國立臺灣大學醫學院臨床醫學研究所

碩士論文

Graduate Institute of Clinical Medicine

College of Medicine

National Taiwan University Master's Thesis

原發性震顫患者接受磁振導航聚焦 超音波丘腦燒灼術後之短期與長期腦部結構變化 Short- and Long-Term Structural Changes in Essential Tremor Following MRgFUS Thalamotomy

林昀

Yun Lin

指導教授: 趙啟超博士

呂明桂博士

Advisors: Chih-Chao Chao, MD, Ph.D. Ming-Kuei Lu, MD, Ph.D.

中華民國 114 年 7 月 July 2025

致謝

過去的我對研究全無概念,十分感謝趙啟超老師、呂明桂老師的指導,讓我從頭開始學習,給予全然懷懂無知的我無盡的包容和耐心引導;謝謝君明學長在影像技術上的協助、不吝花時間陪我克服完全沒有頭緒的技術問題、並在必要時伸出援手。謝謝頌儒學長帶我入門學習使用 DSI studio,讓我在茫然無措的時候找到一個實際且可行的切入點,開始有信心和方向進行接下來的分析。謝謝李佳實老師指點我如何使用統計方法克服病人收案過程的瑕疵,讓我對解決問題的方式更有確信,也在過程中認識到臨床研究材料條件難以合乎理想時,統計知識是重要的工具。感謝願意支持這項研究的對照組受試者們,也謝謝願意協助我在門診篩選合適參與者的師長和前輩、謝謝所有願意配合回院追蹤的病人,是你們讓這個研究有從動機發展出實質內容的機會。謝謝無條件支持我的家人,讓我在一連串新事物的試誤學習中能有奮鬥的底氣。有辦法得到一點點歸納分析的成果,實在離不開各種良善的機緣,在學習研究的過程中,能有任何進展都是得力於好多不同人的幫忙。

此外,也感謝蔡主任與所有在研究進行期間提供協助的相關人員,使本研究順利完成。不知不覺好不容易向前邁出了最小的一步,最後仍然希望大力感謝我的兩位指導老師,謝謝趙老師在從起點推進研究的過程中給我很多實質的建議和指導,沒有老師的指引,如何到達目的地應該一直都會非常抽象迷茫;謝謝呂老師願意支持我,讓這趟旅程得以成真。

中文摘要

原發性顫抖(Essential tremor)是一種常見的神經科疾病,雖然對健康不致於造成重大危害,但卻足以造成日常生活相當具體的不便,在部分病人也連帶產生社交退縮等心理影響。目前對於原發性顫抖的治療分為藥物及手術兩種方式,藥物治療雖然簡便,但在不少病人身上卻難以達到理想的效果。磁振導航聚焦超音波丘腦燒灼術(MRgFUS thalamotomy)是一種非侵襲性的手術方式,藉由非侵入性的方式在丘腦精準地形成病灶以治療顫抖,目前已經是不少病人替代服藥的治療方式。

要了解原發性顫抖為何能從磁振導航聚焦超音波丘腦燒灼術獲得治療效益,牽涉到對於疾病生理的了解。本研究試圖透過原發性顫抖患者與對照組、原發性顫抖患者磁振導航聚焦超音波丘腦燒灼術術前與術後早期、術後晚期不同時間的比較,探討疾病本身以及聚焦超音波丘腦燒灼對於腦內結構的影響。我們發現原發性顫抖病人與對照組相比,其胼胝體的體積有所不同;另外,經手術治療後,發現病人胼胝體(corpus callosum)及小腦腳出現微結構以及巨觀的體積改變,暗示了疾病的改善伴隨了跨大腦半球訊息傳導的變化,也呼應了目前對於原發性顫抖是一種「神經網絡疾病」(network disease)的觀點。

本研究受限於樣本數及影像分析技術本身的限制,難以完全揭示原發性顫抖的病態 生理以及接受丘腦燒灼術後腦部構造與功能的完整變化,尚待其他更完備之研究進 行驗證。

關鍵字:原發性顫抖、核磁共振影像、擴散張量影像、像素型態測量學、Fahn-Tolosa-Marin 震顫評定量表

Abstract

Essential tremor (ET) is a common neurological disorder. Although it does not pose a major threat to overall health, it can cause significant inconvenience in daily life and, in some patients, lead to psychological effects such as social withdrawal. Current treatment strategies for ET include both pharmacological and surgical approaches. While medications are convenient, they often fail to produce satisfactory results in many patients. Magnetic Resonance-guided Focused Ultrasound (MRgFUS) thalamotomy is a non-invasive surgical technique that precisely targets and ablates regions in the thalamus to alleviate tremor, and it has become an alternative treatment for patients who do not respond well to medication. Understanding why MRgFUS thalamotomy benefits patients with ET requires insight into the disease's underlying pathophysiology. This study compares ET patients with healthy controls, as well as pre- and post-operative imaging (early and late phases) of ET patients undergoing MRgFUS thalamotomy, to investigate the structural brain changes associated with both the disease itself and the surgical intervention. We found that compared to healthy controls, ET patients exhibited differences in the volume of the corpus callosum and cerebellar peduncles. Furthermore, both microstructural and macrostructural changes in the corpus callosum and cerebellar peduncles were observed following MRgFUS thalamotomy, suggesting that improvements in tremor may be accompanied by alterations in interhemispheric communication. These findings support the current view that ET may be a "network disease."

However, this study is limited by its small sample size and inherent constraints of neuroimaging techniques, and it may not fully capture the pathological mechanisms of ET or the comprehensive structural and functional changes following thalamotomy. Further

studies with larger cohorts and advanced imaging methods are warranted to validate these findings.

Keywords: Essential tremor, magnetic resonance imaging, diffusion tensor imaging, voxel-based morphometry, Fahn-Tolosa-Marin Tremor Rating Scale

目次

致謝	i	ii
致謝 中文摘要	ii	ii
Abstract	i	V
圖次		
表次	(6
ー、緒論 Introduction	1	1
1. Essential Tremor (ET)	1	1
2. Pathophysiology of ET	12	2
2.1 The cerebello-thalamo-cortical loop	12	2
2.2 The Cerebellum as the Hub of ET Tremor Network	13	3
2.3 Ventral Intermediate (Vim) Nucleus	15	5
2.4 Thalamo-cortical Oscillations	15	5
3. Functional Organization of Cerebellar Peduncles and Th Afferent and Efferent Pathways		7
4. MR-guided Focused Ultrasound (MRgFUS) Vim thalametreatment of ET	-	
5. Hypothesis and Goals of this Study	20	0
5.1 Regions of Interest for Cross-sectional and Longitudinal a	nalysis 2	1
5.2 Clinical and Neuroimaging Correlates of Baseline Tremor Treatment Outcome	•	
二、研究方法與材料 Methods and Materials	2	4
1. Study Population	2	4
1.1 Patient Recruitment	2	4
1.2 Postoperative Data Stratification	25	5
1.3 Healthy Control Recruitment	25	5
2. Tremor Evaluation	20	6
2.1 Fahn-Tolosa-Marin Tremor Rating Scale (FTM-TRS)	2	6

2.2 Selected Tremor Subscores for Treated and Untreated Hands (sel_	
sel_Lt)	27
3 MRI Processing	28
3.1 MRI Specifications	28
3.2 MRI Data Processing	
3.2.1 Mask Editing	29
3.2.2 Diffusion Tensor Imaging (DTI)	30
3.2.3 Voxel-Based Morphometry (VBM)	
4. Statistical Analysis	J 1
4.1 Longitudinal Change in Tremor Severity After MRgFUS Vim Thalamotomy	21
·	
4.1.1 Longitudinal Analysis of Change in FTM-TRS Part A Total S	
4.1.2 Longitudinal Analysis of FTM-TRS Selected Item Scores for Treated Hand	the
4.1.3 Longitudinal Analysis of Change in FTM-TRS Selected Item	
Scores for the Treated Hand	
4.2 Sensitivity Analysis	
5. Cross-Sectional Comparison (ET vs. HC)	36
6. Longitudinal Comparison (ET After vs. Before MRgFUS)	37
7. Clinical Correlation	37
7.1 Association Between Tremor Severity and Clinical Characteristics	
7.1.1 Demographic and Clinical Predictors	38
7.1.2 Association Between Baseline Regional Volume and Tremor	20
Severity	
7.2 Predictors of Outcome Following MRgFUS Thalamotomy	•
7.2.1 Clinical Predictors of Treatment Response	
7.2.2 Intraoperative MRgFUS Parameters	
7.2.3 Baseline ROI Volume and Treatment Response	
三、研究結果 Results	41
1. Longitudinal change in tremor severity after MRgFUS Vim	
thalamotomy	41
1.1 Longitudinal Analysis of FTM-TRS Part A Total Score Change	41
1.2 Longitudinal Analysis of FTM-TRS Selected Item Scores of the Tro	eated
Hand	42

	gitudinal Analysis of Change in FTM-TRS Selected Item Scores of
the Tre	ated Hand43
1.4 Sens	sitivity Analysis44
2. Cross-	Sectional Comparison (ET vs. HC)45
	45
	М
	rudinal Comparison (ET After vs. Before MRgFUS)47
O	47
	In the longitudinal comparison between ET patients and their baseline scans, no significant DTI changes were observed in the early post-treatment phase for ROIs associated with the non-treated hand, treated hand, or corpus callosum. In the late post-treatment phase, a significant reduction in FA was detected in the right inferior cerebellar peduncle (R_ICP, JHU atlas) associated with the treated hand (Coef = -0.037, p = 0.0315), while no significant changes were observed in the ROIs corresponding to the non-treated hand or corpus callosum (Table 16.1-16.3, 18.1-18.3)
	al correlation48
	ciation Between Tremor Severity and Clinical Characteristics48
	ge at Onset, Family History, Disease Duration, age at operation, kull density ratio)
	5.1.2 Baseline volume of ROIs
5.2	5.1.3 Baseline DTI scalar values of ROIs
	5.2.1 Association Between Improvement of TRS score (In Percentage) and Clinical Characteristics
5.3	Summary of Predictors Associated with Tremor Improvement in
	l and Non-Treated Hands51
四、討論	Discussion 52
_	tudinal change in tremor severity after MRgFUS Vim

2. DTI and VBM: Cross-sectional and Longitudinal C		
3. Clinical Correlation		9
五、本研究的限制 Limitations	61	75 57
參考文獻 References	63	
附錄	74	ļ

圖次

圖次
Figure 1. The cerebello-thalamo-cortical circuitry74
Figure 2. GEE model-based prediction of longitudinal change in FTM-TRS Part A total
score (postoperative minus baseline) across timepoints
Figure 3.1, 3.2.1, 3.2.2 Region mask editing with FSLeyes
Figure 4.1 – 4.3 Contents of the TRS
Figure 5.1, 5.2 Distribution of improvement rates in total tremor severity (TRS), treated
hand (sel_Rt), and untreated hand in the early- and post-treatment phase82
Figure 6 Coefficient differences between the sensitivity and original generalized estimating
equation (GEE) models84

表次

Table 1. 1, 1.2 Main Cerebellar Input and Output Pathways
Table 2.1.1, 2.1.2 The selection rationale for each ROI (DTI, VBM)
Table 2.2.1, 2.2.2 Summary of Findings from Prior Cross-sectional Studies Comparing ET
and HC (DTI, VBM)90
Table 2.3.1, 2.3.2 Summary of Longitudinal Structural Changes in ET Patients Following
MRgFUS Vim Thalamotomy: Evidence from Prior Studies (DTI, VBM)95
Table 3.1, 3.2 Patient Demographics 99
Table 4 The distribution of baseline, early, and late MRI data and their corresponding
intervals from the nearest TRS assessment
Table 5 Number of MRI datasets for ET at baseline, early, and late postoperative
phases
Table 6. Descriptive Statistics of Tremor Improvement 104
Table 7 Healthy Control Demographics. 105
Table 8.1: GEE Model Results – FTM-TRS Part A Change (Post-MRgFUS – Baseline) vs.
Time
Table 8.2. GEE Model Results – Treated Hand FTM-TRS (Selected Items) vs.
Time
Table 8.3: GEE Model Results – FTM-TRS (Selected Items) Change in the Treated Hand
vs. Time
Table 9.1 – 9.3: Sensitivity Analysis
Table 10.1 DTI Regression summary: ET vs. HC by Region (Dominant hand)

	118
Table 10.2 DTI Regression summary: ET vs. HC by Region (Non-dominant	
hand)	119
Table 10.3 DTI Regression summary: ET-late vs. HC by Region (Corpus	6/0/0/0/0/0/0/0/
Callosum)	120
Table 11.1 VBM ET vs. HC (Dominant Hand)	121
Table 11.2 VBM ET vs. HC (Non-dominant Hand)	122
Table 11.3 VBM ET vs. HC (Corpus callosum)	123
Table 12.1 DTI Regression summary: ET-early vs. HC by Region (Treatedhand).	124
Table 12.2 DTI Regression summary: ET-early vs. HC by Region (Non-treated	
hand)	125
Table 12.3 DTI Regression summary: ET-early vs. HC by Region (Corpus	
Callosum)	126
Table 13.1 VBM ET-early vs. HC (Treated Hand)	127
Table 13.2 VBM ET-early vs. HC (Non-treated Hand).	128
Table 13.3 VBM ET-early vs. HC (Corpus Callosum).	129
Table 14.1 DTI Regression summary: ET-late vs. HC by Region (Treated hand)	130
Table 14.2 DTI Regression summary: ET-late vs. HC by Region (Non-treated	
hand)	131
Table 14.3 DTI Regression summary: ET-late vs. HC by Region (Corpus	
Callosum)	132
Table 15.1 VBM ET-late vs. HC (Treated Hand)	133
Table 15.2 VBM ET-late vs. HC (Non-treated Hand)	134

Table 15.3 VBM ET-late vs. HC (Corpus callosum)
Table 16.1 Paired regression: DTI early vs baseline, clustered by subject (Treated
hand)136
Table 16.2 Paired regression: DTI early vs baseline, clustered by subject (Non-treated
hand)
Table 16.3 Paired regression: DTI early vs baseline, clustered by subject (Corpus
Callosum)
Table 17.1 VBM Paired regression: early vs baseline, clustered by subject (Treated
hand)
Table 17.2 VBM Paired regression: early vs baseline, clustered by subject (Non-treated
hand)
Table 17.3 VBM Paired regression: early vs baseline, clustered by subject (Corpus
callosum)141
Table 18.1 Paired regression: DTI late vs baseline, clustered by subject (Treated
hand)142
Table 18.2 Paired regression: DTI late vs baseline, clustered by subject (Non-treated
hand)
Table 18.3 Paired regression: DTI late vs baseline, clustered by subject (Corpus
Callosum)
Table 19.1 VBM Paired regression: late vs baseline, clustered by subject (Treated
hand)
Table 19.2 VBM Paired regression: late vs baseline, clustered by subject (Non-treated
hand)

Table 19.3 VBM Paired regression: late vs baseline, clustered by subject (Corpus
callosum)147
Table 20.1-20.2 DTI Summary
Table 20.3-20.4 VBM Summary
Table 21.1 Cross-sectional regression of tremor severity metrics on clinical
characteristics150
Table 21.2 Cross-Sectional Linear Regression of Baseline VBM on Total Tremor Rating
Scale
Table 21.3 Cross-Sectional Linear Regression of Baseline VBM on Right-Hand Tremor
Severity153
Table 21.4 Cross-Sectional Linear Regression of Baseline VBM on Left-Hand Tremor
Severity155
Table 21.5 Cross-Sectional Linear Regression of Baseline DTI Scalar Indices on TRS total
score157
Table 21.6 Cross-Sectional Linear Regression of Baseline DTI Scalar Indices on sum of
TRS selected items (Right Hand)
Table 21.7 Cross-Sectional Linear Regression of Baseline DTI Scalar Indices on sum of
TRS selected items (Right Hand)
Table 22.1 Multiple Linear Regression: Clinical Predictors of Improvement (Clinical
Characteristics)
Table 22.2 Multiple Linear Regression: Clinical Predictors of Improvement (MRgFUS)
Treatment Paramters)
Table 22.3 Baseline VBM Predictors of TRS Improvement

Table 22.4 Baseline VBM Predictors of Treated Hand Improvement	
Table 22.5 Baseline VBM Predictors of Non-treated Hand Improvement	
Table 23.1 Summary of Clinical Predictors of Improvement of the treated hand.	172
Table 23.2 Summary of Clinical Predictors of Improvement of the Non-treated	hand173
Table 24.1 Clinical Predictors of Improvement in TRS part C	174
Table 24.2 Clinical Predictors of Improvement in TRS part A + B	175

一、緒論 Introduction

1. Essential Tremor (ET)

Essential tremor is the most common cause of a pathological tremor (Sharma & Pandey, 2020), and is known to affect over 60 million worldwide (Welton et al. (2021). Diagnosis of the disease is clinical. Essential tremor was defined as (1) Isolated tremor syndrome of bilateral upper limb action tremor at least 3 years' duration (2) With or without tremor in other locations (e.g., head, voice, or lower limbs) (3) Absence of other neurological signs, such as dystonia, ataxia, or parkinsonism (Bhatia et al., 2018). Risk factors include aging, exposure to environmental factors (pesticides, heavy metals, dietary factors, smoking), and genetic predisposition (Klaming & Annese, 2014; Welton et al., 2021). Proposed pathophysiologies of ET includes environmental exposures to β-carboline, cerebellar GABA deficiency, climbing fiber synaptic pathology with related cerebellar oscillatory activity, extra-cerebellar oscillatory activity (Pan & Kuo, 2022). Pharmacological therapy included propranolol, primidone, and topiramate. Propranolol and primidone, as the first-line option for treatment of the disease, provide 50% reduction of tremor in those that are responsive (population that are responsive approximates 50% of those treated). Topiramate, which is more commonly used under settings of migraine and seizure management, is efficacious for treatment of essential tremor only if used in >200mg per day. Adverse effects including weight loss, paresthesia, cognitive side effects are common (Hedera et al., 2013). For medication-refractory cases, surgical intervention including deep brain stimulation (DBS), magnetic resonance guided-focused-ultrasound

surgery (MRgFUS) can be considered as alternative ways of tremor reduction (Hedera et al., 2013; Sharma & Pandey, 2020).

2. Pathophysiology of ET

2.1 The cerebello-thalamo-cortical loop

Essential tremor is widely regarded a network disease. Based on electrophysiological and neuroimaging data, a model wherein tremor arises from a widely distributed network involving multiple brain regions identified as nodes, including cerebellum, thalamus, motor cortex, interconnected by pre-lemniscal and corticopontine tracts, and the Guillain-Mollaret triangle is the current model accepted (Welton et al., 2021)(Figure 1). The cerebellothalamo-cortical loop, delineated by these nodes, exhibits abnormality when examined by postmortem, electrophysiological, as well as functional and structural neuroimaging. All nodes of the circuit were found to have altered functional connections, and it is proposed that multiple oscillation generators contribute to the network dysfunction rather than being fueled by one specific oscillator dysfunction. The components of the circuit entrain each other in the generation of ET (Nicoletti et al., 2020; Raethjen & Deuschl, 2012; Younger et al., 2023). The model was supported by studies facilitating techniques including electroencephalogram (EEG) and magnetoencephalogram (MEG), functional magnetic resonance imaging (fMRI), positron emission tomography (PET), transcranial magnetic stimulation (TMS), and transcranial alternative current stimulation (tACS) (Pan & Kuo, 2022; Wills et al., 1994). The network is similar to the therapeutic network derived from lesions improving ET (lesion network mapping), with key regions aligning in the thalamus

and cerebellum (Younger et al., 2023). The instability of the network is in contrast to the relatively stable relay in case of voluntary motor control (Raethjen & Deuschl, 2012).

2.2 The Cerebellum as the Hub of ET Tremor Network

Clinical clues indicate the cerebellum's role in ET pathogenesis. Cerebellar deficits, including intention tremor and tandem gait ataxia, are observed in half of the ET population. Intention tremor of varying severity was identified in almost 60% of ET individuals in a study by Deuschl et al (Deuschl et al., 2000). Abnormalities in tandem gait with an increased number of mis-steps and a broad-based, ataxic and dysmetric gait which was indistinguishable from the findings in cerebellar diseases (Stolze et al., 2001). Alcohol consumption has been observed to lead to improvement of tremor and reduce the number of missteps in patients with ET (Klebe et al., 2005; Mostile & Jankovic, 2010), which may be explained by the influence of alcohol being exerted on alcohol-sensitive gammaaminobutyric acid receptors within the cerebellum. This should be considered along with the postmortem pathological findings regarding the ET cerebellum. Modest Purkinje cell (which is GABAergic) damages and cell loss was observed in the cerebellar cortex. The deep cerebellar nuclei, which receive GABAergic inputs via Purkinje cells, were found to have reduced number of GABA_A and GABA_B receptors, further diminishing cerebellar GABA transmission. It was thus hypothesized that the oscillatory activity is represented in the cerebellum, and alcohol intake suppressed tremor by enhancing GABA transmission under a state of GABA insufficiency (Pan & Kuo, 2022; Raethjen & Deuschl, 2012). The morphologic alterations of the cerebellar cortex are not limited to Purkinje cells, and include climbing fiber synaptic pathology (which appears to be the most specific change to

ET) as well as abnormal axonal processes of the basket cell surrounding the initial segment of Purkinje cells. Alteration of GABAergic transmissions from the interneurons can greatly alter the firing patterns of the Purkinje cells, thereby affecting the cerebellar oscillations (Pan & Kuo, 2022).

The cerebellum was demonstrated to be functionally connected to other parts of the tremor network in over 90% of studies and significantly different in connectivity compared to the control dataset of other movement disorders (Younger et al., 2023). Connectivity between the cerebellum and the sensorimotor cortices was demonstrated to be significantly reduced in patients with ET. More specifically, the cerebellar hub and the sensorimotor cortices were found to be anticorrelated, whereas they were found to be positively correlated in healthy subjects (Younger et al., 2023). Significant coupling between the contralateral sensorimotor cortex and tremor-related muscle activity in patients with essential tremor was revealed with corticomuscular coherence analyses based on EEG–EMG recordings (Hellwig et al., 2001). In ET patients, functional connectivity between the primary motor cortex (M1) and the contralateral motor cerebellum (lobule IV–V, VI) was found to be decreased, and this connectivity showed a negative correlation with tremor severity (Nicoletti et al., 2020).

These findings depicted the cerebellum hub being "uncoupled" from the rest of the motor network, supposedly contributing to the impairment of refined motor control in ET subjects. Recent studies have demonstrated the cerebellum as the hub of the ET tremor network, in comparison to PD tremor and dystonic tremor, where the basal ganglia is to play a role in pathogenesis (Buijink et al., 2022; Younger et al., 2023).

2.3 Ventral Intermediate (Vim) Nucleus

The ventral intermediate nucleus (VIM) of the thalamus functions as a key site receiving input from the cerebellum. It has been observed that tremor-related neural activity appears in this region across several tremor syndromes, including essential tremor (ET), dystonic tremor, and tremor associated with Parkinson's disease, suggesting overlapping underlying mechanisms (Buijink et al., 2022). The successful suppression of tremor symptoms in ET through targeted lesions within the VIM provides compelling evidence of the thalamus's involvement in producing the aberrant rhythmic activity in this condition (Jankovic et al., 1995; Raethjen & Deuschl, 2012).

While no significant association was found between tremor severity and functional connectivity from the cerebellum to the sensorimotor cortex, positive correlations emerged when examining the connectivity between cerebellar lobule VI and the VIM, as well as between the VIM and sensorimotor regions. These findings lend support to the view that essential tremor arises from dysregulated communication within the cerebello—thalamo—cortical pathway, with the thalamus acting as a central node linking aberrant cerebellar signals to cortical motor regions (Younger et al., 2023).

2.4 Thalamo-cortical Oscillations

Bi-directional thalamo-cortical oscillations have been demonstrated in individuals with essential tremor (ET) through EEG–EMG coherence analysis (Muthuraman et al., 2012). Evidence from single-neuron recordings (Hua et al., 1998) and local field potentials

(Pedrosa et al., 2012) within the thalamus further supports its capacity to function as an intrinsic oscillator. Additionally, the development of postural and kinetic tremor in a patient following ipsilateral cerebellar hemispherectomy suggests that the thalamus may generate oscillatory activity independently of cerebellar input (Chahine & Ghosh, 2009).

Clues of the motor cortex participating in generation of tremor in ET can be seen in successful alteration of the tremor by means of non-invasive modulations. Past studies had either successfully reset tremor with supra-threshold single-pulse transcranial magnetic stimulation of the cortex (Pascual-Leone et al., 1994) or reduced tremor amplitude with inhibitory subthreshold continuous theta-burst stimulation outlasting the stimuli with TMS (Hellriegel et al., 2012). PET studies disclosed overactivity in the cerebellum, contralateral red nucleus, thalamus, and sensorimotor cortex, hinting that the dysfunctional ET network had the cortical region entrained (Wills et al., 1994).

Multiple high-resolution EEG and MEG studies have provided compelling evidence of cortical activity that is coherent with essential tremor (ET) (Hellwig et al., 2001; Pollok et al., 2004; Raethjen et al., 2007). Significant coupling of the contralateral sensorimotor cortex and tremor-related muscle activity supports cortical motor area involvement in the production of ET tremor (Hellwig et al., 2001). Further analyses of temporal delays and directionality between cortical signals (EEG/MEG) and peripheral tremor activity (EMG) suggest that this coherence cannot be solely attributed to sensory feedback. Instead, it reflects genuine rhythmic output from the cortex to the muscles, supporting a direct cortical contribution to tremor generation (Govindan et al., 2006; Schelter et al., 2009). These findings reinforce the notion that the cortex plays an active, though possibly intermittent, role in the genesis of ET (Raethjen & Deuschl, 2012; Raethjen et al., 2007).

