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摘要

在 [LNS20] 中，作者設計兩個整數關係的晶格基底零知識證明協定，分別是

證明第三個秘密整數是另外兩個秘密整數的和，而另一個則是其乘法版本的，然

而這兩個協定都要求底層的環擁有多個CRT slots，這導致了無法忽視的可靠度誤

差。

依據 [LNP22] 的基礎，我們建構了兩個零知識協定，用於證明先前所提及的

整數問題，而無需對底層的環進行先前的限制。此外，我們將加法版本協定推廣

到證明k個整數之和，其中k取決於秘密整數的二進位表示。

關鍵字: 整數關係的晶格基底零知識證明協定、ABDLOP承諾計畫、承諾與

證明協定、MSIS問題、Extended-MLWE問題
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Abstract
In [LNS20], the authors designed two zero-knowledge protocols for integer relations.

The underlying rings of the two lattice-based protocols possess many CRT slots,

which has a negative effect on soundness error. One is for proving that the third

secret integer is the sum of two other secret integers, while the other is the mul-

tiplicative version. Based on the foundation laid by [LNP22], we construct two

zero-knowledge protocols dealing with the original problem without the previous

requirement for the underlying ring. Moreover, we generalize the addition protocol

from sum of two integers to sum of k integers, dependent of bits representing our

secret ones.

Keywords: Lattice-based zero-knowledge protocol for integer relations, ABDLOP

commitment scheme, Commit-and-prove protocol, MSIS, Extended-MLWE
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1 Introduction

For lattice-based cryptography, one of the fundamental hardness assumptions is

that finding a low-norm s such that

As = t (mod q) (I)

is computationally hard. In earlier times, Stern [Ste94] used a combinatorial algo-

rithm for exactly proving (I) to prove that ‖s‖∞ is bounded via exposing a ran-

dom permutation of s. However, the soundness of those protocols exploiting this

technique was 2/3, and thus, they had to repeat about 200 times to reach a negli-

gible soundness error. Repeating the protocol leads to more than 1 megabyte (e.g.

[LNSW13]) in proof size.

Another more algebraic method for exactly proving (I) is to make use of lattice-

based commitments and zero-knowledge proofs about committed values to show the

relation between the coefficients of s and a bound of ‖s‖∞. The advent of such

kind of protocols (e.g. [BLS19, ESLL19]) reduced the proof size to the order of

a number of hundred kilobytes. The recent work of [ALS20, ENS20] created effi-

cient zero-knowledge proof systems for proving products of polynomials over a ring

and linear relationships among the CRT coefficients of committed values. Subse-

quently, [LNS20] building on [ALS20, ENS20] developed efficient zero-knowledge

proofs peculiarly designed for integer addition and multiplication respectively. Yet,

this approach has a potential factor to deter its efficiency. An incompatibility arises

due to the simultaneous need for the underlying ring to possess numerous CRT slots

and the requirement for the protocol to have a negligible soundness error. Therefore,

1
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a segment of the protocol must be reiterated to enhance soundness. Unlike the pre-

vious approach, [LNP22] proposed a lattice-based commitment scheme combining

the Ajtai [Ajt96] commitment scheme as well as BDLOP [BDL+18] one. There is no

requirement for this protocol to recommit to s in Chinese Remainder Theorem form;

hence we do not have a requirement having an impact on the soundness. Moreover,

not needing to commit s in the BDLOP way cuts down on the proof size.

In this paper, our main result is to design an efficient zero-knowledge protocol

building on [LNS20, LNP22] for arbitrary sums of integer addition and multiplication

without requiring our underlying ring to have a lot of CRT slots, which theoretically

claimed to reduce the proof size and improve the efficiency of the protocol. On the

other hand, we reduce the number of polynomials to prove that a given element in

Rq is indeed an integer dramatically by applying lemma 4.1.2, which improves the

efficiency for the prover.

In many real-world scenarios, both protocols for proving integer relations are

helpful. For instance, consider an online auction where all the auction participants

do not want to expose their own fortune in their accounts. The bidder wants to

purchase ni units of item i at a price of pi. Since the final bidding price is dependent

on the bids of those who did not win, getting rid of invalid bids to prevent unnec-

essary price inflation is imperative. Thus, the participants should prove that their

accounts have more property than
∑

i ni · pi. In this situation, both of our protocols

that yield rather short and efficient proofs can be utilized.

2
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2 Preliminaries

2.1 Notation

Let q = q1q2 . . . qn, the product of distinct n odd primes where q1 < q2 < · · · < qn.

And let Zq be the ring of the rational integers modulo q defined above. We write

v⃗ ∈ Zk and w⃗ ∈ Zk
q to represent a vector over Z and a vector over the ring Zq

respectively. We utilize regular capital letters to denote matrices over Z or Zq. By

convention, vectors are considered as column vectors. Given two vectors u⃗, v⃗ ∈ Rn,

u⃗ || v⃗ denotes the usual concatenation of u⃗ and v⃗. Given a distribution D, z ← D

denotes that z is sampled from D. Similarly, given a set S, x ← S represents x is

sampled uniformly from the set S. [n] denotes the set {1, . . . n}.

Let d be a power of 2 and p be an natural number. We define R and Rp as

Z[X]/(Xd+1) and Zp[X]/(Xd+1), respectively. In this paper, we employ lowercase

letters to signify elements in R or Rp, while bold lowercase letters are employed to

indicate column vectors whose components lie in R or Rp. Correspondingly, bold

uppercase letters are utilized to represent matrices with entries within these rings.

When considering a polynomial f ∈ R (or Rp), the vector f⃗ ∈ Z (or Zp) denotes

the coefficient vector. As a convention, we often deem f ∈ Rp as a polynomial of

degree at most d − 1 in Zp. Consequently, we can express the ith coefficient of the

polynomial as fi ∈ Zp. For convenience, we sometimes denote f0 by f̃ . We define

the inner product in Rk. For u, v ∈ R, the notation 〈u, v〉 denotes
∑d−1

i=0 ui · vi ∈ Z.

This inner product can be naturally extended to Rk.

For w ∈ Zq, ‖w‖∞ denotes the absolute value in R of the unique representative r

of w where w ≡ r (mod q) and [− q
2
] ≤ r < [ q

2
]. Then, we can define ℓ∞ and ℓp norms

3
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for element w = w0 + w1X + · · ·+ wd−1X
d−1 ∈ Rq as below:

‖w‖∞ = max
j
‖wj‖∞, ‖w‖p = p

√
‖w0‖p∞ + . . . ‖wd−1‖p∞.

