition and multiplication
without requiring our underlying ring to have a lot of CRT slots, which theoretically
claimed to reduce the proof size and improve the efficiency of the protocol. On the
other hand, we reduce the number of polynomials to prove that a given element in
R, is indeed an integer dramatically by applying lemma , which improves the
efficiency for the prover.

In many real-world scenarios, both protocols for proving integer relations are
helpful. For instance, consider an online auction where all the auction participants
do not want to expose their own fortune in their accounts. The bidder wants to
purchase n; units of item ¢ at a price of p;. Since the final bidding price is dependent
on the bids of those who did not win, getting rid of invalid bids to prevent unnec-
essary price inflation is imperative. Thus, the participants should prove that their
accounts have more property than ) . n,-p;. In this situation, both of our protocols

that yield rather short and efficient proofs can be utilized.
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2 Preliminaries

2.1 Notation

Let ¢ = q1q2 . . . ¢, the product of distinct n odd primes where ¢; < ¢o < - -+ < qp,.
And let Z, be the ring of the rational integers modulo ¢ defined above. We write
7 € ZF and @ € Z’; to represent a vector over Z and a vector over the ring 7,
respectively. We utilize regular capital letters to denote matrices over Z or Z,. By
convention, vectors are considered as column vectors. Given two vectors u,v € R",
@ || U denotes the usual concatenation of @ and ¢. Given a distribution D, z < D
denotes that z is sampled from D. Similarly, given a set S, x <— S represents x is
sampled uniformly from the set S. [n] denotes the set {1,...n}.

Let d be a power of 2 and p be an natural number. We define R and R, as
Z[X]/(X%+1) and Z,[X]/(X?+1), respectively. In this paper, we employ lowercase
letters to signify elements in R or R,, while bold lowercase letters are employed to
indicate column vectors whose components lie in R or R,. Correspondingly, bold
uppercase letters are utilized to represent matrices with entries within these rings.
When considering a polynomial f € R (or R,), the vector f € Z (or Z,) denotes
the coefficient vector. As a convention, we often deem f € R, as a polynomial of
degree at most d — 1 in Z,. Consequently, we can express the i coefficient of the
polynomial as f; € Z,. For convenience, we sometimes denote f, by f . We define
the inner product in R*. For u,v € R, the notation (u,v) denotes Z?;Ol u; - v; € Z.
This inner product can be naturally extended to R*.

For w € Z,, ||w||~ denotes the absolute value in R of the unique representative r

of w where w = r (mod ¢) and [—2] < r < [Z]. Then, we can define £, and £, norms
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for element w = wy +w; X + -+ + wg_1 X' € R, as below:

lwlloe = max ffujllec,  lell, = NwollBe + - - [war [
It is nature to extend this norm from R, to w = (wy, ..., wy) € R’; via defining
1Wlloo = maxjuyllee, —[wll2 = \/HMH% + o [lwll3.

|w|| := ||w||2 by default. We represent S, = {f € Ry : || flloo <7}

2.2 Cyclotomic Rings

The group Aut(R) of automorphisms of the ring R is isomorphic to Z3, by

Zyy = Aut(R) : i oy,

where o; : X — X*. Assume that each prime factor ¢; factorizes into 2 prime ideals
of degree %l within the ring R. That is, X¢ + 1 = ¢1¢, (mod ¢;) with irreducible
polynomials ¢; of degree g. Moreover, we assume that 4 is the highest order of power

of 2 in Z,,, in other words, ¢; — 1 =4 (mod 8). Hence, we have

X4 1= (X2 - ()(X7 =) (modgy).

7

We utilize invertible criterion below following from [LNP22, Lemma 2.6].

Lemma 2.2.1. Let p, an odd prime, be congruent to 5 modulo 8. Consider any

c € R, satisfying o_1(c) = c. Then, c is invertible in R, if and only if ¢ # 0.
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By convention, we denote the set of invertible elements in ring R, as R;. The
lemma above asserts that for a given f € R, if o_1(f) = f and 0 < || flloc < @,

then f € R;.

2.3 Discrete Gaussian Distributions

We recall the discrete Gaussian distribution employed in the rejection sampling.

Definition 2.3.1. We define the discrete Gaussian distribution over R* centered at

¢ € RF with standard deviation s > 0 as

o llx—cl|?/25?

k —
Dey(x) = S e € WP
z

By default, we write D¥ to represent the distribution centered at 0 € R*.

Next, we introduce the lemma derived from [Ban93, Lemma 1.5(i)].

1—¢2

Lemma 2.3.2. Let z < D™ Then Prl||z]| > t - svV/md] < (te 2 )™,

2.4 Module-SIS and Module-LWE Problems

Definition 2.4.1 (MSIS, ,, 3). Given positive integers x,m and 0 < § < ¢. For a
given A « Ry*™, the Module-SIS problem, characterized by parameters x,m, and
B, involves the search for a vector x € R} such that Ax = 0 and 0 < []x|| < 8.

