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Abstract

In this article, we study the derived categories of two smooth Fano threefolds with
Picard number one. The first is the threefold of index one and degree fourteen, which we
call “Xy4” ; the second is the threefold of index two and degree three, referred to as “Y3” .
For each variety we consider a distinguished subcategory of its bounded derived category
of coherent sheaves. In the case of X, this subcategory—often called the Kuznetsov
component—is defined as the right orthogonal to the standard exceptional pair consisting
of a rank-two vector bundle and the structure sheaf. For Y3, the analogous subcategory
is the right orthogonal to the pair formed by the structure sheaf and the line bundle as-
sociated with the hyperplane class. In a 2004 paper, Alexander Kuznetsov constructed a
correspondence between the moduli stacks that classify these two families of Fano three-
folds. More precisely, for every smooth Fano threefold X, there exists a smooth Fano
threefold Y3 such that their Kuznetsov components are equivalent. This thesis has two

main goals: first, to prove that the two chosen subcategories contain no exceptional ob-
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jects; and second, to show that Kuznetsov’s equivalence can be realized as a Fourier -

Mukai transform.

Keywords: Fano Threefolds, Derived Category, Right Orthogonal Complement
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Chapter 1 Introduction

The bounded derived category of coherent sheaves on a smooth projective variety
encodes subtle geometric information. A foundational example is the reconstruction the-
orem of Bondal and Orlov (see [ ]): for a smooth projective variety X with ample
canonical or anticanonical bundle, any equivalence D’(Y) ~ D!(X) with a smooth va-
riety Y forces Y = X. In such cases, the derived category determines the variety up to
isomorphism.

Kawamata extended this to the case where the canonical or anticanonical bundle is
big, showing that D*(Y') ~ D’(X) implies Y birational to X. These results reveal the
derived category as a powerful invariant reflecting birational geometry.

This categorical perspective naturally aligns with the minimal model program, where
flops connect different minimal models. In the case of threefolds, Bridgeland (see [? ])
showed that for two crepant resolutions 7; : Y7 — X and 75 : Y5 — X of a projective
threefold X with at worst terminal singularities, the derived categories D?(Y;) and D®(Y53)
are equivalent. Also, in [ ], the technical argument in [ ] is actually based on
Bridgeland’s work, which establishes an equivalence between the derived categories of
two specific projective bundles over two Fano threefolds via a particular Fourier-Mukai
transform.

Moreover, two related but different geometric object may have equivalence derived
category. A classical example is the equivalence between an abelian variety and its dual,
realized via a Fourier - Mukai transform with the Poincaré bundle as kernel. This phe-
nomenon occurs in particular when the canonical bundle is trivial. Such examples sug-
gest that derived categories may capture hidden symmetries beyond classical birational
geometry.

In the case of Fano threefolds, this idea becomes particularly powerful: their derived
categories sometimes admit equivalences between seemingly very different varieties. For
instance, as shown in [ ], one may consider the so-called Kuznetsov component in
the derived category of a Fano threefold, defined as the right orthogonal complement of
an exceptional collection associated with natural geometric vector bundles.

For d = 4, 5, the Fano threefolds of index 1 and degree 4d + 2 and the del Pezzo
threefolds of degree d admit equivalent Kuznetsov components. For d = 3, each Fano
threefold of index 1 and degree 14 is associated with a del Pezzo threefold of degree 3
whose derived category contains an equivalent component.

Moreover, as shown in [ ], for d = 3,4, 5, the Hilbert scheme of conics on
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a Fano threefold of index 1 and degree 4d + 2 is isomorphic to the Hilbert scheme of
lines on the corresponding del Pezzo threefold of degree d, further confirming the deep
relationship reflected by the equivalence of derived components.

This thesis introduces the relationship between two specific smooth Fano threefolds:
the Fano threefold X4 of index 1 and degree 14, and the cubic threefold Y3 of index 2
and degree 3. In [ ], for any such X4, Kuznetsov constructs an associated Y3 and
shows that a semiorthogonal component of D°(Y3) matches a component of D°(X1y).
More precisely, under this correspondence, we have the equivalence

BY:; — AX14

where each side denotes the right orthogonal complement of a natural exceptional collec-
tion in the derived category.

The subcategory Ax,, C D’(X14) is defined as the right orthogonal to the excep-
tional pair (s, Ox,,), and the subcategory By, C D’(Y3) is the right orthogonal to the
collection (Oy,, Oy,(1)). Both constructions arise naturally from geometric considera-
tions: U is a stable vector bundle constructed via Mukai’s method, which was used to
classify Fano threefolds, while O and O(1) represent the simplest line bundles on a cubic
hypersurface.

The goal of this thesis is to study the structure of Ax,, and By,, and in particular, to
show that it does not admit any exceptional objects and rewrite the equivalence in [ ]
as a Fourier Mukai transform ¢x : By, — A%, where K = 1z, (Oy(26)| Z) and Z is a
closed sub-variety of X x Y . The dual of A% , here is because of the different definition
of Ax,, in [ ], which is (O, U*) and equals to (U, O)*1)*.

To achieve this, we provide the details of the computations which is omitted in
[ ], in which the numerical Grothendieck groups Ko(X14)num and Ko(Y3)num are ex-
plicitly described. Using this framework, we reduce the problem to a matrix computation
involving the Euler pairing. We then demonstrate that no class in ch(Ay,,) or ch(By,)
satisfies the numerical conditions required to represent an exceptional object.