Although accumulating evidence suggests the involvement of oscillatory neural activity in essential tremor (ET), no animal models have yet been developed to directly confirm whether such activity is sufficient to generate tremor. Moreover, the absence of postmortem studies investigating pathological changes in the thalamus or motor cortex leaves the structural basis of ET pathogenesis unresolved (Pan & Kuo, 2022).

3. Functional Organization of Cerebellar Peduncles and Their Major Afferent and Efferent Pathways

The cerebellar peduncles form the principal white matter pathways linking the cerebellum with other brain regions. (Summarized in **Table 1.1 & 1.2**)

The superior cerebellar peduncle (SCP) primarily conveys efferent outputs from the cerebellar deep nuclei. Fibers originating from the dentate, interposed, and fastigial nuclei project via the SCP to the ventrolateral nucleus of the thalamus (VL), red nucleus (parvocellular and magnocellular divisions), and the tectum. Additionally, the ventral and rostral spinocerebellar tracts, which carry proprioceptive information from leg and arm interneurons respectively, also ascend through the SCP as afferent components.

The middle cerebellar peduncle (MCP) consists exclusively of afferent fibers. These are the pontocerebellar fibers, which originate from the cerebral cortex and relay through the pontine nuclei before entering the cerebellum. This corticopontocerebellar pathway plays a critical role in relaying cortical signals necessary for the coordination of skilled voluntary movements.

The inferior cerebellar peduncle (ICP) carries both afferent and efferent fibers. Its afferent tracts include the dorsal spinocerebellar tract (conveying leg proprioceptive signals via the nucleus dorsalis of Clarke), the cuneocerebellar tract (conveying arm proprioception via the external cuneate nucleus), reticulocerebellar and vestibulocerebellar fibers, and climbing fibers from the inferior olivary nucleus, which originate from multiple sources including the red nucleus, cortex, brainstem, and spinal cord. The cerebellovestibular efferent tract also exits the cerebellum through the ICP, projecting back to the vestibular nuclei. (Blumenfeld, 2010; Lingford-Hughes & Kalk, 2012)

4. MR-guided Focused Ultrasound (MRgFUS) Vim thalamotomy in the treatment of ET

Magnetic Resonance-guided Focused Ultrasound (MRgFUS) is a noninvasive thermal ablation technique that utilizes high-frequency ultrasound beams converged onto deep brain targets to induce focal heating. The absorption of acoustic energy results in a rapid temperature rise at the focal point. When the tissue temperature exceeds approximately 55°C, even for a brief period—as short as one second—thermal damage becomes irreversible, primarily through protein denaturation and subsequent coagulative necrosis. The extent of lesioning is determined not only by peak temperature but also by the thermal dose, which reflects both the duration of heating and the volume of tissue exposed. The procedure is performed under real-time MR thermometry, enabling precise monitoring of the focal temperature to ensure safety and spatial accuracy. In clinical practice, Vim thalamotomy for tremor treatment is executed in a progressive three-stage manner: low-

power sonication is first used to confirm accurate targeting, followed by intermediate energy delivery to assess transient clinical effects. Once optimal targeting is verified, higher-intensity sonication is applied—typically not exceeding 60°C—to achieve durable tissue ablation.

MRgFUS offers a noninvasive alternative to conventional surgical approaches, avoiding craniotomy and implanted hardware, and is particularly suitable for patients with medically refractory tremor (Giordano et al., 2020; Schlesinger et al., 2017). Long-term evaluations indicate that MRgFUS provides durable symptomatic relief in essential tremor, with hand tremor and disability scores reduced by approximately 56-63% at 3- and 4-year follow-ups, and notable improvements in quality of life metrics (Chang et al., 2018; Halpern et al., 2019; Park et al., 2019; Sinai et al., 2020). In two individuals monitored over five years, CRST and QUEST scores remained markedly lower than baseline (Sinai et al., 2020). Nonetheless, a modest rebound in tremor severity and functional impairment was observed at year 3 relative to the 6-month mark, and about 11% of patients experienced symptom recurrence, potentially attributable to disease progression (Halpern et al., 2019; Louis et al., 2011; Sinai et al., 2020). Procedure-related effects such as head pain and dizziness, affecting over one-third of cases, generally resolved within 3 months (Iacopino et al., 2018). Neurologically, ataxia was most frequently reported (50%), followed by sensory alterations (20%), likely linked to inadvertent lesion spread beyond the VIM, whose borders are poorly visualized on conventional MRI, with involvement of adjacent tracts such as the ML and CST (Boutet et al., 2018). Encouragingly, the frequency of these adverse events declined over time, and no new complications were documented with extended follow-up (Chang et al., 2018; Halpern et al., 2019; Park et al., 2019). However,

attrition rates were considerable—reaching 31% at 3 years—posing limitations on the interpretation of late safety outcomes (Chang et al., 2018; Halpern et al., 2019; Park et al., 2019). Importantly, no instances of hemorrhage, seizures, or access-related injuries have been reported, supporting the procedure's favorable risk profile compared to DBS or RFA. A major limitation in assessing the long-term complications of the patients undergoing MRgFUS is the high dropout rate (Agrawal et al., 2021; Kim et al., 2017; Wong et al., 2020).

5. Hypothesis and Goals of this Study

In this study, we investigated different regions of interest (ROIs) using both diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) to comprehensively assess white matter microstructure and regional gray/white matter volume. The ROIs were selected based on their potential involvement in the pathophysiology and treatment outcomes of essential tremor (ET).

We hypothesize that (1) patients with ET exhibit microstructural abnormalities—reflected by alterations in DTI scalar indices—or volumetric changes within the cerebellar peduncles compared to healthy controls (HC), as assessed by cross-sectional analysis; and (2) following therapeutic intervention and subsequent clinical improvement, these microstructural or volumetric characteristics may undergo further modulation, such that post-treatment values differ from pre-treatment baselines, as examined through longitudinal analysis.

In addition, we aimed to explore whether baseline clinical and imaging features are

associated with tremor severity, and whether they may serve as potential predictors of treatment response to MRgFUS thalamotomy.

5.1 Regions of Interest for Cross-sectional and Longitudinal analysis

In the diffusion tensor imaging (DTI) analysis, we first examined the "long tracts"—
including the corticospinal tract, frontopontine tract, medial lemniscus, and the M1–Vim
projection—given their established roles in motor execution and their potential involvement
in both tremor genesis and treatment-related adverse effects. The frontopontine fibers serve
as a communication pathway to the opposite cerebellum, allowing for the coordination of
planned motor functions (Rea, 2015). Notably, lesions in the frontopontine tract have been
associated with tremor resolution (Dupuis et al., 2010), while structural changes in the
medial lemniscus and corticospinal tract have been implicated in procedure-related
complications.

Second, particular attention was directed toward the cerebellar peduncles—the superior (SCP), middle (MCP), and inferior (ICP)—which serve as the principal afferent and efferent pathways linking the cerebellum to the broader motor network. Given the cerebellum's central role in the pathophysiology of essential tremor (ET), and accumulating evidence of both GABAergic dysfunction and microstructural abnormalities in cerebellar regions, we hypothesized that these peduncles exhibit disease-related alterations at baseline as well as longitudinal changes following MRgFUS thalamotomy.

Third, the corpus callosum was included to assess potential interhemispheric involvement.

Our prior observations have indicated that tremor may worsen in the untreated hand after

unilateral Vim thalamotomy, raising the possibility of altered cross-hemispheric communication mediated by callosal fibers.

To complement the microstructural analysis provided by DTI, voxel-based morphometry (VBM) was employed to assess volumetric changes in both gray and white matter regions associated with tremor generation and control. Cortical ROIs included the presupplementary motor area (preSMA), supplementary motor area (SMA), and primary motor cortex (M1), which are critically involved in the planning, initiation, and execution of voluntary movement.

Within the thalamus, we analyzed the ventral intermediate nucleus (Vim) and the ventral lateral posterior nucleus (VLp). The Vim, the primary lesion target of MRgFUS thalamotomy, plays a central role in relaying cerebellar output to motor cortical regions. The VLp, which encompasses the Vim, receives excitatory input from the dentate nucleus and projects broadly to motor and associative cortical areas.

Given converging evidence from pathological and imaging studies suggesting GABAergic dysfunction and functional uncoupling between the cerebellum and motor circuits in ET, we also examined the SCP, MCP, and ICP, as well as the dorsal dentate nucleus, which is the major output nucleus of the cerebellum. The red nucleus was included due to its role as a relay node within the tremor network.

Lastly, the corpus callosum was again assessed in the VBM analysis to further investigate whether altered transcallosal connectivity manifests as macroscopic volumetric changes, potentially reflecting pathological status in ET or following unilateral intervention.

The selection rationale for each ROI and relevant findings from prior studies are presented in the following two sections: Tables 2.1.1 and 2.1.2 summarize the reasons for ROI inclusion, while Tables 2.2.1, 2.2.2, 2.3.1, 2.3.2 compile supporting evidence from previous literature.

5.2 Clinical and Neuroimaging Correlates of Baseline Tremor Severity and Treatment Outcome

Essential tremor (ET) presents with varying degrees of baseline severity, yet most patients undergoing MRgFUS Vim thalamotomy experience meaningful clinical improvement. To better characterize the sources of individual variability, we examined whether baseline clinical factors—such as age at tremor onset, disease duration, and family history—as well as neuroimaging features (DTI/VBM of tremor-related ROIs), are associated with initial tremor severity.

Furthermore, although treatment outcomes were generally favorable, we explored whether certain factors—such as age at treatment, pre-treatment severity, skull density ratio (SDR), and MRgFUS parameters (e.g., energy, temperature, number of sonications)—correlate with the magnitude of clinical improvement. We further investigated whether the volume of tremor-related brain regions prior to treatment correlated with the degree of clinical improvement.

23

二、研究方法與材料 Methods and Materials

1. Study Population

1.1 Patient Recruitment

This study enrolled patients with essential tremor (ET) who underwent magnetic resonance-guided focused ultrasound (MRgFUS) Vim thalamotomy at China Medical University

Hospital (CMUH), Taichung, Taiwan, between June 2019 and October 2024. A total of 20 patients (15 males and 5 females), aged 20 to 74 years, were included. Patients included both newly diagnosed and previously diagnosed cases of ET who were evaluated by board-certified neurologists and deemed suitable candidates for MRgFUS Vim thalamotomy.

Among them, two patients were diagnosed with PD-ET overlap syndrome.

All patients underwent unilateral Vim thalamotomy. Except for one left-handed patient who received right-sided thalamotomy, all others were right-handed and received left-sided thalamotomy. One patient underwent a second MRgFUS procedure on the contralateral side two years after the first. One patient received subsequent radiofrequency ablation due to the failure to reach the therapeutic temperature during MRgFUS. Five patients had received prior pharmacological treatment for ET, while the remaining patients were drug-naïve.

Prior to the treatment, all patients underwent brain CT for skull density ratio (SDR) assessment (SDR = 0.5 ± 0.13), and comprehensive clinical evaluations including medical history, medication use, family history, and tremor history. Baseline clinical severity of

tremor was assessed using the Fahn–Tolosa–Marin Tremor Rating Scale (FTM-TRS), and MRI scanning was performed. Most patients underwent follow-up MRI and TRS assessments at multiple timepoints postoperatively (**Table 3.1, 3.2, 4**).

1.2 Postoperative Data Stratification

Postoperative follow-up data were stratified using a generalized estimating equation (GEE) model to determine tremor improvement trajectories based on TRS Part A total scores.

Based on the identified temporal pattern of tremor recurrence (**Figure 2**), follow-up MRI data were classified into early postoperative (ET-early, 1 day to 14 months post-surgery) and late postoperative (ET-late, 15 to 61 months post-surgery) phases (**Table 4**). When multiple MRI scans were available within the same time window, the latest MRI and the closest TRS assessment were selected.

A total of 21 preoperative datasets (including two datasets from one patient who underwent surgery twice), 13 ET-early datasets (one without corresponding DTI data), and 8 ET-late datasets were included in the analyses. Four patients were lost to follow-up after baseline evaluation; their preoperative data were only used for ET vs. healthy control (HC) comparisons, and not for longitudinal analyses (**Table 5**).

1.3 Healthy Control Recruitment

A total of 23 age-matched healthy controls (13 males and 10 females) were recruited (Table 7). Two-sample t-tests confirmed no significant age differences between ET patients and controls. Controls were recruited from healthy volunteers and neurology outpatients and were screened for electrolyte imbalances, thyroid dysfunction, and abnormal glucose levels. Exclusion criteria included tremor, structural brain abnormalities (e.g., stroke, neurosurgery), neurodegenerative diseases, epilepsy, psychiatric conditions, migraine, chronic pain, diabetes, carotid or transcranial sonography findings indicating >70% stenosis or hemodynamic abnormalities, or abnormal laboratory results. All participants provided written informed consent after receiving a full explanation of the study purpose and procedures.

All controls underwent FTM-TRS assessment and MRI scanning. One subject was excluded from DTI analysis due to orthodontic braces causing imaging artifacts.

2. Tremor Evaluation

2.1 Fahn-Tolosa-Marin Tremor Rating Scale (FTM-TRS)

Tremor severity in both patients and healthy controls was assessed using the FTM-TRS, which consists of three subscales:

- Part A evaluates tremor presence and severity at various body locations. (Figure
 4.1)
- Part B rates performance in specific motor tasks (e.g., handwriting, spiral drawing, line drawing, pouring water). (Figure 4.2)

• Part C measures functional disability caused by tremor. (Figure 4.3)

All evaluations were performed by a board-certified neurologist. With participant consent, clinical assessments were video-recorded for documentation and potential future review.

2.2 Selected Tremor Subscores for Treated and Untreated Hands (sel_Rt, sel_Lt)

To improve sensitivity and specificity in assessing hand tremor changes, we constructed composite subscores for each hand using selected FTM items:

• sel_Rt (Treated Hand):

- Part A, Item 5 (resting, postural, and action/intention tremor of the right upper extremity)
- o Part B, Items 12–14 (right hand: spiral drawings and straight-line drawings)

• sel Lt (Untreated Hand):

- Part A, Item 6 (resting, postural, and action/intention tremor of the left upper extremity)
- o Part B, Items 12–14 (left hand: spiral drawings and straight-line drawings)

For patients who underwent **left Vim thalamotomy**, sel_Rt and sel_Lt were transposed such that the treated side consistently corresponded to sel_Rt across all patients.

Excluded Items:

- Part B, Item 11 (handwriting with dominant hand) was excluded due to low sensitivity to tremor (as handwriting performance may remain relatively preserved).
- Part B, Item 15 (pouring water from a cup) was excluded due to low specificity and inconsistencies in administration (e.g., varying cup height, lid presence).
- Other Part A items not involving hand tremor were also excluded.

3 MRI Processing

3.1 MRI Specifications

All patients and healthy controls underwent MRI scanning. Patients received scans at baseline (pre-MRgFUS) and at postoperative time points, while control participants underwent a single MRI scan.

MRI was performed using a SIGNA Architect 3T scanner (GE Healthcare, Milwaukee, WI, USA) equipped with a 48-channel head coil. Whole-brain 3D T1-weighted SPGR images were acquired in the axial plane with a voxel size of $1 \times 1 \times 1$ mm³. Diffusion-weighted imaging (DWI) was conducted using spin-echo echo-planar imaging (EPI) with the following parameters: matrix size = 96×96 ; 56 axial slices; voxel size = $2.5 \times 2.5 \times 2.5$ mm³; 1 NEX; hyperband acceleration factor = 2. The diffusion protocol included 50 isotropically distributed directions with a b-value of 1500 s/mm² and 5 non-diffusion-weighted (b0) volumes.

3.2 MRI Data Processing

3.2.1 Mask Editing

Most region-of-interest (ROI) masks used in this study were directly extracted from standardized MNI-space atlases, including AAL3, HCP842, JHU white-matter atlas, Brainnetome, HCP-MMP, HCPex, JulichBrain, and THOMAS. These masks were used for subsequent imaging analyses to investigate region-specific features. Due to differences in coverage and definition across atlases, two distinct masks of the inferior cerebellar peduncle (ICP)—one from the HCP-482 atlas and one from the JHU atlas—were both included in the analysis.

The superior cerebellar peduncle (SCP) and middle cerebellar peduncle (MCP) were manually edited using FSLeyes, as only bilateral masks were available in the source atlases (Figure 3.1, Figure 3.2.1 & 3.2.2). The MCP was divided along the midline into left and right hemispheric masks, while the SCP was diagonally split. The resulting unilateral masks remained in MNI space and were subsequently transformed into native space using inverse deformation fields generated from tissue segmentation and spatial normalization of individual T1-weighted structural images via CAT12.9 (r2577). This transformation ensured consistent and anatomically aligned ROI definitions across imaging modalities (e.g., VBM and DTI).

Additionally, because the corpus callosum in the selected atlas was segmented into subregions (genu, body, and splenium), these were manually merged in FSLeyes into a single unified mask (corpus callosum combined) for use in later analyses.

3.2.2 Diffusion Tensor Imaging (DTI)

The DTI ROIs included the **corticospinal tract**, **frontopontine tract**, **medial lemniscus**, **M1–Vim projection**, **superior cerebellar peduncle (SCP)**, **middle cerebellar peduncle** (MCP), and **inferior cerebellar peduncle** (ICP). Tractography and extraction of scalar indices were performed using **DSI Studio (2024, Chen edition; PC platform)**. For all ROIs except the M1–Vim projection, scalar values were extracted based on atlas-derived or manually edited ROI masks.

For the M1–Vim projections, tractography was performed using atlas-defined **M1** (primary motor cortex) and **Vim** (ventral intermediate nucleus of the thalamus) as the seed and target regions. The tracking parameters were set as follows: tracking index = FA; angular threshold = 30° ; step length = 0 mm; minimum/maximum length = 30–200 mm; termination after 3000 tracts; topology-informed pruning = 16; autotrack tolerance = 24 mm.

3.2.3 Voxel-Based Morphometry (VBM)

VBM analysis was performed using CAT12.9 (r2577). ROIs included the presupplementary motor area (preSMA), supplementary motor area (SMA), primary motor cortex (M1), ventral intermediate (Vim), ventral anterior (VA), ventral lateral posterior (VLp) thalamic nuclei, SCP, MCP, ICP, dorsal dentate nucleus, and red nucleus. ROI-based analyses were conducted using both standard atlas-defined masks in MNI space and subject-specific masks derived from manual editing and tractography.

4. Statistical Analysis

4.1 Longitudinal Change in Tremor Severity After MRgFUS Vim

Thalamotomy

To evaluate longitudinal changes in tremor severity following MRgFUS Vim thalamotomy across all patients—and to define postoperative MRI follow-up as either early (ET-early) or late (ET-late) based on the timing of clinical tremor recurrence—we employed Generalized Estimating Equations (GEE) to model the change in total tremor score (FTM-TRS Part A) relative to baseline. This approach allowed us to integrate discrete timepoint assessments into a population-averaged trend model.

To account for the potentially non-linear evolution of tremor severity over time, postoperative follow-up periods were categorized into the following intervals:

Category 0 (Baseline), 1 (1 day post-treatment), 2 (1 month), 3 (2–3 months), 4 (4–6 months), 5 (7–14 months), and 6 (≥15 months). These categories were included as predictors alongside a continuous time variable and its squared term to capture linear and non-linear trends. Interaction terms were used to examine whether the rate of change varied across follow-up intervals.

In addition to the total tremor score, we constructed separate GEE models for the total score of selected items for the treated hand (sel_Rt) and its change from baseline. To control for overall tremor burden, the untreated hand tremor score (sel_Lt) was included as a covariate after mean-centering (sel_Lt_c). This allowed us to model the treated-hand trajectory

assuming average untreated-hand severity, thereby facilitating interpretation of treatment-specific effects.

Based on statistical analyses (described in detail in Sections 4.1.1–4.1.3 and Section 4.2) and the prediction curve derived from the GEE model of the change in FTM-TRS Part A total score, we defined the early post-treatment (ET-early) period as 0–14 months after treatment and the late post-treatment (ET-late) period as 15–61 months after treatment.

In the early post-treatment phase (n = 13), total TRS scores were significantly reduced from baseline (Mean = 48.31, SD = 18.37) to early post-treatment (Mean = 25.15, SD = 12.19), p < .001, with a mean reduction of 23.15 points (95% CI: 17.04 to 29.27), indicating a statistically significant improvement in overall tremor severity. Tremor scores for the treated hand improved significantly from baseline (Mean = 14.08, SD = 3.86) to early post-treatment (Mean = 6.23, SD = 2.92), p < .001, with a mean reduction of 7.85 points (95% CI: 5.83 to 9.86), reflecting a robust treatment effect. In contrast, tremor scores for the non-treated hand showed no significant difference between baseline (Mean = 11.54, SD = 5.46) and early post-treatment (Mean = 10.62, SD = 5.36), p = .213, with a mean reduction of 0.92 points (95% CI: -0.61 to 2.45).

In the late post-treatment phase (n = 7), total TRS scores remained significantly improved compared with baseline, decreasing from a baseline mean of 52.14 (SD = 15.16) to 34.29 (SD = 9.25), p = .006, with a mean reduction of 17.86 points (95% CI: 7.43 to 28.29), suggesting a sustained treatment effect over time. Tremor scores for the treated hand also showed a significant reduction from baseline (Mean = 14.57, SD = 2.57) to late post-treatment (Mean = 8.29, SD = 2.36), p = .003, with a mean reduction of 6.29 points (95%

CI: 3.01 to 9.56), indicating a lasting benefit on the treated side. However, tremor scores for the non-treated hand did not differ significantly between baseline (Mean = 12.71, SD = 4.89) and late post-treatment (Mean = 14.57, SD = 4.86), p = .258, with a mean increase of 1.86 points (95% CI: –5.50 to 1.78), suggesting a possible slight worsening of tremor severity on the non-treated side, although the change did not reach statistical significance compared with baseline.

4.1.1 Longitudinal Analysis of Change in FTM-TRS Part A Total Score

GEE models were used to analyze changes in total FTM-TRS Part A scores over time. Key predictors included:

- Timeintervalm ad: a continuous variable representing months since treatment;
- TRS category num: a categorical variable representing the follow-up time interval;
- TRS_category_num#Timeintervalm_ad: an interaction term assessing time trends
 within each category;
- time_sq: the squared term of time to model non-linear changes in symptom trajectory.

Initial models included all terms, and model reduction was performed based on statistical significance (Wald test, p > 0.05). An exchangeable working correlation structure was specified for GEE estimation. Predicted values and 95% confidence intervals were generated using predictnl, based on empirically observed combinations of *Timeintervalm_ad* and *TRS category num*. Implausible or unobserved combinations were excluded. Curves

were annotated with predicted values at representative timepoints. The origin (0,0) was optionally added to graphs to reflect change from baseline.

4.1.2 Longitudinal Analysis of FTM-TRS Selected Item Scores for the Treated Hand

A similar GEE framework was used to analyze total scores of selected FTM items for the treated hand (sel_Rt). In addition to time variables (*Timeintervalm_ad*, *TRS_category_num*, *time_sq*, and interaction terms), this model included the centered untreated-hand score (*sel_Lt_c*) and its interaction terms with time variables to account for baseline tremor severity.

Predicted values and confidence intervals were computed using predictnl, with *sel_Lt_c* fixed at zero (i.e., average untreated-hand score). Predicted population-level trends were plotted and annotated at empirically observed timepoints.

4.1.3 Longitudinal Analysis of Change in FTM-TRS Selected Item Scores for the Treated Hand

GEE models were also used to analyze the change in sel_Rt score from baseline (Δ sel_Rt = Post-treatment – Baseline), following the same modeling procedure as in section 4.1.2.

4.2 Sensitivity Analysis

In the original dataset, each of the two patients undergoing bilateral thalamotomy contributed two sets of observations (corresponding to their first and second procedures), which were treated as independent cases. This approach violated the assumption of independence between subjects. Given the relatively small sample size, the inclusion of these duplicated observations—each representing a second-side procedure—may have introduced bias and unduly influenced the model estimates by violating the assumption of subject-level independence. To assess the robustness and reliability of the findings, a sensitivity analysis was conducted. Compared to the original model, the sensitivity model excluded data from the second-side procedures of these two patients (ET001L and ET010R).

Beta coefficients (β) and standard errors (SE) from both the main and sensitivity models were compared. The difference in coefficients ($\Delta\beta = \beta_1 - \beta_2$), along with the corresponding 95% confidence intervals (CIs), was calculated under the assumption of independence. Variables with CIs that did not include zero were considered significantly affected by case duplication.

The differences in coefficients (Beta_Diff) between the sensitivity models (**Tables 9.1–9.3**) and the original generalized estimating equation (GEE) models (**Tables 8.1–8.3**) across all examined variables were subsequently compared and visualized (**Figure 6**).

Note: To maintain balanced group sizes across time intervals, ET010R's follow-up MRI-conducted at 7 months post-treatment—was categorized under *TRS_category_num* = 4 (i.e., the 4–6 month interval) in both the original and sensitivity GEE models.

5. Cross-Sectional Comparison (ET vs. HC)

Following the temporal classification determined by the GEE models described above, postoperative MRI data from essential tremor (ET) patients were stratified into early (ET-early) and late (ET-late) phases. Cross-sectional comparisons were then conducted between ET patients at three time points (baseline/preoperative, early postoperative, and late postoperative) and healthy controls (HC) to assess group-level differences in voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) metrics across predefined regions of interest (ROIs).

