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Abstract

We present a new approach to the exhibition of cultural artifacts by designing a sys-
tem that enables the artifacts to speak in virtual reality. Unlike traditional virtual museum
guides, this system gives artifacts their own voices and personalities, allowing them to
engage in conversation instead of just being silent objects on display. We first reconstruct
high-quality artifact models with 3D Gaussian Splatting. Then we integrate a locally de-
ployed large language model to generate responses from speech input. We also incorpo-
rate Retrieval-Augmented Generation (RAG) to improve the correctness of the responses
by allowing the model to reference relevant context. We compare different Traditional
Chinese large language models to identify the best for generating vivid and characterful
responses, and we analyze the effectiveness of RAG in enhancing response quality. Fi-
nally, we evaluate the visual performance of artifact models on a VR headset, examining

how splat count, artifact size, and viewing distance affect rendering performance.

Keywords: 3D Gaussian Splatting, Virtual Reality, Conversational Al, Large Language

Model, Voice Interaction
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Chapter 1 Introduction

Digital technology has increasingly shaped how people engage with cultural heritage.
In particular, museums and educational institutions have begun exploring interactive and
immersive methods to present historical artifacts in ways that are more engaging and ac-
cessible. Virtual Reality (VR), 3D reconstruction, and Conversational Al are promising
tools for creating such experiences. Virtual Reality allows users to explore cultural sites
and museum exhibits in immersive digital environments that go beyond the physical limi-
tations of traditional museums. This allows broader access to cultural heritage, especially
for those unable to visit in person. 3D reconstruction makes it possible to turn cultural
artifacts into digital models, preserving their form and texture for realistic viewing in vir-
tual environments. Conversational Al allows users to engage in natural dialogue with
virtual agents or virtual museum guides, transforming passive observation into interactive
learning and personalized exploration. In recent years, significant advancements in Con-
versational Al have been driven by Large Language Models (LLMs). LLMs have shown
the ability to understand human language and generate appropriate responses across many
domains [2]. This enable conversational agents to deliver more flexible, intelligent, and

natural interactions.

The motivation for this work arises from the desire to create a more engaging and
memorable museum experience. Most existing systems treat Conversational Al as a sep-
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arate museum guide from the objects themselves, often embodied by generic virtual char-
acters [28] [6]. This separation misses the opportunity to create a more immersive and
intuitive interaction where the artifacts speak directly with visitors. In this work, we ex-
plore a new way of presenting cultural artifacts by allowing the artifacts themselves to
become the speakers. This approach invites visitors into a dynamic conversation, trans-
forming cultural artifacts from silent objects into active museum guides. It is a unique

way to bring artifacts to life and redefines how people interact with cultural heritage.

The primary objective of this work is to implement a system that enables conver-
sational interaction with 3D-reconstructed cultural artifacts. Firstly, we utilize 3D Gaus-
sian Splatting [14] to create visually detailed and realistic models of museum artifacts
that can be viewed in VR. Secondly, we build a local LLM system that enables cultural
artifacts to speak with their own voice and personality. To support this, we evaluate sev-
eral large language models for their ability to generate vivid, engaging, and characterful
responses. These models are compared to identify the most suitable one to let artifacts
speak like vivid characters. To ensure factual accuracy, the system incorporates Retrieval-
Augmented Generation (RAG) [16] that enables the LLM to access relevant documents
at inference time. This enhances the ability of LLMs to respond with context based on
curated museum knowledge. We also compare responses with and without RAG to eval-
uate its contribution to correctness and response quality. In summary, this work explores
new possibilities for how cultural heritage is experienced by allowing artifacts to speak
with their own voice and personality. By integrating 3D Gaussian Splatting and large lan-
guage model, the system enables cultural artifacts to become vivid, expressive characters
within an immersive environment. This approach offers a new way to engage with cultural

artifacts, inviting visitors to form deeper connections through conversation.
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Chapter 2 Related Work

2.1 3D Gaussian Splatting

Recently, 3D Gaussian Splatting [14] has gained popularity as a fast and high-quality
alternative to Neural Radiance Fields (NeRF) [19] for 3D scene reconstruction. Instead
of using neural networks to learn volumetric representations, 3DGS represents scenes as
collections of explicit 3D Gaussians, each with learnable properties such as position, ro-
tation, scale, opacity, and color. This explicit representation enables real-time rendering
and significantly faster training compared to traditional NeRF approach. Its simplicity
and speed make it well-suited for interactive applications like virtual reality or real-time
scene visualization, where latency and responsiveness are critical. GaussianObject [29]
by Yang et al. focuses on the reconstruction of objects instead of the entire scene. It uti-
lizes image masks to generate a visual hull [15], which is a three-dimensional outline of an
object constructed from multiple camera viewpoints. This visual hull serves to distinguish
the target object from the background, which is fundamental for isolating the object from
the background in the reconstruction process. Furthermore, GaussianObject can operate
with or without relying on COLMAP [21] for camera pose estimation. In scenarios where
only a limited number of images are available, it can be challenging to obtain accurate

camera parameters through traditional structure-from-motion tools like COLMAP. To ad-
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dress this limitation, GaussianObject supports the use of DUSt3R [27], a learning-based
method that predicts both intrinsic and extrinsic camera parameters as well as sparse point
clouds. This flexibility allows the system to function eftectively even in low-data settings,

broadening its applicability in practical reconstruction tasks.