We say that a probabilistic polynomial time adversary A has advantage € in solving

M-SIS,. . 5 if

PrlAx =0 A 0 < [[x|| < B |A « Ry*™; x « A(A)] > e.
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Definition 2.4.2 (MLWE,, ,,). Let m and A be positive integers and x be an
error distribution over Rj". The Module-LWE problem with parameters m, A and
distribution x asks to distinguish (A, b) + Ry x R from (A, As + e) with A «
R;”X’\, secret vector s « x*, and e « y™. We say that a probabilistic polynomial-

time adversary A has advantage € in solving MLWE,, , , if

mxX\. m
| Pr[l < A((A,b)) |A + R b« R[] — Pr[l «

A((A As +e)) [A « RIPNs+ xy™Me+ x| >e

Now, we introduce a variant of the MLWE problem while using the same notation

as [LNP22].

Definition 2.4.3 ((simplified) Extended- MLWE,, , , ¢). The Extended-Module-
LWE problem with parameters m, A € N, distribution x over R,, challenge space
C C R,, and standard deviation s for discrete Gaussian distribution centered at
0 asks to distinguish (A, u,c,z,sign({(z,cr))) for A « RZ"X(m+’\), u« Ry, ¢« C,
and z « D™ from (A, Ar,c,z,sign((z, cr))) for A « Ry gecret vector
r— " c«C,and z « DémH), where sign(b) = 0 if b < 0 and 1 otherwise. Thus,
we say that a probabilistic polynomial-time adversary A has advantage € in solving

Extended-MLWE,, » .. if

|Pr[l « A(A,Ar,c,z,8) | A « R;”X(””’\);r e X"z DA e O]

Pr[l « A((A,u,c,2,8)) |A « RPN iq e Rz« DI e« C)| > e

with s = sign((z, cr))
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2.5 Rejection Sampling

The prover outputs a vector z with a distribution that must be independent of
the secret information or randomness r in a lattice-based zero-knowledge proof. In
this protocol, z is computed as y+cr, where y is a "masking” vector, ¢ « C denotes a
challenge polynomial, and r represents the secret vector or randomness employed for
prover’s commitments. To eliminate the dependence of z on r, we employ rejection

sampling.

Lemma 2.5.1 (Rejection Sampling [Lyul2],[LNS21]). Let W C R™ be a set of
polynomials with the norm not exceeding N, x be a probability distribution over W,

and a fixed standard deviation s =~ - N. The following two statements are true.

1. Let M = /1@ - Sample v < x and y < D™, compute z =y +v and run
b < Rej,(z,v,s) as defined in Figure 1. Then
(a) Prib=0] > (1 —-2712)/M.
(b) A(x x D™ F) < 27128 where F is the probability distribution for (v,z)

conditioned on b = 0.

2. Let M = /@), Sample v <= x and 'y < D',compute z =y + v and run
b < Rejy(z,v,s) as defined in Figure 1.
(a) Prib=0]>1/(2M).

(b) The distribution for (v,z) conditioned on b = 0 is indeed the probability
distribution P. P is set by sampling v < x as well as z <— D" that are

conditioned on (v,z) > 0, and then outputting (v, z).
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Rej, (z, v, s) Rejy(z, v, s)

1w+ [0,1) 1 If (z,v) <0

—2(a,v) 4 [Iv]|?
252

2 Ifu>4;-e 2:  return 1 (i.e. reject)

3:  return 1 (i.e. reject) 3: u<[0,1)
1 2emsiv?
4: Else 4 THu> ;e 22
5. return 0 (i.e. accept) 5. return 1 (i.e. reject)
6: Else

7. return 0 (i.e. accept)

Figure 1: Two rejection sampling algorithms: The sampling Rej; in [Lyul2] and the
other Rej, in [LNS21].

Consider how the parameters s and M are selected in the preceding lemma. To

be more precise, the repetition rate M is selected to serve as an upper bound for:

—2(x,v) + ||v|]? 28|v|| + [Iv]]?
= exp(2EVLEIVEY g (ZEIVLEIVE,

Note that we use the fact following from [Ban93],[Lyul2] that |(z,v)| < 14|v|| for
z <« D7". For rejection sampling Rej,(z,v,s), it requires z to satisfy (z,v) < 0, or

the protocol aborts. we can set M with this restriction as follows:

2.6 Challenge Space

The input of the rejection sampling used in protocol should be y <+ D¢ and

v = cr where challenge ¢ € R and secret r € Rg with notation defined in previous
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subsection. Thus, we need to choose the challenge space properly and provide an
upper bound for ||cr|| to set our deviation for two rejection samplings. The lemma

below following from [LNP22] gives a bound for cr.

Lemma 2.6.1. Letr € R™ and ¢ € R. Fiz any k, power of 2, we obtain ||cr| <
Vlloa(c®)ek ]y - ]l

Given a power-of-two k, we define the challenge space C, by this lemma, as the
set {c € S, : X/ lo_1(cF)ck][; <n Ao_i(c) = c}. To ensure the invertibility of the
difference between two challenges, we need £ < ¢;/2, which follows from Lemma
221, Furthermore, for attaining negligible error soundness relying on the MSIS

assumption, the cardinality of the challenge space |C| should be exponentially large.
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3 Proofs for Quadratic Relations

Before we start to introduce the protocol in this paper which originates from
[LNP22, Fig. 8], we say this protocol is a commit-and-prove protocol rather than a
zero knowledge protocol. Hence, we need to introduce the definition of a commit-

and-prove protocol.

