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摘要

本文探討兩個皮卡數為一的平滑法諾三維空間之導出範疇。第一個是指數為

一、次數為十四的三維空間（下稱「第一空間」）；第二個是指數為二、次數為三

的三維空間（下稱「第二空間」）。

對這兩個空間，我們各自選取其有界導出範疇中的一個特別子範疇。就第

一空間而言，該子範疇 ──常被稱作庫茲涅佐夫成分 ──是由一對標準例外對象

（包含一個秩二向量束與結構層）的右正交補所構成；對第二空間，則取由結構層

與超平面類線束組成之例外對的右正交補。

二零零四年，庫茲涅佐夫建立了一個對應，聯繫這兩類法諾三維空間的模空

間，並證明：對每一個平滑的第一空間，都存在一個平滑的第二空間，使得它們

各自的庫茲涅佐夫成分彼此等價。

本論文有兩個主要目標：第一，證明上述兩個子範疇皆不含例外對象；第二，

說明庫茲涅佐夫的等價可以實現為傅立葉 ─穆凱變換。

關鍵字：法諾三維多樣體、導出範疇、右正交補範疇
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Abstract

In this article, we study the derived categories of two smooth Fano threefolds with

Picard number one. The first is the threefold of index one and degree fourteen, which we

call“X14＂; the second is the threefold of index two and degree three, referred to as“Y3＂.

For each variety we consider a distinguished subcategory of its bounded derived category

of coherent sheaves. In the case of X14, this subcategory—often called the Kuznetsov

component—is defined as the right orthogonal to the standard exceptional pair consisting

of a rank-two vector bundle and the structure sheaf. For Y3, the analogous subcategory

is the right orthogonal to the pair formed by the structure sheaf and the line bundle as-

sociated with the hyperplane class. In a 2004 paper, Alexander Kuznetsov constructed a

correspondence between the moduli stacks that classify these two families of Fano three-

folds. More precisely, for every smooth Fano threefold X14 there exists a smooth Fano

threefold Y3 such that their Kuznetsov components are equivalent. This thesis has two

main goals: first, to prove that the two chosen subcategories contain no exceptional ob-
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jects; and second, to show that Kuznetsov’s equivalence can be realized as a Fourier–

Mukai transform.

Keywords: Fano Threefolds, Derived Category, Right Orthogonal Complement
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Chapter 1 Introduction

The bounded derived category of coherent sheaves on a smooth projective variety
encodes subtle geometric information. A foundational example is the reconstruction the-
orem of Bondal and Orlov (see [BO95]): for a smooth projective variety X with ample
canonical or anticanonical bundle, any equivalence Db(Y ) ' Db(X) with a smooth va-
riety Y forces Y ∼= X . In such cases, the derived category determines the variety up to
isomorphism.

Kawamata extended this to the case where the canonical or anticanonical bundle is
big, showing that Db(Y ) ' Db(X) implies Y birational to X . These results reveal the
derived category as a powerful invariant reflecting birational geometry.

This categorical perspective naturally aligns with the minimal model program, where
flops connect different minimal models. In the case of threefolds, Bridgeland (see [? ])
showed that for two crepant resolutions π1 : Y1 → X and π2 : Y2 → X of a projective
threefoldX with at worst terminal singularities, the derived categoriesDb(Y1) andDb(Y2)
are equivalent. Also, in [KPS18], the technical argument in [Kuz04] is actually based on
Bridgeland’s work, which establishes an equivalence between the derived categories of
two specific projective bundles over two Fano threefolds via a particular Fourier–Mukai
transform.

Moreover, two related but different geometric object may have equivalence derived
category. A classical example is the equivalence between an abelian variety and its dual,
realized via a Fourier–Mukai transform with the Poincaré bundle as kernel. This phe-
nomenon occurs in particular when the canonical bundle is trivial. Such examples sug-
gest that derived categories may capture hidden symmetries beyond classical birational
geometry.

In the case of Fano threefolds, this idea becomes particularly powerful: their derived
categories sometimes admit equivalences between seemingly very different varieties. For
instance, as shown in [Kuz09], one may consider the so-called Kuznetsov component in
the derived category of a Fano threefold, defined as the right orthogonal complement of
an exceptional collection associated with natural geometric vector bundles.

For d = 4, 5, the Fano threefolds of index 1 and degree 4d + 2 and the del Pezzo
threefolds of degree d admit equivalent Kuznetsov components. For d = 3, each Fano
threefold of index 1 and degree 14 is associated with a del Pezzo threefold of degree 3
whose derived category contains an equivalent component.

Moreover, as shown in [KPS18], for d = 3, 4, 5, the Hilbert scheme of conics on
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a Fano threefold of index 1 and degree 4d + 2 is isomorphic to the Hilbert scheme of
lines on the corresponding del Pezzo threefold of degree d, further confirming the deep
relationship reflected by the equivalence of derived components.

This thesis introduces the relationship between two specific smooth Fano threefolds:
the Fano threefold X14 of index 1 and degree 14, and the cubic threefold Y3 of index 2
and degree 3. In [Kuz04], for any such X14, Kuznetsov constructs an associated Y3 and
shows that a semiorthogonal component of Db(Y3) matches a component of Db(X14).
More precisely, under this correspondence, we have the equivalence

BY3 → AX14

where each side denotes the right orthogonal complement of a natural exceptional collec-
tion in the derived category.

The subcategory AX14 ⊂ Db(X14) is defined as the right orthogonal to the excep-
tional pair (U2,OX14), and the subcategory BY3 ⊂ Db(Y3) is the right orthogonal to the
collection (OY3 ,OY3(1)). Both constructions arise naturally from geometric considera-
tions: U2 is a stable vector bundle constructed via Mukai’s method, which was used to
classify Fano threefolds, whileO andO(1) represent the simplest line bundles on a cubic
hypersurface.

The goal of this thesis is to study the structure of AX14 and BY3 , and in particular, to
show that it does not admit any exceptional objects and rewrite the equivalence in [Kuz04]
as a Fourier Mukai transform φK : BY3 → A∗

X14
where K = ιZ∗

(
OY (2e)|Z

)
and Z is a

closed sub-variety ofX × Y . The dual of A∗
X14

here is because of the different definition
of AX14 in [Kuz04], which is ⊥〈O, U∗〉 and equals to (〈U ,O〉⊥)∗.