It is nature to extend this norm from Rq to w = (w1, . . . , wk) ∈ Rk
q via defining

‖w‖∞ = max
j
‖wj‖∞, ‖w‖2 =

√
‖w1‖22 + . . . ‖wk‖22.

‖w‖ := ‖w‖2 by default. We represent Sγ = {f ∈ Rq : ‖f‖∞ ≤ γ}.

2.2 Cyclotomic Rings

The group Aut(R) of automorphisms of the ring R is isomorphic to Z×
2d by

Z×
2d

∼−→ Aut(R) : i 7→ σi,

where σi : X 7→ X i. Assume that each prime factor qi factorizes into 2 prime ideals

of degree d
2
within the ring R. That is, Xd + 1 = ϕ1ϕ2 (mod qi) with irreducible

polynomials ϕj of degree d
2
. Moreover, we assume that 4 is the highest order of power

of 2 in Zqi , in other words, qi − 1 ≡ 4 (mod 8). Hence, we have

Xd + 1 ≡ (X
d
2 − ζi)(X

d
2 − ζ3i ) (mod qi).

We utilize invertible criterion below following from [LNP22, Lemma 2.6].

Lemma 2.2.1. Let p, an odd prime, be congruent to 5 modulo 8. Consider any

c ∈ Rp satisfying σ−1(c) = c. Then, c is invertible in Rp if and only if c 6= 0.

4
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By convention, we denote the set of invertible elements in ring Rq as R×
q . The

lemma above asserts that for a given f ∈ Rq, if σ−1(f) = f and 0 < ‖f‖∞ < q1,

then f ∈ R×
q .

2.3 Discrete Gaussian Distributions

We recall the discrete Gaussian distribution employed in the rejection sampling.

Definition 2.3.1. We define the discrete Gaussian distribution over Rk centered at

c ∈ Rk with standard deviation s > 0 as

Dk
c,s(x) =

e−∥x−c∥2/2s2∑
z∈Rk e−∥z∥2/2s2 .

By default, we write Dk
s to represent the distribution centered at 0 ∈ Rk.

Next, we introduce the lemma derived from [Ban93, Lemma 1.5(i)].

Lemma 2.3.2. Let z← Dm
s . Then Pr[‖z‖ > t · s

√
md] < (te

1−t2

2 )md.

2.4 Module-SIS and Module-LWE Problems

Definition 2.4.1 (MSISκ,m,β). Given positive integers κ,m and 0 < β < q. For a

given A � Rκ×m
q , the Module-SIS problem, characterized by parameters κ,m, and

β, involves the search for a vector x ∈ Rm
q such that Ax = 0 and 0 < ‖x‖ ≤ β.

We say that a probabilistic polynomial time adversary A has advantage ϵ in solving

M-SISκ,m,β if

Pr[Ax = 0 ∧ 0 < ‖x‖ ≤ β |A � Rκ×m
q ; x � A(A)] ≥ ϵ.

5
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Definition 2.4.2 (MLWEm,λ,χ). Let m and λ be positive integers and χ be an

error distribution over Rm
q . The Module-LWE problem with parameters m,λ and

distribution χ asks to distinguish (A, b)←Rm×λ
q ×Rm

q from (A,As + e) with A �
Rm×λ

q , secret vector s � χλ, and e � χm. We say that a probabilistic polynomial-

time adversary A has advantage ϵ in solving MLWEm,λ,χ if

|Pr[1← A((A, b)) |A←Rm×λ
q ; b←Rm

q ]− Pr[1←

A((A,As + e)) |A � Rm×λ
q ; s← χm; e← χλ] | ≥ ϵ.

Now, we introduce a variant of the MLWE problem while using the same notation

as [LNP22].

Definition 2.4.3 ((simplified) Extended- MLWEm,λ,χ,C,s). The Extended-Module-

LWE problem with parameters m,λ ∈ N, distribution χ over Rq, challenge space

C ⊆ Rq, and standard deviation s for discrete Gaussian distribution centered at

0 asks to distinguish (A, u, c, z, sign(〈z, cr〉)) for A � Rm×(m+λ)
q , u � Rm

q , c � C,
and z � D

(m+λ)
s from (A,Ar, c, z, sign(〈z, cr〉)) for A � Rm×(m+λ)

q , secret vector

r � χm+λ, c � C, and z � D
(m+λ)
s , where sign(b) = 0 if b < 0 and 1 otherwise. Thus,

we say that a probabilistic polynomial-time adversary A has advantage ϵ in solving

Extended-MLWEm,λ,χ,C,s if

|Pr[1 � A(A,Ar, c, z, s) |A � Rm×(m+λ)
q ; r � χm+λ; z � Dm+λ

s ; c � C]−
Pr[1 � A((A, u, c, z, s)) |A � Rm×(m+λ)

q ; u � Rm
q ; z � Dm+λ

s ; c � C]| ≥ ϵ

with s = sign(〈z, cr〉)

6
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2.5 Rejection Sampling

The prover outputs a vector z with a distribution that must be independent of

the secret information or randomness r in a lattice-based zero-knowledge proof. In

this protocol, z is computed as y+cr, where y is a ”masking” vector, c � C denotes a
challenge polynomial, and r represents the secret vector or randomness employed for

prover’s commitments. To eliminate the dependence of z on r, we employ rejection

sampling.

Lemma 2.5.1 (Rejection Sampling [Lyu12],[LNS21]). Let W ⊆ Rm be a set of

polynomials with the norm not exceeding N , χ be a probability distribution over W ,

and a fixed standard deviation s = γ ·N. The following two statements are true.

1. Let M = e14/γ+1/(2γ2). Sample v← χ and y← Dm
s ,compute z = y+v and run

b← Rej1(z, v, s) as defined in Figure 1. Then

(a) Pr[b = 0] ≥ (1− 2−128)/M .

(b) ∆(χ × Dm
s ,F) ≤ 2−128 where F is the probability distribution for (v, z)

conditioned on b = 0.

2. Let M = e1/(2γ
2). Sample v ← χ and y ← Dm

s ,compute z = y + v and run

b← Rej2(z, v, s) as defined in Figure 1.

(a) Pr[b = 0] ≥ 1/(2M).

(b) The distribution for (v, z) conditioned on b = 0 is indeed the probability

distribution P. P is set by sampling v ← χ as well as z ← Dm
s that are

conditioned on 〈v, z〉 ≥ 0, and then outputting (v, z).