3.1 Commit-and-prove Protocol

Definition 3.1.1. Let Ry be a polynomial-time verifiable relation consisting of

(ck,x,w). We call ck the commitment key, = the statement, and w the witness.

1. The language L. is a set where statement x € L if there is a witness w such

that (ck,z,w) € Ry.

2. Let A be the security parameter. A Commit-and-prove protocol is a quadruple
of algorithms (Gen, Com, Prove, Verify). We require that Gen and Com are

deterministic and that the other two algorithms are probabilistic.

« Gen(1?) : It outputs a commitment key ck. The commitment key ck iden-
tifies a randomness space R, a message space M., and a commitment
space Ce.

o Comep(m,r) : Com takes the commitment key ck, a message m, as well

as a randomness r as input and outputs a commitment ¢ € C.

o Proveg(z,((my,m1),...(my,r))) : Prove takes as input a commitment
key ck, a statement x and commitment openings m; € My, r; € R
such that (ck, z, (mq,...,m,) € Ry and the algorithm returns a proof 7.

o Verifyw(z,cr,...,cn,m) : It returns 0 (i.e. reject) or 1 (i.e. accept).

10 d0i:10.6342/NTU202400442



The protocol should satisfy three properties: correctness, knowledge sound-

ness, and simulatability.

Definition 3.1.2 (Correctness). A commit-and-prove protocol proves statistical

correctness with correctness error p: N — [0, 1] if for all adversaries A :

Pr [ck‘ — Gen(l’\); (x,mq, 71, .. sy, 1) < A(ck); ¢; = Come(my;1;);

7« Proveg(z, (my,r1), ..., (M, 1)) : Verifya(x,cr,. .., cnm) = 0] < p(N)

where m; € Mg, € R so that (ck,x, (mq,...,my,)) € Ry.
Definition 3.1.3 (Knowledge Soundness). A commit-and-prove protocol proves
knowledge soundness with knowledge error ¢ : N — [0, 1] if for all probabilistic
polynomial-time algorithm A 3 efficient extractor £ so that:

Pr(ck « Gen(1*); (z,c1, ..., cn, ) = A(ck); (M5, 7]), s (mirE) « E(er, ... )

n'n

Verifyu(z,ci,...,co,m) = 1A ((ck,z,(m7,...,m))) € Ry V Ji, Come(m],r*) # cl)] < €(N)

where & returns m; € M and r; € R.

Definition 3.1.4 (Simulatability). A commit-and-prove protocol is simulatable if
there exist probabilistic polynomial-time simulators SimCom and SimProve such

that for all probabilistic polynomial-time adversaries A and commitment key ck «

11 d0i:10.6342/NTU202400442



Gen(1):

Pr[(:c,ml, cooymy) < A(ck); ey .o e < SimCome(2);
7 < SimProvey(x,c1,...,¢,) : (ck,x,(my,...,my,)) € Rp AN A(cy, ..., CpyT) = 1}
%Pr[(x,ml, ceoymy) < A(ck);ry ooy < § Vi, ¢ = Comeg(my, 13);

T« Proveg,(z, (ma,m1), ..., (mn, 1)) : (ck,z, (ma,...,my,)) € Ry ANAler, ... cp,m) = 1]
where £ is a distribution on R .

3.2 Main Protocol

With knowledge of commit-and-prove protocol, we can focus on our main protocol
defined in the figure below. This protocol uses the technique which is so-called
ABDLOP commitment scheme. That is, Given secret information (s;, m) with [|s;]|

small, we commit information as

A, A, 0\ [ta
() (5)+ () - ()
with public random matrices Ay, Ay, B. Define o—trace map Tr : R, — R, as

Tr(f)=(f+o0-1(f))/2 and we utilize lemma below.

Lemma 3.2.1. [LNP24, Lemma 4.8] Given s; € Ri",m € R. and define s =

m1+€)

(s1,0-1(s1),m, o_1(m)), for any 2(my+{¢)—variate quadratic polynomial f Rg( —

R, of the form f(x) = x'Rax + 1'% + 19, we set Tr(f)(x) to be Xt(w)x +

12 d0i:10.6342/NTU202400442



(r1t0—12(1“1t)U)X + (TO + 0—_1(7‘0))/2, where

0 Iy, 0 0
Li, 0 0 0
0 0 0 Iy
0 0 I, 0

Then, we have Tr(f)(s) = Tr(f(s)).