To achieve this, we provide the details of the computations which is omitted in
[Kuz09], in which the numerical Grothendieck groupsK0(X14)num andK0(Y3)num are ex-
plicitly described. Using this framework, we reduce the problem to a matrix computation
involving the Euler pairing. We then demonstrate that no class in ch(AX14) or ch(BY3)
satisfies the numerical conditions required to represent an exceptional object.

Regarding the Fourier–Mukai transform, we refer to the construction in [Kuz04],
where the right mutation is interpreted as a Fourier–Mukai transform. We further compute
the composition of two such transforms within this framework.

2



doi:10.6342/NTU202502558

Chapter 2 Preliminary on Fano
threefolds

We begin by reviewing several basic definitions and facts about smooth Fano vari-
eties. A smooth Fano variety is a projective variety V such that the anticanonical divisor
−KV is ample. The following proposition summarizes some foundational properties (see
[IP99]):

Proposition 2.1 ([IP99, Proposition 2.1.2]). Let V be a smooth Fano variety. Then:

1. H i(V,OV ) = 0 for all i > 0;

2. Pic(V ) ∼= H2(V,OV ) is a finitely generated, torsion-free Z-module.

Since Pic(V ) is finitely generated and torsion-free, there exists a maximal integer
r > 0 such that −KV = rH for some ample Cartier divisor H . This divisor H is called
the fundamental divisor of V , and the integer r is referred to as the index of V . The
quantity d = HdimV is called the degree of V . Finally, the number g = 1

2
(−KV )

3 + 1 is
called the genus of V (see [IP99]).

Remark 2.2. We briefly describe the linear system | −KV |. By [IP99, Corollary 2.4.6],
| − KV | is base point free if ρ(V ) = 1. In this case, the associated morphism ϕ|−KV | is
either a finite morphism of degree 2 or an embedding (see [IP99, Proposition 4.1.11]). The
definition of genus is justified by the fact that when ϕ|−KV | is an embedding, V can be
realized as a threefold of degree (−KV )

3 = 2g−2 inPg+1. Moreover, for a general smooth
curve C ⊂ V obtained as the complete intersection of two hyperplanes, the restriction
ϕ|−KV ||C : C → Pg−1 is the canonical map, and C has genus g.

In this article, we focus on the case where Pic(V ) ∼= Z. We begin with smooth Fano
threefolds V of index 1. We denote by V2g−2 a Fano threefold of degree 2g− 2 and genus
g. In this case, the possible values of g satisfy 2 ≤ g ≤ 12 with g 6= 11 (see [IP99,
Proposition 5.2.3], also Mukai’s work on Fano threefolds of genus g).

We now introduce the classification of smooth Fano threefolds of index 1 and Picard
number 1. In the following theorem for g ≤ 5, the morphism ϕ|−KV | is either an embed-
ding, in which case V2g−2 can be realized as a complete intersection in Pg+1, or a finite
morphism of degree 2.

3
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Theorem 2.3 (Iskovskikh, see [IP99, Proposition 4.1.12]). Let V2g−2 be a smooth Fano
threefold of index 1 and genus g, where 2 ≤ g ≤ 5. Then the morphism

ϕ|−KV | : V2g−2 → Pg+1

classifies V2g−2 as follows:

• g = 2: Sextic double solid

• g = 3: either V4 → P4 is a finite morphism of degree 2 onto a quadric in P4,
ramified along a degree 8 surface, or V4 ↪→ P4 is a quartic hypersurface.

• g = 4: V6 ↪→ P5 is a complete intersection of a quadric and a cubic.

• g = 5: V8 ↪→ P6 is a complete intersection of three quadrics.

For g ≥ 6, the image of the anticanonical morphism is no longer a complete inter-
section. In these cases, a method for biregular classification was developed by Mukai.

Theorem 2.4 (Mukai, see [IP99, Theorem 5.2.3] or [BKM24, Theorem 1.2]). Let V2g−2

be a smooth Fano threefold of index 1 and Picard number ρ(V2g−2) = 1, with genus g ≥ 6.
Then V2g−2 admits the following classification:

• g = 6: a transverse linear section of a complete intersection of a quadric and the
cone G̃r(2, 5) ⊂ P10 over Gr(2, 5) ⊂ P9.

• g = 7: fix a nondegenerate symmetric bilinear form on C9; then V12 is a transverse
linear section of the 10-dimensional variety

{W ∈ Gr(4,C9) | q(W,W ) = 0} ⊂ Gr(4,C9).

• g = 8: a transverse linear section of Gr(2, 6) ⊂ P14.

• g = 9: fix a nondegenerate skew-symmetric bilinear form q on C6; then V16 is a
transverse linear section of the 6-dimensional variety

{W ∈ Gr(3,C6) | q(W,W ) = 0} ⊂ Gr(3,C6) ⊂ P19.

• g = 10: fix a nondegenerate skew-symmetric 4-linear form q on C7; then V18 is a
transverse linear section of the 5-dimensional variety

{W ∈ Gr(5,C7) | q(W,W,W,W ) = 0} ⊂ Gr(5,C7) ⊂ P20.

• g = 12: fix three nondegenerate skew-symmetric bilinear forms q1, q2, q3 on C7;
then V22 is the variety{
W ∈ Gr(3,C7)

∣∣ q1(W,W ) = q2(W,W ) = q3(W,W ) = 0
}
⊂ Gr(3,C7) ⊂ P34.

For g = 8, 9, 10, 12, the classification is based on the following construction involv-
ing the so-called Mukai bundle.

4
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Theorem 2.5 (Mukai bundle; see [BKM24] for details). Let k be an algebraically closed
field of characteristic zero, and let V be a smooth Fano threefold over k of genus g = ts ≥
6 with t, s ≥ 2, and Picard number ρ(V ) = 1. Then there exists a unique stable vector
bundle Ut on V such that

rk(Ut) = t, c1(Ut) = KV , H•(V,Ut) = 0, and Ext•(Ut,Ut) = k.

Moreover, the dual bundle U∗
t is globally generated with

dimH0(V,U∗
t ) = t+ s, and H>0(V,U∗

t ) = 0.

Since U∗
r is globally generated, we may consider the evaluation map

H0(V,U∗
t )⊗OV ↠ U∗

t ,

whose dual gives an injection

Ut ↪→ H0(V,U∗
t )

∗ ⊗OV .