7
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Rej1(z, v, s)

1: u← [0, 1)

2: If u > 1
M
· e

−2⟨z,v⟩+∥v∥2
2s2

3: return 1 (i.e. reject)

4: Else

5: return 0 (i.e. accept)

Rej2(z, v, s)

1: If 〈z, v〉 < 0

2: return 1 (i.e. reject)

3: u← [0, 1)

4: If u > 1
M
· e

−2⟨z,v⟩+∥v∥2
2s2

5: return 1 (i.e. reject)

6: Else

7: return 0 (i.e. accept)

Figure 1: Two rejection sampling algorithms: The sampling Rej1 in [Lyu12] and the
other Rej2 in [LNS21].

Consider how the parameters s and M are selected in the preceding lemma. To

be more precise, the repetition rate M is selected to serve as an upper bound for:

Dm
s (x)

Dm
v,s(x)

= exp
(−2〈x, v〉+ ‖v‖2

2s2
)
≤ exp

(28‖v‖+ ‖v‖2
2s2

)
.

Note that we use the fact following from [Ban93],[Lyu12] that |〈z, v〉| < 14‖v‖ for

z � Dm
s . For rejection sampling Rej2(z, v, s), it requires z to satisfy 〈z, v〉 ≤ 0, or

the protocol aborts. we can set M with this restriction as follows:

M := exp
(‖v‖2
2s2

)
.

2.6 Challenge Space

The input of the rejection sampling used in protocol should be y ← Dℓ
s and

v = cr where challenge c ∈ R and secret r ∈ Rℓ
q with notation defined in previous

8
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subsection. Thus, we need to choose the challenge space properly and provide an

upper bound for ‖cr‖ to set our deviation for two rejection samplings. The lemma

below following from [LNP22] gives a bound for cr.

Lemma 2.6.1. Let r ∈ Rm and c ∈ R. Fix any k, power of 2, we obtain ‖cr‖ ≤

2k
√
‖σ−1(ck)ck‖1 · ‖r‖.

Given a power-of-two k, we define the challenge space C, by this lemma, as the

set {c ∈ Sκ : 2k
√
‖σ−1(ck)ck‖1 ≤ η ∧ σ−1(c) = c}. To ensure the invertibility of the

difference between two challenges, we need κ < q1/2, which follows from Lemma

2.2.1. Furthermore, for attaining negligible error soundness relying on the MSIS

assumption, the cardinality of the challenge space |C| should be exponentially large.

9
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3 Proofs for Quadratic Relations

Before we start to introduce the protocol in this paper which originates from

[LNP22, Fig. 8], we say this protocol is a commit-and-prove protocol rather than a

zero knowledge protocol. Hence, we need to introduce the definition of a commit-

and-prove protocol.

3.1 Commit-and-prove Protocol

Definition 3.1.1. Let RL be a polynomial-time verifiable relation consisting of

(ck, x, w). We call ck the commitment key, x the statement, and w the witness.

1. The language Lck is a set where statement x ∈ Lck if there is a witness w such

that (ck, x, w) ∈ RL.

2. Let λ be the security parameter. A Commit-and-prove protocol is a quadruple

of algorithms (Gen,Com, Prove, V erify). We require that Gen and Com are

deterministic and that the other two algorithms are probabilistic.

• Gen(1λ) : It outputs a commitment key ck. The commitment key ck iden-

tifies a randomness space Rck, a message spaceMck, and a commitment

space Cck.

• Comck(m, r) : Com takes the commitment key ck, a message m, as well

as a randomness r as input and outputs a commitment c ∈ Cck.

• Proveck(x, ((m1, r1), . . . (mn, rn))) : Prove takes as input a commitment

key ck, a statement x and commitment openings mi ∈ Mck, ri ∈ Rck

such that (ck, x, (m1, . . . ,mn) ∈ RL and the algorithm returns a proof π.

• V erifyck(x, c1, . . . , cn, π) : It returns 0 (i.e. reject) or 1 (i.e. accept).

10
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The protocol should satisfy three properties: correctness, knowledge sound-

ness, and simulatability.

Definition 3.1.2 (Correctness). A commit-and-prove protocol proves statistical

correctness with correctness error ρ : N→ [0, 1] if for all adversaries A :

Pr
[
ck � Gen(1λ); (x,m1, r1, . . . ,mn, rn) � A(ck); ci = Comck(mi; ri);

π � Proveck(x, (m1, r1), . . . , (mn, rn)) : V erifyck(x, c1, . . . , cn, π) = 0
]
≤ ρ(λ)

where mi ∈Mck, ri ∈ Rck so that (ck, x, (m1, . . . ,mn)) ∈ RL.

Definition 3.1.3 (Knowledge Soundness). A commit-and-prove protocol proves

knowledge soundness with knowledge error ϵ : N → [0, 1] if for all probabilistic

polynomial-time algorithm A ∃ efficient extractor E so that:

Pr
[
ck � Gen(1λ); (x, c1, . . . , cn, π) � A(ck); ((m∗

1, r
∗
1), . . . , (m

∗
n, r

∗
n) � E(c1, . . . , cn) :

V erifyck(x, c1, . . . , cn, π) = 1 ∧ ((ck, x, (m∗
1, . . . ,m

∗
n)) ∈ RL ∨ ∃i, Comck(m

∗
i , r

∗) 6= ci)
]
≤ ϵ(λ)

where E returns m∗
i ∈Mck and r∗i ∈ Rck.

Definition 3.1.4 (Simulatability). A commit-and-prove protocol is simulatable if

there exist probabilistic polynomial-time simulators SimCom and SimProve such

that for all probabilistic polynomial-time adversaries A and commitment key ck �

11
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Gen(1λ):

Pr
[
(x,m1, . . . ,mn) � A(ck); c1, . . . , cn � SimComck(x);

π � SimProveck(x, c1, . . . , cn) : (ck, x, (m1, . . . ,mn)) ∈ RL ∧ A(c1, . . . , cn, π) = 1
]

≈Pr
[
(x,m1, . . . ,mn) � A(ck); r1 . . . rn � ξ; ∀i, ci = Comck(mi, ri);

π � Proveck(x, (m1, r1), . . . , (mn, rn)) : (ck, x, (m1, . . . ,mn)) ∈ RL ∧ A(c1, . . . , cn, π) = 1
]

where ξ is a distribution on Rck.

3.2 Main Protocol

With knowledge of commit-and-prove protocol, we can focus on our main protocol

defined in the figure below. This protocol uses the technique which is so-called

ABDLOP commitment scheme. That is, Given secret information (s1,m) with ‖s1‖

small, we commit information as

(
A1
0

)
s1 +

(
A2
B

)
s2 +

(
0
m

)
=

(
tA
tB

)

with public random matrices A1,A2,B. Define σ−trace map Tr : Rq 7→ Rq as

Tr(f) = (f + σ−1(f))/2 and we utilize lemma below.