Regarding the Fourier - Mukai transform, we refer to the construction in [ ],
where the right mutation is interpreted as a Fourier-Mukai transform. We further compute
the composition of two such transforms within this framework.
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Chapter 2 Preliminary on Fano
threefolds

We begin by reviewing several basic definitions and facts about smooth Fano vari-
eties. A smooth Fano variety is a projective variety V' such that the anticanonical divisor
— Ky 1s ample. The following proposition summarizes some foundational properties (see

[1PO9]):

Proposition 2.1 ([ , Proposition 2.1.2]). Let V' be a smooth Fano variety. Then:

1. H(V,Oy) =0foralli > 0;

2. Pic(V) = H?(V, Oy ) is a finitely generated, torsion-free Z-module.

Since Pic(V) is finitely generated and torsion-free, there exists a maximal integer
r > 0 such that — Ky, = rH for some ample Cartier divisor H. This divisor H is called
the fundamental divisor of V/, and the integer r is referred to as the index of V. The
quantity d = H%™V is called the degree of V. Finally, the number g = (—Ky)* + 1 s
called the genus of V' (see [ D.

Remark 2.2. We briefly describe the linear system | — Ky |. By [ , Corollary 2.4.6],
| — Ky| is base point free if p(V') = 1. In this case, the associated morphism ¢|_g| is
either a finite morphism of degree 2 or an embedding (see [ , Proposition 4.1.11]). The
definition of genus is justified by the fact that when ¢|_,,| is an embedding, V' can be
realized as a threefold of degree (— Ky)® = 2g—2 in P9, Moreover, for a general smooth
curve C' C V obtained as the complete intersection of two hyperplanes, the restriction
@-ky|lc 1 C — P97 is the canonical map, and C has genus g.

In this article, we focus on the case where Pic(V') = Z. We begin with smooth Fano
threefolds V' of index 1. We denote by V5,2 a Fano threefold of degree 2¢g — 2 and genus
g. In this case, the possible values of ¢ satisfy 2 < ¢ < 12 with ¢ # 11 (see [ ,
Proposition 5.2.3], also Mukai’s work on Fano threefolds of genus g).

We now introduce the classification of smooth Fano threefolds of index 1 and Picard
number 1. In the following theorem for g < 5, the morphism |_g,,| is either an embed-
ding, in which case V5,_» can be realized as a complete intersection in P91 or a finite
morphism of degree 2.

3 doi:10.6342/NTU202502558



Theorem 2.3 (Iskovskikh, see [ , Proposition 4.1.12]). Let V5,5 be a smooth Fano
threefold of index 1 and genus g, where 2 < g < 5. Then the morphism

1
Pl-Ky| - VQQ*Q — Pt

classifies V5,5 as follows:

* g = 2: Sextic double solid

e g = 3: either V; — P*is a finite morphism of degree 2 onto a quadric in P,
ramified along a degree 8 surface, or V; — P is a quartic hypersurface.

* g = 4: V5 — P? is a complete intersection of a quadric and a cubic.
» g = 5: Vg — PY is a complete intersection of three quadrics.

For g > 6, the image of the anticanonical morphism is no longer a complete inter-
section. In these cases, a method for biregular classification was developed by Mukai.

Theorem 2.4 (Mukai, see [ , Theorem 5.2.3] or [ , Theorem 1.2]). Let V5,_»
be a smooth Fano threefold of index 1 and Picard number p(V2,_2) = 1, with genus g > 6.
Then V5,5 admits the following classification:

* g = 6: atransverse linear section of a complete intersection of a quadric and the

—_—

cone Gr(2,5) C P!Y over Gr(2,5) C P?.

+ g = 7: fix a nondegenerate symmetric bilinear form on C?; then V), is a transverse
linear section of the 10-dimensional variety

{W € Gr(4,C% | q(W,W) = 0} C Gr(4,C?).

* g = 8: atransverse linear section of Gr(2,6) C P4,

+ g = 9: fix a nondegenerate skew-symmetric bilinear form ¢ on C%; then V4 is a
transverse linear section of the 6-dimensional variety

{W € Gr(3,C% | ¢(W,W) = 0} C Gr(3,C®) c P¥.

+ g = 10: fix a nondegenerate skew-symmetric 4-linear form ¢ on C7; then Vjg is a
transverse linear section of the 5-dimensional variety

{W € Gr(5,C") | (W, W, W, W) = 0} C Gr(5,C") C P%.

» g = 12: fix three nondegenerate skew-symmetric bilinear forms ¢y, g2, g3 on C’;
then Va, is the variety

{W e Gr(3,CT) | q(W, W) = qo(W, W) = g3(W, W) =0} C Gr(3,C") C P*.

For g = §,9, 10, 12, the classification is based on the following construction involv-
ing the so-called Mukai bundle.

4 doi:10.6342/NTU202502558



Theorem 2.5 (Mukai bundle; see [ ] for details). Let k be an algebraically closed
field of characteristic zero, and let V' be a smooth Fano threefold over k of genus g = ts >
6 with ¢, s > 2, and Picard number p(V') = 1. Then there exists a unique stable vector

bundle U4, on V' such that
k() =t, o) =Ky, H*(V.U)=0, and Ext*(U,U;) =k.
Moreover, the dual bundle ¢/ is globally generated with

dim H°(V,Uu}) =t +s, and H7°(V,U) =0.

Since U 1s globally generated, we may consider the evaluation map
HY(V,U;) ® Oy — U],
whose dual gives an injection
U — H(V,U)* @ Oy.
This defines a morphism
V — Gr(r,r +3s), x— U, C H'(V.U)*.