This defines a morphism

V −→ Gr(r, r + s), x 7→ Ut|x ⊂ H0(V,U∗
t )

∗.

This morphism factors through the anticanonical embedding, and studying it allows one
to classify such Fano threefolds up to biregular isomorphism.

For smooth Fano threefolds of Picard number 1, the index iV satisfies 1 ≤ iV ≤ 4.
The following theorems describe the classification in the cases iV = 2, 3, 4.

Theorem 2.6. Let Vd be a Fano threefold of index 2 and Picard number 1 with degree d.
Then Vd is classified as follows:

• d = 5: V5 is a transverse linear section of Gr(2, 5) ⊂ P9;

• d = 4: V4 ⊂ P5 is a complete intersection of two quadric hypersurfaces;

• d = 3: V3 ⊂ P4 is a cubic threefold;

• d = 2: V2 → P3 is a double cover ramified along a quartic surface;

• d = 1: V1 ⊂ P(3, 2, 1, 1, 1) is a degree 6 hypersurface.

Theorem 2.7. Let V be a smooth Fano threefold of Picard number 1 and index iV . Then:

• If iV = 3, then V ⊂ P4 is a quadric hypersurface;

• If iV = 4, then V ∼= P3.

5
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Chapter 3 Preliminary on Derived
category

In this section we briefly review the notions of derived category, including mu-
tation, semiorthogonal decomposition, exceptional objects, and exceptional collections.
(Our exposition follows [Huy23].)

Let D be a triangulated category and let D0 ⊂ D be an admissible full triangulated
subcategory; that is, the inclusion functor ι : D0 ↪→ D admits both a left and a right adjoint,
which we denote by ι∗ and ι!, respectively. For any object E ∈ D one has canonical
decompositions with respect to D0 and its orthogonals. More precisely, there exist two
distinguished triangles (see [Huy23, Chap. 7, Ex. 1.2])

EP −→ E −→ ι∗E, EP ∈ ⊥D0,

ι!E −→ E −→ PE, PE ∈ D⊥
0 .

Moreover, the choice of decomposition is unique up to isomorphism. More precisely,
suppose we are given two distinguished triangles:

F −→ E −→ G, F ∈ ⊥D0, G ∈ D0,

F ′ −→ E −→ G′, F ′ ∈ D0, G′ ∈ D⊥
0 .

Then we have

F ∼= EP, G ∼= ι∗E, F ′ ∼= ι!E, G′ ∼= PE.

⊥D0 is right-admissible and D⊥
0 is left-admissible. In this case, one has

(⊥D0)
⊥ = D0 =

⊥(D⊥
0 ).

Write
k : ⊥D0 ↪→ D, j : D⊥

0 ↪→ D

for the inclusions. Let k : ⊥D0 ↪→ D and j : D⊥
0 ↪→ D be the inclusion functors. If

we decompose E into two parts, then by the uniqueness discussed above, we obtain the

7
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following two distinguished triangles:

k!E −→ E −→ ι∗E, k!E ∈ ⊥D0, ι
∗E ∈ D0,

ι!E −→ E −→ j∗E, ι!E ∈ D0, j
∗E ∈ D⊥

0 .

where k! and j∗ are the right and left adjoints of k and j, respectively.

Definition 3.1. [Huy23, Chap. 7, Def. 1.5] The right mutation through D0 is the functor

RD0 := k! : D −→ ⊥D0,

and the left mutation through D0 is the functor

LD0 := j∗ : D −→ D⊥
0 .

In some cases, we can describe ι∗ and ι! more explicitly. Consider the following
definition.

Definition 3.2 (Exceptional object, see [Huy23]). An object E ∈ D is called exceptional
if it satisfies

Ext•(E,E) = k.

Remark 3.3. The category 〈E〉 ⊂ D is admissible, and we have

ι∗F ∼=
⊕
m

Hom(F,E[m])∗ ⊗ E[m], ι!F ∼=
⊕
m

Hom(E,F [m])⊗ E[m].

So far, we have seen that if there is an admissible subcategory D1 ⊂ D, then for any
F ∈ D, we have the following triangle:

E1 F

A1

whereA1 ∈ D1 andE1 ∈ ⊥D1. If there exists another admissible subcategoryD2 ⊂ ⊥D1,
then we have

F2 F1 F

A2 A1

where E2 ∈ ⊥D1∩⊥D2 and Ai ∈ Di. By continuing to find admissible subcategories, we
are able to decompose the triangulated category into several pieces. This leads us to the
following definition of semiorthogonal decomposition.

Definition 3.4 (Semiorthogonal decomposition). Let D1,D2, . . . ,Dn be a sequence of
admissible subcategories ofD satisfying Hom(Dj,Di) = 0 for all j > i, and such that for

8
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every F ∈ D, we have the following sequence of Fj and distinguished triangles:

0 Fn−1 · · · F2 F1 F

An A2 A1

with Ai ∈ Di. In this case, we write

D = 〈D1,D2, . . . ,Dn〉.

Definition 3.5. Given an ordered sequence of exceptional object (E1, E2, · · · , Ei) , we
say that it is an exceptional collection if RHom(Ej, Ei) = 0 for any j > i. In this case,
we have following semi-orthogonal decomposotion

〈D′, 〈E1〉, 〈E2〉, · · · , 〈Ei〉〉

where D′ = 〈E1, E2, · · · , Ei〉⊥

Back to the case of Fano threefolds with Picard number 1. For such varieties, there
are two known exceptional collections in their derived categories, each giving rise to a
semiorthogonal decomposition. It is natural to explore the relation between the compo-
nents defined by these collections.

The first exceptional collection comes from the cohomological vanishing conditions
in the theorem above and consists of

(
Ur,OV

)
. Therefore, for smooth Fano threefolds of

Picard number 1, index 1, and genus g ≥ 6, we consider the semiorthogonal decomposi-
tion:

〈AV ,Ur,OV 〉,

where

AV = 〈Ur,OV 〉⊥ =
{
F ∈ Db(V )

∣∣ Ext•(Ur,F) = 0, Ext•(OV ,F) = H•(V,F) = 0
}
.

On the other hand, for index i smooth Fano threefolds, there is another exceptional
collection:

OV , OV (H), . . . , OV ((i− 1)H)

which forms an exceptional collection in Db(V ).

In particular, for i = 2, we have the following semiorthogonal decomposition:

〈B, OV , OV (H)〉.