Multiple linear regression models were employed to evaluate group effects, controlling for age, sex, and total Fahn–Tolosa–Marin tremor rating scale (FTM-TRS) score, which served as a proxy for overall disease severity. Separate analyses were conducted for ROIs corresponding to the treated hemisphere, non-treated hemisphere, and corpus callosum. To account for multiple comparisons, false discovery rate (FDR) correction was applied using the Benjamini–Hochberg procedure across all ROI sets, except for those within the corpus callosum. All statistical analyses were performed using Stata/BE 17.0 (StataCorp, College Station, TX, USA).

6. Longitudinal Comparison (ET After vs. Before MRgFUS)

Based on the temporal boundaries identified through GEE analysis, postoperative MRI data from ET patients were categorized into ET-early and ET-late groups. Two longitudinal comparisons were performed: (1) ET-early versus ET-baseline (preoperative), and (2) ET-late versus ET-baseline. These analyses aimed to examine intra-individual changes in brain structure following MRgFUS treatment, focusing on VBM and DTI metrics across selected ROIs.

Paired linear regression models were used to assess longitudinal differences, adjusting for age, sex, total FTM-TRS score to account for disease severity. As with cross-sectional comparisons, analyses were stratified by ROI location (treated hemisphere, non-treated hemisphere, and corpus callosum). FDR correction using the Benjamini–Hochberg method was applied to all ROI comparisons except those involving the corpus callosum. All analyses were conducted using Stata/BE 17.0 (StataCorp, College Station, TX, USA).

7. Clinical Correlation

7.1 Association Between Tremor Severity and Clinical Characteristics

To explore the relationship between preoperative clinical and neuroimaging variables and tremor severity prior to MRgFUS thalamotomy, a series of statistical analyses were conducted using Stata/BE 17.0 (StataCorp, College Station, TX, USA).

7.1.1 Demographic and Clinical Predictors

Multiple linear regression models were employed to examine the association between tremor severity—measured using the total FTM-TRS score and selected item scores for the treated (sel_Rt) and non-treated (sel_Lt) hands—and clinical predictors including age at tremor onset, age at operation, disease duration, family history of tremor, and skull density ratio (SDR). All models were adjusted for sex.

7.1.2 Association Between Baseline Regional Volume and Tremor Severity

To assess the structural correlates of tremor severity, region-wise multiple linear regression analyses were performed using preoperative voxel-based morphometry (VBM) measures. Each model included the volume of a single region of interest (ROI) as the independent variable, with tremor severity scores (TRS, sel_Rt, sel_Lt) as outcomes. Age and sex were included as covariates. Correction for multiple comparisons was performed using the Benjamini–Hochberg False Discovery Rate (FDR) method.

7.1.3 Association Between Baseline DTI Metrics and Tremor Severity

Cross-sectional linear regression analyses were conducted to evaluate the relationship between diffusion tensor imaging (DTI) scalar indices—fractional anisotropy (FA) and mean diffusivity (MD)—and tremor severity scores. Each ROI's DTI value was entered into a separate model as the predictor, adjusting for age and sex. FDR correction was applied across all models to account for multiple testing.

7.2 Predictors of Outcome Following MRgFUS Thalamotomy

To identify predictors of clinical response following MRgFUS Vim thalamotomy, we evaluated the association between preoperative clinical variables, intraoperative treatment parameters, and imaging measures with percentage improvement in tremor scores. All statistical analyses were conducted using Stata/BE 17.0 (StataCorp, College Station, TX, USA).

7.2.1 Clinical Predictors of Treatment Response

Linear mixed-effects models with restricted maximum likelihood (REML) estimation were used to examine the association between clinical characteristics—including age at operation, age at tremor onset, disease duration, family history, SDR, and follow-up timepoint (early vs. late)—and percentage improvement in tremor outcomes

(TRS_%improved, sel_Rt%improved, sel_Lt%improved). Random intercepts at the subject level were included to account for repeated measures.

7.2.2 Intraoperative MRgFUS Parameters

To evaluate the relationship between treatment parameters and clinical improvement, linear mixed-effects models were fitted using the following sonication metrics as predictors: maximum energy delivered, peak power (maximum wattage), maximum focal temperature achieved, and the total number of treatment sonications. The outcome variables were percentage improvements in TRS, sel_Rt, and sel_Lt scores. Subject-specific random intercepts were included to account for within-subject correlations.

7.2.3 Baseline ROI Volume and Treatment Response

Separate ROI-wise linear regression analyses were performed to assess whether baseline gray matter volume in specific regions was predictive of percentage improvement in tremor severity following MRgFUS. Each ROI was analyzed in an individual model with adjustment for age and sex. To control for multiple testing, the Benjamini–Hochberg FDR method was applied across all ROI comparisons.

三、研究結果 Results

1. Longitudinal change in tremor severity after MRgFUS Vim thalamotomy

This study demonstrated significant and sustained reductions in tremor severity following unilateral MRgFUS, as reflected in both the FTM-TRS Part A total score change and change in selected tremor items TRS score in the treated hand. Improvements were most prominent within the first month post-treatment and remained stable through extended follow-up. The baseline tremor score of the dominant hand (mean = 13.5) was significantly higher than that of the non-dominant hand (mean = 11.0), with a mean difference of 2.52 points (p = 0.006).

1.1 Longitudinal Analysis of FTM-TRS Part A Total Score Change

The GEE model showed significant tremor improvement at Day 1 (β = -4.685, p < 0.001), Month 1 (β = -3.724, p < 0.001), and beyond Month 15 (β = -7.48, p = 0.001), compared to baseline. The continuous time effect (Timeintervalm_ad) approached significance (p = 0.058), suggesting a mild trend of decreasing benefit over time. Interaction and quadratic time terms were not significant, indicating no distinct rate differences or non-linear trends across time intervals. The overall model fit was moderate (Chi-square = 55.706) (**Table 8.1**).

The prediction curve derived from this model showed a rapid initial decrease in tremor severity, followed by a plateau. Improvement was defined as the post-treatment total score minus the baseline total score. This trend was supported by the significance of the quadratic term and the dense clustering of follow-ups in the early phase. Based on the predicted curve (Figure 2), clinical tremor recurrence was estimated to occur approximately 17 months after treatment. Accordingly, postoperative MRI data were stratified into early postoperative (ET-early, 0−14 months) and late postoperative (ET-late, ≥15 months) phases based on the timing of each patient's follow-up MRI (Table 4, 5). The histogram illustrating the percentage of tremor improvement in the early and late post-treatment stages is presented in Figure 5.1 & 5.2, and the descriptive statistics (mean, maximum, minimum, and standard deviation) for each group are provided in Table 6.

1.2 Longitudinal Analysis of FTM-TRS Selected Item Scores of the Treated Hand

The GEE model revealed a significant overall reduction in selected tremor item scores over time (Timeintervalm_ad: $\beta = 0.739$, p = 0.006), though this effect must be interpreted in the context of time categorization and interaction terms. Significant improvements were found at Day 1 ($\beta = -8.709$), Month 1 ($\beta = -8.292$), Months 7–14 ($\beta = -9.128$), and ≥ 15 months ($\beta = -17.454$), all p < 0.05, indicating robust short- and long-term efficacy.

A significant time interaction was noted at Months 4–6 (β = –3.898, p = 0.026). Baseline tremor in the untreated hand (sel_Lt_c) was positively associated with treated-hand tremor scores (β = 0.477, p < 0.001), suggesting that greater overall tremor burden was linked to

worse treated-hand outcomes. However, its interaction with time was not significant. The significant negative quadratic term ($\beta = -0.01$, p = 0.005) supports a nonlinear trajectory, with initial rapid improvement followed by slower change. The model showed good fit (Chi-square = 475.132, p < 0.001) (**Table 8.2**).

1.3 Longitudinal Analysis of Change in FTM-TRS Selected Item Scores of the Treated Hand

The GEE model showed significant improvement in tremor scores at Day 1 (β = -8.424), Month 1 (β = -7.626), and \geq 15 months (β = -15.209), all p < 0.01, as well as at Months 7–14 (β = -10.063, p = 0.047). The continuous time variable approached significance (p = 0.06), suggesting a slight decrease in improvement over time. The quadratic term also trended toward significance (β = -0.007, p = 0.074), indicating a possible nonlinear trajectory. Interaction terms and sel_Lt_c were not significant. Overall, early and late effects were more stable, while mid-term effects were less consistent. Model fit was moderate (Chi-square = 273.520) (**Table 8.3**).

This pattern mirrored that seen in Part A total score, with early gains tapering over time. Improvement was defined as the post-treatment minus baseline sel_Rt score. The model adjusted for untreated-hand tremor (sel_Lt_c), fixed at the group mean in all predictions to isolate the group-level trend.

1.4 Sensitivity Analysis

A comparison between the original models (Table 6.1–6.3) and the sensitivity models (Table 7.2–7.4) revealed largely consistent results across most variables (Table 7.1), supporting the robustness of the main analysis. However, a notable discrepancy was observed for the variable **TRS_category_num_4**, which corresponds to the 4–6 month post-treatment interval. The differences in regression coefficients (Beta_Diff) between the original and sensitivity GEE models across all examined variables are illustrated in **Figure** 6.

It is important to note that in our study, the classification of post-MRgFUS MRI scans into early (ET-early) and late (ET-late) stages was based on longitudinal changes in TRS-part A scores, rather than fixed time intervals. Therefore, this discrepancy does not affect subsequent analyses in this study.

Specifically:

- In the sel_Rt model (total tremor score of the treated hand), the coefficient for TRS_category_num_4 shifted from a positive value (+12.5) in the original model—suggesting symptom worsening—to a negative value (-11.4) in the sensitivity model, indicating symptom improvement.
- In the sel_Rtimproved model (percentage tremor improvement, calculated as (baseline–post–MRgFUS)/baseline×100(baseline post-MRgFUS) / baseline × 100%(baseline–post–MRgFUS)/baseline×100), the coefficient also reversed

direction, from –85.1 (implying substantial worsening) to +80.3 (suggesting marked improvement).

This directional reversal indicates that inclusion of second-side procedure data in the original model may have introduced bias, potentially inflating tremor severity or underestimating clinical improvement in the 4–6 month post-treatment period. After excluding these duplicated data points, the sensitivity model yielded a more consistent and clinically plausible estimate, reflecting sustained therapeutic benefit during this interval.

These findings suggest that the sensitivity model offers a more conservative and reliable estimation of treatment effects during the 4–6 month postoperative period.

2. Cross-Sectional Comparison (ET vs. HC)

2.1 DTI

In the comparison between ET patients and healthy controls, no significant DTI differences were identified. In the early post-treatment phase, ET patients demonstrated increased FA in the frontopontine tract associated with the non-treated hand. No significant changes were observed in the ROIs associated with the treated hand. The corpus callosum as a whole exhibited increased FA; regionally, increased FA was noted in the genu, body, and splenium, with the splenium also showing decreased MD. In the late post-treatment phase, no significant differences were detected in the ROIs corresponding to the non-treated hand,

treated hand, or corpus callosum compared with healthy controls (**Table 11.1-11.3**, **13.1-13.3**, **15.1-15.3**).

2.2 VBM

In the comparison between ET patients and healthy controls, voxel-based morphometry revealed that the left inferior cerebellar peduncle (L_ICP, HCP482 atlas) associated with the nondominant hand had significantly greater volume in ET patients (Coef = 0.105, p = 0.0244). For the dominant hand, greater volume was observed in the right middle cerebellar peduncle (R_MCP; Coef = 0.096, p = 0.0400) and the right inferior cerebellar peduncle (R_ICP, HCP482 atlas; Coef = 0.082, p = 0.0256) in ET group. No significant differences were found in the corpus callosum (**Table 11.1-11.3**).

In the early post-treatment phase, ET patients exhibited greater volume in the left dorsal dentate nucleus associated with the non-treated hand (Coef = 0.041, p = 0.0159), whereas the right dorsal dentate nucleus associated with the treated hand showed reduced volume (Coef = -0.035, p = 0.0252) compared with healthy controls. No significant differences were observed in the corpus callosum (**Table 13.1-13.3**).

In the late post-treatment phase, no significant volumetric differences were detected in the ROIs corresponding to the non-treated hand, treated hand, or corpus callosum compared with healthy controls (**Table 15.1-15.3**).

3. Longitudinal Comparison (ET After vs. Before MRgFUS)

3.1 DTI

In the longitudinal comparison between ET patients and their baseline scans, no significant DTI changes were observed in the early post-treatment phase for ROIs associated with the non-treated hand, treated hand, or corpus callosum. In the late post-treatment phase, a significant reduction in FA was detected in the right inferior cerebellar peduncle (R_ICP, JHU atlas) associated with the treated hand (Coef = -0.037, p = 0.0315), while no significant changes were observed in the ROIs corresponding to the non-treated hand or corpus callosum (**Table 16.1-16.3, 18.1- 18.3**).

3.2 VBM

In the longitudinal VBM analysis, the early post-treatment phase showed a significant volume reduction in the right red nucleus associated with the non-treated hand compared with baseline (Coef = -0.004, p = 0.0271). No significant changes were observed in the ROIs corresponding to the treated hand or corpus callosum. In the late post-treatment phase, compared with baseline, the treated hand showed volume reductions in the right middle cerebellar peduncle (R_MCP; Coef = -0.043, p = 0.256) and the right inferior cerebellar peduncle (R_ICP, HCP482 atlas; Coef = -0.049, p = 0.0240). No significant differences were detected in the ROIs associated with the non-treated hand or corpus callosum (Table 17.1-17.3, 19.1- 19.3).

4. Summary of the cross-sectional and longitudinal analysis

sis Carlotte

Summary tables are available (Table 20.1 - 20.4).

5. Clinical correlation

5.1 Association Between Tremor Severity and Clinical Characteristics

5.1.1 Age at Onset, Family History, Disease Duration, age at operation, SDR (skull density ratio)

Older onset age correlated positively with greater overall tremor severity (TRS) (Coef = 0.545, p < 0.05) and with greater tremor severity of the dominant hand (sel_Rt) (Coef = 0.152, p < 0.01). Disease duration was positively associated only with tremor severity of the dominant hand (sel_Rt) (Coef = 0.209, p < 0.05) and showed no significant correlation with tremor severity of the non-dominant hand (sel_Lt) or overall tremor severity (TRS). Both older onset age (Coef = 0.152, p < 0.01) and longer disease duration (Coef = 0.209, p < 0.05) were positively correlated with greater dominant hand tremor severity. Family history showed no significant correlation with tremor severity (**Table 21.1**).

5.1.2 Baseline volume of ROIs

Bilateral VLp and the left Vim were positively correlated with tremor severity of the non-dominant hand (sel_Lt) (Coef = -1069.078, p = 0.044). Specifically, the left VLp (Coef = 24.148, p = 0.046), right VLp (Coef = 26.486, p = 0.038), and left Vim (Coef = 22.712, p = 0.026) each showed significant positive correlations with sel_Lt. Further analysis in the healthy control group revealed that the right VLp had significantly greater gray matter volume than the left VLp (mean difference = -0.023, 95% CI = [-0.035, -0.011], p < 0.001). In contrast, no significant volumetric difference was observed between the left and right Vim in healthy controls (left Vim mean = 0.533, right Vim mean = 0.536, mean difference = -0.003, p = 0.5838) (Table 21.2- 21.4).

5.1.3 Baseline DTI scalar values of ROIs

At baseline, no ROI showed a significant association between DTI scalar values and tremor severity (Table 21.5- 21.7).

5.2 Predictors of Outcome Following MRgFUS thalamotomy

5.2.1 Association Between Improvement of TRS score (In Percentage) and Clinical Characteristics

Advanced age at the time of treatment was associated with greater improvement in overall tremor severity (TRS) after treatment (Coef = 0.720, p < 0.05), with no significant benefit observed for tremor improvement in either hand. Baseline disease burden (TRS) correlated inversely with improvement in overall tremor severity (Coef = -0.612, p < 0.05) and

showed no significant correlation with improvement in tremor of either hand. Baseline tremor severity of the treated hand was not significantly correlated with its percentage of improvement following treatment. Family history of tremor correlated positively with improvement in overall tremor severity (TRS) (Coef = 24.461, p < 0.05), whereas no significant difference in the percentage of tremor reduction was observed in either hand. Patients with a family history of tremor demonstrated greater improvement in overall tremor severity and tremor severity of the non-treated hand compared with those without a family history (n = 2), while improvement in tremor of the treated hand did not differ between the two groups. A longer time interval between treatment and TRS evaluation correlated inversely with the percentage of improvement in overall tremor severity (Coef = -0.450, p < 0.01) and in tremor of the non-treated hand (Coef = -0.870, p < 0.001). No significant correlation was found between time interval and tremor deterioration in the treated hand. (Table 22.1)

5.2.2 Association Between Improvement of TRS score (In Percentage) and MRgFUS Parameters

None of the MRgFUS treatment parameters analyzed showed a significant association with tremor improvement after adjusting for timepoint as an independent covariate. (**Table 22.2**)

5.2.3 Association Between Improvement of TRS score (In Percentage) and ROI Volume

No predictor was found for tremor severity (TRS total score, sel_Rt, sel_Lt) (Table 22.3-22.5).

5.3 Summary of Predictors Associated with Tremor Improvement in Treated and Non-Treated Hands

See Table 23.1 & 23.2.

四、討論 Discussion

1. Longitudinal change in tremor severity after MRgFUS Vim thalamotomy

MRgFUS provides rapid, durable, and unilateral tremor control in essential tremor.

Modeled predictions and graphical trajectories confirm that most therapeutic benefit occurs within the first month and is maintained thereafter.

While tremor severity in the untreated hand (sel_Lt) was significantly correlated with absolute tremor scores in the treated hand (sel_Rt), it was not predictive of change in tremor score of the right hand after MRgFUS. That is to say, while baseline contralateral tremor severity may reflect systemic burden, it does not predict treatment responsiveness on the treated side, further supporting the localized, unilateral clinical effect of MRgFUS thalamotomy.

2. DTI and VBM: Cross-sectional and Longitudinal Comparisons

The diagnosis of essential tremor (ET) is primarily based on clinical criteria. In contrast to neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, where the distribution of pathological changes follows well-characterized patterns and diagnosis can be confirmed post-mortem (Braak & Braak, 1991; Braak et al., 2003), there are currently no definitive radiological or pathological markers for ET. Identifying structural characteristics

of ET on MRI could enhance our understanding of the disease and move its diagnosis beyond purely clinical grounds.

In this study, although no significant differences were observed in DTI indices between essential tremor (ET) patients and healthy controls (HC) in cross-sectional comparisons, longitudinal within-subject analyses (early vs. baseline) revealed significant microstructural changes across multiple regions. This discrepancy may be attributable to differences in statistical design. Longitudinal comparisons, being within-subject, control for interindividual variability and thus offer greater statistical power to detect subtle changes. In contrast, cross-sectional comparisons are more susceptible to between-group heterogeneity and reduced sensitivity. Moreover, baseline DTI indices in ET patients were likely comparable to those of HC, making postoperative changes more detectable when compared against each patient's own pre-treatment status.

In the ET-early vs. HC comparison, all corpus callosum subregions (genu, body, splenium) demonstrated increased FA, with the splenium additionally showing decreased MD. These findings may reflect a microstructural compensatory adjustment in interhemispheric connectivity during the early post-tremor onset phase, potentially aimed at improving motor coordination. Following MRgFUS, the integration of motor and sensory information between the two hemispheres may have been enhanced.

DTI changes were also observed in the right frontopontine tract (controlling the left hand), which may indicate adaptive motor control reorganization for the non-dominant hand after surgery. In the early postoperative period, patients might experience mild worsening of tremor in the non-dominant (left) hand or an increased demand for compensatory

modulation. The brain may recruit non-dominant hemisphere motor pathways to maintain balanced bilateral motor output.

By the late postoperative stage (>14 months), no significant differences were found between ET-late and HC, suggesting that the early microstructural remodeling is a temporary and plastic process rather than a permanent injury or irreversible degeneration. These DTI changes may represent a temporary regulatory mechanism that gradually resolves as clinical symptoms stabilize and the nervous system re-establishes equilibrium, indicating that the system has completed adaptation and integration without the need for sustained recruitment of compensatory tracts.

In the longitudinal comparison of ET-late vs. baseline, a reduction in FA was observed in pathways reliant on input from the inferior cerebellar peduncle (ICP) for tremor correction. This may indicate a decreased demand for ICP-mediated sensory input over the long term. Following treatment, the functional emphasis of cerebellar network activity may shift away from an overreliance on external sensory input conveyed through the ICP. Such a redistribution of network weighting could lead to structural weakening in previously hyperactive pathways, as reflected by the observed DTI changes.

Bilateral enlargement of the inferior cerebellar peduncles (ICPs) may represent an "amplification" or compensatory hypertrophy of sensory feedback pathways. The ICP serves as a critical hub for integrating sensory inputs, receiving spinovestibular signals, and contributing to postural control and error correction during movement by integrating proprioceptive and vestibular information.

Such volumetric increases may suggest that patients with ET rely excessively on sensory input for movement correction during tremor. This finding supports the view that ET represents a dysfunction of the broader sensorimotor network rather than an isolated motor pathway abnormality. Chronic enlargement of the ICPs could reflect a sustained demand for tremor-related motor adjustments, leading to long-term compensatory thickening of these sensory feedback tracts.

Additionally, the increased volume of the middle cerebellar peduncle (MCP) on the dominant-hand side may indicate greater involvement of cortical motor input pathways (via the MCP) in tremor pathophysiology. This asymmetry could be related to the more frequent use and greater symptom severity of the dominant hand, even when tremor is present in both hands.

3. Clinical Correlation

3.1 Association Between Tremor Severity and Clinical Characteristics

In our study, we observed that patients with later onset of essential tremor (ET) exhibited greater overall tremor severity (TRS) and more severe dominant-hand tremor (sel_Rt) compared with those with earlier onset, after controlling for disease duration. This finding suggests that symptom progression is faster in late-onset ET, which is consistent with previous reports. Notably, in our cohort, nearly all treated patients had an age at onset > 60 years, which aligns with the "late-onset" group definition in prior studies (Gironell et al.,

2015; Louis et al., 2000). Although the correlation coefficient between age at onset and dominant-hand tremor severity was higher than that for the non-dominant hand, the difference did not reach statistical significance due to large inter-individual variability (non-dominant hand: r = 0.111, SE = 0.084; dominant hand: r = 0.152, SE = 0.048). To our knowledge, prior studies examining the association between age at onset and tremor severity have not separately analyzed dominant and non-dominant hands, and thus comparative data in this regard are lacking.

We also found that longer disease duration was associated with more severe dominant-hand tremor (sel_Rt), but not with overall tremor severity (TRS) or non-dominant hand tremor (sel_Lt). This suggests that ET generally follows a slow disease course, and when controlling for age at onset and family history, progression over time is less pronounced. The observed dominant-hand–specific effect may reflect more frequent use of the dominant hand, which, through neuroplastic changes, could strengthen tremor-related circuits and amplify disease duration effects (coef = 0.209, p < 0.05). This same mechanism may also explain why baseline tremor scores were slightly higher in the dominant hand compared with the non-dominant hand (mean = 13.5 vs. 11.0; mean difference = 2.52, p = 0.006).

Finally, we did not identify a significant association between family history of ET and tremor severity. However, interpretation is limited by sampling bias, as most patients in our series reported a positive family history (only two patients without).

In this study, we found that the volumes of both VLp and the left Vim were positively correlated with non-dominant hand tremor severity (sel_Lt) (L_VLp: Coef = 24.148, p = 0.046; R_VLp: Coef = 26.486, p = 0.038; L_Vim: Coef = 22.712, p = 0.026). Further analysis of the healthy control (HC) group revealed that the right VLp had significantly greater gray matter volume than the left VLp (mean difference = -0.023, 95% CI = [-0.035, -0.011], p < 0.001), whereas no significant volumetric difference was observed between the left and right Vim (left Vim mean = 0.533; right Vim mean = 0.536; mean difference = -0.003, p = 0.584).

Previous studies have shown that patients with dystonic tremor have larger VLp volumes than HCs, with corresponding tremor-related activity detected in this region. The VLp is a major recipient of output signals from the cerebellar dentate nucleus, and the Vim nucleus constitutes part of the VLp. It remains unclear whether the enlarged VLp observed in dystonic tremor is directly related to its abnormal pathophysiology, as the authors have not provided a definitive explanation (Nieuwhof et al., 2022).

In our comparison of ET baseline with HC, no significant VLp volumetric differences were identified, making it uncertain whether similar enlargement to that reported in dystonic tremor would emerge with a larger sample size and greater statistical power. Additionally, in the ET baseline group, the left VLp exhibited significantly smaller VBM values than the right VLp (mean difference = -0.023, p < 0.001), whereas no significant volumetric asymmetry was found for the Vim (mean difference = -0.0012, 95% CI = -0.0151 to 0.0127, p = 0.861). The reason for the observed left–right asymmetry in VLp volume remains unclear. The lack of detectable volume differences in the Vim may be partly

attributable to its relatively small anatomical size, which increases susceptibility to partial volume effects and limits the sensitivity of voxel-based morphometry to detect subtle structural changes. In contrast, the larger volume and broader anatomical extent of the VLp may facilitate the detection of volumetric differences, potentially explaining why significant associations were observed in the VLp but not in the Vim.

Regarding disease course and time-related factors, no significant association was found between the time interval from treatment to TRS evaluation (months) and tremor deterioration in the treated hand, suggesting that the therapeutic effect remained relatively stable and, based on the present evidence, was not influenced by the length of the follow-up interval. Patients with greater overall disease burden at baseline (higher baseline TRS total scores) demonstrated less overall tremor improvement after treatment; however, baseline TRS was not significantly associated with tremor improvement in either hand individually. This may reflect that such patients experienced smaller improvements in functional disability (TRS part C) or less improvement in tremor affecting non-hand body parts.