Lemma 3.2.1. [LNP22, Lemma 4.8] Given s1 ∈ Rm1
q ,m ∈ Rℓ

q and define s =

(s1, σ−1(s1),m, σ−1(m)), for any 2(m1+ℓ)−variate quadratic polynomial f : R2(m1+ℓ)
q →

Rq of the form f(x) = xtR2x + r1
tx + r0, we set Tr(f)(x) to be xt(R2+Utσ−1(R2)U

2
)x +

12
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( r1tσ−1(r1t)U
2

)x + (r0 + σ−1(r0))/2, where

U =


0 Ikm1 0 0

Ikm1 0 0 0
0 0 0 Ikℓ
0 0 Ikℓ 0

 .

Then, we have Tr(f)(s) = Tr(f(s)).

Fix σ ∈ Aut(R) to be σ−1 and let x1 ∈ R2m1
q , x2 = (x2,1, x2,2) ∈ R2(λ+ℓ)

q .

Denote x2,1 = (x(m)
2,1 , x

(g)
1,1, . . . , x

(g)
1,λ/2) and x2,2 = (x(m)

2,2 , x
(g)
2,1, . . . x

(g)
2,λ/2) and define

x(m)
2 = (x(m)

2,1 , x
(m)
2,2 ). Therefore, we can set fj(x1, x2) := fj(x1, x(m)

2 ) for j ∈ [N ].

In order to check well-formedness of h1, . . . , hλ
2
, we define

fN+k(x1, x2) = x
(g)
1,k + Tr (

M∑
u=1

γ2k−1,ufu)(x1, x(m)
2 )

+Xd/2Tr (
M∑
u=1

γ2k,ufu)(x1, x(m)
2 )− hk (1)

and prove that fN+k(s1, σ(s1),m, σ(m)) = 0 for 1 ≤ k ≤ λ
2
.

13
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Private information:(s1,m) ∈ Rm1+ℓ
q so that ‖s1‖ ≤ α, randomness s2 ← χm2

Public information: A1 ∈ Rn×m1
q , A2 ∈ Rn×m2

q , B ∈ Rℓ×m2
q such that(

tA
tB

)
=

(
A1
0

)
s1 +

(
A2
B

)
s2 +

(
0
m

)
, Bg ∈ Rλ/2×m2

q , b ∈ Rm2
q , quadratic

polynomials F1, . . . FN and polynomial evaluations with vanishing constant

coefficients f1, . . . fM : Rk(m1+ℓ)
q →Rq, σ := σ−1 ∈ Aut(R)

Prover Verifier

g := (g1, . . . , gλ/2) � {f ∈ Rq : f0 = fd/2 = 0}λ/2

tg := Bgs2 + g tg

(γi,u) � Zλ×M
q

(γi,u)

ai :=
∑M

u=1 γ2i−1,ufu(σ
j(s1), σ

j(m))

bi :=
∑M

u=1 γ2i,ufu(σ
j(s1), σ

j(m))

hi := gi + Tr(ai) + x
d
2 Tr(bi) for i ∈ [λ

2
] h1, . . . , hλ/2

Define FN+i as in (1)

µ1, . . . , µN+λ/2 ←Rq

(µj)j∈[N+λ
2
]

F :=
∑

j µjFj

s :=
[

(σi(s1))i∈[2]
(σi(m||g))i∈[2]

]
yi � Dmi

si
for i = 1, 2

w := A1y1 + A2y2

y :=

[
(σi(y1)i∈[2])
−(σi(By2)i∈[2]

]
g′ := stR2y + ytR2s + rt

1y
v := ytR2y + bty2

t := bts2+g′ v, t,w

c← C
c

z1 := cs1 + y1
z2 := cs2 + y2
for i = 1, 2 :

if Reji(zi, csi, si) = 1
then z1, z2 :=⊥ z1, z2

Ver((s1,m), σ, (Fi)
N
i=1, (fj)

M
j=1)

Figure 2: Commit-and-prove protocol Π((s2, s1,m), σ, (Fi)
N
i=1, (fj)

M
j=1) satisfying

(i)‖c̄si‖ ≤ 2si
√
2mid (ii)tA = A1s1 + A2s2, tB = Bs2 + m (iii) Fj(σ

i(s1), σ
i(m)) = 0

for all j ≤ N and (iv)f̃j(σi(s1), σ
i(m)) = 0 for all j ≤ M where R2, r1, r0 is defined

as F (x) = xtR2x + rt
1x + r0.

14
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Ver((s1,m), σ, (Fi)
N
i=1, (fj)

M
j=1)

1: Check h̃1 = (h1)d/2 = · · · = ˜hλ/2 = (hλ/2)d/2 = 0

2: z :=

[
σk(z1)

σk(ctB − Bz2)

]
3: f := ct− btz2

4: Check ‖z1‖ ≤ s1
√
2m1d

5: Check ‖z2‖ ≤ s2
√
2m2d

6: Check A1z1 + A2z2 = w+ctA

7: Check ztR2z+c · rt
1z+c2r0 − f = v

Figure 3: Verification equation for Figure 2

Theorem 3.2.2 ([LNP22]). If we select probability distribution χ to be Sν and let

s1 = γ1αη as well ass2 = γ2νη
√
m2d for some γ1, γ2 > 0. The parameter η is selected

as described in Section 2.6. The protocol outlined in Figure 2 is commit-and-prove.

For correctness, if m1,m2 ≥ 640
d
, then the probability that honest prover P con-

vinces the verifier V is approximately 1/(2 exp(14
γ1

+ 1
2γ2

1
+ 1

2γ2
2
)).

For knowledge soundness, when given rewindable black-box access to a proba-

bilistic prover P∗ convincing V, there exists an efficient extractor E either outputs

(s2
∗, s1

∗,m∗) ∈ Rm1+m2+ℓ
q and c̄ ∈ R×

q such that

•
[
tA
tB

]
=

[
A1
0

]
s1

∗ +

[
A2
B

]
s2

∗ +

[
0

m∗

]
• Fj(σ

i(s1
∗)i∈[2], σ

i(m∗)i∈[2]) = 0 for j ∈ [N ]

• ˜fj(σi(s1∗)i∈[2], σi(m∗)i∈[2]) = 0 for j ∈ [M ]

• ‖c̄‖∞ ≤ 2κ

15
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• ‖c̄s1
∗‖ ≤ 2s1

√
2m1d and ‖c̄s2

∗‖ ≤ 2s2
√
2m2d

or a MSISn,m1+m2,B solution for
[
A1 A2

]
with B = 8η

√
2d(s12m1 + s22m2).