This morphism factors through the anticanonical embedding, and studying it allows one
to classify such Fano threefolds up to biregular isomorphism.

For smooth Fano threefolds of Picard number 1, the index iy satisfies 1 < iy, < 4.
The following theorems describe the classification in the cases iy, = 2, 3, 4.

Theorem 2.6. Let V; be a Fano threefold of index 2 and Picard number 1 with degree d.
Then V} is classified as follows:

* d = 5: Vs is a transverse linear section of Gr(2,5) C P?;

» d = 4: V, C P% is a complete intersection of two quadric hypersurfaces;

» d =3: V3 C P*is a cubic threefold;

s d = 2: V, — P?is a double cover ramified along a quartic surface;

«d=1:V; CP(3,2,1,1,1) is a degree 6 hypersurface.

Theorem 2.7. Let V' be a smooth Fano threefold of Picard number 1 and index iy,. Then:

e Ifiy = 3, then V C P is a quadric hypersurface;

s If iy =4, then V = P3,

5 doi:10.6342/NTU202502558
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Chapter 3 Preliminary on Derived
category

In this section we briefly review the notions of derived category, including mu-
tation, semiorthogonal decomposition, exceptional objects, and exceptional collections.
(Our exposition follows [ 1)

Let D be a triangulated category and let Dy C D be an admissible full triangulated
subcategory; that is, the inclusion functor ¢ : Dy < D admits both a left and a right adjoint,
which we denote by ¢, and ¢', respectively. For any object £ € D one has canonical
decompositions with respect to D, and its orthogonals. More precisely, there exist two

distinguished triangles (see [ , Chap. 7, Ex. 1.2])
gP — E — 'E, gP € 1Dy,
'E — E — Pp, Py € Dy.

Moreover, the choice of decomposition is unique up to isomorphism. More precisely,
suppose we are given two distinguished triangles:

F—FE—QG, Fe'D,, GeD,,
F'— F — @, F'eDy,, G €Dy.

Then we have

F~yP, G=u,E, F ~/E, G =P

1Dy is right-admissible and Dy is left-admissible. In this case, one has
(*Do)* =Dy =*(Dy).

Write
k:+Dy — D, j: Dy <D

for the inclusions. Let k: *Dy < D and j: Dy < D be the inclusion functors. If
we decompose F into two parts, then by the uniqueness discussed above, we obtain the

7 doi:10.6342/NTU202502558



following two distinguished triangles:
HE — E — "E, KE € 1Dy, *E € Dy,

/E — E — j*E, 'E € Dy, j*E € D¢.

where k' and j* are the right and left adjoints of k and j, respectively.

Definition 3.1. [ , Chap. 7, Def. 1.5] The right mutation through Dj is the functor
Rp, == k': D — 1Dy,

and the left mutation through Dj is the functor
Lp, :=j*: D — Dy.

In some cases, we can describe :* and ¢' more explicitly. Consider the following
definition.

Definition 3.2 (Exceptional object, see [ 1). Anobject E € D is called exceptional
if it satisfies
Ext*(E, E) = k.

Remark 3.3. The category (F) C D is admissible, and we have

' F = B Hom(F, Elm))* @ E[m],  'F = P Hom(E, F[m]) ® E[m].

So far, we have seen that if there is an admissible subcategory D; C D, then for any
F' € D, we have the following triangle:

=
N2

F

where A; € D, and E, € +D;. Ifthere exists another admissible subcategory D, C +D;,

then we have
Fy > s I

A2 Al

where Ey € “D; N+D, and A; € D;. By continuing to find admissible subcategories, we
are able to decompose the triangulated category into several pieces. This leads us to the
following definition of semiorthogonal decomposition.

Definition 3.4 (Semiorthogonal decomposition). Let Dy, D, ..., D, be a sequence of
admissible subcategories of D satisfying Hom(D;, D;) = 0 for all j > ¢, and such that for

8 doi:10.6342/NTU202502558



every I' € D, we have the following sequence of F; and distinguished triangles:

0 > F_q > By > Fy > F

with A; € D;. In this case, we write
D = <D1,D2, cee ;Dn>

Definition 3.5. Given an ordered sequence of exceptional object (Ey, Es, --- , E;) , we
say that it is an exceptional collection if RHom(E;, E;) = 0 for any j > 4. In this case,
we have following semi-orthogonal decomposotion

<D/’ <E1>v <E2>7 T <EZ>>

where D' = (Ey, Fy, -+, E;)*

Back to the case of Fano threefolds with Picard number 1. For such varieties, there
are two known exceptional collections in their derived categories, each giving rise to a
semiorthogonal decomposition. It is natural to explore the relation between the compo-
nents defined by these collections.

The first exceptional collection comes from the cohomological vanishing conditions
in the theorem above and consists of (Z/{r, Ov). Therefore, for smooth Fano threefolds of
Picard number 1, index 1, and genus g > 6, we consider the semiorthogonal decomposi-
tion:

(Av, Uy, Oy),

where
Ay = (U, Op)" = {F e D"(V) | Ext*(U,, F) = 0, Ext*(Oy, F) = H*(V,F) =0} .
On the other hand, for index ¢ smooth Fano threefolds, there is another exceptional

collection:
Oy, Oy(H), ..., Ov((i—1)H)

which forms an exceptional collection in D*(V).

In particular, for ¢ = 2, we have the following semiorthogonal decomposition:

(B, Oy, Oy (H)).