Regression analysis showed no significant correlation between improvement in TRS part C and baseline TRS (coefficient = -0.230, p = 0.575) (Table 24.1).

Age at the time of treatment showed a certain association with symptom improvement.

When calculated using the TRS total score, older patients demonstrated greater improvement, which may be related to a heightened perception of benefit or greater satisfaction with tremor reduction in this age group, potentially introducing subjective bias in scoring. To verify this hypothesis, TRS part C (patient self-reported assessment) was

excluded, and regression was repeated using the sum of part A and part B scores only. The results showed no significant association between the improvement in part A + part B total scores and age at the time of treatment (**Table 24.2**). This suggests that the greater TRS total score improvement observed in older patients was primarily attributable to subjective improvements in daily functioning (part C), whereas objective motor performance did not differ significantly from that of younger patients. Consistently, age at the time of treatment was significantly positively correlated with improvement in TRS part C (coefficient = 1.790, p < 0.01) (**Table 24.1**), further supporting this interpretation.

Conversely, baseline TRS was not significantly correlated with improvement in part A + part B total scores (**Table 24.2**), but was significantly negatively correlated with improvement in TRS total scores (coefficient = -0.612, p = 0.037) (**Table 22.1**). This suggests that patients with higher baseline TRS may have more limited improvement in part C or less improvement in tremor affecting non-hand regions; however, this association could not be definitively confirmed.

Neither SDR nor treatment parameters were significantly associated with clinical outcomes, indicating that, in the present study, the patient group had SDR values within the appropriate range and that the process of achieving lesioning was not a major determinant of treatment efficacy.

With regard to family history, patients with a positive family history (the majority of our cohort) demonstrated greater improvement in overall tremor severity and in tremor severity of the non-treated hand compared with those without a family history (n = 2), while

improvement in the treated hand did not differ between groups. Given the small number of patients without a family history, the interpretability of this finding is limited.

五、本研究的限制 Limitations

Several limitations in the present study should be acknowledged.

First, technical constraints in MRI data processing may have limited the sensitivity to detect microstructural changes, particularly in regions with complex fiber architecture. The cerebellar peduncles—especially the middle cerebellar peduncle (MCP) and superior cerebellar peduncle (SCP)—are densely populated with crossing fibers from multiple tracts, including the frontopontine, corticopontine, and pontocerebellar pathways (in the MCP), and the dentatorubrothalamic tract (in the SCP). Traditional diffusion tensor imaging (DTI), which relies on tensor-based models, often fails to accurately resolve fiber orientations in such regions. As a result, microstructural changes may be averaged out or underestimated in fractional anisotropy (FA) and mean diffusivity (MD) measurements. The use of more advanced diffusion models such as neurite orientation dispersion and density imaging (NODDI), constrained spherical deconvolution (CSD), or fixel-based analysis (FBA) may provide better sensitivity in future investigations.

Second, structural changes at the voxel level may have been too subtle to be detected by voxel-based morphometry (VBM). The neuropathological features of ET—such as Purkinje cell loss or GABAergic dysfunction—are microscopic and may not translate into detectable gray matter volume changes using standard VBM methods. Thus, while our imaging findings provide insights at a macrostructural level, they may underestimate underlying cellular or neurochemical alterations.

Third, limitations in clinical assessment and study design may have introduced bias or reduced statistical power. Tremor severity ratings (TRS scores) were not obtained through blinded assessments, which may have introduced subjective bias. Additionally, the relatively small sample size limited our ability to detect subtle volumetric differences or group-level effects, particularly in the late follow-up group where attrition was high. The time intervals for late follow-up assessments were also variable across participants, introducing potential heterogeneity within the group. Moreover, cross-sectional comparisons between ET and healthy controls may have been affected by within-group variability and limited statistical power, making it difficult to detect subtle between-group differences.

In future work, increasing the sample size, reducing variability in follow-up timing, and applying more advanced diffusion modeling techniques may enhance the ability to detect clinically and biologically meaningful changes in both microstructure and morphology. Integrating other modalities, such as functional MRI or PET, may also provide complementary information on network-level or metabolic alterations associated with ET and its treatment.

參考文獻 References

- Agrawal, M., Garg, K., Samala, R., Rajan, R., Naik, V., & Singh, M. (2021). Outcome and Complications of MR Guided Focused Ultrasound for Essential Tremor: A Systematic Review and Meta-Analysis. *Front Neurol*, *12*, 654711. https://doi.org/10.3389/fneur.2021.654711
- Bhatia, K. P., Bain, P., Bajaj, N., Elble, R. J., Hallett, M., Louis, E. D., Raethjen, J., Stamelou, M., Testa, C. M., & Deuschl, G. (2018). Consensus Statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society. *Mov Disord*, 33(1), 75-87. https://doi.org/10.1002/mds.27121
- Blumenfeld, H. (2010). *Neuroanatomy through clinical cases* (Second Edition ed.). Sinauer Associates, Inc.
- Boutet, A., Ranjan, M., Zhong, J., Germann, J., Xu, D., Schwartz, M. L., Lipsman, N.,
 Hynynen, K., Devenyi, G. A., Chakravarty, M., Hlasny, E., Llinas, M., Lozano, C.
 S., Elias, G. J. B., Chan, J., Coblentz, A., Fasano, A., Kucharczyk, W., Hodaie, M.,
 & Lozano, A. M. (2018). Focused ultrasound thalamotomy location determines
 clinical benefits in patients with essential tremor. *Brain*, *141*(12), 3405-3414.
 https://doi.org/10.1093/brain/awy278
- Buijink, A. W. G., van Rootselaar, A. F., & Helmich, R. C. (2022). Connecting tremors a circuits perspective. *Curr Opin Neurol*, *35*(4), 518-524. https://doi.org/10.1097/WCO.0000000000001071

- Chahine, L. M., & Ghosh, D. (2009). Essential tremor after ipsilateral cerebellar hemispherectomy: support for the thalamus as the central oscillator. *J Child Neurol*, 24(7), 861-864. https://doi.org/10.1177/0883073808329528
- Chang, J. W., Park, C. K., Lipsman, N., Schwartz, M. L., Ghanouni, P., Henderson, J. M., Gwinn, R., Witt, J., Tierney, T. S., Cosgrove, G. R., Shah, B. B., Abe, K., Taira, T., Lozano, A. M., Eisenberg, H. M., Fishman, P. S., & Elias, W. J. (2018). A prospective trial of magnetic resonance-guided focused ultrasound thalamotomy for essential tremor: Results at the 2-year follow-up. *Ann Neurol*, 83(1), 107-114. https://doi.org/10.1002/ana.25126
- Deuschl, G., Wenzelburger, R., Löffler, K., Raethjen, J., & Stolze, H. (2000). Essential tremor and cerebellar dysfunction clinical and kinematic analysis of intention tremor. *Brain*, *123* (*Pt 8*), 1568-1580. https://doi.org/10.1093/brain/123.8.1568
- Dupuis, M. J., Evrard, F. L., Jacquerye, P. G., Picard, G. R., & Lermen, O. G. (2010).

 Disappearance of essential tremor after stroke. *Mov Disord*, 25(16), 2884-2887.

 https://doi.org/10.1002/mds.23328
- Dyke, J. P., Cameron, E., Hernandez, N., Dydak, U., & Louis, E. D. (2017). Gray matter density loss in essential tremor: a lobule by lobule analysis of the cerebellum.

 Cerebellum Ataxias, 4, 10. https://doi.org/10.1186/s40673-017-0069-3
- Gallea, C., Popa, T., García-Lorenzo, D., Valabregue, R., Legrand, A. P., Marais, L.,
 Degos, B., Hubsch, C., Fernández-Vidal, S., Bardinet, E., Roze, E., Lehéricy, S.,
 Vidailhet, M., & Meunier, S. (2015). Intrinsic signature of essential tremor in the
 cerebello-frontal network. *Brain*, *138*(Pt 10), 2920-2933.

https://doi.org/10.1093/brain/awv171

- Giordano, M., Caccavella, V. M., Zaed, I., Foglia Manzillo, L., Montano, N., Olivi, A., & Polli, F. M. (2020). Comparison between deep brain stimulation and magnetic resonance-guided focused ultrasound in the treatment of essential tremor: a systematic review and pooled analysis of functional outcomes. *J Neurol Neurosurg Psychiatry*, 91(12), 1270-1278. https://doi.org/10.1136/jnnp-2020-323216
- Gironell, A., Ribosa-Nogué, R., Gich, I., Marin-Lahoz, J., & Pascual-Sedano, B. (2015).

 Severity stages in essential tremor: a long-term retrospective study using the glass scale. *Tremor Other Hyperkinet Mov (N Y)*, 5, 299.

 https://doi.org/10.7916/d8dv1hqc
- Govindan, R. B., Raethjen, J., Arning, K., Kopper, F., & Deuschl, G. (2006). Time delay and partial coherence analyses to identify cortical connectivities. *Biol Cybern*, 94(4), 262-275. https://doi.org/10.1007/s00422-005-0045-5
- Halpern, C. H., Santini, V., Lipsman, N., Lozano, A. M., Schwartz, M. L., Shah, B. B.,
 Elias, W. J., Cosgrove, G. R., Hayes, M. T., McDannold, N., Aldrich, C., Eisenberg,
 H. M., Gandhi, D., Taira, T., Gwinn, R., Ro, S., Witt, J., Jung, N. Y., Chang, J.
 W.,...Ghanouni, P. (2019). Three-year follow-up of prospective trial of focused
 ultrasound thalamotomy for essential tremor. *Neurology*, *93*(24), e2284-e2293.
 https://doi.org/10.1212/wnl.000000000000008561
- Hedera, P., Cibulčík, F., & Davis, T. L. (2013). Pharmacotherapy of essential tremor. *J*Cent Nerv Syst Dis, 5, 43-55. https://doi.org/10.4137/jcnsd.S6561
- Hellriegel, H., Schulz, E. M., Siebner, H. R., Deuschl, G., & Raethjen, J. H. (2012).

 Continuous theta-burst stimulation of the primary motor cortex in essential tremor.

 Clin Neurophysiol, 123(5), 1010-1015. https://doi.org/10.1016/j.clinph.2011.08.033

- Hellwig, B., Häussler, S., Schelter, B., Lauk, M., Guschlbauer, B., Timmer, J., & Lücking, C. H. (2001). Tremor-correlated cortical activity in essential tremor. *Lancet*, 357(9255), 519-523. https://doi.org/10.1016/s0140-6736(00)04044-7
- Hua, S. E., Lenz, F. A., Zirh, T. A., Reich, S. G., & Dougherty, P. M. (1998). Thalamic neuronal activity correlated with essential tremor. *J Neurol Neurosurg Psychiatry*, 64(2), 273-276. https://doi.org/10.1136/jnnp.64.2.273
- Iacopino, D. G., Gagliardo, C., Giugno, A., Giammalva, G. R., Napoli, A., Maugeri, R.,
 Graziano, F., Valentino, F., Cosentino, G., D'Amelio, M., Bartolotta, T. V.,
 Catalano, C., Fierro, B., Midiri, M., & Lagalla, R. (2018). Preliminary experience with a transcranial magnetic resonance-guided focused ultrasound surgery system integrated with a 1.5-T MRI unit in a series of patients with essential tremor and Parkinson's disease. *Neurosurg Focus*, 44(2), E7.
 https://doi.org/10.3171/2017.11.Focus17614
- Jankovic, J., Cardoso, F., Grossman, R. G., & Hamilton, W. J. (1995). Outcome after stereotactic thalamotomy for parkinsonian, essential, and other types of tremor. *Neurosurgery*, *37*(4), 680-686; discussion 686-687.

 https://doi.org/10.1227/00006123-199510000-00011
- Kim, M., Jung, N. Y., Park, C. K., Chang, W. S., Jung, H. H., & Chang, J. W. (2017).
 Comparative Evaluation of Magnetic Resonance-Guided Focused Ultrasound
 Surgery for Essential Tremor. Stereotact Funct Neurosurg, 95(4), 279-286.
 https://doi.org/10.1159/000478866

- Klaming, R., & Annese, J. (2014). Functional anatomy of essential tremor: lessons from neuroimaging. *AJNR Am J Neuroradiol*, *35*(8), 1450-1457.

 https://doi.org/10.3174/ajnr.A3586
- Klebe, S., Stolze, H., Grensing, K., Volkmann, J., Wenzelburger, R., & Deuschl, G. (2005).

 Influence of alcohol on gait in patients with essential tremor. *Neurology*, 65(1), 96-101. https://doi.org/10.1212/01.wnl.0000167550.97413.1f
- Klein, J. C., Lorenz, B., Kang, J. S., Baudrexel, S., Seifried, C., van de Loo, S., Steinmetz,
 H., Deichmann, R., & Hilker, R. (2011). Diffusion tensor imaging of white matter involvement in essential tremor. *Hum Brain Mapp*, 32(6), 896-904.
 https://doi.org/10.1002/hbm.21077
- Krauss, J., Upadhyay, N., Purrer, V., Borger, V., Daamen, M., Maurer, A., Schmeel, C., Radbruch, A., Wüllner, U., & Boecker, H. (2025). Beyond the cerebello-thalamocortical tract: Remote structural changes after VIM-MRgFUS in essential tremor. Parkinsonism Relat Disord, 132, 107318.
 https://doi.org/10.1016/j.parkreldis.2025.107318
- Lin, C. H., Chen, C. M., Lu, M. K., Tsai, C. H., Chiou, J. C., Liao, J. R., & Duann, J. R. (2013). VBM Reveals Brain Volume Differences between Parkinson's Disease and Essential Tremor Patients. *Front Hum Neurosci*, 7, 247. https://doi.org/10.3389/fnhum.2013.00247
- Lingford-Hughes, A., & Kalk, N. (2012). 2 Clinical neuroanatomy. In P. Wright, J. Stern, & M. Phelan (Eds.), *Core Psychiatry (Third Edition)* (pp. 13-34). W.B. Saunders. https://doi.org/https://doi.org/10.1016/B978-0-7020-3397-1.00002-1

- Louis, E. D., Agnew, A., Gillman, A., Gerbin, M., & Viner, A. S. (2011). Estimating annual rate of decline: prospective, longitudinal data on arm tremor severity in two groups of essential tremor cases. *J Neurol Neurosurg Psychiatry*, 82(7), 761-765. https://doi.org/10.1136/jnnp.2010.229740
- Louis, E. D., Ford, B., & Barnes, L. F. (2000). Clinical subtypes of essential tremor. *Arch Neurol*, *57*(8), 1194-1198. https://doi.org/10.1001/archneur.57.8.1194
- Mostile, G., & Jankovic, J. (2010). Alcohol in essential tremor and other movement disorders. *Mov Disord*, 25(14), 2274-2284. https://doi.org/10.1002/mds.23240
- Muthuraman, M., Heute, U., Arning, K., Anwar, A. R., Elble, R., Deuschl, G., & Raethjen, J. (2012). Oscillating central motor networks in pathological tremors and voluntary movements. What makes the difference? *Neuroimage*, 60(2), 1331-1339. https://doi.org/10.1016/j.neuroimage.2012.01.088
- Nicoletti, G., Manners, D., Novellino, F., Condino, F., Malucelli, E., Barbiroli, B., Tonon,
 C., Arabia, G., Salsone, M., Giofre, L., Testa, C., Lanza, P., Lodi, R., & Quattrone,
 A. (2010). Diffusion tensor MRI changes in cerebellar structures of patients with
 familial essential tremor. *Neurology*, 74(12), 988-994.
 https://doi.org/10.1212/WNL.0b013e3181d5a460
- Nicoletti, V., Cecchi, P., Pesaresi, I., Frosini, D., Cosottini, M., & Ceravolo, R. (2020).

 Cerebello-thalamo-cortical network is intrinsically altered in essential tremor:

 evidence from a resting state functional MRI study. *Sci Rep*, 10(1), 16661.

 https://doi.org/10.1038/s41598-020-73714-9
- Nieuwhof, F., Toni, I., Dirkx, M. F., Gallea, C., Vidailhet, M., Buijink, A. W. G., van Rootselaar, A. F., van de Warrenburg, B. P. C., & Helmich, R. C. (2022).

- Cerebello-thalamic activity drives an abnormal motor network into dystonic tremor.

 Neuroimage Clin, 33, 102919. https://doi.org/10.1016/j.nicl.2021.102919
- Pan, M. K., & Kuo, S. H. (2022). Essential tremor: Clinical perspectives and pathophysiology. *J Neurol Sci*, 435, 120198.

 https://doi.org/10.1016/j.jns.2022.120198
- Park, Y. S., Jung, N. Y., Na, Y. C., & Chang, J. W. (2019). Four-year follow-up results of magnetic resonance-guided focused ultrasound thalamotomy for essential tremor. *Mov Disord*, 34(5), 727-734. https://doi.org/10.1002/mds.27637
- Pascual-Leone, A., Valls-Solé, J., Toro, C., Wassermann, E. M., & Hallett, M. (1994).

 Resetting of essential tremor and postural tremor in Parkinson's disease with transcranial magnetic stimulation. *Muscle Nerve*, *17*(7), 800-807.

 https://doi.org/10.1002/mus.880170716
- Pedrosa, D. J., Reck, C., Florin, E., Pauls, K. A., Maarouf, M., Wojtecki, L., Dafsari, H. S., Sturm, V., Schnitzler, A., Fink, G. R., & Timmermann, L. (2012). Essential tremor and tremor in Parkinson's disease are associated with distinct 'tremor clusters' in the ventral thalamus. *Exp Neurol*, 237(2), 435-443.
 https://doi.org/10.1016/j.expneurol.2012.07.002
- Pietracupa, S., Bologna, M., Bharti, K., Pasqua, G., Tommasin, S., Elifani, F., Paparella, G., Petsas, N., Grillea, G., Berardelli, A., & Pantano, P. (2019). White matter rather than gray matter damage characterizes essential tremor. *Eur Radiol*, *29*(12), 6634-6642. https://doi.org/10.1007/s00330-019-06267-9
- Pineda-Pardo, J. A., Martínez-Fernández, R., Rodríguez-Rojas, R., Del-Alamo, M., Hernández, F., Foffani, G., Dileone, M., Máñez-Miró, J. U., De Luis-Pastor, E.,

- Vela, L., & Obeso, J. A. (2019). Microstructural changes of the dentato-rubro-thalamic tract after transcranial MR guided focused ultrasound ablation of the posteroventral VIM in essential tremor. *Hum Brain Mapp*, 40(10), 2933-2942. https://doi.org/10.1002/hbm.24569
- Pollok, B., Gross, J., Dirks, M., Timmermann, L., & Schnitzler, A. (2004). The cerebral oscillatory network of voluntary tremor. *J Physiol*, *554*(Pt 3), 871-878. https://doi.org/10.1113/jphysiol.2003.051235
- Prasad, S., Pandey, U., Saini, J., Ingalhalikar, M., & Pal, P. K. (2019). Atrophy of cerebellar peduncles in essential tremor: a machine learning-based volumetric analysis. *Eur Radiol*, 29(12), 7037-7046. https://doi.org/10.1007/s00330-019-06269-7
- Prasad, S., Rastogi, B., Shah, A., Bhalsing, K. S., Ingalhalikar, M., Saini, J., Yadav, R., & Pal, P. K. (2018). DTI in essential tremor with and without rest tremor: Two sides of the same coin? *Mov Disord*, *33*(11), 1820-1821.

 https://doi.org/10.1002/mds.27459
- Raethjen, J., & Deuschl, G. (2012). The oscillating central network of Essential tremor. Clin Neurophysiol, 123(1), 61-64. https://doi.org/10.1016/j.clinph.2011.09.024
- Raethjen, J., Govindan, R. B., Kopper, F., Muthuraman, M., & Deuschl, G. (2007). Cortical involvement in the generation of essential tremor. *J Neurophysiol*, *97*(5), 3219-3228. https://doi.org/10.1152/jn.00477.2006
- Rea, P. (2015). Essential Clinical Anatomy of the Nervous System. Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-802030-2.00010-8

- Revuelta, G., McGill, C., Jensen, J. H., & Bonilha, L. (2019). Characterizing Thalamo-Cortical Structural Connectivity in Essential Tremor with Diffusional Kurtosis Imaging Tractography. *Tremor Other Hyperkinet Mov (N Y)*, 9.

 https://doi.org/10.7916/tohm.v0.690
- Saini, J., Bagepally, B. S., Bhatt, M. D., Chandran, V., Bharath, R. D., Prasad, C., Yadav, R., & Pal, P. K. (2012). Diffusion tensor imaging: tract based spatial statistics study in essential tremor. *Parkinsonism Relat Disord*, 18(5), 477-482.
 https://doi.org/10.1016/j.parkreldis.2012.01.006
- Schelter, B., Timmer, J., & Eichler, M. (2009). Assessing the strength of directed influences among neural signals using renormalized partial directed coherence. *J Neurosci Methods*, 179(1), 121-130. https://doi.org/10.1016/j.jneumeth.2009.01.006
- Schlesinger, I., Sinai, A., & Zaaroor, M. (2017). MRI-Guided Focused Ultrasound in Parkinson's Disease: A Review. *Parkinsons Dis*, 2017, 8124624. https://doi.org/10.1155/2017/8124624
- Sharma, S., & Pandey, S. (2020). Treatment of essential tremor: current status. *Postgrad Med J*, 96(1132), 84-93. https://doi.org/10.1136/postgradmedj-2019-136647
- Sinai, A., Nassar, M., Eran, A., Constantinescu, M., Zaaroor, M., Sprecher, E., & Schlesinger, I. (2020). Magnetic resonance-guided focused ultrasound thalamotomy for essential tremor: a 5-year single-center experience. *J Neurosurg*, 133(2), 417-424. https://doi.org/10.3171/2019.3.Jns19466
- Stolze, H., Petersen, G., Raethjen, J., Wenzelburger, R., & Deuschl, G. (2001). The gait disorder of advanced essential tremor. *Brain*, *124*(Pt 11), 2278-2286. https://doi.org/10.1093/brain/124.11.2278

- Tantik Pak, A., Şengül, Y., Otcu Temur, H., & Alkan, A. (2021). Impaired integrity of commissural and association fibers in essential tremor patients: Evidence from a diffusion tensor imaging study. *Turk J Med Sci*, *51*(1), 328-334. https://doi.org/10.3906/sag-2004-305
- Thaler, C., Tian, Q., Wintermark, M., Ghanouni, P., Halpern, C. H., Henderson, J. M., Airan, R. D., Zeineh, M., Goubran, M., Leuze, C., Fiehler, J., Butts Pauly, K., & McNab, J. A. (2023). Changes in the Cerebello-Thalamo-Cortical Network After Magnetic Resonance-Guided Focused Ultrasound Thalamotomy. *Brain Connect*, 13(1), 28-38. https://doi.org/10.1089/brain.2021.0157
- Tikoo, S., Pietracupa, S., Tommasin, S., Bologna, M., Petsas, N., Bharti, K., Berardelli, A., & Pantano, P. (2020). Functional disconnection of the dentate nucleus in essential tremor. *J Neurol*, 267(5), 1358-1367. https://doi.org/10.1007/s00415-020-09711-9
- Welton, T., Cardoso, F., Carr, J. A., Chan, L. L., Deuschl, G., Jankovic, J., & Tan, E. K. (2021). Essential tremor. *Nat Rev Dis Primers*, 7(1), 83. https://doi.org/10.1038/s41572-021-00314-w
- Wills, A. J., Jenkins, I. H., Thompson, P. D., Findley, L. J., & Brooks, D. J. (1994). Red nuclear and cerebellar but no olivary activation associated with essential tremor: a positron emission tomographic study. *Ann Neurol*, 36(4), 636-642.
 https://doi.org/10.1002/ana.410360413
- Wong, J. K., Hess, C. W., Almeida, L., Middlebrooks, E. H., Christou, E. A., Patrick, E. E., Shukla, A. W., Foote, K. D., & Okun, M. S. (2020). Deep brain stimulation in essential tremor: targets, technology, and a comprehensive review of clinical

outcomes. Expert Rev Neurother, 20(4), 319-331.

https://doi.org/10.1080/14737175.2020.1737017

Figures

Figure 1. Schematic representation of the cerebello-thalamo-cortical network involved in essential tremor.

Essential tremor (ET) is now widely considered a network disorder characterized by abnormal oscillatory activity within a distributed cerebello-thalamo-cortical circuit. This schematic illustrates key white matter tracts interconnecting major anatomical nodes implicated in tremor generation. The blue line indicates the cortico-pontine tract, a key component of the corticopontocerebellar pathway that connects the cerebral cortex to the pontine nuclei and plays a crucial role in coordinating planned movements and motor behavior. The purple line represents the pre-lemniscal radiation, which conveys ascending sensory and motor signals by traversing the posterior subthalamic area and connecting to motor-related regions including the primary and supplementary motor cortices, orbitofrontal cortex, ventrolateral thalamus, globus pallidus, cerebellum, and dorsal brainstem. The red line marks the Guillain-Mollaret triangle, a triangular circuit linking the dentate nucleus, red nucleus, and inferior olivary nucleus, important for motor coordination and control; abnormalities in this loop have been associated with various neurological disorders. The green line depicts the spino-cerebellar tract, which relays unconscious proprioceptive input from the spinal cord to the cerebellum, supporting coordination and postural balance. The **yellow line** represents other interconnecting white matter tracts that facilitate communication among motor-related brain regions. Together,

these pathways form a network believed to underlie tremor generation in ET through pathological entrainment among multiple interconnected nodes.