For commit-and-prove simulatability, there exists a simulator S not knowing (s1,m)

that returns a simulation of commitment (tA, tB) together with a non-aborting tran-

script between P and V so that for every adversary A having advantage ϵ in dis-

tinguishing Sim and (tA, tB) along with View < P ,V >, whenever the prover does not

abort, there exists an algorithmA′ which distinguishes Extended-MLWEn+ℓ+λ/2+1,m2−n−ℓ−λ/2−1,χ,C,s2

with a probability of at least ϵ/2− (1
2
)128.

Proof. We skip the proof of the knowledge soundness, since soundness follows iden-

tically as in [LNP22, Theoerm 4.5].

Correctness. To begin with, we provide upper bounds for ‖cs1‖, ‖cs2‖. Based on

Lemma 2.6.1 and the definition of our challenge space C, we have ‖cs1‖ ≤ ηα and

‖cs2‖ ≤ ην
√
m2d. The probability that both samplings Rej1 and Rej2 do not abort

is at least
1− 2−128

2 · exp(14
γ1

+ 1
2γ2

1
) · exp( 1

2γ2
2
)

by Lemma 2.5.1. Additionally, we exploit Lemma 2.3.2 for t =
√
2 and assumption

m1,m2 ≥ 640/d. Then,

Pr{ ‖z1‖ > s1
√
2m1d | b = 0 } ≤ Prz�D

m1
s1
{‖z‖ > s1

√
2m1d}+ 2−128 (by 2.5.1)

≤ (
2

e
)320 + 2−128 (by 2.3.2)

Similarly, the probability that ‖z2‖ ≤ s2
√
2m2d is overwhelming. Since the honest

prover knows genuine private s1,m, the remaining verification equations must hold.

Commit-and-prove Simulatability. We show the statement by applying a hybrid

16
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argument. We define simulator S0 knowing private information s1,m. For given

challenges from the verifier, it yields honestly the commitment (tA, tB, tg, t) under

randomness s2 and generates h1, . . . hλ/2 honestly. Moreover, the algorithm samples

masked opening z1 � Dm1
s1 and z2 � Dm2

s2 conditioned on 〈s2, z2〉 ≥ 0. Ultimately, it

assigns v := ztR2z+crt
1z + c2r0 − ct + btz2 and w := A1z1 + A2z2 − ctA. By Lemma

2.5.1, the probability distribution of the simulation of the commitment together with

the transcript generated by S0 is statistically close to the real non-aborting one.

We set simulator S1 still knowing the secret as follows. Simulator S1 operates

identically to S0 but deviates by not honestly yielding the commitment (tA, tB, tg, t)

and polynomials h1, . . . , hλ/2, it simulates polynomials by h1, . . . , hλ/2 ← {y ∈ Rq :

y0 = yd/2 = 0} uniformly and samples u � Rn+ℓ+λ/2+1
q and define


tA
tB
tg
t

 = u +


A1s1
m
g
g′

 . (2)

Lemma 3.2.3. If there exists a probabilistic polynomial-time adversary A capable

of distinguishing outputs from S0 and S1 with a probability of ϵ, then there is an proba-

bilistic polynomial-time adversary B addressing the Extended-MLWEn+ℓ+λ/2+1,m2−n−ℓ−λ/2−1,χ,C,s2

with a probability of at least ϵ/2.

Proof. We define algorithm B as follows. Given an Extended-MLWE tuple (C, u, z2, b),

where

C :=


A2
B
Bg
bt

 ,

B sets (tA, tB, tg, t) as in (2) and simulates the remaining components of the tran-

script the same as S0 and S1. The algorithm yields the commitment and the tran-

17
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script to A. Assuming b = 1, when u = Cs2, the output of B follows the distribution

of S0. Similarly, if u ← Rn+ℓ+λ/2+1
q uniformly, then the output comes from the dis-

tribution of S1. As a result, provided b = 1, B solves the Extended-MLWE problem

with a probability of at least ϵ. The statement holds since Pr
[
b = 1

]
≥ 1

2
.

On the other hand, h1, . . . , hλ/2 are well-simulated because gi ← {x ∈ Rq : x0 =

xd/2 = 0} uniformly and Tr(ai) + Xd/2Tr(bi) ∈ {x ∈ Rq : x0 = xd/2 = 0} for every

i ∈ [λ/2].

Finally, the simulator S, which lacks any knowledge of secret information, can

be set to function identically to S1. Nevertheless, instead of generating commit-

ment tuples (tA, tB, tg, t) as in (2), it samples (tA, tB, tg,t) � Rn+ℓ+λ/2+1
q . Then, the

distributions of S and S1 are totally the same.

In the rest of this section, we focus on the size of the output from non-interactive

proof obtained through the Fiat-Shamir transform of the protocol. Note that the

messages v and w for the non-interactive proof are not necessarily contained in the

output because they can be uniquely determined by the remaining components. All

challenges, except for c, can be computed as a hash of the preceding proof compo-

nents. Thus, challenges require at most dlog (2κ+ 1)ed bits. We have tA, tB, tg, t and

hi, full-sized elements in Rq; they require at most (n+ ℓ+ λ+1) · dlog qed bits. We

encode the vectors z1, z2 by exploiting Huffman coding. Concretely, suppose that

z ← Ds, the discrete Gaussian distribution over Zq. We express z by z = z1 ·2δ+1+z0

where z0 ≡ z (mod ±2δ+1). The value of z0 is close to being uniformly distributed

over {−2δ, . . . , 2δ}, for the expected absolute value of z is s and let 2δ be near to s.

The tails of the distribution of z1 decrease rapidly owing to tails of discrete Gaussian

distribution. Therefore, z0 is distributed uniformly, which costs at most δ + 1 bits,

18
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and we exploit Huffman coding to encode z1. Next, suppose that s = 2δ and that

the tails of z1 are identical to those in Gaussian distribution centered at 0. In this

scenario, the previously described compression requires approximate 1.57 bits to

represent z1 averagely. Hence, representation of z gives approximately 2.57 + log s

bits. We apply this technique to z1, z2, and the whole commitment and proof length

is about

(n+ℓ+λ+1)ddlog qe+dlog (2κ+ 1)ed+m1d·(2.57+dlog s1e)+m2d·(2.57+dlog s2e) bits.

19
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4 Applications to Integer Relation

In this section, we present two efficient zero-knowledge proofs for integer addition

and multiplication for committed information. The technique applied to this section

is an adaptation of one in [LNS20]. In particular, we will elaborate in the subsection

below that given commitments to integers ai, c, we could prove
∑k

i=1 ai = c. We

will explain in the other subsection how to prove an integer multiplication a · b = c

under some restrictions for integers a, b, c.