Kuznetsov raised the following conjecture for 1 ≤ d ≤ 5 in [Kuz09]:

Conjecture 3.6. Let Mi
d be the moduli stack of smooth Fano threefolds of index i and

degree d. Then there exists a correspondence

Zd ⊆ M1
4d+2 ×M2

d

9
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which is dominant on each factor, such that for all (X4d+2, Yd) ∈ M1
4d+2 ×M2

d, we have

AX4d+2
∼= BYd .

This conjecture was proved by Kuznetsov for d = 3, 4, 5, while counterexamples are
now known for d = 1, 2. Moreover, Kuznetsov later modified the conjecture and proved
the revised version; see [KS25].

10
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Chapter 4 Cohomology on Fano
threefolds

On a smooth Fano threefold X , we haveK0(X)num ∼= Z4, generated by

OX , OH , OL, Op.

It is therefore reasonable to compute ch(OX), ch(OH), ch(OL), and ch(Op), as well as
the Euler pairing on K0(X)num ∼= Z4. Most of these results are stated without proof in
[Kuz09]; we provide full details below.
Lemma 4.1 (Generalizing Lemma from [Isk89]). Let X be a smooth Fano threefold of
index r, and let L ⊂ X be a line. If |H| is very ample, then

NL/X
∼= OP1(d1)⊕OP1(d2), with d1 + d2 = r − 2.

Remark 4.2. Regarding the existence of lines: for the index 1, Picard number 1 case with
−KX very ample, see [Šo79]. For index 2, see [KPS18], where the Hilbert scheme of
lines on index 2, Picard number 1 Fano threefolds of degrees 3, 4, 5 is discussed.

Proof. We first argue that there exists a nonsingular hyperplane sectionH ⊂ X containing
Z := L. We modify the classical Bertini theorem to construct such a section.

Consider the incidence relation

R = {(x,H) ∈ Z × |H| | H ∩X is singular at x} ,

which is equal to
{(x,H) ∈ Z × |H| | Tx(X) ⊂ H} .

If H is singular at x, then Z ⊂ Tx(X) ⊂ H . Thus, R is a closed subscheme of
Z × |H − Z|, where |H − Z| is the linear system of hyperplane sections containing Z.
More precisely, it is defined by

P(H0(IZ ⊗O(H))) ⊂ |H|,

and has dimension dim |H| − 2.

Now consider the projections:

1. PZ : R → Z,

11
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2. P|H−Z| : R → |H − Z|.

Over any point x ∈ Z, the fiber of PZ consists of hyperplane sections singular at x,
which is a linear subspace of dimension dim |H|−4. Therefore, dimR = dim |H|−3, so
the image Im(P|H−Z|) ⊂ |H − Z| has dimension at most dim |H| − 3. This implies that
the set of hyperplanes singular along Z is a proper closed subset of |H − Z|.

By Bertini’s theorem, the general member of |H − Z| is smooth outside the base
locus, which is Z. Hence, the general member in |H −Z| is a smooth hyperplane section
containing Z.

Choose such a smooth hyperplane section H ⊂ X containing Z. Consider the exact
sequence on X:

0 −→ IH/X −→ IZ/X −→ ιZ/X∗IZ/H −→ 0.

Pulling back to Z, we get:

ιZ/H
∗NH/X

∗ −→ NZ/X
∗ −→ NZ/H

∗ −→ 0.

Taking duals gives:

0 −→ NZ/H
f−→ NZ/X −→ ι∗Z/HNH/X −→ 0.

We now argue that the map f is injective: The middle term is a rank 2 bundle, and
the third term is a line bundle, so the map to the line bundle must have nontrivial kernel.
Thus, f is fiberwise injective, and hence globally injective.

From the geometry: ιZ/H∗NH/X
∼= OP1(1), NZ/H

∗ ∼= I/I2 = OP1(−Z2).

We compute:

Z2 = 2g(Z)− 2− Z ·KH = −2− Z · ((KX +H)|H) = −2− (1− r) = −3 + r.

Hence, c1(NZ/H) = r − 2. By Grothendieck’s theorem, we conclude:

NZ/X
∼= OP1(d1)⊕OP1(d2), with d1 + d2 = r − 2.

Proposition 4.3. For a Fano threefolds V of Picard number 1, with index r, andH is very
ample, we have :

ch(OV ) = 1, ch(OH) = H − d

2
L+

d

6
P, ch(OL) = L+

2− r

2
P, ch(OP ) = P.

Proof. Also, recall the Chern class for E,

ch(E) = rank+ c1(E) +
1

2
(c1(E)

2 − 2c2(E)) +
1

6
(c1(E)

3 − 3c1(E)c2(E) + 3c3(E)) · · ·

12
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Thus, ch(OV ) = 1, and

ch(OH) := ch(OV )− ch(OV (−H))

= 1− (1−H +
H2

2
− H3

6
)

= H − 1

2
H2 +

1

6
H3

= H − d

2
L+

d

6
P

where d = H3 is the degree of V , and since H · L = P , we have H2 = dL.

Next, we see the calculation of ch(OL). Let ιL : L ↪→ V be the embedding. Then,
by Grothendick Riemann Roch, we have

chV (ι∗OL) = chV (ι!OL) = ιL∗(chL(OL) · Td(Tι)) = ιL∗ (1 · Td(Tι))

= ιL∗

(
1 +

c1(Tι)

2

)
(*)

where Tι = TL − ιL
∗TV ∈ K0(X). Due to 0 → TL → ιL

∗TV → NL/V → 0, we get:

Tι = −NL/V ∈ K0(X) and c2(Tι) = 0, c1(Tι) = −c1(NL/V ) = r − 2

Plug into (∗), we then have

ch(OL) = ιL
∗
(
1 +

(r − 2)p

2

)
= L+

(r − 2)P

2

Last, about ιp : p→ V , we have ch(OP ) = ιp∗
(
Td(Np/V )

)
= ιp∗(1) = P

Proposition 4.4. For a Fano threefolds V of Picard number 1, index r , degree d the Euler
pairing is given by

χ(E,F ) :=
∑
i

(−1)i dimHom(E,F [i]) = χ0(ch(E)∗ · ch(F )),

where
χ0(x+ yH + zL+ wP ) = x+

r3d+ 24

12r
y +

rz

2
+ w

Proof. We’re going to use Hirzebruch–Riemann–Roch theorem, which is following
identity

χ(E,F ) = (ch(E)∗. ch(F ).Td(TV ))3
Thus, our goal now is to compute Td(TV ) directly. We first recall the definition of Todd
class, for vector bundle F , we have

Td(F ) = 1 +
c1(F )

2
+
c21(F ) + c2(F )

12
+
c1(F )c2(F )

24
+ · · ·

13
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1 = χ(OV ) = χ(OV ,OV ) = (ch(OV ) · Td(TV ))3 =
c1c2
24

(Here by Kodaira vanishing, we have 1 = χ(OV )).