Kuznetsov raised the following conjecture for 1 < d < 5in | ]:

Conjecture 3.6. Let M, be the moduli stack of smooth Fano threefolds of index 7 and
degree d. Then there exists a correspondence

Za C Mélld+2 X M?l

9 doi:10.6342/NTU202502558



which is dominant on each factor, such that for all (X4q12,Ya) € Mi,, o x M3, we have

~
AX4d+2 - BYd'

This conjecture was proved by Kuznetsov for d = 3, 4, 5, while counterexamples are
now known for d = 1, 2. Moreover, Kuznetsov later modified the conjecture and proved
the revised version; see [ ].

10 doi:10.6342/NTU202502558



Chapter 4 Cohomology on Fano
threefolds

On a smooth Fano threefold X, we have Ky(X )nym = Z*, generated by
Ox, Ow, O, O,

It is therefore reasonable to compute ch(Ox ), ch(Og), ch(Oy), and ch(O,), as well as
the Euler pairing on Ko(X )num = Z*. Most of these results are stated without proof in
[ ]; we provide full details below.

Lemma 4.1 (Generalizing Lemma from [ ]). Let X be a smooth Fano threefold of
index r, and let L C X be a line. If | H| is very ample, then

Npjx = Op1(d1) @ Opi(dy), withdy +dy =7 — 2.

Remark 4.2. Regarding the existence of lines: for the index 1, Picard number 1 case with
— K x very ample, see [ ]. For index 2, see [ ], where the Hilbert scheme of
lines on index 2, Picard number 1 Fano threefolds of degrees 3, 4, 5 is discussed.

Proof. We first argue that there exists a nonsingular hyperplane section H C X containing
Z = L. We modify the classical Bertini theorem to construct such a section.

Consider the incidence relation
R={(x,H) € Z x |H| | HN X is singular at x} ,

which is equal to
{(x,H) € Z x |H| | T,(X) C H}.

If H is singular at x, then Z C T,(X) C H. Thus, R is a closed subscheme of
Z x |H — Z|, where |H — Z]| is the linear system of hyperplane sections containing Z.
More precisely, it is defined by

B(H(I, ® O(H))) C |H]
and has dimension dim |H | — 2.
Now consider the projections:
l. P,:R— Z,

1" doi:10.6342/NTU202502558



2. P|Hfz| R — ‘H—Z‘

Over any point x € Z, the fiber of P, consists of hyperplane sections singular at x,
which is a linear subspace of dimension dim | /| — 4. Therefore, dim R = dim |H| — 3, so
the image Im(Py_z) C |H — Z| has dimension at most dim || — 3. This implies that
the set of hyperplanes singular along Z is a proper closed subset of |H — Z|.

By Bertini’s theorem, the general member of |H — Z| is smooth outside the base
locus, which is Z. Hence, the general member in |H — Z| is a smooth hyperplane section
containing Z.

Choose such a smooth hyperplane section  C X containing Z. Consider the exact
sequence on X:
0 —>IH/X —>IZ/X — LZ/X*IZ/H — 0.

Pulling back to Z, we get:
vz Nuyx™ — Nzyx* — Nzyu* — 0.

Taking duals gives:

0 —>N2/H i>./\/’Z/X — L*Z/HNH/X — 0.

We now argue that the map f is injective: The middle term is a rank 2 bundle, and
the third term is a line bundle, so the map to the line bundle must have nontrivial kernel.
Thus, f is fiberwise injective, and hence globally injective.

From the geometry: 17/ "Ny x = Opi (1), Nzp* =2 I1/1* = Op(—27).
We compute:
7?=29(Z)-2~7 -Ky=-2-7-(Kx+H)lg)=-2—-(1-r)= -3+
Hence, ¢;(N7/u) = r — 2. By Grothendieck’s theorem, we conclude:
Nzx = Opi(dy) ® Op1(dy), withdy +dy =7 —2. O

Proposition 4.3. For a Fano threefolds V' of Picard number 1, with index r, and H is very
ample, we have :

d d 9 _
ch(Oy) =1, ¢ch(Oy) =H — §L + EP’ ch(Op) = L + "

P, ch(Op)=P.

Proof. Also, recall the Chern class for F,
1 1
ch(E) = rank + ¢, (E) + §(cl(E)2 —2¢5(E)) + 6(cl(E)3 —3c1(B)cy(E) +3c3(E)) -+

12 doi:10.6342/NTU202502558



Thus, ch(Oy) = 1, and

Ch(OH) = Ch(Ov) — Ch(@v(—H))

H? H®
—1-(1-H+—-—
( to )
1 1
—H-—-H>+-H*
2" TG
d. d
—H-—-L+-P
SR

where d = H? is the degree of V, and since H - L = P, we have H? = dL.

Next, we see the calculation of ch(Op). Let ¢, : L < V be the embedding. Then,
by Grothendick Riemann Roch, we have

Chv(L*OL) = Chv(L[OL) = LL*(ChL(OL) . Td(ﬂ)) = L (1 . Td(TL>)

o (120 “

where T, =T, — 5Ty € K[)(X) Dueto 0 — 15, — ¢, Ty — NL/V — 0, we get:
TL = _NL/V S Ko(X) and CQ(TL) = 0, Cl(ﬂ) = _CI(NL/V) =r—2

Plug into (), we then have

on = (14 ) s B

2 2

Last, about ¢, : p — V, we have ch(Op) = ¢,,, (Td(N,yv)) =1, (1) = P O

Proposition 4.4. For a Fano threefolds V' of Picard number 1, index r, degree d the Euler
pairing is given by

Y(E, F) = Z(—ni dim Hom(E, F[i]) = xo(ch(E)* - ch(F)),
where
r3d 4+ 24 rz

H+zL P) = _ il
xo(z +yH + 2L +wP) =z + oy Yt tw

Proof. We’re going to use Hirzebruch - Riemann - Roch theorem, which is following
identity
X(E, F) = (ch(E)*.ch(F).Td(Tv))s

Thus, our goal now is to compute Td(7y/) directly. We first recall the definition of Todd
class, for vector bundle F', we have

Td(F) = 1 + 01(2F) n C%(F);—202<F) n Cl(F;Z2(F) .
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1 =x(0v) = x(0Ov,Oy) = (ch(Oy) - Td(TV)), = %

(Here by Kodaira vanishing, we have 1 = x(Oy)).