4.1 Integer Addition

First, we consider integers a, b, c ∈ [−2N−1, 2N−1−1] and we attempt to demonstrate

a + b = c. We represent a by a binary vector a⃗ = (a0, . . . , aN−1) satisfying a =

−aN−12
N−1+

∑N−2
i=0 ai2

i with a0, . . . aN−1 ∈ {0, 1}. We give identical representations

for b together with c via adopting the same approach and obtain b⃗ along with

c⃗. We call this technique two’s complement representation and denote TC(a) :=

a⃗,TC(b) := b⃗,TC(c) := c⃗. Then integer addition a + b = c is equivalent to a(x) +

b(x) + f(x)(x− 2) = c(x) for a polynomial f(x) ∈ Z[x], according to Gauss’ lemma.
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By coefficient comparison, we have the following system of linear equations.



a0 + b0 = 2f0 + c0

a1 + b1 + f0 = 2f1 + c1

...

aN−2 + bN−2 + fN−3 = 2fN−2 + cN−2

aN−1 + bN−1 − fN−2 = −2fN−1 + cN−1

fN−1 = 0

Lemma 4.1.1. Let f(x) be defined as above. Then for each coefficient fj of f(x)

corresponding to xj, fj ∈ {0, 1}.

Proof. For fN−1 case, it is apparent from the system of linear equation. Consider

f0, −1 ≤ 2f0 = a0 + b0 − c0 ≤ 2 and f0 ∈ Z imply f0 ∈ {0, 1}. For i = 1, . . . , N − 2,

2fi = ai + bi − ci + fi−1 and, by induction hypothesis,

−1 ≤ −1 + fi−1 ≤ ai + bi − ci + fi−1 ≤ 2 + fi−1 ≤ 3,

and thus fi ∈ {0, 1} for all i.

All the aforementioned coefficients are small, we can consider those coefficients

modulo q, leading to an equivalent expression in vector notation:

a⃗+ b⃗+ Ef⃗ ≡ 2Jf⃗ + c⃗ (mod q) (*)
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with coefficient vector f⃗ of f(x),

E =


0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0

...
0 0 . . .− 1 0

 , and J =


1 0

1
. . .

1
0 −1

 ∈ ZN×N
q

Observe that E − 2J is a lower triangular matrix and det(E − 2J) = −2N , which

implies E− 2J is invertible. Recall that if r⃗ = (r0, . . . , rd−1), s⃗ = (s0, . . . , sd−1) ∈ Zd
q

and corresponding polynomials r(X) =
∑d−1

i=0 riX
i, s(X) =

∑d−1
i=0 siX

i, then

〈r⃗, s⃗〉 (mod q) =
d−1∑
n=0

rn · sn = r0s0 +
d−1∑
n=1

(−1)(−rn)sn

= r0s0 +
d−1∑
n=1

(−rn)snXd

= r0s0 +
d−1∑
n=1

(−rn)Xd−nsnX
n

= r0s0 +
d−1∑
n=1

rn(X
−1)n · snXn

= r(X−1) · s(X)|X=0 = σ−1(r(X)) · s(X)|X=0

The fact that Xd ≡ −1 ∈ Rq is followed by the third equality and the fifth equality

follows (X−1)n = (−Xd−1)n = (−1)nX(n−1)·d+(d−n) = (−1)n(−1)n−1Xd−n = −Xd−n.

In general, r⃗, s⃗ ∈ Znd
q ; we can define corresponding polynomial vectors naturally

r = (r1, . . . , rn), s = (s1, . . . , sn) ∈ Rn
q with coefficients as r⃗ = (r1,0, . . . , rn,d−1), s⃗ =
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(s1,0, . . . , sn.d−1) in the same approach. That is, Thus, we have

〈r⃗, s⃗〉 (mod q) =

n,d−1∑
i,j=1,0

ri,j · si,j =
n∑

i=1

d−1∑
j=0

ri,j · si,j

=
n∑

i=1

ri(X
−1) · si(X)|X=0

=
n∑

i=1

σ−1(ri(X)) · si(X)|X=0

Remark that if s⃗ is a public vector and r⃗ is a secret vector, then 〈r⃗, s⃗〉 is the constant

coefficient of a linear function evaluating in Rq, by the equation above. On the other

hand, if both r⃗, s⃗ are secret information, then the inner product is identical to the

constant coefficient of a multivariate quadratic function.

Now, we examine those secret vectors (⃗a, b⃗, c⃗, f⃗). There exists natural norm

bound such that ‖a⃗‖, ‖⃗b‖, and ‖c⃗‖ ≤
√
N . Hence, s1 = (⃗a, b⃗, c⃗) and m = f⃗

in our protocol. Equation (*) is equivalent to R1s1 + Rmm = 0 (mod q) where

R1 =
[
−IN || − IN ||IN

]
and Rm =

[
E − 2J

]
. Furthermore, a⃗, b⃗, c⃗, and f⃗ consist

of binary elements, with the condition that fN−1 = 0, and can be defined by some

multivariate quadratic polynomials and linear functions. The defining multivariate

quadratic polynomials with vanishing constant coefficients to prove those vectors

are binary vectors are as follows:

Ga(σ
i(s1), σ

i(m)) = 〈⃗a, a⃗− 1⃗〉 (mod q)

Gb(σ
i(s1), σ

i(m)) = 〈⃗b, b⃗− 1⃗〉 (mod q)

Gc(σ
i(s1), σ

i(m)) = 〈c⃗, c⃗− 1⃗〉 (mod q)

Gf (σ
i(s1), σ

i(m)) = 〈f⃗ , f⃗ − χ⃗〉 (mod q)
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where χ⃗ = (1, . . . , 1, 0) and provided that N satisfies 2(N − 1) < q.

Lemma 4.1.2. If j < d− 1 and s ∈ Rq satisfying
∏nj

i=n0
(s− i) = 0 where ni ∈ Zq,

then s ∈ Zq x
d
2 + Zq ⊂ Rq.

Proof. Recall that Zq[x]
∼−→

⊕n
i=1 Zqi [x] by Chinese Remainder Theorem. We de-

noteRqi to be Zqi [x]/(x
d+1) for i ≤ n.We haveRq

∼−→ ⊕n
i=1Rqi

∼−→
⊕n

i=1 Zqi [x]/(x
d
2−

ζi)⊕Zqi [x]/(x
d
2 − ζ3i ). According to the canonical isomorphism, 0 =

∏j
i=0(s− ni) ∈

Rq 7→ ((0, 0), . . . , (0, 0)) ∈
⊕n

i=1 Zqi [x]/(x
d
2 − ζi)⊕ Zqi [x]/(x

d
2 − ζ3i ).