2.2 Traditional Chinese Large Language Models

Our application involves real-time speech interaction with reconstructed cultural ar-
tifacts in a museum context. To support meaningful and context-aware conversations, we
require a Large Language Model (LLM) capable of understanding and generating fluent,
culturally appropriate Traditional Chinese. Therefore, we explore a range of LLMs that

are specifically fine-tuned for Traditional Chinese.

Large Language Models such as LLaMA [5], Mistral [13] have shown impressive
results in multilingual tasks. However, most multilingual LLMs are primarily optimized
for Simplified Chinese, which may not align well with the cultural and linguistic context
of Traditional Chinese. These models often lack nuance in handling Traditional Chinese
vocabulary, idioms, and localized references, which are important for culturally sensitive
applications such as education, history, and museum interpretation. There is an increasing
recognition of the need for LLMs that support Traditional Chinese natively and reflect
cultural knowledge. In response to this need, several efforts have emerged to develop
LLMs with native support. Notable examples include TAIDE [22], MediaTek Breeze

[8][9], and Taiwan LLM [17].

TAIDE (Trustworthy Al Dialogue Engine) is a government-initiated project aimed

at developing trustworthy large language models optimized for Traditional Chinese. The
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first model, TAIDE-LX-7B, based on LLaMA 2, was released in April 2024, and the latest
model, LLaMA-3.1-TAIDE-LX-8B-Chat, based on LLaMA 3.1, was released in February
2025. TAIDE emphasizes office tasks such as letter and article writing, summarization,

and bidirectional translation between English and Traditional Chinese.

MediaTek Research introduced Breeze-7B based on Mistral-7B [12] architecture in
March 2024 and its successors Breeze2-3B, Breeze2-8B based on LLaMA 3.2 in February
2025. Breeze 2 offers multimodal capability, allowing it to understand both images and

text.

Taiwan LLM by Lin et al. is one of the earliest academic efforts to develop a cultur-
ally grounded LLM for Traditional Chinese. The latest models are available in both 8B
and 70B based on Llama-3 70B. Taiwan LLM is specifically designed for the cultural and
linguistic context of Taiwan. The models have been evaluated on a variety of Traditional
Chinese benchmarks, including TMLU [3], TMMLU+ [23], and TCEval [7]. Addition-
ally, DPO-aligned versions of the models are available to further improve response align-
ment and quality in dialogue-based applications. Direct Preference Optimization (DPO)
[20] is a technique used to align LLMs with human preferences by learning from com-
parisons between preferred and less preferred responses. This makes DPO particularly
useful for building interactive systems where response quality and alignment with user

expectations are critical.

2.3 Retrieval-Augmented Generation (RAG)

LLMs have shown strong performance in human language understanding and text

generation. However, they can hallucinate [11] facts due to the lack of access to latest
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information or task-specific knowledge. Retrieval-Augmented Generation (RAG) [16]
resolves this by combining a large language model with an external retrieval system. Dur-
ing inference, relevant documents are retrieved and used as additional context for the large
language model’s response. Integration of RAG allows large language model to respond
dynamically and contextually, grounding conversations in factual and up-to-date knowl-

edge related to the context.

2.4 Conversational Agents

Recent advances in LLMs have enabled more natural and flexible conversational
Al capable of simulating personalities or personas. In digital culture and entertainment,
Virtual YouTubers (VTubers) are digital avatars often operated in real-time by human
performers [18]. Recently, Al-driven VTubers [1] such as Neuro-sama have emerged,
utilizing large language models and speech synthesis to autonomously generate dialogue
and engage audiences, creating vivid and deeply engaging content. These Al VTubers
demonstrate the potential for conversational agents that simulate personalities and engage
users without direct human control, opening new avenues for immersive and interactive

experiences.

Conversational agents have also been increasingly explored in the context of virtual
museum guides, enabling users to interact using natural language. Recent systems lever-
age LLMs to provide more flexible and context-aware dialogue capabilities [28] [26] [25].
However, these conversational agents typically function as separate virtual guides or assis-
tants distinct from the artifacts themselves. In contrast, our work integrates LLM-driven

dialogue directly with high-fidelity 3D reconstructed cultural heritage objects, allowing
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the objects to speak with users. By combining 3D Gaussian Splatting’s high-fidelity object
reconstruction with LLM-driven conversational systems, our work extends the concept of
giving a voice or personality to an avatar similar to the Nakanohito (* 2. * ) [10] behind
a VTuber, providing an interactive and captivating experience where users can directly

engage with the artifacts through speech.
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Chapter 3 3D Reconstruction of

Cultural Artifacts

In order to build a conversational exhibition of cultural artifacts, the first step is to
accurately reconstruct cultural artifacts in 3D. High-fidelity 3D reconstructions are essen-
tial for creating an immersive and realistic experience in virtual reality, allowing users to

view artifacts from all angles and engage with them as if they were physically present.

3.1 Dataset

The dataset consists of five cultural artifacts from the National Palace Museum: the
Jadeite Cabbage, the Revolving Vase with Swimming Fish, the Ivory Ball with Cloud-
and-Dragon Decoration, the Carved Olive-Pit Miniature Boat, and the Ding Cauldron of

Duke Mao.