On the other hand, since the total chern polynomial ct(KV ) = 1+ (−r)Ht, we have
1 + c1(TV )t = ct(

∧3 TV ) = 1 + rHt. Thus, c1(TV ) = rH and c2(TV ) = 24
r
L

This implies

ct(TV ) = 1 + rH +
24

r
L+ c3(TV ),

and

Td(TV ) = 1 +
rH

2
+
r3d+ 24

12r
L+ P

Thus,

χ(E,F ) = (ch(E)∗ · ch(F ) · Td(TV ))3 = χ0 (ch(E)∗ · ch(F ))

where
χ0(x+ yH + zL+ wP ) = x+

r3d+ 24

12r
y +

rz

2
+ w

4.1 On index 1 case

After above computational proposition, we have following related table. First, on
index 1 case, except for the only two cases in g = 2 and g = 3, |−KV = H| is very
ample. In such cases, for index 1, genus g smooth Fano threefolds, we see that

ch(OV ) = 1, ch(OH) = H − (g − 1)L+
g − 1

3
p, ch(OL) = L+

1

2
p, ch(Op) = p

and have following tables.

ch(E)∗ · ch(F ) E = OV E = OH E = OL E = OP

F = OV (1, 0, 0, 0) (0,−1, 1− g, 1−g
3
) (0, 0, 1,−1

2
) (0, 0, 0, 1)

F = OH (0, 1, 1− g, g−1
3
) (0, 0, 2− 2g, 0) (0, 0, 0, 1) (0, 0, 0, 0)

F = OL (0, 0, 1, 1
2
) (0, 0, 0,−1) (0, 0, 0, 0) (0, 0, 0, 0)

F = OP (0, 0, 0, 1) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

where (a, b, c, d) means a+ bH + cL+ dP .

14
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χ(E,F ) E = OV E = OH E = OL E = OP

F = OV 1 −g − 1 0 −1

F = OH 2 1− g 1 0

F = OL 1 −1 0 0

F = OP 1 0 0 0

which comes from plugging the above table into
χ0(x+ yH + zL+ wP ) = x+ g+11

6
y + z

2
+ w.

Also, we can extend the Euler form on ch(K0(X)num) byQ-linearity to ch(K0(X)num)⊗Q.
Therefore, if we take {1, H, L, P} to be aQ basis ofK0(X)num⊗Q, then we get following
table.

χ(u, v) u = 1 u = H u = L u = P

v = 1 1 −g + 11

6

1

2
−1

v = H
g + 11

6
1− g 1 0

v = L
1

2
−1 0 0

v = P 1 0 0 0

Corollary 4.5. There is no exceptional object in AX14

Proof. SinceK0(X)num = 〈[OV ], [OH ], [OL], [OP ]〉Z, as shown in the appendix of [Kuz09],
it follows that ch(AX) ⊂ K0(X)num is also a free abelian group.

Moreover, since
〈AX , U2, OX〉

is a semi-orthogonal-decomposition, we have ch(AX)⊕ ch(U2)⊕ ch(OX14) = K0(X)num,
and

ch(AX)Q =
{
E ∈ K0(X)num ⊗Q

∣∣ χ(U2, E) = 0, χ(OX , E) = 0
}

⊂ K0(X)num ⊗Q = 〈1, H, L, P 〉Q

Since ch(U2) = 2−H + g−4
2
L− g−10

12
p, ch(OX14) = 1, we then have

ch(AX)Q = 〈1− g

2
L+

g − 4

4
P, H − 3g − 6

2
L+

7g − 40

12
P 〉 Q ∼= Q2

Under the isomorphsim to Q2, the Euler form will become

χA14 =

(
−3 −4
−1 −7

)
15



doi:10.6342/NTU202502558

Since if E ∈ AX14 is an exceptional object, then χ(E,E) = 1. But

(a, b)

(
−3 −4
−1 −7

)(
a
b

)
= 1

have no real solution.

4.2 On index 2 case

Let d be degree of index 2 Fano threefolds, then 1 ≤ d ≤ 5, and for d = 3, 4, 5, |H|
is very ample. Similarly, we have

ch(OV ) = 1, ch(OH) = H − d

2
L+

d

6
P, ch(OL) = L, ch(Op) = p

and have following two tables

χ(E,F ) E = OV E = OH E = OL E = OP

F = OV 1 −d− 1 1 −1
F = OH 2 −d 1 0
F = OL 1 −1 0 0
F = OP 1 0 0 0

χ(u, v) u = 1 u = H u = L u = P

v = 1 1 −d+ 3

3
1 −1

v = H
d+ 3

3
−d 1 0

v = L 1 −1 0 0

v = P 1 0 0 0

Similar to the proof in index 1, we have following corollary.

Corollary 4.6. There is no exceptional object in BY3

Proof. since 〈BY , O, O(H)〉is a semi-orthogonal-decomposition, we have ch(B)⊕ ch(O)⊕
ch(O(H)) = K0(X)num, and

ch(B)Q =
{
E ∈ K0(X)num ⊗Q

∣∣ χ(O, E) = 0, χ(O(H), E) = 0
}

⊂ K0(X)num ⊗Q = 〈1, H, L, P 〉Q

Since ch(O(H)) = H − d
2
L− d

6
P, ch(OX14) = 1, we then have

ch(BY )Q = 〈1− L,H − d

2
L+

d− 6

6
P 〉 Q ∼= Q2

16
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Under the isomorphsim to Q2, the Euler form will become

χA14 =

(
−1 −1
−2 −3

)
Also,

(a, b)

(
−1 −1
−2 −3

)(
a
b

)
= 1

have no real solution.