On the other hand, since the total chern polynomial ¢;( Ky ) = 1+ (—r) Ht, we have

L+ Tyt = Ct(/\3 Ty) =1+ rHt. Thus, ¢;(Ty) = rH and c»(Ty) %L
This implies
24
c(Ty) =1+1H + TL + e3(Tv),
and
rH 1r3d+24
Td(Ty)=1+—+ ——L+P
(Tv) =1+ +— L+
Thus,
X(E,F) = (ch(E)" - ch(F) - Td(Tv)); = xo (ch(E)" - ¢h(F))
where _—
2
XO(“"“LyHWLZLJpr):J?JF%er%va O

4.1 Onindex 1 case

After above computational proposition, we have following related table. First, on
index 1 case, except for the only two cases in g = 2 and g = 3, |—Ky = H]| is very
ample. In such cases, for index 1, genus g smooth Fano threefolds, we see that

~1 1
ch(Oy) =1, ch(Oy) = H — (g— 1)L + ng, ch(Or) = L + 5p, ch(0,) =p

and have following tables.

ch(E)* - ch(F) E =0y E =0y E=0, E=0p
F =0y (1,0,0,0) (0,-1,1—g,5%) (0,0,1,—%) (0,0,0,1)
F =0y (0,1,1—g, %4 (0,0,2—2¢,0)  (0,0,0,1) (0,0,0,0)
F=0; (0,0,1, 1) (0,0,0,—-1) (0,0,0,0)  (0,0,0,0)
F=0p (0,0,0,1) (0,0,0,0) (0,0,0,0)  (0,0,0,0)

where (a,b, ¢,d) means a + bH + cL + dP.
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Y(E,F) |[E=0y E=0y E=0;, E=O0p
F=0y 1 —g—1 0 ~1
F =0y 2 1—g 1 0
F=0; 1 ~1 0 0
F=0p 1 0 0 0

which comes from plugging the above table into
Xo(z +yH + 2L+ wP) =z + 2y + 2 + .

Also, we can extend the Euler form on ch( Ko (X )um) by Q-linearity to ch( Ko (X )pum) Q.
Therefore, if we take {1, H, L, P} to be a Q basis of K(X )uum®Q, then we get following
table.

x(u,v) | u=1 w=H wu=L u=P
v=1 oot 1
+ 11 0 2
v=H g? 1—g 1 0
=L = —1 0 0

’ 2
v=P 1 0 0 0

Corollary 4.5. There is no exceptional object in Ay,,

Proof. Since Ko(X )num = ([Ov], [Oul, [OL], [Op])z, as shown in the appendix of | ],
it follows that ch(Ax) C Ko(X)num is also a free abelian group.

Moreover, since
<AX7 Z/IQ, OX>

is a semi-orthogonal-decomposition, we have ch(Ax )@ ch(Us)® ch(Ox,,) = Ko(X)nums
and

Ch(AX)Q = {E S KO<X)num®Q‘ X(u27E) - 0 X OX’ =0 }
C KO(X)num®@ = <17H7L’P>@

Since ch(Us) = 2 — H + 52 L — 1%, ch(Ox,,) = 1, we then have

—4 3 ) 7g — 40

2 12

P)o=Q°

Under the isomorphsim to Q?, the Euler form will become

-3 —4
XAg = -1 -7
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Since if £ € Ay, is an exceptional object, then x (£, F') = 1. But

wn (73 7)) -

have no real solution. ]

4.2 On index 2 case

Let d be degree of index 2 Fano threefolds, then 1 < d < 5, and ford = 3, 4, 5, |H|
is very ample. Similarly, we have

d
ch(Oy) =1, ch(Oy) = H — gL + P ch(O1) = L. ¢h(0,) = p

and have following two tables

X(E,F) E:OV E:OH E:OL E:OP
F =0y 1 —d—1 1 -1
F =0y 2 —d 1 0
F =0 1 -1 0 0
F=0p 1 0 0 0
xX(u,v) |lu=1 w=H wu=L u=P
v=1 1 —% 1 —1
d
v=m |20 1 o
v=1L 1 -1 0 0
v=P 1 0 0 0

Similar to the proofin index 1, we have following corollary.

Corollary 4.6. There is no exceptional object in By,

Proof. since (By, O, O(H))is a semi-orthogonal-decomposition, we have ch(B)® ch(O)®
ch(O(H)) = Ko(X)num, and

ch(B)g = {E € Ko(X)num ®@‘ X(O0,E) =0, x(O(H), E) =0 }
C KO<X)num®Q = <17H7L7P>Q

Since ch(O(H)) = H — 4L — 4¢P, ch(Ox,,) = 1, we then have

d d—06
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Under the isomorphsim to Q?, the Euler form will become
-1 -1
XA =\ _o9 _3
-1 -1\ [(a

(S 5) ()=

Also,

have no real solution.
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Chapter 5 Relation between X1, and
Y3

Our first goal is to relate the data of X, and its embedding into Gr(2,6), with a
cubic threefold Y3 together with a rank-2 vector bundle F. In Mukai’s classification of
smooth Fano threefolds of index 1, d = 14, which I denote it X, here, it is five hyperplane
intersect Gr(2, 6) in P'* (One can refer the statement in [ ] for classification of smooth
Fano n fold of index n — 2 and g > 6).