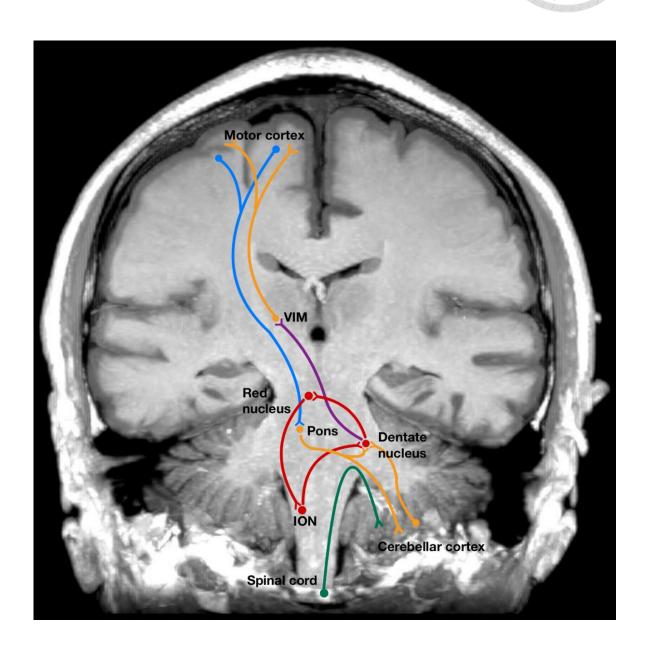


Figure 2. GEE model-based prediction of longitudinal change in FTM-TRS Part A total score (postoperative minus baseline) across timepoints

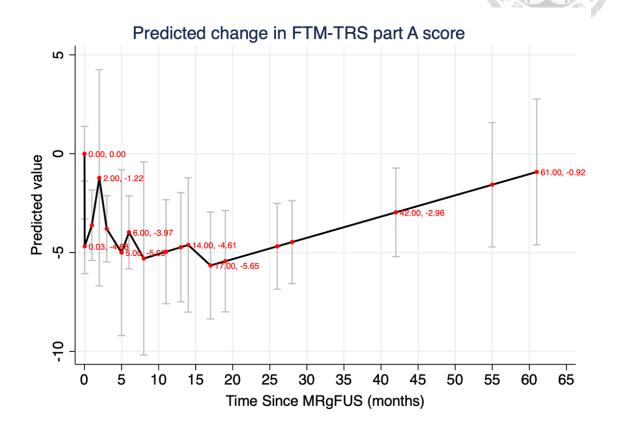


Figure 3.1 Region mask editing with FSLeyes (Middle Cerebellar Peduncle)

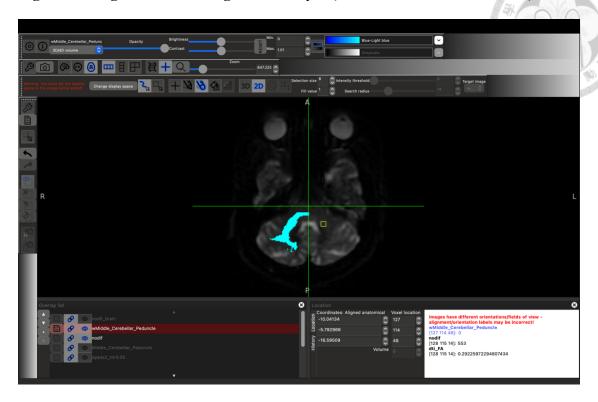


Figure 3.2.1 Region mask editing with FSLeyes (Superior Cerebellar Peduncle)

Corriery list

Corrie

Figure 3.2.2 Region mask editing with FSLeyes (Superior Cerebellar Peduncle)

Figure 4. Contents of the TRS scale

Figure 4.1 TRS part A

Part A: Tremor Location/Severity Rating

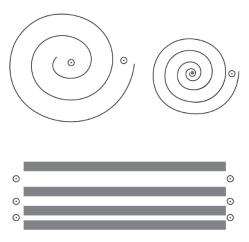
	Rest	Posture	Action/ Intention	Total
1. Face tremor			XXXXXXX	
2. Tongue tremor			XXXXXXX	
3. Voice tremor	XXXX		XXXXXXXX	
4. Head tremor			XXXXXXXX	
5. RUE tremor				
6. LUE tremor				
7. Trunk tremor			XXXXXXX	
8. RLE tremor				
9. LLE tremor				
10.Orthostaic (trunk/legs when standing)	xxxx		xxxxxxx	

SUBTOTAL A: _____

- 1-10. Tremor: rate tremor
 - 1. At rest (in repose), For head and trunk, when lying down.
 - With posture holding (UE-arms outstretched, wrists mildly extended, fingers spread apart; LE-legs flexed at hips and knees), foot dorsiflexed; tongue-when protruded; head and trunk when sitting or standing.
 - 3. With action and intention (UE-finger to nose and other actions; LE-toe to finger in a flexed posture).
 - 0 = None
 - 1 = Slight; barely perceivable. May be intermittent.
 - 2 = Moderate; amplitude <2 cm (extremities). May be intermittent.
 - 3 = Marked; amplitude 2-4 cm (extremities).
 - 4= Severe; amplitude > 4 cm (extremities).

Figure 4.2 TRS part B

PART B: Specific Motor Tasks/Function Rating


	Right	Left	Total
11. Handwriting (dominant only)			
12. Drawing A:			
13. Drawing B:			
14. Drawing C:			
15. Pouring			

O TOTAL	灣臺	TX.
ar a	00	
	1	
Y	4	45
1 1 Acts 1	學學	147) FEE
	支"· 字	

- Subtotal Right : _____ Subtotal Left : ____ SUBTOTAL B: __
- 11. Handwriting: Have a patient write the standard sentence "This is a sample of my best handwriting," sign his or her name, and write the date.
 - 0 = Normal
 - 1 = Mildly abnormal. Slightly untidy, tremulous
 - 2 = Moderately abnormal. Legible but with considerable tremor.

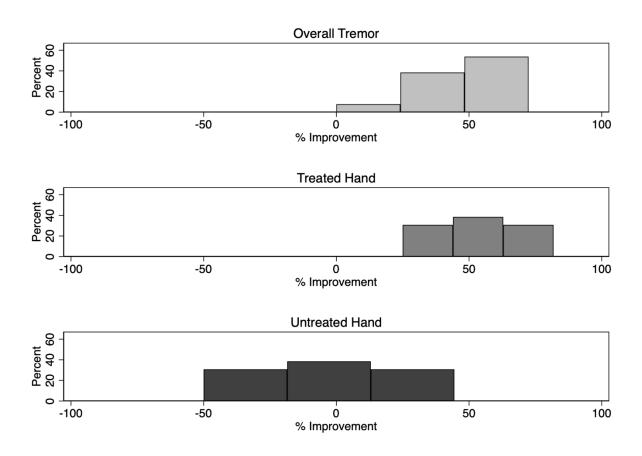
 - 3 = Markedly abnormal. Illegible.
 4 = Severely abnormal. Unable to keep pencil or pen on paper without holding hand down with the other hand
- 12-14. Drawings (See Figures A, B, and C below): Ask the patient to join both points of the various drawings without crossing the lines. Test each hand, beginning with the lesser involved without leaning the hand or arm on the table.
 - 0 = normal
 - 1 = Slightly tremulous. May cross lines occasionally.
 - 2 = Moderately tremulous or crosses lines frequently.
 - 3 = Accomplishes the task with great difficulty. Many errors.
 - 4 = Unable to complete drawing.
- 15. Pouring: Use firm plastic cups (8 cm tall), filled with water to 1 cm from top. Ask patient to pour water from one cup to another. Test each hand separately.

 - 1 = More careful than a person without tremor, but no water is spilled.
 - 2 = Spills a small amount of water (up to 10% of total amount).
 - 3 = Spills a considerable amount of water (10-50%).
 - 4 = Unable to pour without spilling most of the water.

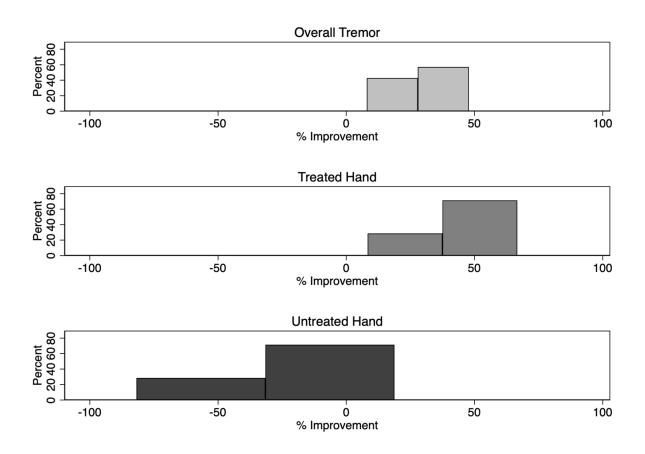
Figure 4.3 TRS part C

Part C: Functional Disabilities Resulting from Tremor

Speaking	
Eating	
Drinking	
Hygiene	
Dressing	
Writing	
Working	
Social activities	


Total State of the	
The state of the s	
	0.0000
A 1 M	
要。學	

Sι	JBT	OTA	٩L	C:	


TOTAL SCORE: ____

- 16. Speaking: This includes spastic dysphonia if present.
 - 0 = Normal
 - 1 = Mild voice tremulousness when nervous only.
 - 2 = Mild voice tremor, constant.
 - 3 = Moderate voice tremor.
 - 4 = Severe voice tremor. Some words difficult to understand.
- 17. **Feeding (**other than liquids):
 - 0 = Normal
 - 1 = Mildly abnormal. Can bring all solids to mouth, spilling only rarely.
 - 2 = Moderately abnormal. Frequent spills of peas and similar foods. May bring head at least halfway to meet food.
 - 3 = Marked abnormal. Unable to cut or uses two hands to feed.
 - 4 = Severely abnormal. Needs help to feed.
- 18. Bringing liquids to mouth:
 - 0 = Normal
 - 1 = Mildly abnormal. Can still use a spoon, but not if it is completely full.
 - 2 = Moderately abnormal. Unable to use a spoon. Uses cup or glass.
 - 3 = Markedly abnormal. Can drink from cup or glass, but needs two hands.
 - 4 = Severely abnormal. Must use a straw.

Figure 5.1 Distribution of improvement rates in total tremor severity (TRS), treated hand (sel_Rt), and untreated hand (sel_Lt) during the early post-treatment phase. Percent improvement was calculated as (pre – post)/pre × 100%. Positive values indicate symptom improvement, while negative values indicate worsening.

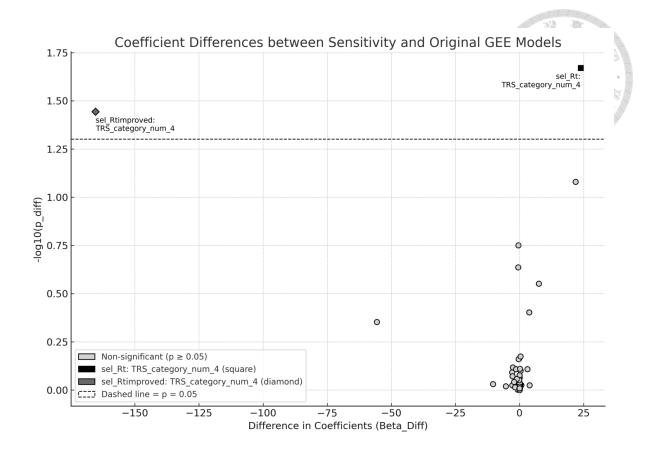

Figure 5.2 Distribution of improvement rates in total tremor severity (TRS), treated hand (sel_Rt), and untreated hand (sel_Lt) during the late post-treatment phase. Percent improvement was calculated as (pre – post)/pre × 100%. Positive values indicate symptom improvement, while negative values indicate worsening.

Figure 6

Coefficient differences (Beta_Diff) between the sensitivity and original generalized estimating equation (GEE) models across all examined variables, plotted against the negative logarithm of the p-value (-log10(p_diff)). Two variables exhibited statistically significant differences (p_diff < 0.05) and are highlighted using distinct grayscale markers: a black square for *sel_Rt: TRS_category_num_4* and a dark gray diamond for *sel_Rtimproved: TRS_category_num_4*. These variables show substantial shifts in coefficient direction between models, consistent with the impact of excluding repeated second-side procedure data in the sensitivity analysis.

Note: In the sensitivity model, data from ET001L and ET010R were excluded. To maintain balanced group sizes across time intervals, ET010R's follow-up MRI at 7 months post-treatment was categorized as part of TRS_category_num = 4 (i.e., the 4–6 month interval).

Tables

Table 1. Main Cerebellar Input and Output Pathways

 Table 1.1 Main Cerebellar Input Pathways

Deep Nuclei	Cerebellar Peduncle	Main Output Targets or Equivalent
Dentate Nucleus	Superior Cerebellar Peduncle	Ventrolateral nucleus of thalamus (VL), parvocellular red nucleus
Interposed Nuclei	Superior Cerebellar Peduncle	VL, magnocellular red nucleus
Fastigial Nuclei	Superior Cerebellar Peduncle	VL, tectum

Modified from (Lingford-Hughes & Kalk, 2012)

 Table 1.2 Main Cerebellar Output Pathways

Input Pathway	Main Origin(s) of Input	Cells Projecting to Cerebellum	Cerebellar Peduncle	
Pontocerebellar fibers	Cortex	Pontine nuclei	Middle Cerebellar Peduncle	40 要,學
Spinocerebellar pathways Dorsal spinocerebellar tract Cuneocerebellar tract Ventral spinocerebellar tract Rostral spinocerebellar tract	Leg proprioceptors Arm proprioceptors Leg interneurons Arm interneurons	Nucleus dorsalis of Clark External cuneate nucleus Spinal cord neurons Spinal cord neurons	Inferior Cerebellar Peduncle Inferior Cerebellar Peduncle Superior Cerebellar Peduncle Superior & Inferior Cerebellar	Peduncles
Climbing fibers	Red nucleus, cortex, brainstem, spinal cord	Inferior olivary nucleus	Inferior Cerebellar Peduncle	

Modified from (Lingford-Hughes & Kalk, 2012)

Table 2.1.1 The selection for each ROI (DTI)

	ROI	Importance
"Long tracts"	Corticospinal tract	Motion execution; possible implication in side-effects
	Frontopontine tract	Motion coordination; Tract lesion lead to ET tremor resolution
	Medial lemniscus	Possible implication in side-effects
	M1–Vim projection	Motion execution; Vim as lesioning target
Cerebellum	Motion execution; possible implication in side- effects Tract lesion lead to ET tremor resolution Possible implication in side-effects	Cerebellum conduits
Corpus Callosum	Corpus callosum- Genu	Tremor worsened in untreated hand after MRgFUS
1	Corpus callosum- Body	thalamotomy
	Corpus callosum- Splenium	•
	Corpus callosum- Combined	

Table 2.1.2 The selection rationale for each ROI (VBM)

	ROI	Importance
Cortex	Pre-supplementary motor area (preSMA) Supplementary motor area (SMA) Primary motor cortex (M1)	Cortical regions associated with motor planning, initiation, and execution
Thalamus	Ventral intermediate nucleus (Vim)	Lesion target; relay cerebellar output to motor cortical regions
	Ventral lateral posterior (VLp)	Encompasses Vim; relay cerebellar output to motor cortical regions
Cerebellum	Superior cerebellar peduncle (SCP) Middle cerebellar peduncle (MCP) Inferior cerebellar peduncle (ICP)	Cerebellar conduits
	Dorsal dentate nucleus	Major cerebellar output nucleus
Red Nucleus		Relay node within tremor network
Corpus Callosum	Corpus callosum- Genu Corpus callosum- Body Corpus callosum- Splenium Corpus callosum- Combined	Tremor worsened in untreated hand after MRgFUS thalamotomy

 Table 2.2.1 Summary of DTI Findings from Prior Cross-sectional Studies Comparing ET and HC

	ROI	Main Findings	References
	Corticospinal tract	↑FA	(Gallea et al., 2015)
		↓FA, ↑MD	(Pietracupa et al., 2019)
	Corticospinal tract - L	FA↔, ↑MD	(Saini et al., 2012)
"Long tracts"	Corticospinal tract - R	↑FA, MD ↔	(Saini et al., 2012)
	Frontopontine tract	-	
	Medial lemniscus	-	
	M1–Vim projection	FA ↔, ↓MD	(Revuelta et al., 2019)
	Superior cerebellar peduncle (SCP)	↓FA, ↑MD	(Nicoletti et al., 2010; Pietracupa et al., 2019; Tikoo et al., 2020)
Cerebellum	Superior cerebellar peduncle - L	↓FA	(Klein et al., 2011)
		↑FA, MD ↔	(Saini et al., 2012)

Superior cerebellar peduncle - R	$FA \leftrightarrow$, $MD \leftrightarrow$	(Klein et al., 2011; Nicoletti et al., 2010)
	$FA \leftrightarrow, MD \leftrightarrow$	(Nicoletti et al., 2010; Saini et al., 2012)
Middle cerebellar peduncle (MCP)	↓FA, ↑MD	Pietracupa et al., 2019; Tikoo et al., 2020)
Middle cerebellar peduncle - L	$FA \leftrightarrow$, $MD \leftrightarrow$	(Klein et al., 2011)
Middle cerebellar peduncle - R	$FA \leftrightarrow$, $MD \leftrightarrow$	(Klein et al., 2011)
Inferior cerebellar peduncle (ICP)	↓FA, ↑MD	(Tikoo et al., 2020)
Inferior cerebellar peduncle (ICP)- L	FA ↔, ↑MD	(Klein et al., 2011)
	$FA \leftrightarrow$, $MD \leftrightarrow$	(Saini et al., 2012)
Inferior cerebellar peduncle (ICP)- R	↓FA, ↑MD	(Klein et al., 2011);
	$FA \leftrightarrow, MD \leftrightarrow$	(Nicoletti et al., 2010)

	Corpus callosum- Genu	$FA \leftrightarrow, MD \leftrightarrow$	(Saini et al., 2012; Tantik Pak et al., 2021)
Corpus Callosum	Corpus callosum- Body	↓FA	(Tantik Pak et al., 2021)
Cullosum	Corpus callosum- Splenium	$FA \leftrightarrow$	(Tantik Pak et al., 2021)
	Corpus callosum- Combined	↓FA	(Prasad et al., 2018)

 Table 2.2.2 Summary of VBM Findings from Prior Cross-sectional Studies Comparing ET and HC

	ROI	Main Findings	References A
	Pre-supplementary motor area (preSMA)	-	
Cortex	Supplementary motor area (SMA)	-	
	Primary motor cortex (M1)	↑	(Lin et al., 2013)
Thalamus	Ventral intermediate nucleus (Vim)	↓ bilateral thalamus	(Pietracupa et al., 2019)
Thatamus	Ventral lateral posterior (VLp)	-	
	Superior cerebellar peduncle (SCP)	\leftrightarrow ; \downarrow R-SCP (ET + cerebellar s/sx)	(Prasad et al., 2019)
Cerebellum	Middle cerebellar peduncle (MCP)	↓	(Prasad et al., 2019)
Cerebellulli	Inferior cerebellar peduncle (ICP)	↓	(Prasad et al., 2019)
	(Dorsal) dentate nucleus	\leftrightarrow	(Dyke et al., 2017)
	Red nucleus	\downarrow	

			注: 查
	Corpus callosum- Genu		
Corpus Callosum	Corpus callosum – Body	-	
	Corpus callosum - Splenium		
	Corpus callosum - Combined		

Table 2.3.1 Summary of Longitudinal DTI Changes in ET Patients Following MRgFUS Vim Thalamotomy: Evidence from Prior Studies

	ROI	Main Findings	References
_	Continuous al transt	(non-tx side) no change at 3 months	(Pineda-Pardo et al., 2019)
	Corticospinal tract	(tx side) \downarrow FA, \leftrightarrow MD	(Thaler et al., 2023)
"I and treate"	Frontopontine tract	-	
"Long tracts"	Madial laurais ans	(non-tx side) no change at 3 months (tx side) \leftrightarrow FA, \leftrightarrow MD	(Pineda-Pardo et al., 2019)
	Medial lemniscus		(Thaler et al., 2023)
	M1–Vim projection	-	
	Superior cerebellar peduncle (SCP)		
Cerebellum	Middle cerebellar peduncle (MCP)	-	
	Inferior cerebellar peduncle (ICP)		
	Corpus callosum- Genu		
Corpus Callosum	Corpus callosum- Body	-	
	Corpus callosum- Splenium		

Table 2.3.2 Summary of Longitudinal VBM Changes in ET Patients Following MRgFUS Vim Thalamotomy: Evidence from Prior Studies

	ROI	Main Findings	References
	Pre-supplementary motor area (preSMA)	-	
Cortex	Supplementary motor area (SMA)	-	
	Primary motor cortex (M1)	-	
Thalamus	Ventral intermediate nucleus (Vim)	↓ at 6m *No correlation with tremor reduction	(Krauss et al., 2025)
Thatamus	Ventral lateral posterior (VLp)	↓ at 6m *No correlation with tremor reduction	(Krauss et al., 2025)
	Superior cerebellar peduncle (SCP)		
Cerebellum	Middle cerebellar peduncle (MCP)	-	
	Inferior cerebellar peduncle (ICP)		

	(Dorsal) dentate nucleus	-	32 12
	Red nucleus	-	
	Corpus callosum- Genu		
Corpus Callosum	Corpus callosum – Body		
	Corpus callosum - Splenium	-	
	Corpus callosum - Combined		

Table 3.1 Basic clinical information

						8 . 3113	S1000 1 100
Onset Age	e	Disease		Age at		Family	A N
(year)		Duration		surgery		History of	72
		(year)		(year)		tremor	3 . 14 18 18 18
Min	13.2	Min	0.4	Min	20.2	+	17
Max	77.3	Max	40	Max	78.9	-	3
Mean	47.7	Mean	14.6	Mean	62.3		
SD	19.01	SD	12.41	SD	14.46		

Table 3.2 Comorbidities

Table 3.2 Comorbio	litie	S			X M
	N		N		\cdot N
Nil	5	Psychiatric disease	1	Asthma	一
Hypertension	5	Anemia	1	Hemorrhoids	1
Diabetes	2	Tumors	4	Cataract	要 . 1
Dyslipidemia	4	Fatty liver	1	Urticaria	1
Renal impairment	1	Inguinal hernia	1	Thyroid disease (thy	yroidectomy) 1

Table 4 The distribution of baseline, early, and late MRI data and their corresponding intervals from the nearest TRS assessment.

	MRI-early (months		MRI-late (months after	
Subject	after surgery)	MRI-TRS interval (days)	surgery)	TRS-MRI interval (days)
ET001	6	0	17	0
ET002	6	3	61	0
ET003	6	20	NA	NA
ET004	NA	NA	55	0
ET005	NA	NA	NA	NA
ET006	NA	NA	17	0
ET007	NA	NA	42	0
ET008	7	17	NA	NA
ET009	NA	NA	NA	NA
ET010	7	0	28	40
ET010R	7	0	NA	NA
ET011	NA	NA	NA	NA
ET012	NA	NA	NA	NA
ET013	NA	NA	28	0
ET015	8	0	19	0
ET017R	7	0	NA	NA
ET018	6	0	NA	NA
ET019	9	0	NA	NA
ET020	7	0	NA	NA
PDET003	9	0	NA	NA
PDET004	10	0	NA	NA

- ET010R: After undergoing left Vim thalamotomy, patient ET010 received a subsequent right Vim thalamotomy and was redesignated as ET010R.
- ET017R: A left-handed patient who underwent right Vim thalamotomy.
- ET004: MRgFUS treatment failed (unable to reach the therapeutic temperature); the patient subsequently underwent radiofrequency ablation thalamotomy, with follow-up MRI performed 55 months postoperatively.

Table 5 Number of MRI datasets for ET at baseline, early, and late postoperative phases.

	Baseline	Early	Late
N	21	13 (12)	8

- After undergoing left Vim thalamotomy, ET010 subsequently received right Vim
 thalamotomy. This was counted as a separate case, resulting in a total of 21 baseline
 (preoperative) datasets. However, this particular dataset was excluded from the ET
 baseline vs. HC comparison.
- The MRI performed for ET015 during the ET-early phase was used exclusively for VBM analysis, as it did not contain the necessary data for DTI analysis.

 Table 6. Descriptive Statistics of Tremor Improvement: Early vs. Late Post-Treatment

Stages

		TRS_%improved	sel_Rt%improved	sel_Lt%improved
Early post-				
treatement	mean	46.9	55.0	2.6
n=13	median	49.4	58.3	0.0
	SD	18.66	17.30	29.88
Late post-				
treatement	mean	32.8	41.6	-21.1
n=7	median	40.3	46.7	-5.0
	SD	15.22	19.98	38.99

^{*}Improvement of TRS/ sel_Rt/ sel_Lt in percentage: (pre-post)/pre *100)

 Table 7 Healthy Control Demographics

ALL HC	Mean Age	SD	Male	Female
n=23	59.7	18.1	13	10

• Two-sample T test with equal variances: p=0.5238 (p>0.005); failed to reject H0 There was no significant difference of age when HC and ET groups are compared (p=0.5238)

Table 8.1: GEE Model Results – FTM-TRS Part A Change (Post-MRgFUS – Baseline) vs.