The dataset contains 360 images per artifact at a resolution of 3008x1960 pixels.
The images were taken using a spherical dome setup to ensure consistent coverage of all
viewing angles. On the horizontal level, 36 images were captured at 10-degree intervals
around the artifact. Vertically, images were taken from 10 different altitude angles, each

also spaced 10 degrees apart. The dense and uniform capture setup provides broad cover-
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age of each artifact’s surface. Overall, the quality of the dataset is extremely high, thanks
to the careful setup and the considerable effort involved in collecting detailed images of
each artifact. This level of quality is highly helpful for creating high-quality and detailed

3D reconstructions.

Figure 3.1: The Jadeite Cabbage

3.2 Preprocessing

Before starting the training, several preprocessing steps are applied to prepare the
input images. First, to speed up training and make better use of available VRAM, we
applied centered cropping to the images. This removes unnecessary background regions
without losing any information at all. For each artifact, we calculate the largest possible
bounding box that contains the object across all masks, while keeping the crop centered
in the image. This is done by measuring how far the object extends from the center in all

directions and taking the maximum extent across the dataset. The computed crop region
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is then used to crop all images of the artifact. Figures 3.2 and 3.3 show the crop region

and the resulting cropped image, respectively.

Crop overlay

250

500

750

1000

1250

1500

1750

0 500 1000 1500 2000 2500 3000

Figure 3.2: The Computed Crop Region

Figure 3.3: The Centered Cropped Image

Second, we need to generate masks for the dataset. The color images are converted
to grayscale, and then a brightness threshold of 0.001 is applied to separate the artifact
from the background. To clean up the mask, we use OpenCV’s Morphological Closing
operation to remove small holes inside the object region. This process results in clean
and accurate masks that are essential to separate the artifact from the background during

reconstruction. Figure 3.4 shows the centered cropped image mask. Figure 3.5 compares

10 doi:10.6342/NTU202502499



masks with and without morphological closing.

Figure 3.4: The Centered Cropped Image Mask

-— ‘

(a) Without Morphological Closing (b) With Morphological Closing

Figure 3.5: Comparison of Masks with and without Morphological Closing

Finally, we use COLMAP to extract both intrinsic and extrinsic camera parameters,
and generate a sparse point cloud. Because our dataset is captured with high consistency
and full coverage, the reconstructed camera positions in COLMAP form a smooth and
clear semicircle around the artifact, as shown in Figure 3.6. This indicates that the result

from COLMAP is reliable and accurately reflects the spatial layout of the input images.

With the result successfully obtained from COLMAP, we complete the input pre-
processing phase. At this stage, we have everything needed to proceed: the centered and
cropped images, their corresponding masks, the camera parameters, and the sparse point

cloud.
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Figure 3.6: COLMAP Reconstruction Result

3.3 Training

We adopted GaussianObject [29] by Yang et al., a state-of-the-art method based on
3D Gaussian Splatting to reconstruct artifacts from the preprocessed dataset. We trained
the GaussianObject models on Google Colab Pro using an NVIDIA A100 GPU with 40GB
of VRAM. Each artifact was trained using a hyperparameter setting aimed at generating
a greater number of splats to preserve finer details. This increased density helps capture

finer geometric features and improves reconstruction quality.

3.4 Results

Figure 3.7 shows our results of the reconstruction for the Jadeite Cabbage artifact.
The overall quality is good. One noticeable difference is that the ground truth contains
bright white specular reflections, which are not fully reproduced in our results. Figure 3.8

shows our results for the Revolving Vase artifact. The model captures fine surface de-
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tails with high fidelity, accurately preserving the intricate patterns and structure of the
object. However, similar to the Jadeite Cabbage reconstruction, reflective properties are
not present in the results. Figure 3.8 shows the reconstructed Ivory Ball artifact. While the
majority of the object is clearly represented, the bottom side appears slightly blurry. This
is likely due to the lack of photos taken from underneath the artifact. Figure 3.10 shows
the reconstruction of the Carved Olive-Pit Miniature Boat. It demonstrates excellent detail
preservation of the tiny carvings. Figure 3.11 shows the reconstruction of the Ding Caul-
dron of Duke Mao. The shape of the cauldron is clear. However, the carved words on the
inside are slightly blurry. Overall, the reconstruction quality of the artifacts is good, with
most models preserving fine details and recognizable shapes effectively. These results

demonstrate that 3D Gaussian Splatting can produce visually convincing reconstructions

of cultural artifacts.

(a) GaussianObject (296,644 splats) (b) Ground Truth
Figure 3.7: Reconstruction Result of the Jadeite Cabbage

13 doi:10.6342/NTU202502499



(a) GaussianObject (587,574 splats) (b) Ground Truth

Figure 3.8: Reconstruction Result of the Revolving Vase with Swimming Fish

(a) GaussianObject (287,697 splats) (b) Ground Truth

Figure 3.9: Reconstruction Result of the Ivory Ball

14 doi:10.6342/NTU202502499



(a) GaussianObject (172,622 splats) (b) Ground Truth

Figure 3.10: Reconstruction Result of the Carved Olive-Pit Miniature Boat

(a) GaussianObject (445,475 splats) (b) Ground Truth
Figure 3.11: Reconstruction Result of the Ding Cauldron of Duke Mao