Fix 0 € Aut(R) to be o1 and let x; € RZ™,x3 = (X3,1,X22) € Rg(,\ﬂz)_

(m) _(9) (9)

Denote Xo1 = (X3, %11, -,y p) and Xap = (x(zg),a:g?%,...xéi)\m) and define
X = (xgﬁ), xgg)). Therefore, we can set f;(x1,%x2) = fj(x, xgm)) for j € [N].
In order to check well-formedness of hq,...,h A, we define
M
fN+k(X1, X2) = xﬁg,i +Tr (Z V2k—1,ufu)(X1, Xgm))
u=1
M
FXTr () o) (k1 x5™) = (1)
u=1

and prove that fx (s, 0(s1),m,o(m)) =0 for 1 <k <

N[>
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Private information:(s;, m) € R7"* so that |[s;|| < «, randomness sy — X
Public information: A; € Ry™™, Ay € Ry™™2, B € Rgxm? such that
ta Al Az 0 A/2xma .
(tB):(O)Sl+<B Sg + m , Bg € Ry ,b € R, quadratic
polynomials Fi, ... Fy and polynomial evaluations with vanishing constant

coefficients fi,... fas : ng(mﬁ@ — Ry, 0 :=0_1 € Aut(R)

Prover Verifier

g:= (g1, ) < {f E€Ry: fo= fap = 0}?

tg = Bgs2 + g L
M (Vi) < ZPM
a; ‘= Zf\;[:l ’YQifl,ufu(O-j (Sl)v o’ (m)) T !

bi = 224:1 72i,ufu(0j (Sl)v o’ (m))
hi = g; + Tr(a;) + z2Tr(b;) for i € 2] b, haye

Define Fy; as in ()
(luj)je[N-i-%] R
S M1y UN4N/2 S
F = Z] :LLJ‘F} + / g

g — { (0" (s1))ier ]
(0" (ml[g))iepz
yi < Dg' for e =1,2
w = A1y + Agy>
y = [ (Ul(YI)ie[Q]) }
_(O-l(BY2>iE[2]
g :=s'Ryy + y'Ros +riy
v:=y'Roy + by, .
t :=Db'ss+g v, t, W
— c+C

Z1 = CS1 + Y1
Zy 1= CSy + Y3

fore=1,2:
if Rej; (2, cs;,8;) = 1
then z;,2zy :=_1 Z1, Zo

Ver((sy,m), o, (F3), (f;)}L,)

Figure 2: Commit-and-prove protocol II((sy,s1,m), 0, (F;)L,, (f;)}L,) satisfying
(I)HESIH < 251'\/ 2mzd (11>tA = A151 + AzSz,tB = BS2 +m (111) F}(O’Z(Sl), O'Z(m)) =0
for all j < N and (iv)f;(0%(s1), 0" (m)) = 0 for all j < M where Ry, 11,7 is defined
as F(x) = x*Rox + rfx + ro.
14 d0i:10.6342/NTU202400442



Ver((sl, m)? a, (E)’f\Ll’ (fj)]]\/il)

1: Check hy = (h)aje =+ = h;/2 = (has2)aj2 =0
2: 2= { ak(zl) ]

o (ctg — Bzy)
3: f = ct — btz

4: Check ||z1]| < s,v/2mqd
5: Check ||z3|| < 5,v/2mad
6: Check A1z; + Aszy = wtcty

7. Check z'Ryz+c - riz+c?rg — f =0

Figure 3: Verification equation for Figure 2

Theorem 3.2.2 ([LNP22]). If we select probability distribution x to be S, and let
s, = y1an as well ass, = Yovny/mad for some v1,v2 > 0. The parameter n is selected
as described in Section E8. The protocol outlined in Figure 2 is commit-and-prove.
For correctness, if my, mg > %, then the probability that honest prover P con-
vinces the verifier V is approzimately 1/(2 exp(i—il + ﬁ + %))
For knowledge soundness, when given rewindable black-box access to a proba-

bilistic prover P* convincing V, there exists an efficient extractor £ either outputs

(s2*,81",m*) € R4 and ¢ € RY such that

R

. F}'(Ui(s1*)ie[2]>Ui(m*)ig[g]) =0 for j € [N]

o fi(0%(s1%)icp; 0f(m*)icpg) = 0 for j € [M]

le]loo < 2k

15 d0i:10.6342/NTU202400442



o |les1*|| < 2s,v/2mad and [|esy*|| < 28,4/2mod

or a MSIS,, 1, 4m,.5 solution for [Al Az] with B = 87]\/2d(512m1 + 5,2my).

For commit-and-prove simulatability, there exists a simulator S not knowing (s;, m)

that returns a simulation of commitment (ta,tg) together with a non-aborting tran-

script between P and V so that for every adversary A having advantage € in dis-

tinguishing Sim and (ta, tg) along with View < P,V >, whenever the prover does not

abort, there exists an algorithm A" which distinguishes Extended-MLWE,, 1) /241,mo—n—t—2/2-1,x.C.5,

with a probability of at least €/2 — (3)'%5.

Proof. We skip the proof of the knowledge soundness, since soundness follows iden-
tically as in [LNP22, Theoerm 4.5].

Correctness. To begin with, we provide upper bounds for ||cs;||, [|csz||. Based on
Lemma 261 and the definition of our challenge space C, we have |cs;]| < na and

||les2|] < nry/mad. The probability that both samplings Rej; and Rej, do not abort

is at least
1 — 2—128
2 exp(1 1 o) - expl(y)

by Lemma P50, Additionally, we exploit Lemma P23 for ¢ = v/2 and assumption

mq, Mo Z 640/d Then,

Pr{||z.|| > s,v/2mid|b=0} < Pr,_pmi{||z]| > s,v/2md} + 27 (by 22577)

2 -
< (E>320+2 128 (by m)

Similarly, the probability that ||za| < s,v/2mad is overwhelming. Since the honest
prover knows genuine private s;, m, the remaining verification equations must hold.