17
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Chapter 5 Relation between X14 and
Y3

Our first goal is to relate the data of X14 and its embedding into Gr(2, 6), with a
cubic threefold Y3 together with a rank‑2 vector bundle E. In Mukai’s classification of
smooth Fano threefolds of index 1, d = 14, which I denote itX14 here, it is five hyperplane
intersectGr(2, 6) in P14 (One can refer the statement in [IP99] for classification of smooth
Fano n fold of index n− 2 and g ≥ 6).

More precisely, consider the Plücker embedding

Gr(2, 6) ↪→ P(
2∧
(C6))

given by
Span(u, v) 7→ [u ∧ v],

where u,v is linear independent. Then X14 is isomorphic to 5 hyperplane cut Gr(2, 6) in
P(
∧2(C6))

For index 2, degree 3 smooth Fano threefolds, it must isomorphic to a cubic hyper-
surace in P4, which I denote it as Y3 . In [Kuz04], X14 will correspond to a pair (Y3, E),
where E is an instanton bundle of charge 2 on Y3. Under this correspondence, the AX14

will isomorphic to BY3 .

Before we introduce the instanton bundle, we first introduce the correspondence be-
tween X14 and (Y3, E), where E is the theta bundle on Y3, and then we introduce the
correspondence between theta bundle and instanton bundle of charge 2.

5.1 Correspondence beteen X14 and (Y3, E)

We first construct an associated Y3 for a given X14. Let A ∼= C5 and V ∼= C6

be two vector space. Since X14 can be embedded into Gr(2, V ) with image cut by five
hyperplane sections. Thus, we consider a C linear map f : A → (

∧2(V ))
∗, and denote

X14 = V+(f(A)) ∩Gr(2, V ) ⊆ P14. We then have following lemma

Lemma 5.1. IfXf is smooth then rankf(a) ≥ 4 ( i.e. rankf(a) = 4 or 6 ) for all a 6= 0 ∈
A. For such f , we call it regular, and we will always require our f to be regular in the
following article.
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Also, for given Xf we can recover f up to GL(A) × GL(V ) action. For GL(V )
action, it depends on the embedding Xf ↪→ Gr(2, V ). For GL(A) action, it depends on
different choice of the isomorphism

A→ Ker(
2∧
V ∗ → H0(Xf , O(1)))

We now construct the associate cubic threefolds from the regular f . For a regular f ,
it induce an morphsim

V ⊗
C
OP(A)(−1)

f̃−→ V ∗ ⊗
C
OP(A)

For example, in local chart D+(x0) ⊂ P(A), the morphism can be written as

5∑
i=1

[ei ⊗
gi
x0

] 7→
∑

1≤i,j≤5

Bj(ei,−)⊗ xj
x0
gi,

where gi ∈ OP(A)(D+(x0)), {ei} is a basis of V , and Bi(−,−) = f(ei) ∈
∧2 V

∗. Let
q = [x0 : · · · x5] ∈ D+(x0), then it’s isomorphic on the stalk of q if and only if it is
isomorphic on the fiber of q. On the fiber the morphism is

5∑
i=1

[ei ⊗ ai] 7→
∑

1≤i,j≤5

Bj(ei,−)⊗ xj
x0
ai,

where ai ∈ C. Thus, f̃ |q is not isomorphism iff f(q) = f([x0 : · · · x5]) =
∑

1≤j≤5 xjBj,

is not full rank, which is equivalence to say q ∈ V+(Pf ◦ f) ∈ P(A). Here Pf(M)2 =
det(M) for skew symmetricM . This V+(Pf ◦f) is the associate cubic threefolds in P(A).
We denote it by Yf . So far, we construct how to correspondence a Fano threefolds of index
1, degree 14,Xf , to a Fano threefolds of index 2, degree 3. In [Kuz04], Kuznetsov shows
that there is an equivalence BYf → AXf

.

Next, we construction the associated theta bundleE on Yf for a givenXf From above
argument, we see that

V ⊗
C
OP(A)(−1)

f̃−→ V ∗ ⊗
C
OP(A)

is isomorphic on the open set D+(Pf ◦ f). We first show that f̃ is injective. Consider
Ker(f̃). It have support on Yf , which means any local section of
operatornameKer(f̃) is annihilate by local section of ideal sheaf ofYf , this implyKer(f̃) =
0, as subsheaf of locally free is torsion free. For Coker f̃ , since f̃ is isomophism on
D+(Pf ◦ f), Supp(Coker(f)) = Yf . Also, as skew symmetric form have even rank,
f̃ is always rank 4 on fiber of q ∈ Yf . This imples Coker(f̃) = ι∗(Ef ), for some rank 2

vector bundle on Yf
ι
↪−→ P(A). We then have following exact sequene

0 V ⊗
C
OP(A)(−1) V ∗ ⊗

C
OP(A) ι∗Ef 0

f̂ ι∗

20
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Ef is called the theta bundle of f . The above exact sequence give the isomorphsim
γf : V ∗ = H0(V ∗ ⊗

C
OP(A)) ∼= H0(Ef ). The main theorem about the correspondence

is following, see [Kuz04]:

Theorem 5.2. Associating the regular f gives anGL(A)×GL(V ) equivariant correspon-
dence between following

1. Regular f in P(A∗ ⊗ V ∗ ⊗ V ∗) that correspondence to smooth Xf .

2. The triple (Y, E, γ), where Y is a cubic threefolds in P(A), E is a bundle of rank
2 on Y , and γ : V ∗ → H0(Y, E) is an isomorphism with following conditions

c1(E) = 2[H], c2(E) = 5[l], H•(Y,E(t)) = 0, for 1 ≤ t ≤ 3.

5.2 Correspondence between the theta bundle and instan-
ton bundle of charge 2

Next we introduce the relation between theta bundle on Y and the related instanton
bundle.

Definition 5.3. Let Y3 be a cubic threefolds in P4, then E is an instanton bundle if c1(E) =
0, H1(Y, E(−1)) = 0. It’s called instanton bundle of topological charge k ∈ Z if,
additionally, c2(E) = k[l].

From following proposition, we can see the correspondence between instanton bun-
dle of charge 2 and the theta bundle

Proposition 5.4. The following is equivalence

1. E is an instanton bundle of charge 2

2. E(1) satisfies the conditions in Theorem 2.5, i.e.

c1(E) = 2[H], c2(E) = 5[l], H•(Y,E(t)) = 0, for 1 ≤ t ≤ 3.