Time

					·	37	10)
TRSA change	Coef.	St.Err.	t-	p-	[95%	Interval]	Sig
			value	value	Conf	类.	学们间间
Timeintervalm_	.108	.057	1.90	.058	004	.219	*
ad							
TRS_category_	0	•					
num							
1	-4.685	.725	-6.46	0	-6.107	-3.264	***
2	-3.724	.923	-4.04	0	-5.533	-1.915	***
3	3.937	8.443	0.47	.641	-12.61	20.485	
4	-10.14	11.599	-0.87	.382	-32.873	12.594	
5	-6.214	6.736	-0.92	.356	-19.416	6.988	
6	-7.48	2.154	-3.47	.001	-11.701	-3.258	***
TTP C	0						
TRS_category_	0	•	•	•	•	•	
num#Timeinter							
valm_ad	0						
1 [†]	0	•	•	•	•	•	
2 [‡]	0						
2^{\dagger}	0	•	•	•	•	•	
3	-2.686	2.867	-0.94	.349	-8.306	2.934	
3	-2.080	2.007	-0.54	.347	-0.300	2.934	
4	.92	1.928	0.48	.633	-2.859	4.7	
7	.72	1.720	0.70	.033	-2.037	7./	
5	.007	.556	0.01	.99	-1.083	1.096	
3	.007	.550	0.01	.,,,	1.005	1.070	
6^{\dagger}	0						
U	V	•	•	•	•	•	
time sq	007	.005	-1.21	.228	017	.004	
	.007	.002	1.21	.220	.017		
Constant	0	.707	0.00	1	-1.385	1.385	
	-						
Mean dependent var -3.000		SD depe	endent var		3.852		
Number of obs		92	Chi-squ			55.706	

^{***} p < .01, ** p < .05, * p < .1 †omitted due to collinearity

Timeintervalm ad= Time since MRgFUS (month)

TRS_category_num= Category of time interval since MRgFUS (0: baseline, 1: 1 day, 2: 1

month, 3: 2-3 months, 4: 4-6 months, 5: 7-14 months, 6: 15 months and up)

TRS category num#Timeintervalm ad: interaction term between the categorical variable

TRS category num and the continuous variable Timeintervalm ad

Table 8.2 GEE Model Results – Treated Hand FTM-TRS (Selected Items) vs. Time

						44	15
sel_Rt	Coef.	St.Err.	t-	p-	[95%	Interval]	Sig
			value	value	Conf		101 125
						要.	香 腳,
Timeintervalm	.739	.268	2.76	.006	.214	1.265	***
ad	1,03						
TRS category n	0						
um							
1	-8.709	.446	-19.52	0	-9.583	-7.834	***
2	-8.292	.638	-12.99	0	-9.543	-7.041	***
3	-7.343	5.277	-1.39	.164	-17.686	3.001	
4	12.532	10.277	1.22	.223	-7.611	32.676	
5	-9.128	4.191	-2.18	.029	-17.343	914	**
6	-17.454	4.285	-4.07	0	-25.853	-9.056	***
TRS_category_n	0	•					
um#Timeinterva							
lm_ad							
1 [†]	0		•	•	•		
2^{\dagger}	0			•			
3	578	1.812	-0.32	.75	-4.129	2.974	
4	-3.898	1.755	-2.22	.026	-7.338	458	**
5	468	.396	-1.18	.238	-1.245	.309	
6^{\dagger}	0						
sel Lt c	.477	.102	4.68	0	.277	.676	***
sel Lt c#	002	.005	-0.36	.72	013	.009	
Timeintervalm							
ad							
TRS_category_n	0						
um#c.sel_Lt_c							
1	324	.091	-3.57	0	502	146	***
2	144	.117	-1.23	.22	373	.086	
3	174	.105	-1.67	.095	379	.031	*
4	278	.12	-2.32	.02	513	043	**
5	337	.17	-1.98	.047	671	004	**
6	.026	.24	0.11	.915	444	.495	
time_sq	01	.004	-2.81	.005	017	003	***
Constant	13.717	.623	22.01	0	12.495	14.938	***
Mean dependent var		7.789	SD dene	endent var	4.531		
Number of obs		90	Chi-squ			475.132	
			2111 594			.,.,.	

^{***} p < .01, ** p < .05, * p < .1 †omitted due to collinearity

sel_Rt = Summation of specific items (rest, posture and action/intention tremor from TRS part A item 5, TRS part B item 12~14 of the treated hand) addressing tremor severity of the treated hand

Timeintervalm ad= Time since MRgFUS (month)

time sq: the squared term of the variable Timeintervalm ad

TRS_category_num= Category of time interval since MRgFUS (0: baseline, 1: 1 day, 2: 1 month, 3: 2-3 months, 4: 4-6 months, 5: 7-14 months, 6: 15 months and up)

TRS_category_num#Timeintervalm_ad: interaction term between the categorical variable TRS_category_num and the continuous variable Timeintervalm_ad

sel_Lt_c: the mean-centered version of sel_Lt, the summation of specific items (rest, posture and action/intention tremor from TRS part A item 6, TRS part B item 12~14 of the non-treated hand) addressing tremor severity of the non-treated hand

sel_Lt_c# Timeintervalm_ad: interaction term between the categorical variable TRS_category_num#c.sel_Lt_c: interaction term between the categorical variable TRS_category_num#c.sel_Lt_c: interaction term between the categorical variable TRS_category_num and the continuous, centered variable sel_Lt_c

Table 8.3: GEE Model Results – FTM-TRS (Selected Items) Change in the Treated Hand vs. Time

Change = Post-MRgFUS - Baseline

						·	1010	
sel_Rt_num_cha	Coef.	St.Err.	t-	p-	[95%	Interval]	Sig	
nge			value	value	Conf			
Timeintervalm_	.587	.312	1.88	.06	024	1.198	*	
ad								
TRS_category_n	0		•	•				
um								
1	-8.424	.562	-14.99	0	-9.525	-7.323	***	
2	-7.626	.772	-9.88	0	-9.139	-6.114	***	
3	-8.368	6.251	-1.34	.181	-20.619	3.882		
4	11.386	12.458	0.91	.361	-13.032	35.804		
5	-10.063	5.066	-1.99	.047	-19.993	134	**	
6	-15.209	4.966	-3.06	.002	-24.943	-5.476	***	
TRS_category_n	0	•		•				
um#Timeinterva								
lm_ad								
1 [†]	0							
2 [†]	0	•				•		
3	.058	2.143	0.03	.978	-4.142	4.258		
4	-3.582	2.127	-1.68	.092	-7.75	.586	*	
5	302	.475	-0.64	.525	-1.233	.629		
6^{\dagger}	0		•					
sel Lt c	036	.067	-0.53	.594	168	.096		
time_sq	007	.004	-1.78	.074	015	.001	*	
Constant	018	.501	-0.04	.971	-1	.964		
Mean dependent var		-5.444	SD depo	SD dependent var		3.955		
Number of obs		90	Chi-squ	are		273.520		
·	-	-						

^{***} p < .01, ** p < .05, * p < .1 †omitted due to collinearity

sel_Rt_num_change = Change (post-MRgFUS – baseline) in total score from the specific
items in FTM (rest, posture and action/intention tremor from TRS part A item 5, TRS
part B item 12~14 of the treated hand)

Timeintervalm ad= Time since MRgFUS (month)

TRS_category_num= Category of time interval since MRgFUS (0: baseline, 1: 1 day, 2: 1 month, 3: 2-3 months, 4: 4-6 months, 5: 7-14 months, 6: 15 months and up)

TRS_category_num#Timeintervalm_ad: interaction term between the categorical variable TRS_category_num and the continuous variable Timeintervalm_ad

sel_Lt_c: the mean-centered version of sel_Lt, the summation of specific items (rest, posture and action/intention tremor from TRS part A item 6, TRS part B item 12~14 of the non-treated hand) addressing tremor severity of the non-treated hand

time sq: the squared term of the variable Timeintervalm ad

Table 9.1 Sensitivity Analysis – FTM-TRS Part A Change (Post-MRgFUS – Baseline) vs. Time (Excluding Second-Side Procedures)

GEE model result- sensitivity analysis (full, includes time sq)

GEE model result-	· sensitivity :	analysis (f	uii, inciu	aes time_s	q)		101010
TRSA_change	Coef.	St.Err.	t-	p-	[95%	Interval]	Sig
			value	value	Conf		
Timeintervalm_a	.61	.415	1.47	.141	203	1.423	
d							
TRS_category_n	0		•	•	•	•	
um							
1	-4.268	.759	-5.63	0	-5.755	-2.781	***
2	-4.086	1.031	-3.96	0	-6.106	-2.066	***
3	3.779	8.387	0.45	.652	-12.661	20.218	
4	-7.26	2.55	-2.85	.004	-12.258	-2.262	***
5	-6.902	6.723	-1.03	.305	-20.079	6.274	
6	-14.982	6.608	-2.27	.023	-27.933	-2.031	**
TRS_category_n	0		•	•	•	•	
um#							
Timeintervalm_a							
d							
1 [†]	0	•	•	•		•	
2^{\dagger}	0	•					
3	-3.025	2.879	-1.05	.294	-8.668	2.619	
4 [†]	0		•		•		
5	353	.63	-0.56	.576	-1.589	.883	
6^{\dagger}	0						
time_sq	007	.005	-1.22	.222	017	.004	
Constant	0	.719	-0.00	1	-1.409	1.409	
Mean dependent var -2.812			SD den	endent var		3.740	
Number of obs	85	Chi-squ		46.391			

^{***} p < .01, ** p < .05, * p < .1 † omitted due to collinearity

Timeintervalm ad= Time since MRgFUS (month)

TRS_category_num= Category of time interval since MRgFUS (0: baseline, 1: 1 day, 2: 1

month, 3: 2-3 months, 4: 4-6 months, 5: 7-14 months, 6: 15 months and up)

TRS_category_num#Timeintervalm_ad: interaction term between the categorical variable

TRS_category_num and the continuous variable Timeintervalm_ad

time_sq: the squared term of the variable Timeintervalm_ad

Table 9.2 Sensitivity Analysis – Treated Hand FTM-TRS (Selected Items) vs. Time

(Excluding Second-Side Procedures)

GEE model result-sensitivity analysis

sel_Rt Coef. St.Err. value	GEE model result-	sensitivity a	analysis					学 1019
Timeintervalm_a	sel_Rt	Coef.	St.Err.	t-	p-	[95%	Interval]	Sig
TRS_category_n				value	value	Conf		
TRS_category_n	Timeintervalm_a	.753	.237	3.17	.002	.287	1.218	***
um -8.678 .419 -20.72 0 -9.499 -7.857 *** 2 -8.322 .575 -14.48 0 -9.448 -7.195 *** 3 -6.904 4.648 -1.49 .137 -16.014 2.206 4 -11.351 1.444 -7.86 0 -14.181 -8.521 *** 5 -8.897 3.705 -2.40 .016 -16.158 -1.636 ** 6 -17.515 3.792 -4.62 0 -24.946 -10.084 *** TRS_category_n 0 1† 0 .	d							
1	TRS_category_n	0						
2	um							
3	1	-8.678	.419	-20.72	0	-9.499	-7.857	***
4 -11.351 1.444 -7.86 0 -14.181 -8.521 **** 5 -8.897 3.705 -2.40 .016 -16.158 -1.636 *** 6 -17.515 3.792 -4.62 0 -24.946 -10.084 **** TRS_category_n um# 0 .		-8.322	.575	-14.48	0	-9.448	-7.195	***
5 -8.897 3.705 -2.40 .016 -16.158 -1.636 *** 6 -17.515 3.792 -4.62 0 -24.946 -10.084 **** TRS_category_n um# 0 1† 0 3 799 1.598 -0.50 .617 -3.932 2.334 4† 0 5 499 .351 -1.42 .155 -1.186 .188 6† 0 sel_Lt_c .5 .086 5.80 0 .331 .669 **** sel_Lt_c# 002 .005 -0.33 .743 011 .008 TRS_category_n um#c.sel_Lt_c <		-6.904	4.648	-1.49	.137	-16.014	2.206	
6 -17.515 3.792 -4.62 0 -24.946 -10.084 **** TRS_category_n um# 0 .		-11.351	1.444	-7.86	0	-14.181	-8.521	***
TRS_category_n			3.705	-2.40	.016	-16.158	-1.636	**
um# Timeintervalm_a d 1† 0 3 799 1.598 -0.50 .617 -3.932 2.334 4† 0 5 499 .351 -1.42 .155 -1.186 .188 6† 0 sel_Lt_c .5 .086 5.80 0 .331 .669 *** sel_Lt_c# 002 .005 -0.33 .743 011 .008 Timeintervalm_a d gcategory_n 0 tmm#c.sel_Lt_c 1 345 .082 -4.23 0 505 185 **** 2 16 .104 -1.54 .125 364 .044 3 176 .094 -1.88 .06 359 .008	6	-17.515	3.792	-4.62	0	-24.946	-10.084	***
Timeintervalm_a d 1† 0		0	•	•	•			
d 1† 0 .								
1† 0 <	-							
2† 0 .								
3 799 1.598 -0.50 .617 -3.932 2.334 4† 0 5 499 .351 -1.42 .155 -1.186 .188 6† 0 sel_Lt_c .5 .086 5.80 0 .331 .669 *** sel_Lt_c# 002 .005 -0.33 .743 011 .008 Timeintervalm_a d TRS_category_n 0 1 345 .082 -4.23 0 505 185 *** 2 16 .104 -1.54 .125 364 .044 3 176 .094 -1.88 .06 359 .008 * 4 245 .108 -2.27 .023 457 034 ** 5 359 .151 -2.38 .017 655 063	1 [†]	0			•		•	
4† 0 .	2 [†]	0						
5 499 .351 -1.42 .155 -1.186 .188 6† 0 sel_Lt_c .5 .086 5.80 0 .331 .669 *** sel_Lt_c# 002 .005 -0.33 .743 011 .008 Timeintervalm_a d . <t< td=""><td>3</td><td>799</td><td>1.598</td><td>-0.50</td><td>.617</td><td>-3.932</td><td>2.334</td><td></td></t<>	3	799	1.598	-0.50	.617	-3.932	2.334	
5 499 .351 -1.42 .155 -1.186 .188 6† 0 sel_Lt_c .5 .086 5.80 0 .331 .669 *** sel_Lt_c# 002 .005 -0.33 .743 011 .008 Timeintervalm_a d . <t< td=""><td>4[†]</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	4 [†]	0						
sel_Lt_c .5 .086 5.80 0 .331 .669 *** sel_Lt_c# 002 .005 -0.33 .743 011 .008 Timeintervalm_a d TRS_category_n 0 um# c.sel_Lt_c 1 345 .082 -4.23 0 505 185 *** 2 16 .104 -1.54 .125 364 .044 3 176 .094 -1.88 .06 359 .008 * 4 245 .108 -2.27 .023 457 034 ** 5 359 .151 -2.38 .017 655 063 ** 6 005 .213 -0.02 .981 422 .412 <		499	.351	-1.42	.155	-1.186	.188	
sel_Lt_c# 002 .005 -0.33 .743 011 .008 Timeintervalm_a d TRS_category_n um# c.sel_Lt_c 0	6^{\dagger}	0	•	•	•		•	
Timeintervalm_a d TRS_category_n 0	sel_Lt_c	.5	.086	5.80	0	.331	.669	***
d TRS_category_n 0 .	sel_Lt_c#	002	.005	-0.33	.743	011	.008	
TRS_category_n 0	Timeintervalm_a							
um# c.sel_Lt_c 1 345 .082 -4.23 0 505 185 *** 2 16 .104 -1.54 .125 364 .044 3 176 .094 -1.88 .06 359 .008 * 4 245 .108 -2.27 .023 457 034 ** 5 359 .151 -2.38 .017 655 063 ** 6 005 .213 -0.02 .981 422 .412 time_sq 01 .003 -3.25 .001 016 004 *** Constant 13.25 .508 26.07 0 12.254 14.247 *** Mean dependent var 7.253 SD dependent var 4.126	d							
1 345 .082 -4.23 0 505 185 *** 2 16 .104 -1.54 .125 364 .044 3 176 .094 -1.88 .06 359 .008 * 4 245 .108 -2.27 .023 457 034 ** 5 359 .151 -2.38 .017 655 063 ** 6 005 .213 -0.02 .981 422 .412 time_sq 01 .003 -3.25 .001 016 004 *** Constant 13.25 .508 26.07 0 12.254 14.247 *** Mean dependent var 7.253 SD dependent var 4.126	TRS_category_n	0						
2 16 .104 -1.54 .125 364 .044 3 176 .094 -1.88 .06 359 .008 * 4 245 .108 -2.27 .023 457 034 ** 5 359 .151 -2.38 .017 655 063 ** 6 005 .213 -0.02 .981 422 .412 time_sq 01 .003 -3.25 .001 016 004 *** Constant 13.25 .508 26.07 0 12.254 14.247 *** Mean dependent var 7.253 SD dependent var 4.126	um# c.sel_Lt_c							
3 176 .094 -1.88 .06 359 .008 * 4 245 .108 -2.27 .023 457 034 ** 5 359 .151 -2.38 .017 655 063 ** 6 005 .213 -0.02 .981 422 .412 time_sq 01 .003 -3.25 .001 016 004 *** Constant 13.25 .508 26.07 0 12.254 14.247 *** Mean dependent var 7.253 SD dependent var 4.126				-4.23	0	505	185	***
4 245 .108 -2.27 .023 457 034 ** 5 359 .151 -2.38 .017 655 063 ** 6 005 .213 -0.02 .981 422 .412 time_sq 01 .003 -3.25 .001 016 004 *** Constant 13.25 .508 26.07 0 12.254 14.247 *** Mean dependent var 7.253 SD dependent var 4.126			.104	-1.54	.125	364	.044	
5 359 .151 -2.38 .017 655 063 ** 6 005 .213 -0.02 .981 422 .412 time_sq 01 .003 -3.25 .001 016 004 *** Constant 13.25 .508 26.07 0 12.254 14.247 *** Mean dependent var 7.253 SD dependent var 4.126	3							*
6 005 .213 -0.02 .981 422 .412 time_sq 01 .003 -3.25 .001 016 004 *** Constant 13.25 .508 26.07 0 12.254 14.247 *** Mean dependent var 7.253 SD dependent var 4.126		245	.108	-2.27	.023	457	034	**
time_sq 01 .003 -3.25 .001 016 004 *** Constant 13.25 .508 26.07 0 12.254 14.247 *** Mean dependent var 7.253 SD dependent var 4.126			.151	-2.38	.017	655	063	**
Constant 13.25 .508 26.07 0 12.254 14.247 *** Mean dependent var 7.253 SD dependent var 4.126	6	005	.213	-0.02	.981	422	.412	
Mean dependent var 7.253 SD dependent var 4.126	time_sq	01		-3.25	.001		004	***
	Constant	13.25	.508	26.07	0	12.254	14.247	***
	Mean dependent var 7.253			SD dep	endent var		4.126	
	-			_				

^{***} p < .01, ** p < .05, * p < .1 †omitted due to collinearity

sel_Rt = Summation of specific items (rest, posture and action/intention tremor from TRS part A item 5, TRS part B item 12~14 of the treated hand) addressing tremor severity of the treated hand

Timeintervalm ad= Time since MRgFUS (month)

time sq: the squared term of the variable Timeintervalm ad

TRS_category_num= Category of time interval since MRgFUS (0: baseline, 1: 1 day, 2: 1 month, 3: 2-3 months, 4: 4-6 months, 5: 7-14 months, 6: 15 months and up)

TRS_category_num#Timeintervalm_ad: interaction term between the categorical variable TRS_category_num and the continuous variable Timeintervalm_ad

sel_Lt_c: the mean-centered version of sel_Lt, the summation of specific items (rest, posture and action/intention tremor from TRS part A item 6, TRS part B item 12~14 of the non-treated hand) addressing tremor severity of the non-treated hand

sel_Lt_c# Timeintervalm_ad: interaction term between the categorical variable TRS_category_num#c.sel_Lt_c: interaction term between the categorical variable TRS_category_num#c.sel_Lt_c: interaction term between the categorical variable TRS_category_num and the continuous, centered variable sel_Lt_c

Table 9.3 Sensitivity Analysis – FTM-TRS (Selected Items) Change in the Treated Hand

vs. Time (Excluding Second-Side Procedures)

Change = Post-MRgFUS - Baseline

GEE model result-sensitivity analysis

GEE model result-	Coef.	St.Err.	t-	p-	[95%	Interval]	Sig
sel Rt num chan	2301.	Sulli.	value	value	Conf	111001 (411]	518
ge			, 0,20,0	, 5,1,5,5	0 0111		
Timeintervalm_a	.592	.319	1.86	.063	033	1.218	*
d							
TRS_category_n	0		•				
um							
1	-8.307	.605	-13.73	0	-9.494	-7.121	***
2	-7.655	.799	-9.59	0	-9.22	-6.089	***
3	-8.097	6.417	-1.26	.207	-20.674	4.48	
4	-10.469	1.963	-5.33	0	-14.316	-6.623	***
5	-9.885	5.191	-1.90	.057	-20.06	.289	*
6	-15.279	5.087	-3.00	.003	-25.25	-5.308	***
TRS_category_n	0						
um#							
Timeintervalm_a							
d							
1 [†]	0	•	•	•	•	•	
2^{\dagger}	0		•			•	
3	07	2.203	-0.03	.975	-4.388	4.249	
4 [†]	0						
5	322	.486	-0.66	.508	-1.275	.632	
6^{\dagger}	0	•	•	•		•	
sel Lt c	031	.071	-0.44	.66	17	.108	
time_sq	007	.004	-1.76	.078	015	.001	*
Constant	019	.544	-0.03	.972	-1.086	1.048	
Mean dependent var -5.506		SD depo	endent var		3.974		
Number of obs		83	Chi-squ	are		237.298	

^{***} p < .01, ** p < .05, * p < .1 † omitted due to collinearity

sel_Rt_num_change = Change (post-MRgFUS – baseline) in total score from the specific
items in FTM (rest, posture and action/intention tremor from TRS part A item 5, TRS

part B item 12~14 of the treated hand)

Timeintervalm ad= Time since MRgFUS (month)

TRS category num= Category of time interval since MRgFUS (0: baseline, 1: 1 day, 2: 1

month, 3: 2-3 months, 4: 4-6 months, 5: 7-14 months, 6: 15 months and up)

TRS category num#Timeintervalm ad: interaction term between the categorical variable

TRS_category_num and the continuous variable Timeintervalm_ad

sel Lt c: the mean-centered version of sel Lt, the summation of specific items (rest,

posture and action/intention tremor from TRS part A item 6, TRS part B item 12~14 of

the non-treated hand) addressing tremor severity of the non-treated hand

time sq: the squared term of the variable Timeintervalm_ad

Table 10.1 DTI Regression summary: ET vs. HC by Region (Dominant hand)

Regression summary: ET vs. HC by Region (Dominant hand)

Region								墨。學 阿
	FA_C	FA_p	FA_p_	FA_p_	MD_C	MD_p	MD_p	MD_p
	oef	val	raw	FDR	oef	val	_raw	_FDR
	-	0.222				0.678		1
L_Corticospin	0.014	4	0.222	0.445	0.015	9	0.679	
al_Tract								
	-	0.131				0.210		
L_Frontopont ine_Tract	0.019	4	0.131	0.350	0.053	9	0.211	0.562
_		0.392			-	0.860		
L_Medial_Le mniscus	0.016	9	0.393	0.524	0.005	5	0.860	0.983
L M1Vim	-	0.313			-	0.792		1
_	0.019	6	0.314	0.502	0.008	9	0.793	
R_SCP		0.660				0.947		
	0.008	0	0.660	0.754	0.004	4	0.947	0.947
R_MCP		0.018				0.564		1
	0.030	7*	0.019	0.075	0.010	3	0.564	
		0.017			-	0.144		
R_ICP_HCP4 82	0.037	0*	0.017	0.136	0.058	3	0.144	0.577
R ICP JHU		0.692			-	0.056		
	0.008	4	0.692	0.692	0.107	9	0.057	0.455

^{***} p< 0.001, ** p < 0.01, * p < 0.05

Table 10.2 DTI Regression summary: ET vs. HC by Region (Non-dominant hand)

Regression summary: ET vs. HC by Region (Non-dominant hand)

Region	•	- 150 110		711 (1 (011 (,		
	FA_C	FA_p	FA_p_	FA_p_	MD_C	MD_p	MD_p	MD_p
	oef	val	raw	FDR	oef	val	_raw	_FDR
	-	0.087				0.271		
R_Corticospi nal Tract	0.020	8	0.088	0.702	0.033	0	0.271	0.723
_	_	0.205				0.334		
R_Frontopont ine Tract	0.014	0	0.205	0.820	0.052	0	0.334	0.668
_		0.383			_	0.572		
R_Medial_Le mniscus	0.016	6	0.384	0.767	0.022	7	0.573	0.655
R M1Vim	_	0.537				0.382		
_	0.011	0	0.537	0.716	0.026	2	0.382	0.612
L_SCP		0.401			_	0.212		
_	0.017	5	0.401	0.642	0.061	9	0.213	0.852
L MCP		0.780				0.827		
_	0.004	5	0.780	0.780	0.004	7	0.828	0.828
		0.237			-	0.110		
L_ICP_HCP4 82	0.020	8	0.238	0.634	0.054	1	0.110	0.881
L_ICP_JHU		0.774			_	0.472		
	0.006	2	0.774	0.885	0.034	3	0.472	0.630

^{***} p< 0.001, ** p < 0.01, * p < 0.05

Table 10.3 DTI Regression summary: ET-late vs. HC by Region (Corpus Callosum)

Regression summary: ET vs. HC by Region (Corpus Callosum)

		(I		
Region	FA_Coef	FA_pval	MD_Coef	MD pval
Corpus_Callosum_Genu	0.012	0.6665	0.021	0.8399
Corpus_Callosum_Body	-0.002	0.9535	-0.067	0.3549
Corpus_Callosum_Splenium	0.003	0.9054	-0.039	0.6496
	0.002	0.9322	-0.026	0.7287
Corpus_Callosum_Combined				

^{***} p < 0.001 , ** p < 0.01, * p < 0.05

Table 11.1 VBM ET vs. HC (Dominant Hand)