Commit-and-prove Simulatability. We show the statement by applying a hybrid
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argument. We define simulator &y knowing private information sy, m. For given
challenges from the verifier, it yields honestly the commitment (ta, tg, ty, ) under
randomness s, and generates hy, ... hy/; honestly. Moreover, the algorithm samples
masked opening z; < D" and z; « D" conditioned on (s3,z3) > 0. Ultimately, it
assigns v := z'Ryz+crlz + c?ry — ct + b'zy and w := Ayz; + Ayzy — ctp. By Lemma
22571, the probability distribution of the simulation of the commitment together with
the transcript generated by Sy is statistically close to the real non-aborting one.
We set simulator &; still knowing the secret as follows. Simulator &; operates
identically to Sy but deviates by not honestly yielding the commitment (ta, tg, tq, )
and polynomials hy, ..., hy, it simulates polynomials by hi,..., hy < {y € R, :

Yo = Yas2 = 0} uniformly and samples u « RZ%J”\/ >*1 and define

ta A;sy

tB m

tg . @
t q

Lemma 3.2.3. If there exists a probabilistic polynomial-time adversary A capable
of distinguishing outputs from Sy and Sy with a probability of €, then there is an proba-
bilistic polynomial-time adversary B addressing the Extended-MLWE,, ¢4\ /241,ms—n——2/2—1,x,C,s0

with a probability of at least €/2.

Proof. We define algorithm B as follows. Given an Extended-MLWE tuple (C, u, 25, b),

where
A,

bt
B sets (ta,tp,ty,t) as in () and simulates the remaining components of the tran-

script the same as Sy and &;. The algorithm yields the commitment and the tran-
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script to A. Assuming b = 1, when u = Cs,, the output of B follows the distribution
of 8. Similarly, if u + RZMM/ >t uniformly, then the output comes from the dis-
tribution of ;. As a result, provided b = 1, B solves the Extended-MLWE problem

with a probability of at least e. The statement holds since Pr [b = 1} > % [

On the other hand, h4,. .., hy/ are well-simulated because g; «— {x € Ry : 2o =
242 = 0} uniformly and Tr(a;) + X¥?Tr(b;) € {x € Ry : o = w42 = 0} for every
i€ N2

Finally, the simulator S, which lacks any knowledge of secret information, can
be set to function identically to S;. Nevertheless, instead of generating commit-
ment tuples (ta,tp,ty,?) as in (), it samples (ta, tp, ty,t) < RZMM/QH. Then, the

distributions of S and &; are totally the same. ]

In the rest of this section, we focus on the size of the output from non-interactive
proof obtained through the Fiat-Shamir transform of the protocol. Note that the
messages v and w for the non-interactive proof are not necessarily contained in the
output because they can be uniquely determined by the remaining components. All
challenges, except for ¢, can be computed as a hash of the preceding proof compo-
nents. Thus, challenges require at most [log (2x + 1)]d bits. We have ta, tg, ty, ¢ and
h;, full-sized elements in R,; they require at most (n+ ¢+ A+ 1) - [log¢|d bits. We
encode the vectors z;,zs by exploiting Huffman coding. Concretely, suppose that
2 < D, the discrete Gaussian distribution over Z,. We express z by z = 2120 4 2
where zy = z (mod *2°*1). The value of z; is close to being uniformly distributed
over {—2°,...,29}, for the expected absolute value of z is 5 and let 2° be near to s.
The tails of the distribution of z; decrease rapidly owing to tails of discrete Gaussian
distribution. Therefore, zy is distributed uniformly, which costs at most § + 1 bits,
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and we exploit Huffman coding to encode z;. Next, suppose that s = 29 and that
the tails of z; are identical to those in Gaussian distribution centered at 0. In this
scenario, the previously described compression requires approximate 1.57 bits to
represent z; averagely. Hence, representation of z gives approximately 2.57 + log s
bits. We apply this technique to z1, z3, and the whole commitment and proof length

is about

(n+l+A+1)d[log q|+[log (2k + 1) |d+md-(2.57+[log s, | )+mad-(2.57+[log s2 | ) bits.
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4 Applications to Integer Relation

In this section, we present two efficient zero-knowledge proofs for integer addition
and multiplication for committed information. The technique applied to this section
is an adaptation of one in [LNS20]. In particular, we will elaborate in the subsection
below that given commitments to integers a;, c, we could prove Zle a; = c. We
will explain in the other subsection how to prove an integer multiplication a - b = ¢

under some restrictions for integers a, b, c.