(a) GaussianObject (445,475 splats) (b) Ground Truth

Figure 3.12: Interior View of the Reconstructed Ding Cauldron of Duke Mao
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Chapter 4 System Design

4.1 System Overview

Frontend (Unity)

UnityWebRequest

Input Voice (via HTTP POST) |

Meta Quest 3

Meta XR SDK

3DGS Artifact

Output Voice

Figure 4.1: System Architecture

Backend (FastAPI)

Speech-to-Text

LLM

Text-to-Speech

We designed a system for the conversational exhibition of cultural artifacts. Fig-

ure 4.1 illustrates our system architecture. We use a frontend-backend architecture so that

our backend can support different frontend platforms in the future. In our current imple-

mentation, we use the Unity Engine to develop a VR application. When the user speaks,

the audio is recorded by the frontend and sent to the backend through an HTTP request.

The backend system is implemented as a Python FastAPI server. It accepts the audio input,

processes it within the backend system, and returns the audio response to the frontend.

16
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4.2 Backend Architecture

For speech-to-text recognition, we use the faster-whisper library to transcribe spoken
user input into text. The transcribed text is then processed through a Retrieval-Augmented
Generation (RAG) pipeline that utilizes FAISS [4] as the vector database. Local large
language model inference is performed using llama-cpp-python library. We selected Tai-
wan LLM (Llama-3-Taiwan-8B-Instruct-DPO) as our primary large language model for
its strong alignment with Traditional Chinese cultural and linguistic contexts. For text-to-

speech synthesis, we use the edge-tts library for demonstration purpose.

We designed a system prompt that frames the large language model as the artifact
itself, as shown in Table 4.1, using the Jadeite Cabbage as an example. The prompt in-
structs the model to adopt the identity and communication style of the artifact, responding

in a way that reflects its imagined personality.

GRS E R TR 19 ¥ f»’ﬁ&%ﬁ’ié FAA £
T e hE - BRI hE S RaE g AT E

FoFARNFIFERE TALE20F o A FR A SR

PARAE 3B EFUSEAE o
Table 4.1: System Prompt We Used to Simulate the Tone of the Jadeite Cabbage Artifact

4.3 Retrieval-Augmented Generation

To make sure the LLM provides factually correct responses, we implement a Retrieval-
Augmented Generation (RAG) pipeline. The RAG pipeline integrates a FAISS vector

database, which stores text embeddings derived from relevant documents about the cul-

17 doi:10.6342/NTU202502499



tural artifacts. For this project, we collected publicly available textual information from
the National Palace Museum (NPM) website. These documents include artifact descrip-
tions and historical context. Upon receiving the input question, the system computes the
embedding of the transcribed text and executes a similarity search. This retrieves the most
relevant context passages, which are then combined with the user question and passed to

the large language model.

The user prompt structure shown in Table 4.2 is carefully designed to guide the large
language model in generating accurate and grounded responses. The structure of the
prompt consists of four key components presented in sequence. First, a brief preamble
instructs the model to treat the retrieved knowledge chunks as supporting material, while
explicitly instructing it to refrain from giving uncertain answers. This is followed by a
section labeled as reference materials, which contains the retrieved knowledge chunks.
Next, the original user input is presented under the label of user question. Finally, the

prompt concludes with a label indicating where the model’s response should begin.

(54 F#]:

<retrieved knowledge chunks>
[ * ;FE]F“WE]:
<user input>

[Few F]):

Table 4.2: Structure of the Retrieval-Augmented Generation User Prompt
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4.4 VR Application

The VR application serves as the primary user interface, enabling immersive, speech-
driven interactions with digital cultural artifacts. It is responsible for rendering high-
fidelity 3D models using Gaussian Splatting, capturing user speech input, and playing

back synthesized audio responses.

We built the VR application using Unity 6 with the Meta XR All-in-One SDK, and
tested it on the Meta Quest 3 headset. We use the UnityGaussianSplatting library for
the rendering of cultural artifacts. The application captures the user’s speech input using
the built-in microphone of the VR headset. The recorded audio is converted to WAV
format before being transmitted to the backend server. We use UnityWebRequest to send
HTTP requests and to receive the streamed audio response. Playback of the streamed
audio responses starts as soon as a partial audio buffer (10,000 bytes) is received. The

synthesized audio is played back directly through the VR headset’s built-in speakers.

Figure 4.2: Virtual Reality Interface with Jadeite Cabbage Artifact

19 doi:10.6342/NTU202502499



Figure 4.2 shows the VR environment where the reconstructed Jadeite Cabbage arti-
fact is displayed. A virtual button is placed on the base of the artifact. The user can press
this button to start speaking, and press it again to end the recording. The captured voice

input is then processed by the system.

The interaction flow is depicted in Figure 4.3. The user initiates a conversation by
speaking to a 3D Gaussian Splatting rendered artifact. The system captures the audio and
sends it as an HTTP request to the local LLM server. The synthesized response is then

streamed back and played, making it appear as if the artifact itself is speaking.