Region	Coef	Pval_combined
L_preSMA	0.063	0.1007
L_SMA	-0.054	0.2265
L_{M1}	0.039	0.2357
L_{VIM}	-0.067	0.2754
L_VLp	-0.053	0.3754
R Dorsal Dentate Nucleus	-0.005	0.7424
L Red Nucleus	-0.002	0.6518
TRS	-0.000	

· 港臺
· · · · ·

Region	Coef	Pval_combined
R_SCP	0.097	0.0766
R_MCP	0.096	0.0400*
	0.105	0.0256*
R_ICP_HCP		
482		
R_ICP_JHU	0.082	0.1319
TRS	-0.000	

 Table 11.2 VBM ET vs. HC (Non-dominant Hand)

Region	Coef	Pval_combined
R_preSMA	0.060	0.1258
R_SMA	0.053	0.4201
R_M1	-0.002	0.9341
R_{VIM}	-0.060	0.2756
R_VLp	-0.067	0.2167
L_Dorsal_Dentate_Nucleus	0.021	0.1174
R Red Nucleus	0.004	0.1983
TRS	-0.000	

Region	Coef	Pval_combined
L_SCP	0.096	0.0849
L_MCP	0.090	0.0583
	0.105	0.0244*
L_ICP_HCP		
482		
L_ICP_JHU	0.091	0.0968
TRS	-0.000	

Table 11.3 VBM ET vs. HC (Corpus callosum)

Region	Coef	Pval_combined
Corpus_Callosum_Genu	0.068	0.2335
Corpus Callosum Body	0.059	0.2606
Corpus_Callosum_Splenium	0.077	0.2130
	0.068	0.2189
Corpus_Callosum_Combined		
TRS	-0.000	

 Table 12.1 DTI Regression summary: ET-early vs. HC by Region (Treated hand)

 Adjusted for age, sex and TRS total score

Region							1 154	7
	FA_C	FA_p	FA_p_	FA_p_	MD_C	MD_p	MD_p	MD_p
	oef	val	raw	FDR	oef	val	_raw	_FDR
	-	0.055				0.282		
L_Corticospin	0.054	9	0.056	0.126	0.085	7	0.283	0.509
al_Tract								
	-	0.130				0.079		
L_Frontopont	0.062	6	0.131	0.168	0.150	5	0.079	0.715
ine_Tract								
		0.036				0.116		
L_Medial_Le	0.096	9*	0.037	0.111	0.147	4	0.116	0.524
mniscus								
L_M1Vim	-	0.090				0.172		
	0.089	9	0.091	0.164	0.117	2	0.172	0.517
R_SCP		0.033			-	0.383		
	0.122	7*	0.034	0.152	0.131	4	0.383	0.575
R_MCP		0.178				0.831		
	0.045	0	0.178	0.200	0.013	1	0.831	0.935
		0.021			-	0.235		
R_ICP_HCP4	0.095	7*	0.022	0.195	0.112	6	0.236	0.530
82								
R_ICP_JHU		0.444			-	0.754		
	0.045	7	0.445	0.445	0.049	1	0.754	0.970
MRI_time		0.122			•		•	1
(covariate)	0.005	<u>4</u>	0.122	0.184				

^{***} p< 0.001, ** p < 0.01, * p < 0.05

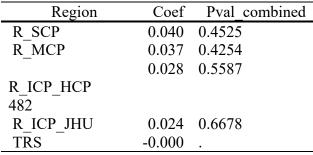
 Table 12.2 DTI Regression summary: ET-early vs. HC by Region (Non-treated hand)

 Adjusted for age, sex and TRS total score

Region							1 kg	179
	FA_C	FA_pv	FA_p_	FA_p_	MD_C	MD_p	MD_p	MD_p
	oef	al	raw	FDR	oef	val	_raw	_FDR
		0.5239				0.057		
R_Corticospi	0.019		0.524	0.674	0.119	8	0.058	0.260
nal_Tract								
		0.4852				0.055		
R_Frontopont	0.029		0.485	0.728	0.226	8	0.056	0.502
ine_Tract								
		0.0031			-	0.665		1
R_Medial_Le	0.131	**	0.003	0.028*	0.049	8	0.666	
mniscus								
R_M1Vim		0.3512			-	0.833		1
	0.058		0.351	0.632	0.017	1	0.833	
L_SCP		0.0243			-	0.253		
	0.125	*	0.024	0.109	0.158	2	0.253	0.760
L_{MCP}		0.0480				0.865		
	0.065	*	0.048	0.144	0.010	0	0.865	0.973
		0.2501			-	0.732		1
L_ICP_HCP4	0.051		0.250	0.563	0.033	8	0.733	
82								
L_ICP_JHU	-	0.8309				0.792		1
	0.013		0.831	0.831	0.037	2	0.792	
MRI_time	-	0.6010			•		•	1
(covariate)	0.002	* · O (0.601	0.676				

^{***} p < 0.001 , ** p < 0.01, * p < 0.05

Table 12.3 DTI Regression summary: ET-early vs. HC by Region (Corpus Callosum)


Region				MD_pval
	FA_Coef	FA_pval	MD_Coef	要。學學
Corpus_Callosum_Genu	0.154	0.0330*	-0.145	0.6263
Corpus_Callosum_Body	0.125	0.0495*	-0.177	0.2069
Corpus Callosum Splenium	0.178	0.0243*	-0.560	0.0211*
	0.152	0.0197*	-0.316	0.1280
Corpus_Callosum_Combined				
MRI_time (covariate)	-0.016	0.0306*	0.028	0.2387

^{***} p< 0.001, ** p < 0.01, * p < 0.05

Table 13.1 VBM ET-early vs. HC (Treated Hand)

Region	Coef	Pval_combined
L_preSMA	0.068	0.0592
L_SMA	-0.036	0.4070
L_M1	0.022	0.5486
L_{VIM}	-0.013	0.7710
L_{VLp}	0.009	0.8462
R_Dorsal_Dentate_Nucleus	-0.035	0.0252*
L_Red_Nucleus	0.001	0.8003
TRS	-0.000	

^{***} *p*< 0.001, ** *p* < 0.01, * *p* < 0.05

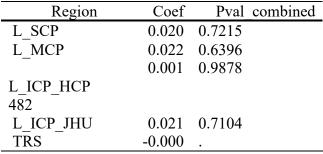

^{***} *p*< 0.001 , ** *p* < 0.01, * *p* < 0.05

Table 13.2 VBM ET-early vs. HC (Non-treated Hand)

Region	Coef	Pval_combined
R_preSMA	0.078	0.0588
R_SMA	0.047	0.5002
R_M1	-0.014	0.7166
R_VIM	0.071	0.2078
R_VLp	0.051	0.3223
L_Dorsal_Dentate_Nucleus	0.041	0.0159*
R_Red_Nucleus	-0.001	0.7006
TRS	-0.000	

^{***} *p*< 0.001, ** *p* < 0.01, * *p* < 0.05

^{***} p< 0.001, ** p < 0.01, * p < 0.05

 Table 13.3 VBM ET-early vs. HC (Corpus callosum)

Re	gion	Coef	Pval_	combined
Corpus_Callosum_Genu		0.045	0.3096	
Corpus_Callosum_Body		0.046	0.3074	
Corpus_Callosum_Splen	ium	0.069	0.2454	
		0.054	0.2677	
Corpus_Callosum_Combi	ined			
TRS		-0.000	•	
· · · · · · · · · · · · · · · · · · ·	•	•	•	•

^{***} p< 0.001, ** p < 0.01, * p < 0.05

 Table 14.1 DTI Regression summary: ET-late vs. HC by Region (Treated hand)

Region							150	
8	FA C	FA p	FA_p_	FA_p_	MD C	MD p	MD p	MD p
	- oef	val	raw	FDR	oef	val	_raw	_FDR
	-	0.188		1		0.343		1
L_Corticospin al_Tract	0.030	8	0.189		0.054	0	0.343	
	-	0.572		1		0.599		1
L_Frontopont ine_Tract	0.015	1	0.572		0.034	6	0.600	
_		0.576		1	-	0.226		1
L_Medial_Le mniscus	0.018	5	0.576		0.065	6	0.227	
L M1Vim	-	0.737				0.877		1
_	0.013	6	0.738	0.902	0.009	4	0.877	
		0.963			-	0.772		1
L_VApreSM A_subject_ma sk	0.001	2	0.963	0.963	0.022	9	0.773	
SK	_	0.610		1	_	0.951		1
L_VASMA_s ubject_mask	0.022	7	0.611	1	0.006	2	0.951	1
R SCP	_	0.544		1		0.890		1
_	0.027	4	0.544		0.018	0	0.890	
R_MCP	-	0.721			-	0.987		
	0.008	2	0.721	0.992	0.001	5	0.988	0.988
	-	0.718		1	-	0.708		1
R_ICP_HCP4 82	0.010	0	0.718		0.030	6	0.709	
R_ICP_JHU	-	0.248		1	-	0.790		1
	0.038	5	0.249		0.033	3	0.790	
MRI_time	-	0.920		1	-	0.468		1
(covariate)	0.000	9	0.921		0.001	0	0.468	

^{***} p< 0.001, ** p < 0.01, * p < 0.05

Table 14.2 DTI Regression summary: ET-late vs. HC by Region (Non-treated hand)

Region							15.4	
8	FA C	FA p	FA_p_	FA_p_	MD C	MD p	MD p	MD p
	oef	val	raw	FDR	oef	val	_raw	_FDR
		0.926				0.988		
R_Corticospi nal_Tract	0.002	4	0.926	0.926	0.001	5	0.988	0.988
		0.899			-	0.981		1
R_Frontopont ine_Tract	0.003	0	0.899	0.989	0.002	3	0.981	
		0.600		1	-	0.359		1
R_Medial_Le mniscus	0.019	4	0.600		0.071	6	0.360	
R M1Vim	-	0.545		1		0.966		1
_	0.026	1	0.545		0.002	0	0.966	
		0.733		1	-	0.915		1
R_VApreSM A_subject_ma	0.012	4	0.733		0.011	9	0.916	
sk		0.768				0.336		1
R_VASMA_s ubject mask	0.011	1	0.768	0.939	0.083	7	0.337	1
L SCP	_	0.514		1	_	0.638		1
_	0.032	9	0.515		0.053	3	0.638	
L_MCP	-	0.291		1	-	0.936		1
	0.027	9	0.292		0.003	4	0.936	
	-	0.572		1	-	0.781		1
L_ICP_HCP4 82	0.023	8	0.573		0.020	6	0.782	
L_ICP_JHU		0.717		1	-	0.813		1
_	0.016	1	0.717		0.025	4	0.813	
MRI_time	-	0.094		1		0.593		1
(covariate)	0.001	2	0.094		0.000	6	0.594	

^{***} p< 0.001, ** p < 0.01, * p < 0.05

 Table 14.3 DTI Regression summary: ET-late vs. HC by Region (Corpus Callosum)

Region	FA_Coef	FA_pval	MD_Coef	MD_pval
Corpus_Callosum_Genu	0.004	0.9218	-0.012	0.9389
Corpus_Callosum_Body	-0.053	0.1660	0.083	0.2629
Corpus_Callosum_Splenium	-0.045	0.2155	0.078	0.4539
Corpus Callosum Combined	-0.035	0.3357	0.053	0.6049
MRI_time (covariate)	-0.001	0.2826	0.002	0.5074

 Table 15.1 VBM ET-late vs. HC (Treated Hand)

Region	Coef	Pval_	combined
L_preSMA	-0.021	0.6808	
L_SMA	-0.046	0.4098	
L_M1	-0.016	0.7038	
L_{VIM}	-0.016	0.7857	
L_{VLp}	-0.027	0.6374	
R Dorsal Dentate Nucleus	-0.008	0.7020	
L Red Nucleus	-0.000	0.9421	
TRS	0.000		

Region	Coef	Pval_combined
R_SCP	0.066	0.3239
R_MCP	0.047	0.4335
R_ICP_HCP482	0.057	0.3214
R_ICP_JHU	0.053	0.4483
TRS	0.000	

133

Table 15.2 VBM ET-late vs. HC (Non-treated Hand)

Region	Coef	Pval_combined
R_preSMA	-0.035	0.3553
R_SMA	-0.000	0.9979
R_M1	0.021	0.5749
R_{VIM}	-0.011	0.8516
R_VLp	-0.020	0.7113
L_Dorsal_Dentate_Nucleus	0.000	0.9948
R_Red_Nucleus	0.000	0.9057
TRS	0.000	

Region	Coef	Pval_combined
L_SCP	0.053	0.4526
L_MCP	0.043	0.4898
	0.039	0.5159
L_ICP_HCP482		
L_ICP_JHU	0.057	0.4215
TRS	0.000	

Table 15.3 VBM ET-late vs. HC (Corpus callosum)

Region	Coef	Pval_combined
Corpus_Callosum_Genu	0.070 0.2213	要。星
Corpus_Callosum_Body	0.049 0.3453	19/3/3/5
Corpus_Callosum_Splenium	0.078 0.2876	
	0.065 0.2630	
Corpus_Callosum_Combined		
TRS	0.000 .	

Table 16.1 Paired regression: DTI early vs baseline, clustered by subject (Treated hand)

Region	FA_Coef				MD_pval
		FA_pval	MD_Coef		要。學學
L_Corticospinal_Tract	-0.001	1.0000	0.026	1.0000	20101010
L_Frontopontine_Tract	0.004	1.0000	0.008	1.0000	
L_M1Vim	0.023	1.0000	0.017	0.9517	
L_Medial_Lemniscus	-0.012	1.0000	0.034	1.0000	
R_ICP_HCP482	-0.010	1.0000	0.032	1.0000	
R_ICP_JHU	0.003	1.0000	0.066	0.8317	
R_MCP	-0.007	0.9523	-0.001	0.9756	
_R_SCP	0.002	0.9812	0.034	1.0000	

Table 16.2 Paired regression: DTI early vs baseline, clustered by subject (Non-treated hand)

Region	FA_Coef	FA_pval	MD_Coef	MD_pval
R_Corticospinal_Tract	0.006	0.9960	0.001	1.0000
R_Frontopontine_Tract	0.006	0.9732	-0.014	1.0000
R_Medial_Lemniscus	-0.001	1.0000	0.027	1.0000
R_M1Vim	-0.008	1.0000	0.027	1.0000
L_SCP	-0.018	1.0000	0.059	1.0000
L_MCP	-0.000	1.0000	0.006	1.0000
L_ICP_HCP482	0.000	0.9781	0.019	0.9162
L ICP JHU	0.021	1.0000	-0.028	1.0000

Table 16.3 Paired regression: DTI early vs baseline, clustered by subject (Corpus

Callosum)

Region	FA_Coef	FA_pval	MD_Coef	MD_pval
Corpus_Callosum_Body	-0.023	0.1913	0.060	0.2520
Corpus_Callosum_Combined	-0.019	0.3272	0.075	0.2324
Corpus_Callosum_Genu	-0.013	0.5328	0.083	0.3307
Corpus Callosum Splenium	-0.015	0.5579	0.079	0.3556

Table 17.1 VBM Paired regression: early vs baseline, clustered by subject (Treated hand)

	- C	D 1 1 1
Region	Coet	Pval_combined
L_preSMA	-0.005	0.8187
L_SMA	-0.016	0.5899
L_M1	-0.022	0.4650
L_VIM	-0.019	0.6062
L_VLp	-0.013	0.7182
R_Dorsal_Dentate_Nucleus	-0.005	0.5455
L_Red_Nucleus	0.002	0.2173
TRS	0.000	

Region	Coef	Pval_combined
R_SCP	-0.003	0.9174
R_MCP	-0.008	0.6838
	-0.012	0.6092
R_ICP_HCP482		
R_ICP_JHU	-0.011	0.6858
TRS	0.000	

Table 17.2 VBM Paired regression: early vs baseline, clustered by subject (Non-treated

hand)

Region	Coef	Pval_combined
R preSMA	-0.006	0.8041
R SMA	0.019	0.6485
R_{M1}	0.007	0.8170
R_VIM	0.030	0.4445
R_VLp	0.022	0.5394
L Dorsal Dentate Nucleus	-0.004	0.6967
R Red Nucleus	-0.004	0.0271*
TRS	0.000	

Region	Coef	Pval_combined
L_SCP	-0.015	0.5836
L_MCP	-0.012	0.5507
L_ICP_HCP482	-0.024	0.2777
L_ICP_JHU	-0.010	0.6857
TRS	0.000	

Table 17.3 VBM Paired regression: early vs baseline, clustered by subject (Corpus

callosum)

Region	Coef	Pval_combined
Corpus_Callosum_Genu	0.022	0.5299
Corpus_Callosum_Body	0.017	0.5928
Corpus_Callosum_Splenium	0.022	0.5143
Corpus_Callosum_Combined	0.020	0.5352
TRS	0.000	

Table 18.1 Paired regression: DTI late vs baseline, clustered by subject (Treated hand)

			1000 -1
FA_Coef	FA_pval	MD_Coef	MD_pval
-0.004	0.8804	-0.035	1.0000
0.002	0.8698	-0.054	1.0000
-0.022	0.2257	0.016	1.0000
0.008	0.9573	-0.018	1.0000
0.006	1.0000	-0.027	1.0000
-0.005	0.8284	0.024	1.0000
0.005	0.8448	-0.060	0.8522
-0.022	0.2510	-0.004	0.8563
-0.028	0.1674	0.004	0.9238
-0.037	0.0315*	0.024	0.9263
	-0.004 0.002 -0.022 0.008 0.006 -0.005 0.005 -0.022 -0.028	-0.004	-0.004 0.8804 -0.035 0.002 0.8698 -0.054 -0.022 0.2257 0.016 0.008 0.9573 -0.018 0.006 1.0000 -0.027 -0.005 0.8284 0.024 0.005 0.8448 -0.060 -0.022 0.2510 -0.004 -0.028 0.1674 0.004

Table 18.2 Paired regression: DTI late vs baseline, clustered by subject (Non-treated hand)

Region	FA_Coef	FA_pval	MD_Coef	MD_pval
L ICP HCP482	0.002	1.0000	0.012	0.9420
L_ICP_JHU	-0.022	0.2876	0.020	1.0000
L_MCP	-0.012	1.0000	-0.001	0.9854
L_SCP	-0.023	1.0000	-0.023	0.9795
R_Corticospinal_Tract	0.008	1.0000	-0.054	1.0000
R_Frontopontine_Tract	-0.000	0.9581	-0.049	1.0000
R M1Vim	-0.010	1.0000	-0.011	0.9837
R Medial Lemniscus	-0.016	1.0000	-0.004	1.0000
R VASMA subject mask	-0.005	1.0000	-0.020	0.9666
	-0.017	1.0000	0.018	0.9082
R VApreSMA subject mask				

Table 18.3 Paired regression: DTI late vs baseline, clustered by subject (Corpus Callosum)

Region	FA_Coef	FA_pval	MD_Coef	MD_pval
Corpus_Callosum_Body	0.006	0.8009	-0.040	0.3799
Corpus_Callosum_Combined	0.003	0.8733	-0.041	0.4298
Corpus_Callosum_Genu	-0.002	0.9298	-0.034	0.6228
Corpus_Callosum_Splenium	0.004	0.8090	-0.049	0.3132

Table 19.1 VBM Paired regression: late vs baseline, clustered by subject (Treated hand)

Region	Coef	Pval_combined
L_preSMA	-0.005	0.8729
L_SMA	0.011	0.7015
L_M1	-0.021	0.4768
L_VIM	0.079	0.2096
L_VLp	0.124	0.0610
R_Dorsal_Dentate_Nucleus	-0.007	0.3140
L_Red_Nucleus	-0.002	0.6161
TRS	0	•

Region	Coef	Pval_combined
R_SCP	-0.040	0.0911
R_MCP	-0.043	0.0256*
	-0.049	0.0240*
R_ICP_HCP		
482		
R_ICP_JHU	-0.020	0.3938
TRS	0	

Table 19.2 VBM Paired regression: late vs baseline, clustered by subject (Non-treated

hand)

Region	Coef	Pval combined
R preSMA	0.006	0.8146
R SMA	0.016	0.6828
R_{M1}	-0.040	0.1638
R VIM	0.088	0.1320
R VLp	0.098	0.0963
L Dorsal Dentate Nucleus	-0.006	0.2653
R Red Nucleus	0.002	0.2636
TRS	0	

Region	Coef	Pval_combined
L_SCP	-0.031	0.1225
L_MCP	-0.036	0.0606
	-0.039	0.0750
L_ICP_HCP		
482		
L_ICP_JHU	-0.022	0.3231
TRS	0	

Table 19.3 VBM Paired regression: late vs baseline, clustered by subject (Corpus

callosum)

Region	Coef	Pval_combined
Corpus_Callosum_Genu	-0.012	0.4944
Corpus_Callosum_Body	0.003	0.7549
	-0.003	0.9337
Corpus_Callosum_Spleniu		
m		
	-0.003	0.8474
Corpus_Callosum_Combine		
d		
TRS	0	•

Table 20.1 DTI ET vs. HC Summary

			(K)
	Non-treated hand	Treated hand	Corpus callosum
ET v.s. HC			
ET-early v.s.	R_Frontopontine_Tract		Genu (↑FA)
HC	(↑FA)		
			Body (↑FA)
			Splenium (↑FA,
			↓MD)
			Combined (↑ FA)
ET-late vs. HC	-	-	-

Table 20.2 DTI ET Longitudinal Comparison Summary

	Nontreated hand	Treated hand	Corpus callosum
ET-early vs. ET-baseline	-	-	-
ET-late vs. ET-baseline	-	R_ICP (JHU atlas) (\downarrow FA) (Coef=-0.037, p = 0.0315*)	-

Table 20.3 VBM ET vs. HC Summary

	Nondominant hand	Dominant hand	Corpus callosum
ET vs. HC	L_ICP (HCP482 atlas) (Coef = 0.105, p = 0.0244*)	R_MCP (Coef= 0.096, p = 0.0400*)	要。專問
		R_ICP (HCP482 atlas) (Coef = 0.082, p = 0.0256*)	
	Non treated hand	Treated hand	Corpus callosum
ET-early vs. HC	L_Dorsal_Dentate_Nucleu s (Coef = 0.041, p = 0.0159)	R_Dorsal_Dentate_Nucleus (Coef= -0.035, p = 0.0252*)	-
ET-late vs.	-	-	-

Table 20.4 VBM ET Longitudinal Comparison Summary

	Nontreated hand	Treated hand	Corpus callosum
ET-early vs. ET-baseline	R_Red_Nucleus (Coef= -0.004, p = 0.0271*)	-	-
ET-late vs. ET-baseline	-	R_MCP (Coef= -0.043, p = 0.256*) R_ICP_HCP482 (Coef= -0.049, p = 0.0240*)	-

Table 21.1 Cross-sectional regression of tremor severity metrics on onset_age, disease duration, and family history, adjusting for sex (with FDR)

	TRS	sel Rt	sel Lt
onset_age	0.545*	0.152**	0.111
	(0.237)	(0.048)	(0.084)
disease_durati	0.741	0.209^{*}	0.206
	(0.359)	(0.073)	(0.127)
family_hx	5.489	1.184	1.598
	(9.315)	(1.884)	(3.289)
female	-11.454	-2.334	-3.189
	(7.668)	(1.551)	(2.707)
\overline{N}	21	21	21

Standard errors in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Table 21.2 Cross-Sectional Linear Regression of Baseline VBM on Total Tremor Rating

Scale

Adjusted for age, sex and TRS total score

Cross-Sectional Linear Regression of Baseline VBM on Total Tremor Rating Scale

(TRS)

ROI	coef	p	pval_fdr
R Red Nucleus	-1069.078	0.044*	0.609
L_VLp	37.067	0.078	0.544
R_M1	108.059	0.120	0.559
R_VLp	38.251	0.137	0.481
L_VIM	31.476	0.143	0.401
	-359.843	0.216	0.505
R_Dorsal_Dentate_Nucl			
eus			
R_VIM	33.839	0.266	0.532
L_SMA	72.884	0.299	0.523
R_preSMA	-46.993	0.354	0.550
	-214.286	0.527	0.737
L_Dorsal_Dentate_Nucl			
eus			
L_preSMA	-34.843	0.617	0.785
L_M1	33.168	0.735	0.857
R_SMA	-5.616	0.875	0.943
L_Red_Nucleus	34.914	0.954	0.954

^{***} p< 0.001, ** p < 0.01, * p < 0.05

Cross-Sectional Linear Regression of Baseline VBM on Total Tremor Rating Scale (TRS)

ROI	coef	p	pval_fdr
	1.424	0.942	1
Corpus_Callosum_Genu			
	3.954	0.867	1
Corpus_Callosum_Body			
	-5.117	0.871	1
Corpus_Callosum_Sple			
nium			
	0.027	0.999	0.999
Corpus_Callosum_Com bined			

L SCP	-43.510	0.477	1
R_SCP	-21.399	0.684	1
L_MCP	-63.843	0.298	1
R_MCP	-44.050	0.506	1
L_ICP_HCP482	-93.135	0.178	1
R_ICP_HCP482	-50.168	0.430	1
L_ICP_JHU	-40.834	0.506	1
R_ICP_JHU	-18.203	0.753	1

Table 21.3 Cross-Sectional Linear Regression of Baseline VBM on Right-Hand Tremor

Severity

Adjusted for age, sex and TRS total score

Cross-Sectional Linear Regression of Baseline VBM on Right-Hand Tremor Severity (sel_Rt)

ROI	coef	p	pval_fdr
R_Red_Nucleus	-	0.053	0.743
	172.539		
$L_{ m L}VLp$	7.983	0.069	0.484
L_SMA	15.844	0.120	0.562
R_VLp	7.712	0.124	0.435
	-69.034	0.126	0.354
R_Dorsal_Dentate_Nucl			
eus			
	-93.810	0.143	0.335
L_Dorsal_Dentate_Nucl			
eus			
L_VIM	5.577	0.231	0.463
R_VIM	4.773	0.424	0.741
L_preSMA	6.919	0.579	0.900
R_preSMA	-3.844	0.733	1
L_M1	-3.285	0.819	1
R_SMA	1.461	0.851	0.992
R_M1	-1.799	0.887	0.955
L Red Nucleus	12.911	0.911	0.911