4.1 Integer Addition

First, we consider integers a, b, c € [-2N~1 2¥=1 —1] and we attempt to demonstrate
a+ b = c. We represent a by a binary vector @ = (ao,...,an_1) satisfying a =
—an_12V1 —|—Zi]\;2 a;2" with ag, ...ay_1 € {0,1}. We give identical representations
for b together with ¢ via adopting the same approach and obtain b along with
é. We call this technique two’s complement representation and denote TC(a) :=
@, TC(b) := b, TC(c) := & Then integer addition a + b = ¢ is equivalent to a(x) +

b(xz)+ f(x)(x —2) = ¢(x) for a polynomial f(z) € Z[z], according to Gauss’ lemma.
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By coefficient comparison, we have the following system of linear equations.

(

ap+ by =2fp +co

a+b+fo=2fi+a

an—2 +bn_o+ fn_3 =2fn_2+ cn_2

an—1+bn_1 — fn—2 = —2fn_1 +eno

fno1=0

Lemma 4.1.1. Let f(x) be defined as above. Then for each coefficient f; of f(z)

corresponding to a7, f; € {0,1}.

Proof. For fyx_; case, it is apparent from the system of linear equation. Consider
fo, =1 <2fy=ag+by—co <2and fo € Z imply fo € {0,1}. Fori=1,...,N —2

2f; = a; + b; — ¢; + f;_1 and, by induction hypothesis,

1< -1+ fii<ai+b —ci+ fic1 <24 fi1 <3,

and thus f; € {0,1} for all 4. O

All the aforementioned coefficients are small, we can consider those coefficients

modulo ¢, leading to an equivalent expression in vector notation:

i+b+Ef=2Jf+¢ (mod q) (*)
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with coefficient vector f of f(z),

[a]
e}
S
S
—_
[a]

1 0 .00 1
E=101 0 O], andJ= ezéVXN
: 1
00 ...—1 0 0 —1

Observe that E — 2J is a lower triangular matrix and det(E — 2.J) = —2" which
implies F — 2. is invertible. Recall that if 7= (ro,...,74-1),5 = (s0,...,84_1) € Z%

q

and corresponding polynomials r(X) = Zf:_ol r Xt s(X) = Zf:_ol 5, X", then

d—1 d—1
(r,s) (mod q) = Zrn 8, = T0So + Z(—l)(—rn)sn
n=0 n=1

d—1
= 1950 + Z(—Tn)snXd
n=1

d—1

= ToSo —f- Z(—Tn)Xd_nSan

n=1

-1
= 7080 + Z (X" 5, X7
n=1

= (X7 - s(X)|x=0 = 01 (r(X)) - 5(X)|x=0

The fact that X4 = —1 € R, is followed by the third equality and the fifth equality
follows (X—l)n — (_Xd—l)n — (_1)nX(n—1)-d+(d—n) — (_1)n<_1)n—1Xd—n — —Xd_n.
In general, 7,5 € Z": we can define corresponding polynomial vectors naturally

q

r=(ry,...,m),8 = (81,...,5,) € R} with coefficients as "= (r10,...,7n4-1),5 =
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(51,05 - - Sn.d—1) in the same approach. That is, Thus, we have

n,d—1 n d—1
(78 (mod q) = 3 rijesig =303 iy s
i,j=1,0 i=1 j=0

= Zﬁ'(X_l) - 5i(X)] x=0

= Za_l(m(X)) +5i(X)|x=0

Remark that if §'is a public vector and 7'is a secret vector, then (7, §) is the constant
coefficient of a linear function evaluating in R, by the equation above. On the other
hand, if both 7, s are secret information, then the inner product is identical to the
constant coefficient of a multivariate quadratic function.

Now, we examine those secret vectors (da, 5,5, f). There exists natural norm
bound such that ||@, |, and ||& < V/N. Hence, s; = (@,b,¢) and m = f
in our protocol. Equation (H) is equivalent to Rys; + Rpym = 0 (mod ¢) where
R, = [—IN || — In ||IN] and Ry, = [E — QJ}. Furthermore, @, 5, ¢, and fconsist
of binary elements, with the condition that fy_; = 0, and can be defined by some
multivariate quadratic polynomials and linear functions. The defining multivariate
quadratic polynomials with vanishing constant coefficients to prove those vectors

are binary vectors are as follows:
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where ¥ = (1,...,1,0) and provided that N satisfies 2(N — 1) < g.

Lemma 4.1.2. If j < d — 1 and s € R, satisfying [[,2, (s —i) = 0 where n; € Z,,

i=ng

then s € qu% +Zy CRy.

Proof. Recall that Z,[z] = @), Z,[z] by Chinese Remainder Theorem. We de-
note Ry, to be Zy, [x]/(x941) for i < n. We have Ry = @7 Ry, = @I, Zy,[2] /(2 —
(i) @ Zg, 2]/ (22 — ¢3). According to the canonical isomorphism, 0 = T (s—m) €
Ry 5 ((0,0),..,(0,0)) € B, Zylal/ (2 — C) @ Zyfo] (2 — ).