More precisely, consider the Pliicker embedding

2

Gr(2,6) = P(\(C"))

given by
Span(u, v) — [u A v],

where u,v is linear independent. Then X7, is isomorphic to 5 hyperplane cut Gr(2,6) in
P(A*(C®))

For index 2, degree 3 smooth Fano threefolds, it must isomorphic to a cubic hyper-
surace in P4, which I denote it as Y5 . In [ ], X14 will correspond to a pair (Y3, &),
where £ is an instanton bundle of charge 2 on Y3. Under this correspondence, the Ax,,
will isomorphic to Bys,.

Before we introduce the instanton bundle, we first introduce the correspondence be-
tween X4 and (Y3, E), where E is the theta bundle on Y3, and then we introduce the
correspondence between theta bundle and instanton bundle of charge 2.

5.1 Correspondence beteen X, and (Y3, F)

We first construct an associated Y3 for a given X,. Let A & C®> and V = CS
be two vector space. Since X4 can be embedded into Gr(2, V') with image cut by five

hyperplane sections. Thus, we consider a C linear map f : A — (A*(V))", and denote
X1 =V (f(A)NGr(2,V) C P". We then have following lemma

Lemma 5.1. If X is smooth then rank f (a) > 4 (i.e.rankf(a) =4 or 6 ) foralla # 0 €
A. For such f, we call it regular, and we will always require our f to be regular in the
following article.
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Also, for given X; we can recover f up to GL(A) x GL(V) action. For GL(V)
action, it depends on the embedding X — Gr(2, V). For GL(A) action, it depends on
different choice of the isomorphism

A— Ker(/\ V*— H(Xy, O(1)))

We now construct the associate cubic threefolds from the regular f. For a regular f,
it induce an morphsim

V ® Op(ay(—1) Ly @ Ora)

For example, in local chart D (z¢) C P(A), the morphism can be written as

5

Z[€Z®&])—> Z Bj(ei,—)®%gi,

i=1 Lo 1<i,j<5 0
where g; € Opay(Dy(20)), {e;} is a basis of V, and B;(—, —) = f(e;) € A’ V", Let
q = [xg : ---x5] € Dy(x0), then it’s isomorphic on the stalk of ¢ if and only if it is
isomorphic on the fiber of ¢g. On the fiber the morphism is

e,®az = i(ei,—) ]ai,
where a, € C. Thus, f|q is not isomorphism iff f(q) = f([zo : -+~ x5]) = X2, ;5 7; By,
is not full rank, which is equivalence to say ¢ € V,.(Pf o f) € P(A). Here Pf(M)? =
det(M) for skew symmetric M. This V., (P fo f) is the associate cubic threefolds in P(A).
We denote it by Y. So far, we construct how to correspondence a Fano threefolds of index
1, degree 14, X, to a Fano threefolds of index 2, degree 3. In [ ], Kuznetsov shows
that there is an equivalence By, — Ax.

Next, we construction the associated theta bundle £ on Y} for a given X From above
argument, we see that

V& Opay(—1) Ly ® Op(a)

is isomorphic on the open set D, (Pf o f). We first show that f is injective. Consider
Ker(f). It have support on Y, which means any local section of

operatornamel er( f) is annihilate by local section of ideal sheaf of Y:f, this imply Ker(f) =
0, as subsheaf of locally free is torsion free. For Coker f since f is isomophism on
Dy (Pf o f), Supp(Coker(f)) = Y. Also, as skew symmetric form have even rank,
f is always rank 4 on fiber of ¢ € Y. This imples Coker(f) = ¢.(Ey), for some rank 2

vector bundle on Y} < P(A). We then have following exact sequene

0 —— V@ Opu(—1) —= V*®Opuy — 1.E; —— 0
C C
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E; is called the theta bundle of f. The above exact sequence give the isomorphsim
vr : V= HY(V*® Opay) = H°(Ey). The main theorem about the correspondence
C

is following, see [ ]:
Theorem 5.2. Associating the regular f gives an GL(A) x GL(V') equivariant correspon-
dence between following

1. Regular f in P(A* ® V* ® V*) that correspondence to smooth Xy.

2. The triple (Y, E, «), where Y is a cubic threefolds in P(A), E is a bundle of rank
2onY,and v : V* — HO(Y, E) is an isomorphism with following conditions

ci(B) = 2[H], eo(E) = 5[1], H*(Y, E(t)) = 0, for1 < t < 3.

5.2 Correspondence between the theta bundle and instan-
ton bundle of charge 2

Next we introduce the relation between theta bundle on Y and the related instanton
bundle.

Definition 5.3. Let Y3 be a cubic threefolds in P4, then & is an instanton bundle if ¢; (£) =
0, H'(Y, £(—1)) = 0. It’s called instanton bundle of topological charge k¥ € Z if,
additionally, c2(&) = k[l].

From following proposition, we can see the correspondence between instanton bun-
dle of charge 2 and the theta bundle

Proposition 5.4. The following is equivalence

1. £ is an instanton bundle of charge 2

2. &£(1) satisfies the conditions in Theorem 2.5, i.e.

c1(E) = 2[H], co(E) = 5[1], H*(Y, E(t)) = 0, for1 < t < 3.