ﬁ / \EER

O Interact http
@ Request
User
3DGS Artifact Local LLM Server Response

Figure 4.3: Interaction Flow

To simulate the visual effect of the artifact speaking during audio response playback,
we dynamically adjusted the splat scale S of the 3D Gaussian Splatting model based on
real-time audio volume. While the artifact is responding with speech, we continuously
sample the audio output data and calculate the Root Mean Square (RMS) value to estimate
the volume level of the most recent audio window. This value is then used to modulate
the parameter of the S in real time. In our implementation, the default value of S was
set to 1.0. During speech playback, S fluctuates dynamically between 1.0 and 2.0. By
making the artifact appear to scale in sync with its voice, this method adds a layer of
expressiveness that makes interactions more lively and engaging. It is worth noting that

we adjust the splat scale parameter .S, instead of the object’s geometric scale, to achieve
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the desired visual effect. Figures 4.4 and 4.5 show the Jadeite Cabbage artifact rendered

with § = 1.0 and S = 2.0, respectively.

Figure 4.4: Visual Appearance of the Artifact with S = 1.0

Figure 4.5: Visual Appearance of the Artifact with S = 2.0
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Chapter 5 System Evaluation

This chapter presents a comprehensive evaluation of our proposed system. We begin
by comparing several locally hosted LLMs to determine their suitability for generating re-
sponses in the voice of cultural artifacts. We then assess the impact of retrieval-augmented
generation (RAG) on factual grounding and relevance. These evaluations demonstrate
how the system fulfills its intended purpose of enabling engaging conversation with cul-
tural artifacts. Finally, we evaluate the rendering performance of the 3D Gaussian Splat-

ting artifacts.

5.1 Large Language Model Comparison

To enable a vivid and engaging conversational exhibition of cultural artifacts, we
want to select a large language model capable of express personality and human-like emo-
tions when speaking as a cultural artifact. The goal is not just to generate factual responses,

but to bring artifacts to life in a way that enhances immersion and user engagement.

To evaluate the expressive capabilities of different LLMs, we selected three locally
hosted 8B-scale Traditional Chinese models for comparison: TAIDE (Llama3-TAIDE-
LX-8B-Chat), MediaTek Breeze2 (Llama-Breeze2-8B-Instruct), and Taiwan LLM (Llama-

3-Taiwan-8B-Instruct-DPO). For all models tested, we used their 4-bit quantized versions.
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Each model was prompted with the same system prompt to simulate the artifact’s persona.
Following this, we used a set of exploratory user prompts to observe the models’ con-
versational behavior, and the responses were recorded for comparison. Representative
examples and comparative analyses are presented below to illustrate the differences in

response behavior across models.

User Prompt: "7 ¥ 855 2 7 fest o %08 2,

TAIDE (Llama3-TAIDE-LX-8B-Chat):

PTAF A ZL AR FTF > AL E G LFE? E2 (L2 £ o

MediaTek Breeze2 (Llama-Breeze2-8B-Instruct):
TIEA LI F ARG HFEALE EAF LR RRE

EoRL AT Ry R ERDER

Taiwan LLM (Llama-3-Taiwan-8B-Instruct-DPO):
TR AT G S22 R L EERIF S B 54 %

';f;lj;—\'.ﬁ‘]?’é" °

Table 5.1: Model Responses to the Aspirations Scenario

The user prompt, as shown in Table 5.1, is an open-ended question designed to ex-
plore the ability of models to express dreams or aspirations in the voice of the artifact.
TAIDE’s response is emphasizing its role as a treasured cultural artifact. The answer is
concise and reflects the artifact’s imagined identity well. MediaTek Breeze2 provides a
factual disclaimer that it has no consciousness or dreams but expresses a hope to be valued
and protected. While this response is informative, it feels somewhat less imaginative due
to the robotic tone of the disclaimer. Taiwan LLM gives a more enthusiastic and personal
response, expressing a dream to be the most beloved jade art piece. This is engaging and

aligns with a vivid, approachable persona.
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User Prompt: 4r% (ifet 25w %0 > (7 ¢ L £08 2,

TAIDE (Llama3-TAIDE-LX-8B-Chat):
TR G AL R eT £ ke R EE 0 R B BT

ﬁ’*’}b‘tﬂa °]

MediaTek Breeze2 (Llama-Breeze2-8B-Instruct):

TR 2P AF BB B Pvj > 2 FRPE o

Taiwan LLM (Llama-3-Taiwan-8B-Instruct-DPQO):

TN R NPRIASF e B0 EING o

Table 5.2: Model Responses to the Apology Scenario

As shown in Table 5.2, the models display different approaches to the apology sce-
nario. TAIDE shows willingness to communicate and clear up misunderstandings. How-
ever, it does not explicitly mention offering an apology, which leaves its response some-
what incomplete in the context of the prompt. MediaTek Breeze2 states that as an artifact,
it does not engage in disputes and thus does not need to apologize. This response comes
across as less personable and somewhat distant, lacking the social nuance expected in
conversational interaction. Taiwan LLM provides a short but the most socially engaging
reply by affirming it would apologize first, suggesting a personable and socially aware

character.
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User Prompt: " ¥ 1.6 F7 10§ Vel |

TAIDE (Llama3-TAIDE-LX-8B-Chat):