Ly, [z]/(x2 £ () are fields, so s is an constant in Ly, []/(z2 — (), Ly, ]/ (22 + )
respectively. Again, we recover s by Ry, < Zg[z]/(x% — G) ® Zg,[z]/(x% + ()
via s (mod ¢;) <= (ay, ;). That is, we need to solve s = Z?;é sjz? € R, such
that s = j%;ol(Sj + S%+jci)xj = a; (mod z% — (;) (resp. Z?;;(Sj — Sgﬂ-g)xj = 5,
(mod x%—i-Ci)) . By comparing coefficient, we obtainVj # 0, s; = Sdy; = 0, 50—1—5%(@- =

a;, and sop — s4(; = 3;. Thus s € Z, T2 + Z4, C Ry, Finally, according to canonical
2

Zyx] < D), Zy|z], we have s € R, is of the desired form. O

Applying the lemma, we can set defining quadratic polynomials and quadratic

polynomials having zero constant coefficients for secret (sq, m) as given below:

d

Fy,(07(s1), 07 (m)) = a;(a; — 1), Go, (07 (s1), 0" (m)) = (22, a;)
Fy, (07 (s1), 07 (m)) = bi(b; — 1), Gy, (07 (s1), 07 (m)) = (2, b;)

i

Foi(07(s1), 07 (m)) = ci(e; — 1), Gy (07 (s1), 07 (m)) = (%, ¢,)

i

Fy (o7 (s1), 07 (m)) = filfi = 1), G, (07 (s1), 07 (m)) = (a2, f;)
forallie {0...N —1}.
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Private information: ay,...,ax,c € [-2V71 2V — 1] so that Zle i
randomness s, € Ry

Public information: A; € RZX(’““)N, A, e Ry™, B e Révx’m such that
tA A]. A2 0 )\/2><m mo
(tB):<0)Sl+(B Sy + m . B, € Ry b e Ry

Prover Verifier

a; =TC(a;) for i € {1,...,k},c=TC(c)
f=(E-2)7@- 5, q) €Ly,
s1=aill...[|aillé m=f

Run I1 := I1((sy, @3] . .. ||ak||€, ), 0, G, F)

Check verification equations for II

Figure 4: Proof of general integer addition where 2k < d.

Generally speaking, if one attempts to show an addition of several integers. That
is, one want to show that >  a; = ¢ for some i € N and a;, ¢ € [-2V~1, 2V —1].
The origin addition problem is equivalent to Zle a;(xz) + f(x)(z — 2) = ¢(z) for

some integer polynomial f(z) as we mentioned before. Let a;(z) = —a; y_12V ! +
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Z;V:If a; ;2 for i € [k]. Therefore, we obtain the system of linear equations below.

(

S i =2fo + co

25:1 a1+ fo=2fi+c

Zle ajn—2 + fn—3 =2fn_2 +CcNn_2
Zle aiN—1— fn_2 = —2fny_1+cNoa

N1 =0

We prove the following equality for this protocol:

2Jf +Z (mod q) (*%)

Y a+Ef

1

k

1

with matrices £ and J as usual. Here, we need to apply a lemma to the system
of linear equations to ensure that the equality for polynomials still holds when (@)

holds, provided that ¢ is large enough.

Lemma 4.1.3. If binary vectors d; = (a;;),@ = (¢;), and integer vector f = (f;)

for j €{0,... N —1} satisfying the above linear equations, then 0 < f; < k- (2— 5)

for all j.

Proof. As j =0, -1 < 2fy = Zleaw—c < k. It implies _71 <0< fo < g <

k-(2—1) =k, since fo € Z. For j =1,... N —3, we assume that 0 < f; < (2— 3 )k.
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Since —1 < 3 | i1 — o1 = 2fjp1 — f5 <k, —1/2 < fi — £3/2 < kJ2.

—%+fj/2 < fimi =12+ fin— fi/2< k)24 f;/2

1 1
—3 < fi1 <(2- 2—J)k/2 + k/2 (by induction hypothesis)

1
25+1

0§fj+1§(1—%)k+k/2:(3/2— k.

For j = N —1, we have fy_1 =0. Hence, 0 < f; < k- (2 — 2%) by induction. O

It is evident that ||@)] < v/N and ||¢|| < VN with @ = TC(a;) and & =
TC(c). We can utilize the above results to define our secret information (s;, m)
with s, := (a3, ...a}, ) along with m := f, provided 2k < d. It is straightforward
that ||s1|| < /(k + 1)N, assuming that MSISn’(kH)N’\/m is hard. With the goal
of proving integer addition Zle a; = ¢, we define multivariate quadratic polynomi-
als G (07 (sy), 07 (m)) = (@}, a@, — 1), as well as Gg for i € [k]. Moreover, needing to
show fy_1 =0, we define Fy(07(s1),07(m)) = fy—_1. Similarly, we rewrite equation
(=) to be [R|[Ru] m — 0 with Ry = [~Ix]||... || — Iy ||Iv] together with Ry, as
usual.