Zqi [x]/(x
d
2 ± ζi) are fields, so s is an constant in Zqi [x]/(x

d
2 − ζi),Zqi [x]/(x

d
2 + ζi)

respectively. Again, we recover s by Rqi
∼←− Zqi [x]/(x

d
2 − ζi) ⊕ Zqi [x]/(x

d
2 + ζi)

via s (mod qi) ←[ (αi, βi). That is, we need to solve s =
∑d−1

j=0 sjx
j ∈ Rqi such

that s ≡
∑ d

2
−1

j=0 (sj + s d
2
+jζi)x

j ≡ αi (mod x
d
2 − ζi) (resp.

∑ d
2
−1

j=0 (sj − s d
2
+jζi)x

j ≡ βi

(mod x
d
2+ζi)) . By comparing coefficient, we obtain∀j 6= 0, sj = s d

2
+j = 0, s0+s d

2
ζi =

αi, and s0 − s d
2
ζi = βi. Thus s ∈ Zqi x

d
2 + Zqi ⊂ Rqi . Finally, according to canonical

Zq[x]
∼←−

⊕n
i=1 Zqi [x], we have s ∈ Rq is of the desired form.

Applying the lemma, we can set defining quadratic polynomials and quadratic

polynomials having zero constant coefficients for secret (s1,m) as given below:

Fai(σ
j(s1), σ

j(m)) = ai(ai − 1), Gai(σ
j(s1), σ

j(m)) = 〈x
d
2 , ai〉

Fbi(σ
j(s1), σ

j(m)) = bi(bi − 1), Gbi(σ
j(s1), σ

j(m)) = 〈x
d
2 , bi〉

Fci(σ
j(s1), σ

j(m)) = ci(ci − 1), Gci(σ
j(s1), σ

j(m)) = 〈x
d
2 , ci〉

Ffi(σ
j(s1), σ

j(m)) = fi(fi − 1), Gfi(σ
j(s1), σ

j(m)) = 〈x
d
2 , fi〉

for all i ∈ {0 . . . N − 1}.
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Private information: a1, . . . , ak, c ∈ [−2N−1, 2N − 1] so that
∑k

j=1 aj = c,

randomness s2 ∈ Rm2
q .

Public information: A1 ∈ Rn×(k+1)N
q , A2 ∈ Rn×m2

q , B ∈ RN×m2
q such that(

tA
tB

)
=

(
A1
0

)
s1 +

(
A2
B

)
s2 +

(
0
m

)
. Bg ∈ Rλ/2×m2

q , b ∈ Rm2
q .

Prover Verifier

a⃗i = TC(ai) for i ∈ {1, . . . , k}, c⃗ = TC(c)

f⃗ = (E − 2J)−1(c⃗−
∑k

j=1 a⃗j) ∈ ZN
q ,

s1 = a⃗1|| . . . ||a⃗k||⃗c, m = f⃗

Run Π := Π((s2, a⃗1|| . . . ||a⃗k||⃗c, f⃗), σ,G, F )

Check verification equations for Π

Figure 4: Proof of general integer addition where 2k < d.

Generally speaking, if one attempts to show an addition of several integers. That

is, one want to show that
∑k

i=1 ai = c for some i ∈ N and ai, c ∈ [−2N−1, 2N − 1].

The origin addition problem is equivalent to
∑k

i=1 ai(x) + f(x)(x − 2) = c(x) for

some integer polynomial f(x) as we mentioned before. Let ai(x) = −ai,N−1x
N−1 +
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∑N−2
j=0 ai,jx

j for i ∈ [k]. Therefore, we obtain the system of linear equations below.



∑k
i=1 ai,0 = 2f0 + c0

∑k
i=1 ai,1 + f0 = 2f1 + c1

...

∑k
i=1 ai,N−2 + fN−3 = 2fN−2 + cN−2

∑k
i=1 ai,N−1 − fN−2 = −2fN−1 + cN−1

fN−1 = 0

We prove the following equality for this protocol:

k∑
i=1

a⃗i + Ef⃗ ≡ 2Jf⃗ + c⃗ (mod q) (**)

with matrices E and J as usual. Here, we need to apply a lemma to the system

of linear equations to ensure that the equality for polynomials still holds when (**)

holds, provided that q is large enough.

Lemma 4.1.3. If binary vectors a⃗i = (ai,j), c⃗ = (cj), and integer vector f⃗ = (fj)

for j ∈ {0, . . . N − 1} satisfying the above linear equations, then 0 ≤ fj ≤ k · (2− 1
2j
)

for all j.

Proof. As j = 0, −1 ≤ 2f0 =
∑k

i=1 ai,0 − c ≤ k. It implies −1
2

< 0 ≤ f0 ≤ k
2
<

k · (2−1) = k, since f0 ∈ Z . For j = 1, . . . N −3, we assume that 0 ≤ fj ≤ (2− 1
2j
)k.
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Since −1 ≤
∑k

i=1 ai,j+1 − cj+1 = 2fj+1 − fj ≤ k,−1/2 ≤ fj+1 − fj/2 ≤ k/2.

−1

2
+ fj/2 ≤ fj+1 = fj/2 + fj+1 − fj/2 ≤ k/2 + fj/2

−1

2
≤ fj+1 ≤ (2− 1

2j
)k/2 + k/2 (by induction hypothesis)

0 ≤ fj+1 ≤ (1− 1

2j+1
)k + k/2 = (3/2− 1

2j+1
)k.

For j = N − 1, we have fN−1 = 0. Hence, 0 ≤ fj ≤ k · (2− 1
2j
) by induction.

It is evident that ‖a⃗i‖ ≤
√
N and ‖c‖ ≤

√
N with a⃗i = TC(ai) and c⃗ =

TC(c). We can utilize the above results to define our secret information (s1,m)

with s1 := (a⃗1, . . . a⃗k, c⃗) along with m := f⃗ , provided 2k < d. It is straightforward

that ‖s1‖ ≤
√

(k + 1)N , assuming that MSISn,(k+1)N,
√

(k+1)N is hard. With the goal

of proving integer addition
∑k

i=1 ai = c, we define multivariate quadratic polynomi-

als Ga⃗i(σ
j(s1), σ

j(m)) = 〈a⃗i, a⃗i − 1⃗〉, as well as Gc⃗ for i ∈ [k]. Moreover, needing to

show fN−1 = 0, we define Ff (σ
j(s1), σ

j(m)) = fN−1. Similarly, we rewrite equation

(∗∗) to be
[
R1||Rm

] [s1
m

]
= 0 with R1 = [−IN || . . . || − IN ||IN ] together with Rm as

usual.