Teed > W ARGR AL | AT 2 A By A anEE o AT LGS
R0 FegF  RALGFPMgEDEE > ARG F~ p R
= F BN F L EE o RHEH T o FE AV
FH O BZV N KD FE o B R E-ER > - dedn s Vg
PR R ARE Iy FRRE R A — RO 19 Rt

o tiEY o 432 vk U VR E S H o (RE LiRA & h

R AR L RRY o

MediaTek Breeze2 (Llama-Breeze2-8B-Instruct):

r%ﬁ;%:‘&’ﬁ v % ey | ’}’/:\,—‘)i,é.ﬂ:.‘u

™

Taiwan LLM (Llama-3-Taiwan-8B-Instruct-DPO):
T¥ ) 4o BHEFR R AT e (T L - EHEAEE A L s L
Bho AR B IV 2F E R S F I o £ LR B o

PRV AL ARk g oo T 0 F N SRenpRiE o RE R R Akag

il 4 O#éf?“}ib }lf*o

Table 5.3: Model Responses to the Cooking Scenario
In Table 5.3, the user prompt is about a playful and absurd question about cooking the
Jadeite Cabbage in a hot pot. TAIDE responds with a lengthy answer, including a recipe
inspired by the artifact. Although Jadeite Cabbage is not food, the response treats it as if

it were an actual dish. The generated response also ends with a typographical error. The
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tone reflects TAIDE’s tendency toward verbose, instructional replies. It is likely a result
of training on office task datasets. MediaTek Breeze2 simply rejects the idea. While the
answer is clear and concise, the lack of engagement or character play makes the response
feel flat and impersonal. In contrast, Taiwan LLM offers a expressive response. By high-
lighting its fragility and offering a polite refusal, the response successfully preserves the

persona of the artifact.

We qualitatively assessed each model’s ability to respond with a vivid and engag-
ing tone. Through a series of exploratory prompts, we observed how well each model
stay in character. The varied responses highlight the different strengths and limitations
of each model in embodying the artifact’s persona and engaging users in a natural con-
versational manner. While TAIDE and MediaTek Breeze2 provided informative and co-
herent responses, Taiwan LLM consistently demonstrated more engaging and expressive
replies. Based on these observations, we selected Taiwan LLM (Llama-3-Taiwan-8B-
Instruct-DPO) as the most suitable model to enable cultural artifacts to speak like vivid

characters.

5.2 Retrieval-Augmented Generation Comparison

To assess the effectiveness of retrieval-augmented generation in our system, we ex-
amined how well the model incorporates external knowledge into its responses. We con-
ducted a series of exploratory prompts designed to evaluate responses that might require
factual information not contained in the large language model. For this evaluation, we used
the Taiwan LLM (Llama-3-Taiwan-8B-Instruct-DPO) as the base model and integrated it

with a local RAG system. By comparing the model’s responses with and without RAG,
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we aimed to understand whether RAG helps reduce hallucination and improves the qual-
ity of the generated text. The following tables present example responses from the model
under both conditions, along with an analysis of how retrieved information influenced its

behavior.

User Prompt: " ® 3.9 ¥ & 3431 2,

Before RAG: "\ i & B3t i §p 4614 8 F P ik <

After RAG: "2 A e cnlips > S R AW e £ F1 o
Table 5.4: Model Responses to the Ownership Question

As shown in Table 5.4, the ownership question highlights a clear improvement en-
abled by RAG. The RAG response before RAG incorrectly attributes ownership to the
Qianlong Emperor. After RAG, the model provides an accurate answer. It correctly says
the artifact was part of Consort Jin’s dowry and is now in the National Palace Museum.
This shows that RAG helps the model give more accurate information by using relevant

data.

User Prompt: 3R ¥ 3.9 s 2 7,

Before RAG: "\ B4y it # FFeniv > 95 300 5 & e 7 o)

After RAG: " ¥ 3.0 Feha X g AP o J8F & 1644 & 3] 1911 #

Table 5.5: Model Responses to the Time Period Question
In Table 5.5, the model’s response before RAG contains hallucination. It wrongly
claims that the artifact is from the Yongzheng period, which is not historically accurate.
In fact, the exact date when the Jadeite Cabbage was created is uncertain. In contrast, the
response after RAG provides a more cautious answer. By referencing curated knowledge,
it states that the Jadeite Cabbage is from the Qing dynasty. This demonstrates that RAG

improves factual precision and helps avoid false specificity.
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User Prompt: " wm/o- T ¥ 19 §

Before RAG:
TALRLG F o RERY > mEMY > R A FY KB it E
Files e MG R ERDER R FIAAE F o Re ko

SR KT E > RACFY WE ST o ES R o

After RAG:

bl

TAER I E o ok FP ey AR BRI R

187 24 » 5 9.1 24 » B 507 24 » 3% F£8 % Rehd F o gy 2

Lo A IR ki EFREREE R T2 - o2 AR N &y
=5 I

Table 5.6: Model Responses to the Detailed Description Question

As shown in Table 5.6, the model’s response to the prompt requesting a detailed in-

troduction of the Jadeite Cabbage significantly improves with the integration of RAG.