3. £(1) is a theta bundle

4. & is an instanton bundle of charge satisfies

HYY,E(-1)) = H'(Y,£(1)) = H*(Y,E(1)) = H*(Y,E®RE) =0

From Theorem 2.5, we see that the isomorphism class of X will correspond to the
isomorphism class of the the pair (Y, E), where E is a theta bundle. Also, from Propo-
sition 2.6, we see the correspond between theta bundle and instanton bundle of charge 2.
Thus, there should be isomorphism between the moduli stack of X4, denoted as Mh,
and the moduli stack of pair (Y3, ), denoted as M3. In [ ], Kuznetsov also shows
that under this isomorphism,
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i.e. the isomorphic class of Xy — isomorphic class of Y} , we have Ax,, = By,. More-
over, the fiber of this correspond is isomorphic to the moduli stack of instanton bundle of
charge on Y3, which is the bundle £ satisfy the condition 4 in Proposition 2.6. Here we
denote it My(Y). In [ ], they show that M (Y") is smooth of dimension 5.

5.3 Equivalence Between Ax,, and By,

Here we briefly introduce the main result in [ ].

Theorem 5.5. (Kuznetsov) For any X4, the associated Y3 satisfies the fact that By, is
equivalence to Ax,,

Consider following diagram

Py (E*) Px(U)
Y , e
Y ]P(XL/Q) X

where Py (E*) := P(, S'(F)) and Px(U) := P(P, S*(U*)). px and py denote
the natural projections. The morphism ¢); is defined as the composition

Py (E*) — FI(1,2; V) — P(V),
and similarly for ). Both morphisms have the same image Q C P(V') (see [ D.
Consider the fiber product
W =Py (E") xq Px(U).
It can be regarded as a closed subvariety of Py (E*) x Px(U). More precisely,
W ={((La,a), (Lv,U)) € Py(E") x Px(U) | Lo = Lu},

where a € Y is a skew form, and U € X C Gr(2,V) is a two-dimensional subspace of
V. The lines L, C E*|, and Ly C U|y represent the points in the projective bundles.

Let K denote the pushforward of the structure sheaf Oy along the natural embedding
W — Py (E*) x Px(U). We denote by Oy (e) and Ox (e) the pullbacks of O(1) via i
and 1o, respectively. These are also the relative ample line bundles on Py (E*) and Px ().
When no confusion arises, we will simply write O(e). We also set:

O(y) =pyO(1),  O(z):=px0O(1).
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In[ ], for any Fano threefold X4, the associated cubic threefold Y; satisfies
By, ~ Ax,,.
Moreover, for any A € By,, the equivalence is given explicitly by
A= px. 0 Pr o Ro@e—y) (v A ® Oy (2¢)),

where: @y is the Fourier-Mukai transform from D®(Py (E*)) to D°(Px (1)) with kernel
K, Rp(3e—y) denotes the right mutation functor through the line bundle O(3e — y).

5.4 Description of the Equivalence by a Fourier Mukai
transform

In Appendix B of | ], Kuznetsov gives a geometric proof that the Hilbert scheme
of conics on X1, is isomorphic to the Hilbert scheme of lines on the associated cubic three-
fold Y3. At the end of the paper, they also mention that the equivalence between Ay, , and
By, can be expressed as a single Fourier-Mukai transform, and under this equivalence,
the ideal sheaf of a conic on X, corresponds to the ideal sheaf of a line on Y3. Since the
primary goal in Appendix B of [ ] is to establish the isomorphism between these
Hilbert schemes, this result is stated without proof.

In what follows, we imitate the proof from [ ] and rewrite the equivalence
A= px. 0 Pg o Roie—y) (v A ® Oy (2e))
from By, — Ax,,* = (O, U*) as a Fourier-Mukai transform
i : DY) — DY(X),
where
Z={(a,U) €Y x X |ker(a) NU # 0}, and K = 14, (Oy(2¢)|2)

Note that Z is actually the image of following embedding (see [ ] about the compo-
sition of following map is an embedding):

W <Yy Py (E*) x Px(U) 2225 v x X

This identification follows from the exact sequence:

0 > B > VR0y — VR 0y(l) —— 0

In this exact sequence, for each fiber at a point a, we see that £*|, is the kernel of
the skew-symmetric form a. Here, a € Y C P(V) is the class of a skew form. Hence,
we have E*|, D L, = Ly C U for some line L,, Ly if and only if ker(a) N U # 0. This
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implies that the image of the composition ¢y o (py X px) is precisely Z.

First, since right mutation commutes with autoequivalences, we have:
Ro@e—y) ((yA) ® Oy (2¢)) = (Roge—y) (Py-A)) ® Oy (2¢),  in D*(Py(EY)).

Moreover, since Fourier - Mukai transforms behave naturally under tensoring with line
bundles on the source, we also have

Pr(— ® Oy (2e)) = Preoy (2¢)(—),

and hence,

Pxs 0 Pg 0 Ro(ge,y) ((p;k/A) & Oy(Qe)) = Pxx© <I>K(Ze) © RO(efy) (p;A)

Our plan is to rephrase the right mutation as a Fourier-Mukai transform. For this,
we recall the following proposition from [ ], whose proof was omitted; we provide
the details here in the case of a right mutation:

Proposition 5.6. Let M be a smooth projective variety and let £ € D°(M). Then the
right mutation through F can be expressed as a Fourier-Mukai transform:

RE = q)ICEv
where K is described by the following exact triangle in D°(M x M):

Kp — MOy <5 RHom(E, wy[dim M]) K E.