Cross-Sectional Linear Regression of Baseline VBM on Right-Hand Tremor Severity (sel_Rt)

ROI	coef	р	pval_fdr
	-4.850	0.329	0.438
Corpus_Callosum_Genu			
	-2.599	0.556	0.607
Corpus_Callosum_Body			
	-0.686	0.895	0.895
Corpus_Callosum_Sple			
nium			
Corpus_Callosum_Com	-2.884	0.552	0.662
bined			
L_SCP	-14.629	0.179	0.307
R_SCP	-14.895	0.161	0.386
L_MCP	-21.724	0.066	0.398
R_MCP	-22.998	0.092	0.369

L_ICP_HCP482	-25.630		0.561
		0.047*	
R_ICP_HCP482	-19.863	0.129	0.388
L ICP JHU	-17.147	0.166	0.332
R_ICP_JHU	-13.314	0.230	0.345

^{***} p< 0.001, ** p < 0.01, * p < 0.05

Table 21.4 Cross-Sectional Linear Regression of Baseline VBM on Left-Hand Tremor Severity

Cross-Sectional Linear Regression of Baseline VBM on Left-Hand Tremor Severity (sel Lt)

ROI	coef	p	pval_fdr
L_VLp	24.148		
		0.003**	0.046*
R_VLp	26.486		
		0.005**	0.038*
L_VIM	22.712		
		0.006**	0.026*
R_VIM	26.064		0.059
		0.017*	
R_Red_Nucleus	-	0.168	0.469
	315.325		
	-	0.237	0.553
R_Dorsal_Dentate_Nucl	111.102		
eus			
R_M1	30.086	0.299	0.598
L_M1	22.232	0.484	0.847
L_Red_Nucleus	-	0.543	0.844
	131.699		
L_SMA	17.054	0.568	0.796
	-63.743	0.620	0.789
L_Dorsal_Dentate_Nucl			
eus			
R_preSMA	-10.263	0.624	0.728
L_preSMA	0.598	0.981	1
R_SMA	0.083	0.996	0.996

Cross-Sectional Linear Regression of Baseline VBM on Left-Hand Tremor Severity (sel_Lt)

ROI	coef	р	pval_fdr
	-6.136	0.416	0.625
Corpus_Callosum_Genu			
	-3.807	0.666	0.727
Corpus_Callosum_Body			
	-3.990	0.753	0.753
Corpus_Callosum_Sple			
nium			
Corpus_Callosum_Com	-5.014	0.603	0.724
bined			
L_SCP	-23.501	0.208	0.499
		155	

R SCP	-16.099	0.318	0.636
L MCP	-38.390		0.231
_		0.039*	
R MCP	-30.553	0.103	0.414
L_ICP_HCP482	-43.640		0.320
		0.027*	
R_ICP_HCP482	-23.004	0.133	0.399
L_ICP_JHU	-16.429	0.383	0.657
R ICP JHU	-12.286	0.535	0.713

Table 21.5 Cross-Sectional Linear Regression of Baseline DTI Scalar Indices on TRS total

score

3	<i>y</i> 0,			
outcon	n e scalar kin	roi	pval	pval_fdr
•	d scarar_kiii			
TRS	FA	Corpus_Callosum_Gen		1
		u	0.981	
TRS	FA	Corpus_Callosum_Bod	0.845	1
TRS	FA	y Corpus Callosum Sple	0.043	1
1100		nium	0.962	-
TRS	FA	Corpus_Callosum_Com		1
TD C	T. 4	bined	0.969	0.011
TRS	FA	L_Corticospinal_Tract	0.002	0.811
TRS	FA	L Medial Lemniscus	0.092	1
TKS	IA	L_iviculai_Lellilliscus	0.884	1
TRS	FA	L Frontopontine Tract		1
			0.303	
TRS	FA	L_M1_Vim		1
TRS	FA	R_Corticospinal_Tract	0.075	0.828
TRS	FA	R Medial Lemniscus	0.075	1
IKS	гА	K_iviediai_Leililliscus	0.993	1
TRS	FA	R Frontopontine Tract	0.775	0.849
		_ 1 _	0.174	
TRS	FA	R_M1_Vim		1
TRS	FA	L_SCP		1
TDC	FA	I MCD	0.602	1
TRS	ΓА	L_MCP	0.627	1
TRS	FA	L ICP HCP482	0.027	1
1110		<u></u>	0.859	-
TRS	FA	L_ICP_JHU		1
			0.559	
TRS	FA	R_SCP	0.527	1
TRS	FA	R MCP	0.537	1
IKS	rA	K_WICF	0.365	1
TRS	FA	R_ICP_HCP482	0.505	1
			0.285	
TRS	FA	R_ICP_JHU		1

			0.443	
TRS	MD	Corpus_Callosum_Gen		1
TRS	MD	u Corpus_Callosum_Bod	0.880	0.854
TRS	MD	y Corpus Callosum Sple	0.194	1
TRS	MD	nium Corpus Callosum Com	0.334	1
TRS	MD	bined L Corticospinal Tract	0.372	1
			0.901	
TRS	MD	L_Medial_Lemniscus	0.851	1
TRS	MD	L_Frontopontine_Tract	0.482	1
TRS	MD	L_M1_Vim	0.842	1
TRS	MD	R_Corticospinal_Tract	0.475	1
TRS	MD	R_Medial_Lemniscus		1
TRS	MD	R_Frontopontine_Tract	0.347	1
TRS	MD	R_M1_Vim	0.393	1
TRS	MD	L SCP	0.840	0.724
TRS	MD	L MCP	0.099	1
TRS	MD	_	0.722	0.801
		L_ICP_HCP482	0.146	
TRS	MD	L_ICP_JHU	0.815	1
TRS	MD	R_SCP	0.605	1
TRS	MD	R_MCP	0.795	1
TRS	MD	R_ICP_HCP482	0.117	0.733
TRS	MD	R_ICP_JHU		0.344
			0.008	
TRS TRS	MD FA	R_M1Vim L_M1Vim		1 0.179
			0.008	

TRS	MD	L_M1Vim		1
TRS	FA	R_M1Vim		1
			0.070	

TRS FA R_MIVIM

0.070

*** p< 0.001, ** p < 0.01, * p < 0.05

Table 21.6 Cross-Sectional Linear Regression of Baseline DTI Scalar Indices on sum of

TRS selected items (Right Hand)

outcom		mai.	9 1/01	nvol fdn
outcom e	scalar ki	roi	pval	pval_fdr
C	nd			
sel Rt	FA	Corpus Callosum Gen	0.159	0.412
_		u		
sel Rt	FA	Corpus Callosum Bod	0.186	0.454
_		y		
sel_Rt	FA	Corpus_Callosum_Sple	0.259	0.569
		nium		
sel_Rt	FA	Corpus_Callosum_Com	0.122	0.384
		bined		
sel_Rt	FA	L_Corticospinal_Tract	0.019*	0.209
sel_Rt	FA	L_Medial_Lemniscus	0.560	0.795
sel_Rt	FA	L_Frontopontine_Tract	0.355	0.624
sel_Rt	FA	L_M1_Vim	•	1
sel_Rt	FA	R_Corticospinal_Tract	0.095	0.322
sel_Rt	FA	R_Medial_Lemniscus	0.489	0.768
sel_Rt	FA	R_Frontopontine_Tract	0.013*	0.284
sel_Rt	FA	R_M1_Vim		1
sel_Rt	FA	L_SCP	0.963	1
sel_Rt	FA	L_MCP	0.567	0.780
sel_Rt	FA	L_ICP_HCP482	0.532	0.808
sel_Rt	FA	L_ICP_JHU	0.939	1
sel_Rt	FA	R_SCP	0.271	0.568
sel_Rt	FA	R_MCP	0.091	0.334
sel_Rt	FA	R_ICP_HCP482	0.663	0.858
sel_Rt	FA	R_ICP_JHU	0.316	0.604
sel_Rt	MD	Corpus_Callosum_Gen	0.149	0.411
		u		
sel_Rt	MD	Corpus_Callosum_Bod	0.777	0.976
1 D) (D	y G G 11 G 1	0.000	1
sel_Rt	MD	Corpus_Callosum_Sple	0.899	1
1 D.	MD	nium	0.550	0.007
sel_Rt	MD	Corpus_Callosum_Com	0.550	0.807
1 D.	MD	bined	0.060	0.200
sel_Rt	MD	L_Corticospinal_Tract	0.068	0.300
sel_Rt	MD	L_Medial_Lemniscus	0.444	0.751
sel_Rt	MD MD	L_Frontopontine_Tract	0.064	0.349
sel_Rt	MD MD	L_M1_Vim P. Cartiaggning 1 Treat	0.063	0.398
sel_Rt	MD	R_Corticospinal_Tract	0.031*	0.276

sel Rt	MD	R Medial Lemniscus	0.309	0.619
sel Rt	MD	R Frontopontine Tract	0.015*	0.219
sel_Rt	MD	R_M1_Vim	0.067	0.327
sel_Rt	MD	L_SCP	0.835	1
sel_Rt	MD	L_MCP	0.136	0.398
sel_Rt	MD	L_ICP_HCP482	0.860	1
sel_Rt	MD	L_ICP_JHU	0.323	0.592
sel_Rt	MD	R_SCP	0.256	0.592
sel_Rt	MD	R_MCP	0.080	0.321
sel_Rt	MD	R_ICP_HCP482	0.589	0.786
sel_Rt	MD	R_ICP_JHU	0.448	0.730
sel_Rt	MD	R_M1Vim	•	1
sel_Rt	FA	L_M1Vim		0.155
			0.004**	
sel_Rt	FA	R_M1Vim	0.052	0.382
sel_Rt	MD	L_M1Vim	•	1

^{***} *p* < 0.001 , ** *p* < 0.01, * *p* < 0.05

Table 21.7 Cross-Sectional Linear Regression of Baseline DTI Scalar Indices on sum of

TRS selected items (Left Hand)

outcom		roi	pval	
e	scalar		1	pval_fd
	_kind			r
sel_Lt	FA	Corpus_Callosum_Genu		1
1 T.	ГА	C C 11 D 1	0.478	
sel_Lt	FA	Corpus_Callosum_Body	0.493	0.987
sel Lt	FA	Corpus Callosum Spleni	0.493	0.967
561_21	171	um	0.720	1
sel_Lt	FA	Corpus_Callosum_Combi		1
		ned	0.550	
sel_Lt	FA	L_Corticospinal_Tract		
1 Т.4	ΕA	I. M. 4:-1 I	0.044*	0.483
sel_Lt	FA	L_Medial_Lemniscus	0.595	0.969
sel Lt	FA	L Frontopontine Tract	0.393	0.909
561_20	111	Z_Trontopontmic_Truet	0.332	0.914
sel_Lt	FA	L_M1_Vim		1
sel_Lt	FA	R_Corticospinal_Tract		1
1 .		D 16 11 1 5 1	0.207	
sel_Lt	FA	R_Medial_Lemniscus	0.735	1
sel Lt	FA	R Frontopontine Tract	0.733	
3C1_Lt	171	K_Trontopontine_Tract	0.427	0.939
sel_Lt	FA	R_M1_Vim		1
sel_Lt	FA	L_SCP		1
			0.844	
sel_Lt	FA	L_MCP	0.002	1
sel Lt	FA	L ICP HCP482	0.803	1
SCI_Lt	1 /1		0.742	1
sel_Lt	FA	L ICP JHU	01, 12	
_			0.349	0.854
sel_Lt	FA	R_SCP		
1 .	T- 4	P. MCP.	0.595	_
sel_Lt	FA	R_MCP	0.524	1
sel I t	FA	R_ICP_HCP482	0.324	1
3C1_Lt	171	K_101_1101 +02	0.169	1
sel_Lt	FA	R_ICP_JHU		
_			0.336	0.870
sel_Lt	MD	Corpus_Callosum_Genu		

			0.626	0.950
sel_Lt	MD	Corpus_Callosum_Body		1
sel Lt	MD	Corpus Callosum Spleni	0.326	1
_	MD	um	0.280	1
sel_Lt	MD	Corpus_Callosum_Combined	0.317	1
sel_Lt	MD	L_Corticospinal_Tract	0.572	0.968
sel_Lt	MD	L_Medial_Lemniscus		0.908
sel Lt	MD	L Frontopontine Tract	0.919	1
_			0.266	1
sel_Lt	MD	L_M1_Vim	0.874	0.986
sel_Lt	MD	R_Corticospinal_Tract		1
sel Lt	MD	R Medial Lemniscus	0.303	
_			0.384	0.889
sel_Lt	MD	R_Frontopontine_Tract	0.202	1
sel_Lt	MD	R_M1_Vim	0.848	1
sel_Lt	MD	L_SCP	0.040	
sel Lt	MD	L MCP	0.327	0.960 1
_		_	0.837	
sel_Lt	MD	L_ICP_HCP482	0.291	1
sel_Lt	MD	L_ICP_JHU		0.050
sel_Lt	MD	R_SCP	0.556	0.979 1
	MD		0.836	
sel_Lt	MD	R_MCP	0.849	0.983
sel_Lt	MD	R_ICP_HCP482	0.158	1
sel_Lt	MD	R_ICP_JHU		
sel Lt	MD	R M1Vim	0.016*	0.346 1
sel_Lt	FA	L_M1Vim	•	
sel Lt	MD	L M1Vim	0.014*	0.616 1
sel_Lt		R_M1Vim	0.006	
			0.026*	0.378

Table 22.1 Multiple Linear Regression: Clinical Predictors of Improvement (TRS, sel_Rt, sel_Lt) with FDR

			209
	TRS_%improved	sel_Rt%improved	sel_Lt%improved
Age at time of treatment	0.720*	0.359	-0.295
_	(0.358)	(0.552)	(0.834)
Baseline TRS	-0.612*	-0.154	-0.062
	(0.293)	(0.448)	(0.724)
Baseline sel_Rt	0.988	-1.731	2.625
	(1.825)	(2.789)	(4.483)
Skull density ratio	4.937	56.561	13.443
(SDR)			
	(37.501)	(57.834)	(88.257)
Family history (1=yes)	24.461*	24.274	45.750
	(12.409)	(19.252)	(28.115)
Sex (Female=1)	8.350	20.344	18.526
	(11.014)	(17.015)	(25.729)
Time interval between	-0.450**	-0.379	-0.870***
treatment and TRS			
evaluation (months)			
	(0.158)	(0.256)	(0.195)
Observations	20	20	20
	0 11 7		

All models use random intercept for subject; REML estimation.

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Table 22.2 Multiple Linear Regression: Clinical Predictors of Improvement (TRS, sel_Rt, sel_Lt)

	TRS %improved	sel Rt%improved	sel Lt%improved
Age at time of treatment	1.045**	0.438	0.687
6	(0.372)	(0.419)	(0.804)
baseline TRS	-0.306	-0.189	0.382
_	(0.371)	(0.412)	(0.810)
Sex (Female=1)	9.402	11.023	11.834
,	(13.735)	(15.534)	(29.654)
Time interval between	-0.450**	-0.482	-0.864***
treatment and TRS			
evaluation (months)			
	(0.174)	(0.262)	(0.199)
Max Energy (J)	-0.000	-0.001	0.000°
	(0.001)	(0.001)	(0.001)
Max Watt (W)	0.019	0.048	0.021
	(0.041)	(0.045)	(0.090)
Max Temp (°C)	1.097	-3.290	-0.417
•	(3.315)	(3.670)	(7.269)
Sonications	-3.928	-1.368	-10.040
	(4.453)	(5.151)	(9.432)
>50°C Sonications	3.368	8.071	10.946
	(9.496)	(10.548)	(20.766)
Observations	20	20	20

Table 22.3 Baseline VBM Predictors of TRS Improvement

FDR-corrected, adjusted for age, sex, time interval between treatment and TRS evaluation, baseline TRS

ROI	coef	se	pval		pval fdr	4014
ROI	0001	50	pvar	Signif	pvai_iai	Significa
				icance		nce FD
						R
L_preSMA	-	66.954	0.083		0.291	
	124.888					
R_preSMA	-	56.066	0.070		0.327	
	109.983					
L_SMA	51.334	54.811	0.365		0.730	
R_SMA	-2.515	42.948	0.954		1	
L_M1	-16.412	74.927	0.830		1	
R_M1	-	71.805	0.013	*	0.185	
	203.532					
L_VIM	1.057	43.667	0.981		0.981	
R_VIM	1.286	52.417	0.981		1	
L_VLp	8.316	45.805	0.859		1	
R_VLp	17.791	56.493	0.757		1	
	65.092		0.846		1	
L_Dorsal_Dentate_Nucl		329.002				
eus						
	-		0.299		0.699	•
R_Dorsal_Dentate_Nucl	248.452	230.592				
eus						
L_Red_Nucleus	-		0.039	*	0.271	•
	1302.79	571.050				
	5					
R_Red_Nucleus	-		0.190		0.531	•
	1180.89	856.779				
	1					

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

ROI	coef	se	pval	Significa nce	pval_fdr	Significa nce_FD R
	-62.597	53.054	0.258		~ 0.773	1000
Corpus_Callosum_Genu					14:1	
	-75.896	58.223	0.213		0.854	
Corpus_Callosum_Body						
	-71.090	49.614	0.174		1	
Corpus_Callosum_Sple						
nium						
Corpus_Callosum_Com	-78.402	56.023	0.183	•	1	•
bined						
L_SCP	11.969	64.536	0.856		1	
R_SCP	7.705	66.147	0.909		0.992	
L_MCP	-13.783	88.217	0.878		1	
$R_{-}MCP$	-10.216	87.857	0.909		0.909	
L_ICP_HCP482	15.701	76.565	0.840		1	
R_ICP_HCP482	11.186	75.364	0.884		1	
L_ICP_JHU	19.132	67.266	0.780		1	
R ICP JHU	24.740	60.259	0.688		1	

 Table 22.4 Baseline VBM Predictors of Treated Hand Improvement

FDR-corrected, adjusted for age, sex, time interval between treatment and TRS evaluation,

baseline TRS

ROI	coef	se	pval		pval fdr	001010101
			1	Significa		Significa
				nce		nce FD
						R
L_preSMA	-18.215		0.867		1	•
		107.154				
R_preSMA	-34.671	90.290	0.707	•	1	
LSMA	2.650	81.009	0.974		1	
R SMA	-40.411	60.631	0.516	•	1	
L_M1		97.741	0.107		0.498	
	168.475					
R_M1	-		0.099		0.691	
	206.557	116.767				
L_VIM	11.858	62.530	0.852	•	1	
R_VIM	-30.479	74.713	0.689	•	1	
L_VLp	11.939	65.674	0.858	•	1	
R_VLp	-21.582	81.079	0.794	•	1	
			0.066	•	0.926	
L_Dorsal_Dentate_Nucl	830.782	416.940				
eus						
	37.596		0.915		1	
R_Dorsal_Dentate_Nucl		343.907				
eus						
L_Red_Nucleus	-2.940		0.998		0.998	
		958.954				
R_Red_Nucleus	-50.725		0.970	•	1	
		1309.05				
		7				

ROI	coef	se	pval		pval_fdr	
			Γ	Signif icance	Y-	Significa nce_FD
	07.040	55.051	0.21.5		24	R
Corpus Callosum Genu	-97.849	75.351	0.215		0.645	\$ 1 m
• – –	-	82.583	0.175		0.700	14
Corpus_Callosum_Body	118.011					是。 聲 問題
	-	61.488	0.016	*	0.193	(9761919)
Corpus_Callosum_Sple nium	168.230					
	_	76.033	0.071		0.427	
Corpus_Callosum_Com	148.434					
bined						
L_SCP	-11.965	92.589	0.899		1	
R_SCP	-3.180	94.882	0.974		0.974	
L_MCP	49.385		0.701		1	•
		125.903				
R_MCP	12.428		0.923		1	
		125.984				
L_ICP_HCP482	10.741		0.924		1	•
		109.905				
R_ICP_HCP482	52.639		0.631		1	
	C (55	107.221	0.046		_	
L_ICP_JHU	6.672	96.707	0.946		1	
R_ICP_JHU	-3.570	86.911	0.968		1	

 Table 22.5 Baseline VBM Predictors of Non-treated Hand Improvement

FDR-corrected, adjusted for age, sex, time interval between treatment and TRS evaluation,

baseline TRS

no.	<u> </u>				1 01	E' • F
ROI	coef	se	pval	a: :c	pval_fdr	g: :«
				Signif		Significa
				icance		nce_FD
						R
L_preSMA	-		0.423		0.986	
	128.756	155.884				
R preSMA	-		0.212		1	
	166.699	127.521				
L SMA	-69.895		0.567		0.793	
_		119.110				
R SMA	-80.843	89.072	0.379		1	
L_M1	_		0.387		1	
	139.237	155.772			_	•
R M1	-	1001112	0.605		0.652	
14_1411	100.684	190.328	0.005		0.052	•
L VIM	54.220	92.046	0.565		0.879	
R VIM	49.939	72.040	0.660		0.660	•
K_V IIVI	77.737	111.051	0.000		0.000	•
L VLp	52.899	96.828	0.593		0.755	
R VLp	94.822	90.828	0.333		0.733	•
K_vLp	94.022	118.287	0.430		0.872	•
		110.207	0.222		1	
I Daniel Dantste Maril	050 013	((5.222	0.222		1	•
L_Dorsal_Dentate_Nucl	850.812	665.222				
eus			0.505		0.604	
		.	0.595		0.694	•
R_Dorsal_Dentate_Nucl	275.852	506.702				
eus						
L_Red_Nucleus	-		0.009	**	0.124	•
	3364.83	1108.18				
	6	2				
R_Red_Nucleus	-		0.488		0.854	
	1363.18	1913.93				
	0	9				
-						

ROI	coef	se	pval	Significa	pval_fdr	Significa
				nce		nce_FD R
	-38.469		0.750		1	725
Corpus_Callosum_Genu	-45.720	118.257	0.732		學要	1610101010101010
Corpus_Callosum_Body	- -1 3.720	130.993	0.732	•	1	•
	30.119	112.070	0.794		1	
Corpus_Callosum_Sple nium		113.078				
Corpus_Callosum_Com	-14.101		0.914		0.914	
bined	49.705	127.576	0.723		1	
L_SCP	49.703	137.236	0.723	•	1	•
R_SCP	56.337		0.694		1	
L MCP	_	140.409	0.424		1	
L_WEI	151.509	183.999	0.121	•	1	•
R_MCP	-22.800	107.460	0.905		0.987	
L_ICP_HCP482	-69.782	187.462	0.674		1	
		162.555				
R_ICP_HCP482	-38.845	160.604	0.812		1	•
L_ICP_JHU	26.548	100.004	0.856		1	
	77.10 <i>i</i>	143.773	0.651			
R_ICP_JHU	55.194	128.509	0.674	•	1	•

Table 23.1 Summary of Clinical Predictors of Improvement of Tremor in the treated hand (sel_Rt)

Correlation with tremor improvement (%)	Factors	
Positive	Older age at treatment	
$(\beta > 0, p < 0.05)$		
Negative	Older age of onset	
$(\beta < 0, p < 0.05)$		
Neutral Effect	- Disease duration	
$(p \ge 0.05)$	- Baseline TRS	
	- Baseline severity of right hand tremor (sel_Rt)	
	- SDR	
	- Family history	
	- All treatment parameters examined	
	- VBM value of all ROIs (gray matter, white matter) exact	mined

 Table 23.2 Summary of Clinical Predictors of Improvement of Tremor in the nontreated hand (sel_Lt)

Correlation with tremor improvement (%)	Factors
Positive	- Older age at treatment
$(\beta > 0, p < 0.05)$	- Family history of tremor
Negative	- Older age of onset
$(\beta < 0, p < 0.05)$	- Longer disease duration
	- Longer time interval at the time of observation
Neutral Effect	- Baseline TRS
$(p \ge 0.05)$	- Baseline severity of right hand tremor (sel_Rt)
	- SDR
	- All treatment parameters examined
	- VBM value of all ROIs (gray matter, white matter) examined

Table 24.1 Mixed Model: Clinical Predictors of Improvement in TRS part C with FDR

	TRS C % improved
Age at time of treatment	1.790**
	(0.560)
Baseline TRS	-0.230
	(0.410)
Baseline sel Rt	-1.092
_	(2.584)
Skull density ratio	-79.326
(SDR)	
•	(58.503)
Family history (1=yes)	35.841
	(20.188)
Sex (Female=1)	-16.333
,	(17.515)
Time interval between	-0.345
treatment and TRS	
evaluation (months)	
,	(0.326)
Observations	20

All models use random intercept for subject; REML estimation. Raw p-values shown. FDR-adjusted p-values exported separately. p < 0.05, ** p < 0.01, *** p < 0.001

Table 24.2 Mixed Model: Clinical Predictors of Improvement in TRS part A+B with FDR

	TRS A+B % improved
Age at time of treatment	0.295
	(0.452)
Baseline TRS	-0.647
	(0.394)
Baseline sel_Rt	1.230
-	(2.435)
Skull density ratio	26.510
(SDR)	
	(47.866)
Family history (1=yes)	20.167
	(15.222)
Sex (Female=1)	15.387
	(13.951)
Time interval between	-0.332***
treatment and TRS	
evaluation (months)	
. ,	(0.100)
Observations	20

All models use random intercept for subject; REML estimation. Raw p-values shown. FDR-adjusted p-values exported separately. p < 0.05, ** p < 0.01, *** p < 0.001