3. E(1) is a theta bundle

4. E is an instanton bundle of charge satisfies

H1(Y, E(−1)) = H1(Y, E(1)) = H2(Y, E(1)) = H2(Y, E ⊗ E) = 0

From Theorem 2.5, we see that the isomorphism class of Xf will correspond to the
isomorphism class of the the pair (Yf , E), where E is a theta bundle. Also, from Propo-
sition 2.6, we see the correspond between theta bundle and instanton bundle of charge 2.
Thus, there should be isomorphism between the moduli stack of X14, denoted as M1

14,
and the moduli stack of pair (Y3, E), denoted as M2

3. In [Kuz04], Kuznetsov also shows
that under this isomorphism,
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i.e. the isomorphic class of Xf 7→ isomorphic class of Yf , we have AX14
∼= BY3 . More-

over, the fiber of this correspond is isomorphic to the moduli stack of instanton bundle of
charge on Y3, which is the bundle E satisfy the condition 4 in Proposition 2.6. Here we
denote itM0(Y ). In [MT01], they show thatM0(Y ) is smooth of dimension 5.

5.3 Equivalence Between AX14 and BY3

Here we briefly introduce the main result in [Kuz04].

Theorem 5.5. (Kuznetsov) For any X14, the associated Y3 satisfies the fact that BY3 is
equivalence to AX14

Consider following diagram

PY (E∗) PX(U)

Q

Y P(V ) X

pY

ψ1

pX

ψ2

ιQ

where PY (E∗) := P(
⊕

i S
i(E)) and PX(U) := P(

⊕
i S

i(U∗)). pX and pY denote
the natural projections. The morphism ψ1 is defined as the composition

PY (E∗) −→ Fl(1, 2;V ) −→ P(V ),

and similarly for ψ2. Both morphisms have the same image Q ⊂ P(V ) (see [Kuz04]).

Consider the fiber product

W = PY (E∗)×Q PX(U).

It can be regarded as a closed subvariety of PY (E∗)× PX(U). More precisely,

W = {((La, a), (LU , U)) ∈ PY (E∗)× PX(U) | La = LU} ,

where a ∈ Y is a skew form, and U ∈ X ⊂ Gr(2, V ) is a two-dimensional subspace of
V . The lines La ⊂ E∗|a and LU ⊂ U|U represent the points in the projective bundles.

LetK denote the pushforward of the structure sheafOW along the natural embedding
W ↪→ PY (E∗) × PX(U). We denote by OY (e) and OX(e) the pullbacks of O(1) via ψ1

andψ2, respectively. These are also the relative ample line bundles onPY (E∗) andPX(U).
When no confusion arises, we will simply write O(e). We also set:

O(y) := p∗YO(1), O(x) := p∗XO(1).
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In [Kuz04], for any Fano threefold X14, the associated cubic threefold Y3 satisfies

BY3 ' AX14 .

Moreover, for any A ∈ BY3 , the equivalence is given explicitly by

A 7→ pX∗ ◦ ΦK ◦ RO(3e−y) (p
∗
YA⊗OY (2e)) ,

where: ΦK is the Fourier-Mukai transform from Db(PY (E∗)) to Db(PX(U)) with kernel
K, RO(3e−y) denotes the right mutation functor through the line bundle O(3e− y).

5.4 Description of the Equivalence by a Fourier Mukai
transform

InAppendix B of [KPS18], Kuznetsov gives a geometric proof that theHilbert scheme
of conics onX14 is isomorphic to the Hilbert scheme of lines on the associated cubic three-
fold Y3. At the end of the paper, they also mention that the equivalence betweenAX14 and
BY3 can be expressed as a single Fourier-Mukai transform, and under this equivalence,
the ideal sheaf of a conic on X14 corresponds to the ideal sheaf of a line on Y3. Since the
primary goal in Appendix B of [KPS18] is to establish the isomorphism between these
Hilbert schemes, this result is stated without proof.

In what follows, we imitate the proof from [Kuz04] and rewrite the equivalence

A 7→ pX∗ ◦ ΦK ◦ RO(3e−y) (p
∗
YA⊗OY (2e))

from BY3 → AX14

∗ = ⊥〈O, U∗〉 as a Fourier–Mukai transform

ΦK : Db(Y ) −→ Db(X),

where

Z = {(a, U) ∈ Y ×X | ker(a) ∩ U 6= 0} , and K = ιZ∗
(
OY (2e)|Z

)
Note that Z is actually the image of following embedding (see [Kuz04] about the compo-
sition of following map is an embedding):

W PY (E∗)× PX(U) Y ×X
ιW pY ×pX

This identification follows from the exact sequence:

0 E∗ V ⊗OY V ∗ ⊗OY (1) 0

In this exact sequence, for each fiber at a point a, we see that E∗|a is the kernel of
the skew-symmetric form a. Here, a ∈ Y ⊂ P(V ) is the class of a skew form. Hence,
we have E∗|a ⊃ La = LU ⊂ U for some line La, LU if and only if ker(a) ∩ U 6= 0. This
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implies that the image of the composition ιW ◦ (pY × pX) is precisely Z.

First, since right mutation commutes with autoequivalences, we have:

RO(3e−y)
(
(p∗YA)⊗OY (2e)

)
=

(
RO(e−y)(p

∗
YA)

)
⊗OY (2e), in Db(PY (E∗)).

Moreover, since Fourier–Mukai transforms behave naturally under tensoring with line
bundles on the source, we also have

ΦK(−⊗OY (2e)) = ΦK⊗OY (2e)(−),

and hence,

pX∗ ◦ ΦK ◦ RO(3e−y)
(
(p∗YA)⊗OY (2e)

)
= pX∗ ◦ ΦK(2e) ◦ RO(e−y)(p

∗
YA).

Our plan is to rephrase the right mutation as a Fourier–Mukai transform. For this,
we recall the following proposition from [Kuz04], whose proof was omitted; we provide
the details here in the case of a right mutation:

Proposition 5.6. Let M be a smooth projective variety and let E ∈ Db(M). Then the
right mutation through E can be expressed as a Fourier–Mukai transform:

RE
∼= ΦKE

,

where KE is described by the following exact triangle in Db(M ×M):

KE −→ ∆∗OM
ev∗−→ RHom(E, ωM [dimM ])⊠ E.

In the case we need later, ωPY3
(E∗) = O(−2e) and E = O(e − y), the third term in

the triangle becomes
O(y − 3e)⊠O(e− y).