In the case we need later, wp,, (p+) = O(—2¢) and E' = O(e — y), the third term in
the triangle becomes
O(y —3e) K O(e —y).

Proof. Let py,po : M x M — M be the projections onto the first and second factors,
respectively. Since the Fourier-Mukai transform is a composition of exact functors in the
derived sense, we have the following exact triangle for any F' € D°(M):

O, (F) — F 25 Rpy, (RHom(E, wy[dim M]) K E © p}F).

We now compute the third term of the triangle:

Rpa (RHom(E, wy[dim M]) X E ® piF) = Rpa. (RHom(E,wy[dim M] ® F) X E)
= Rps.(RHom(E, S(F)) K E)
(by definition of Serre functor )
=~ RI'(RHom(E,S(F))) ® E  (by flat base change)
= RHom(F,E)" ® E.
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On the other hand, the right mutation functor R is defined by the exact triangle:

Ry(F) — F 5% RHom(F,E)* ® E.

Thus, we conclude that ® (F) = Rg(F'), as required. O

Back to the reduction of
Px«dkRo@Ee—y) (3 A) ® Oy (26)).
As shown earlier, this is equal to
Px«PK e Ro(e—y) (PyA),

and by the previous proposition, it can also be written as

DX« ¢K(2e) ¢K@(e,y> (p;A) :

Hence, we are led to consider the composition of two Fourier - Mukai transforms.
That is, we aim to compute the kernel K such that

¢K1 - ¢K(2€) o ¢’C(g(e,y)7
and we denote this convolution by
K1 = K(Qe) * ’C@(e,y).

Since the operation K (2¢) * (—) is a composition of pullbacks and pushforwards, it is
again an exact functor. Therefore, we obtain the following exact triangle:

Ki — K(2e) — K(2€) % (O(y — 3¢) K O(e — y)).

To compute the last term, observe:

K(2e) % (O(y —3e) K O(e — y)) = Oy — 3¢) K dx2e) (Ol — 1))
(P4 0 Pprc = PBREA(C))

=0(y — 3e) X o ((9(36 — y))
(since ¢x(2e) (F) = ¢ (F(2€)))

=0y —3e) XO(x — e)
(by Proposition 3.7 in [ )]

So far, we have shown that
Px®xRoEe—y) (05 A) ® Oy (2€)) = px.oi, (P} A),
where the kernel K is given by the exact triangle described above.
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Next, we introduce the Grothendieck - Verdier duality theorem, which we will later
apply to understand dual behavior under pushforward:

Theorem 5.7 (Grothendieck-Verdier duality). Let f : M — N be a morphism between
smooth projective varieties. Define the duality functor

Day(—) == RHom(—,wy[dim M]),
and similarly for Dy. Then, we have the natural equivalence
Rf, oDy = Dy o Rf,.
Remark 5.8. The situation we need is the following identity:
Rpy.(O(y — 3e)) = E*(—y)[-1].
Proof. Note that we have the following canonical isomorphisms of canonical bundles:
wpy (5+) = O(—2e), wpy ) = O(—2e), wy, = O(—2y), wx,, = O(—x).
Applying Grothendieck-Verdier duality, we obtain:
(Rpy.O(y — 3e))” ® O(—2y)[3] = Rpy.(O(y — 3e)* @ O(—2e))[4]
= Rpy. (0(36 —y)® (9(—26)) [4]
= Rpy.(O(e - y))[4].
Rearranging the identity, we get:

Rpy.O(y — 3e) = E*(~y)[-1] u

Back to the proof. Since ¢k, © Py = @(py xia). k> and we have the exact triangle
(py x id), K1 — (py x id), K (2¢) — E*(—y) R O(z — e)[—1],
let us write K5 := (py x id). K. So far, we obtain
Px+PrRoO@Ee—y) ((PyA) @ Oy (2¢)) = px. 9k,
Similarly, since px.@x, = Gaxpy). k2> We conclude:
Px+OxROEe—y) ((pyA) ® Oy (2¢)) = ¢k,

where K3 := (id x px).K> € D°(X x Y), and K3 is defined by the following exact
triangle:

K3 — (py X px)«K(2¢) — E*(—y) W Rpx.(O(x —e))[-1].

(Note that the e in K (2¢) refers to the relative O(1) on Py (E*).)

Our goal is now to show that ¢, = @y xpy). K (2¢) ON Ay. Take F' € Ay, then it
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suffices to prove when X' = E*(—y) X Rpx.(O(x — e))[—1], we have ¢x (F) = 0.

Proof. We compute:
¢ (F) = RU((E"(—y) © F) W Rpx.(O(z —€))) [-1].
By flat base change, this is:
RI(Y, E*(—y) ©® F) @ Rpx.(O(z — €))[-1].
Now consider the exact sequence
0— E(-1) > V®0y(-1) - V'@ Oy — 0.
By the definition of F' € Ay, we know:
RT(Y,V ® Oy(—y) ® F) = RHom(V @ Oy (y), F) =0,

and similarly

Therefore,
RI(Y,E*(—y) ® F) = 0.
Hence the whole expression vanishes. O
With the above argument, we have shown that the equivalence given in [ 1,

Px+®xRoEe—y) ((py A) ® Oy (2¢)),

is equal to @y xpy). i (2¢) ON Ay, Which is in turn equal to ¢xc, where IC = 1z, (Oy(2@) |z) )
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