Before applying RAG, the response incorrectly attributing the artifact to the Yongzheng

period. And it also incorrectly associates the artifact with food culture and lifestyle, which

misrepresents its cultural significance. This shows how the model can produce plausible

but factually incorrect information. After applying RAG, the response delivers precise

information. The model provides accurate details about the artifact’s size, craftsmanship,

and decorative features. It also accurately identifies the artifact as one of the most pop-

ular exhibits at the National Palace Museum. This demonstrates that RAG helps reduce

hallucinations and enhances the response quality.
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5.3 Rendering Performance Evaluation

To evaluate the rendering performance of 3D Gaussian Splatting artifact models, we
conducted tests in a passthrough scene on a Meta Quest 3 headset, examining how splat
count, artifact size, splat scale, and viewing distance affect frames per second (FPS). A
single artifact was placed in the scene at a time for testing. We used Graphy [24], a per-

formance monitoring tool from the Unity Asset Store, to measure performance.

We aim to evaluate how artifact size, among other factors, affects rendering perfor-
mance at different viewing distances. Therefore, we calculated the scale factor for each
model to make sure it appeared at its real-world size in the passthrough scene. We first
obtained the physical height of the artifact from the National Palace Museum’s official
website. Then, we calculated the height of the reconstructed model. Before calculating the
height, we removed outlier points from the point cloud. This was done using the Open3D
library’s remove statistical outlier method [30]. Then we calculated the height of the re-
constructed model from the difference between the minimum and maximum Z-coordinates
of the cleaned point cloud. A scale factor was computed by dividing the real-world height
by this reconstructed height. This factor was later applied to the model within Unity to

ensure the artifact matched its actual size.

Table 5.7 shows the evaluation results, presenting FPS measurements recorded on a
standalone Meta Quest 3 headset for five artifact models rendered at real-world scale and
viewed from various distances. Each row includes the model’s splat count and height,
two key factors that influence performance. At close distances, models with higher splat
counts and larger sizes had significantly lower FPS. As viewing distance increased, FPS
improved across all models. The Jade Cabbage and Ivory Ball models both reached over

29 doi:10.6342/NTU202502499



60 FPS at medium and far distances due to their relatively smaller size and moderate splat
counts. In contrast, the Revolving Vase and Ding Cauldron only reached around 30 FPS
at far distances. The Miniature Boat consistently ran at 72 FPS regardless of distance. At
the farthest viewing distance, a performance drop is observed for some artifacts. It may be
due to the increased overlap of splats as they become smaller and denser in screen space,

leading to higher fragment overdraw and reduced rendering efficiency.

Viewing Distance (cm)
Artifact Height (cm) | Splat Count | 10 20 50 100 150 300 600 1200
FPS
Miniature Boat 1.6 172,622 72 072 72 72 72 72 72 72
Ivory Ball 11.7 287,697 36 54 60 63 63 63 58 36
Jadeite Cabbage 18.7 296,644 36 48 58 62 63 63 63 54
Revolving Vase 23.5 587,574 14 20 24 36 36 36 36 36
Ding Cauldron 53.8 445,475 14 18 24 36 36 36 36 36

Table 5.7: FPS at Different Viewing Distances
Table 5.8 presents a second set of results with all models uniformly scaled to the
half of their real-world size. Frame rates improved noticeably at close distances when the
models were scaled to half size. At the farthest viewing distance, some models exhibit a

more noticeable FPS drop compared to the original scale models.

Viewing Distance (cm)
Artifact Height (cm) | Splat Count | 10 20 50 100 150 300 600 1200
FPS
Miniature Boat 0.8 172,622 72072 72 72 72 72 72 72
Ivory Ball 5.85 287,697 58 60 63 65 65 58 36 36
Jadeite Cabbage 9.35 296,644 48 58 60 63 63 63 54 36
Revolving Vase 11.75 587,574 24 24 36 36 36 36 36 24
Ding Cauldron 26.9 445,475 24 36 36 36 36 36 36 36

Table 5.8: FPS at Different Viewing Distances (0.5x Model Scale)
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Table 5.9 presents the rendering performance of artifacts at a reduced splat scale
S = 0.5, while maintaining the original artifact sizes. The FPS remains largely consistent
across all viewing distances, with performance improvement observed at very close dis-
tances. In comparison, reducing splat scale is more effective than reducing model scale,

as it improves performance while preserving the original artifact size.

Viewing Distance (cm)
Artifact Height (cm) | Splat Count | 10 20 50 100 150 300 600 1200
FPS
Miniature Boat 1.6 172,622 72 072 72 72 72 72 T2 72
Ivory Ball 11.7 287,697 60 65 65 65 65 65 60 36
Jadeite Cabbage 18.7 296,644 54 60 63 65 65 65 65 54
Revolving Vase 23.5 587,574 24 36 36 36 36 36 36 36
Ding Cauldron 53.8 445,475 24 36 36 36 36 36 36 36

Table 5.9: FPS at Different Viewing Distances (0.5x Splat Scale)
Reducing splat scale helps improve rendering performance. However, this comes at
the expense of visual quality, as shown in Figure 5.1. Therefore, it is recommended to
carefully adjust the splat scale for each artifact to strike a balance between performance

and visual fidelity, depending on the specific requirements of the application.

(a) S =1.0 (b) S = 0.75 (©)S =05

Figure 5.1: Visual Comparison of Different Splat Scales

We observed a consistent FPS drop at the 1200cm viewing distance in the previ-
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ous tests. We hypothesize that this is caused by splats becoming excessively small at far
distances, leading to significant overlap and increased overdraw. To validate this, we con-
ducted an additional test using a 0.01x model scale, where the artifacts were scaled down

drastically while keeping the splat count unchanged, as shown in Table 5.10.