On the other hand, we have quadratic polynomials to show (s1,m) are integer

vectors Fai,j(σ
k(s1), σ

k(m)) = ai,j(ai,j − 1), Gai,j(σ
k(s1), σ

k(m)) = 〈x d
2 , ai,j〉 along

with Fcj , Gcj for (i, j) ∈ [k] × {0, . . . N − 1} For f⃗ , we set defining polynomials to

be Gfi,j(σ
k(s1), σ

k(m)) = 〈xj, fi〉 for i ∈ {0, . . . , N − 1}, 0 < j < d. Now, we define

the set of polynomials F := {Fai,ℓ , Fcℓ , Ff : ℓ ∈ {0, . . . , N − 1}, i ∈ [k]} and the set

G := {G1, . . . , GN , Gai,j , Gcj , Gfj ,ℓ, Ga⃗i , Gc⃗ : j ∈ {0, . . . , N − 1}, i ∈ [k], 0 < ℓ < d}

of polynomials of degree at most 2 such that evaluations of those polynomials have

vanishing constant coefficients where G1 . . . , GN are linear functions corresponding
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to the row of
[
R1||Rm

]
.

Proof size. As we discussed previously, the proof size has nothing to do with the

number of equations that we want to prove, whence the proof size for general integer

addition is about

(n+N+λ+1)ddlog qe+dlog (2κ+ 1)ed+(k+1)Nd·(2.57+dlog s1e)+m2d·(2.57+dlog s2e)

bits where s1 = γ1η
√
(k + 1)N and s2 = γ2ην

√
m2d.

4.2 Integer Multiplication

Given integers c ∈ [−22N−1, 22N − 1] and a, b ∈ [−2N−1, 2N − 1] satisfying ab = c,

we apply the polynomial approach to prove the desired integer multiplication. Pre-

cisely speaking, it suffices to show that a(x) · b(x)+ f(x)(x− 2) = c(x) and that the

coefficients of a(x), b(x), c(x) are either 1 or 0. By the proof of Lemma 4.1.3, we have

0 ≤ ‖f‖∞ ≤ N + 1. Without loss of generosity, we suppose that N = d/2. Then,

we set private s1 to be (a(x), a0, . . . , ad/2−1, b(x), b0, . . . , bd/2−1, c(x), c0, . . . , cd−1) with

ai, bi, ci are coefficients of a(x), b(x), c(x) respectively. Similarly, define secret m to

be (f(x), f0, . . . , fd−1) where fd−1 = 0. It is evident that ‖s1‖ ≤
√
d+ d+ 2d = 2

√
d.

Now we set the defining polynomials for our private information (s1,m). To ensure

well-formedness of a(x), b(x), c(x), we define F0(σ
i(s1), σ

i(m)) = a(x) · b(x)− c(x) +

f(x) · (x− 2) along with Fa(σ
i(s1), σ

i(m)) =
∑d/2−2

j=0 ajx
j − ad/2−1x

d/2−1 − a(x) and

similarly for Fb, Fc, Ff . Next, we are necessary to show that ai, bi, cj, fj for 0 ≤ i ≤

d/2−1, 0 ≤ j ≤ d−1 are constants. Besides, we still need to prove that ai, bi, cj are

either 1 or 0 for all i, j and that fd−1 = 0. Hence, we set Fai(σ
k(s1), σ

k(m)) = ai(ai−

1), Gai(σ
k(s1), σ

k(m)) = 〈ai, x
d
2 〉 together with Ga(σ

i(s1), σ
i(m)) = 〈TC(a),TC(a)−
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1〉 and similarly for Fc1 , Gc1 , . . . Fcd−1
, Gcd−1

, Gc, Fbi , Gbi , Gb where 0 ≤ i ≤ d/2 − 1.

Furthermore, we consider polynomials for (f0, . . . , fd−1). That is, for 0 ≤ i ≤ d− 2,

Gfi,j(σ
k(s1), σ

k(m)) = 〈fi, xj〉 together with Ffd−1
= fd−1. Next, we define sets F :=

{F0, Fa, Fb, Fc, Ff , Fai , Fbi , Fcj} along withG := {Ga, Gb, Gc, Gai , Gbi , Gcj , Gfℓ,k : 0 ≤

ℓ < d − 1, 0 < k < d} respectively; then, we use the protocol to prove that private

(s1,m) satisfying h(σk(s1), σ
k(m)) = 0 = g̃(σk(s1), σ

k(m)) for all h ∈ F, g ∈ G.

Private information: a, b ∈ [−2N−1, 2N − 1], c ∈ [−22N−1, 22N − 1] so that

a · b = c, randomness s2 ∈ Rm2
q .

Public information: A1 ∈ Rn×(k+1)N
q , A2 ∈ Rn×m2

q , B ∈ RN×m2
q such that(

tA
tB

)
=

(
A1
0

)
s1 +

(
A2
B

)
s2 +

(
0
m

)
. Bg ∈ Rλ/2×m2

q , b ∈ Rm2
q .

Prover Verifier

a(x) = −TC(a)N−1x
N−1 +

∑N−2
i=0 TC(a)ixi

b(x) = −TC(b)N−1x
N−1 +

∑N−2
i=0 TC(b)ixi

c(x) = −TC(c)2N−1x
2N−1 +

∑2N−2
i=0 TC(c)ixi

f(x) = (c(x)− a(x) · b(x))/(x− 2)

s1 = (a(x)||TC(a)||b(x)||TC(b)||c(x)||TC(c))

m = (f(x)||f0|| . . . ||f2N−1)

Run Π := Π((s2, s1,m), σ,G, F )

Check verification equations for Π

Figure 5: Proof of integer multiplication where N ≤ d/2.

Proof size. As for the proof size, note that ‖s1‖ ≤ 2
√
2N . Therefore, the total
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proof length should be about

dlog (2κ+ 1)ed+(n+2N+λ+2)ddlog qe+(4N+3)d·(2.57+dlog s1e)+m2d·(2.57+dlog s2e) bits

where s1 = 2γ1η
√
2N as well as s2 = γ2ην

√
m2d.

To recap, we improved the method of proving that an element in Rq is indeed a

constant in Zq by indicating that Rq behaves almost like a field in some situations.

Next, through the application of Lemma 4.1.2, we have designed two efficient lattice-

based zero-knowledge protocols based on result from [LNP22], [LNS20], specifically

tailored for integer relations. One protocol is designed for solving arbitrary integer

addition, while the other is tailored for addressing product of two integers.
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