Proof. Let p1, p2 : M ×M → M be the projections onto the first and second factors,
respectively. Since the Fourier–Mukai transform is a composition of exact functors in the
derived sense, we have the following exact triangle for any F ∈ Db(M):

ΦKE
(F ) −→ F

ev∗−→ Rp2∗
(
RHom(E, ωM [dimM ])⊠ E ⊗ p∗1F

)
.

We now compute the third term of the triangle:

Rp2∗
(
RHom(E, ωM [dimM ])⊠ E ⊗ p∗1F

)
= Rp2∗

(
RHom(E, ωM [dimM ]⊗ F )⊠ E

)
= Rp2∗

(
RHom(E, S(F ))⊠ E

)
(by definition of Serre functor )

∼= RΓ
(
RHom(E, S(F ))

)
⊗ E (by flat base change)

∼= RHom(F,E)∗ ⊗ E.
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On the other hand, the right mutation functor RE is defined by the exact triangle:

RE(F ) −→ F
ev∗−→ RHom(F,E)∗ ⊗ E.

Thus, we conclude that ΦKE
(F ) ∼= RE(F ), as required.

Back to the reduction of

pX∗φKRO(3e−y)
(
(p∗YA)⊗OY (2e)

)
.

As shown earlier, this is equal to

pX∗φK(2e)RO(e−y)
(
p∗YA

)
,

and by the previous proposition, it can also be written as

pX∗φK(2e)φKO(e−y)
(p∗YA).

Hence, we are led to consider the composition of two Fourier–Mukai transforms.
That is, we aim to compute the kernelK1 such that

φK1 = φK(2e) ◦ φKO(e−y)
,

and we denote this convolution by

K1 := K(2e) ∗ KO(e−y).

Since the operation K(2e) ∗ (−) is a composition of pullbacks and pushforwards, it is
again an exact functor. Therefore, we obtain the following exact triangle:

K1 −→ K(2e) −→ K(2e) ∗
(
O(y − 3e)⊠O(e− y)

)
.

To compute the last term, observe:

K(2e) ∗
(
O(y − 3e)⊠O(e− y)

)
= O(y − 3e)⊠ φK(2e)

(
O(e− y)

)
(φA ◦ φB⊠C = φB⊠ϕA(C))

= O(y − 3e)⊠ φK
(
O(3e− y)

)
(since φK(2e)(F) = φK(F(2e)))

= O(y − 3e)⊠O(x− e)

(by Proposition 3.7 in [Kuz04])

So far, we have shown that

pX∗φKRO(3e−y)
(
(p∗YA)⊗OY (2e)

)
= pX∗φK1(p

∗
YA),

where the kernelK1 is given by the exact triangle described above.
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Next, we introduce the Grothendieck–Verdier duality theorem, which we will later
apply to understand dual behavior under pushforward:
Theorem 5.7 (Grothendieck–Verdier duality). Let f : M → N be a morphism between
smooth projective varieties. Define the duality functor

DM(−) := RHom(−, ωM [dimM ]),

and similarly for DN . Then, we have the natural equivalence

Rf∗ ◦ DM
∼= DN ◦ Rf∗.

Remark 5.8. The situation we need is the following identity:

RpY ∗
(
O(y − 3e)

) ∼= E∗(−y)[−1].

Proof. Note that we have the following canonical isomorphisms of canonical bundles:

ωPY (E∗)
∼= O(−2e), ωPX(U)

∼= O(−2e), ωY3
∼= O(−2y), ωX14

∼= O(−x).

Applying Grothendieck–Verdier duality, we obtain:(
RpY ∗O(y − 3e)

)∗ ⊗O(−2y)[3] ∼= RpY ∗
(
O(y − 3e)∗ ⊗O(−2e)

)
[4]

= RpY ∗
(
O(3e− y)⊗O(−2e)

)
[4]

= RpY ∗
(
O(e− y)

)
[4].

Rearranging the identity, we get:

RpY ∗O(y − 3e) ∼= E∗(−y)[−1]

Back to the proof. Since φK1 ◦ p∗Y = φ(pY ×id)∗K1 , and we have the exact triangle

(pY × id)∗K1 −→ (pY × id)∗K(2e) −→ E∗(−y)⊠O(x− e)[−1],

let us writeK2 := (pY × id)∗K1. So far, we obtain

pX∗φKRO(3e−y)((p
∗
YA)⊗OY (2e)) = pX∗φK2 .

Similarly, since pX∗φK2 = φ(id×pX)∗K2 , we conclude:

pX∗φKRO(3e−y)((p
∗
YA)⊗OY (2e)) = φK3 ,

where K3 := (id × pX)∗K2 ∈ Db(X × Y ), and K3 is defined by the following exact
triangle:

K3 −→ (pY × pX)∗K(2e) −→ E∗(−y)⊠RpX∗(O(x− e))[−1].

(Note that the e inK(2e) refers to the relative O(1) on PY (E∗).)

Our goal is now to show that φK3 = φ(pY ×pX)∗K(2e) on AY . Take F ∈ AY , then it
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suffices to prove when K′ = E∗(−y)⊠RpX∗(O(x− e))[−1], we have φK′(F ) = 0.

Proof. We compute:

φK′(F ) = RΓ ((E∗(−y)⊗ F )⊠RpX∗(O(x− e))) [−1].

By flat base change, this is:

RΓ(Y,E∗(−y)⊗ F )⊗RpX∗(O(x− e))[−1].

Now consider the exact sequence

0 → E∗(−1) → V ⊗OY (−1) → V ∗ ⊗OY → 0.

By the definition of F ∈ AY , we know:

RΓ(Y, V ⊗OY (−y)⊗ F ) = RHom(V ⊗OY (y), F ) = 0,

and similarly
RΓ(Y, V ∗ ⊗OY ⊗ F ) = RHom(V ⊗OY , F ) = 0.

Therefore,
RΓ(Y,E∗(−y)⊗ F ) = 0.

Hence the whole expression vanishes.

With the above argument, we have shown that the equivalence given in [Kuz04],

pX∗φKRO(3e−y)((p
∗
YA)⊗OY (2e)),

is equal toφ(pY ×pX)∗K(2e) onAY , which is in turn equal toφK, whereK = ιZ∗
(
OY (2e)|Z

)
.
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