On the other hand, we have quadratic polynomials to show (s;,m) are integer
vectors Fy, (0%(s1),0%(m)) = a;;(a;; — 1), G, ,(0%(s1),0%(m)) = (:L’%,aiﬁ along
with F, , G, for (i,7) € [k] x {0,...N — 1} For f. we set defining polynomials to
be Gy, j(0%(s1),0%(m)) = (27, fi) fori € {0,...,N —1},0 < j < d. Now, we define
the set of polynomials F':= {Fy, ,, F,, Fy : £ €{0,...,N —1},i € [k]} and the set
G :={Gy,...,GN,Gq,;,Ge;, Gy 0,Ga;, Gz j€{0,...,N —1},i € [k],0 < £ < d}
of polynomials of degree at most 2 such that evaluations of those polynomials have

vanishing constant coefficients where GG ..., Gy are linear functions corresponding
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to the row of [Ry|[Ru].
Proof size. As we discussed previously, the proof size has nothing to do with the
number of equations that we want to prove, whence the proof size for general integer

addition is about

(n+N+A+1)d[log q]+[log (2 + 1)]d+(k+1)Nd-(2.57+[log s, | )+mad-(2.57+[log s, |)

bits where 5, = y1m+/(k + 1)N and s, = yanry/mad.

4.2 Integer Multiplication

Given integers ¢ € [-22V~1 22N — 1] and a,b € [-2V~1 2V — 1] satisfying ab = c,
we apply the polynomial approach to prove the desired integer multiplication. Pre-
cisely speaking, it suffices to show that a(z)-b(x) + f(z)(x —2) = c¢(x) and that the
coefficients of a(x), b(z), c(x) are either 1 or 0. By the proof of Lemma B—T-3, we have
0 < [[flle < N + 1. Without loss of generosity, we suppose that N = d/2. Then,
we set private s to be (a(x), ao, . .., @q/2-1,0(x), bo, . .., baj2—1,c(x), co, . . ., cq—1) With
a;, b, ¢; are coefficients of a(z), b(x), c(z) respectively. Similarly, define secret m to
be (f(x), fo,. .., fa_1) where fy_1 = 0. Tt is evident that ||s;|| < v/d + d + 2d = 2V/d.

Now we set the defining polynomials for our private information (s;, m). To ensure
well-formedness of a(z),b(x), c(x), we define Fy(oi(sy), 0'(m)) = a(x) - b(x) — c(x) +
f(z) - (x — 2) along with F,(c%(s;),0'(m)) = ijod a;7? — agp 12?71 — a(z) and
similarly for Fy, Fi, Fy. Next, we are necessary to show that a;, b;, c;, f; for 0 <@ <
d/2—1,0 < j < d—1 are constants. Besides, we still need to prove that a;, b;, ¢; are
either 1 or 0 for all 4, j and that f;_; = 0. Hence, we set F, (0" (s1), 0" (m)) = a;(a; —

d
2

1), Gy, (0% (sy), 0% (m)) = {a;, 72) together with G,(c%(s;), 0% (m)) = (TC(a), TC(a) —
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1) and similarly for F,,,G¢,,... Fe, |, Gey s Ge, Fy,, G, Gy, where 0 <7 < d/2 — 1.
Furthermore, we consider polynomials for (fy,..., fs—1). That is, for 0 < i< d — 2,
Gy, (0% (s1),0%(m)) = (f;, z7) together with Fy, | = f; ;. Next, we define sets F :=
{Fo, Fo, By, Fo, Fy, Fy,, By, Fr b along with G o= {Gy, Gy, Ge, Ga,, Gy, Gy, G 0 0 <
¢ <d—1,0 <k < d} respectively; then, we use the protocol to prove that private

(s1, m) satisfying h(c*(s;),o%(m)) = 0 = g(o*(s1),0*(m)) for all h € F, g € G.

Private information: a,b € [-2N71 2V — 1] ¢ € [-22NV~1 22V — 1] 50 that
a-b=c, randomness s; € R;".

Public information: A; € R"X(kﬂ , Ay € R;‘Xm, Bc Rév *m2 guch that
tA . A]. A2 0 )\/2><m2 mo
(tB)—<0)S1+(B So + m BER bERq.

Prover Verifier

a(r) = —=TCla)y_1aVN 1 + 3V > TC(a)a
b(x) = —TC() v 12V~ + SN2 TC(b);a
() = =TC(e)an 12N+ 2 TCe)i
f(@) = (c(x) — a(z) - b(x))/(x — 2)
s = (a(@)[|TC(a)|[b(2)|ITC(b)||e(2)][TC(c))
= (f@IIfoll - 1 fav-1)
Run 11 := I1((s3, 8, m), 0, G, F)

Check verification equations for II

Figure 5: Proof of integer multiplication where N < d/2.

Proof size. As for the proof size, note that ||s;|| < 2v/2N. Therefore, the total

29 d0i:10.6342/NTU202400442



proof length should be about

[log (2K + 1)|d+(n+2N+X+2)d[log ]+ (4N+3)d-(2.57+[log s, | ) +mad-(2.57+[logs,]) bits

where s, = 2y,7V2N as well as s, = Yonr/mad.

To recap, we improved the method of proving that an element in R, is indeed a
constant in Z, by indicating that R, behaves almost like a field in some situations.
Next, through the application of Lemma , we have designed two efficient lattice-
based zero-knowledge protocols based on result from [LNP22], [LNS20], specifically
tailored for integer relations. One protocol is designed for solving arbitrary integer

addition, while the other is tailored for addressing product of two integers.
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