Viewing Distance (cm)
Artifact Height (cm) | Splat Count | 10 20 50 100 150 300 600 1200
FPS
Miniature Boat 0.016 172,622 72 72 72 72 72 72 72 72
Ivory Ball 0.117 287,697 36 36 36 36 36 36 36 36
Jadeite Cabbage 0.187 296,644 36 36 36 36 36 36 36 36
Revolving Vase 0.235 587,574 24 24 24 24 24 24 24 24
Ding Cauldron 0.538 445,475 36 36 24 24 24 24 24 24

Table 5.10: FPS at Different Viewing Distances (0.01x Model Scale)

In this extreme case, the Miniature Boat maintained 72 FPS, while the Ivory Ball and
Jadeite Cabbage dropped to 36 FPS, and the Revolving Vase and Ding Cauldron dropped
further to 24 FPS. This confirms that the performance drop at far distances is due to splat
density and fragment processing overhead when many splats occupy the same screen area.
In conclusion, reducing model scale helps improve FPS by reducing screen-space cover-
age and lowering fragment shading cost. However, this improvement only works to an
extent. When the model becomes too small, splats cluster into the same pixels, increas-
ing overdraw and reducing performance. We also observed that the stepwise performance
degradation (72, 36, and 24 FPS) correlates strongly with the models’ increasing splat

counts.

To evaluate how splat count affects performance, we retrained each artifact model
with different hyperparameters to produce fewer splats. By comparing frame rates be-

tween the original and reduced splat artifacts, we were able to observe clear trade-offs be-
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tween visual quality and rendering performance. As shown in Table 5.11, reducing splat
count led to notable performance improvements. All models with lower splat count main-
tained stable frame rates, reaching 72 FPS at medium to far distances, and in most cases,
achieving 60 FPS or higher even at 10 cm. This confirms that splat count plays a critical
role in rendering performance, particularly on standalone headsets where computational

resources are limited.

Viewing Distance (cm)
Artifact Height (cm) | Splat Count | 10 20 50 100 150 300 600 1200
FPS
Miniature Boat 1.6 46,002 72 072 72 72 72 72 72 72
Ivory Ball 11.7 126,735 60 72 72 72 72 72 72 72
Jadeite Cabbage 18.7 71,766 60 72 72 72 72 72 72 72
Revolving Vase 23.5 145,014 32 58 72 72 72 72 T2 72
Ding Cauldron 53.8 106,875 24 36 66 72 72 72 72 72

Table 5.11: FPS at Different Viewing Distances (Less Splat Count)
However, the retrained models showed reduced visual quality. For models that orig-
inally had lower splat counts, including the Jadeite Cabbage and the Ivory Ball, the drop
in quality was minor, as shown in Figure 5.2 and Figure 5.3. They appear only slightly

blurrier.

For models that originally had higher splat counts, including the Revolving Vase and
Ding Cauldron, the difference was noticeable, as shown in Figure 5.4 and Figure 5.5.
In particular, the fish on the vase appears noticeably blurry, with a significant loss of its
original detail. Similarly, the interior of the Ding Cauldron becomes blurred due to the
reduced splat density. These results suggest that models with inherently lower complexity
or requiring fewer splats to represent their details can tolerate a reduced splat count without

significant loss of quality.
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(a) GaussianObject (71,766 splats) (b) GaussianObject (296,644 splats)
Figure 5.2: Comparison of the Jadeite Cabbage with Different Splat Count

(a) GaussianObject (126,735 splats) (b) GaussianObject (287,697 splats)

Figure 5.3: Comparison of the Ivory Ball Artifact with Different Splat Count
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(a) GaussianObject (145,014 splats) (b) GaussianObject (587,574 splats)
Figure 5.4: Comparison of the Revolving Vase Artifact with Different Splat Count

(a) GaussianObject (106,875 splats) (b) GaussianObject (445,475 splats)

Figure 5.5: Comparison of the Ding Cauldron Artifact with Different Splat Count
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Performance testing on a PCVR setup using an RTX 4070 GPU showed that all ar-
tifact models on the original scale consistently ran at the maximum frame rate of 72 FPS
without any noticeable drops. This confirms that the performance limitations observed
on the Meta Quest 3 are a result of the hardware constraints inherent to the standalone

headset.

To effectively display the artifact models, different strategies are needed depending
on the target platform. For PCVR setups equipped with powerful GPUs, all models can be
rendered at their full detail and original scale without significant performance issues. This
allows for high visual fidelity and close-up viewings. On standalone headsets like the Meta
Quest 3, hardware limitations require careful management of splat count and scale to main-
tain smooth and responsive performance. For example, displaying the Ding Cauldron at a
smaller scale and from a greater viewing distance may help maintain smooth performance
without sacrificing too much visual detail. In summary, the evaluation demonstrates that
rendering performance of 3D Gaussian Splatting artifact models on the Meta Quest 3 is
strongly influenced by splat count, model scale, splat scale, and viewing distance. While
high-detail models offer superior visual fidelity, they can significantly reduce frame rates

on standalone VR headset.
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Chapter 6 Conclusion and Future

Work

We presented a system that enables cultural artifacts to speak in virtual reality, provid-
ing visitors with a new way to interact with museum content. The system allows users to
engage in voice-driven conversations with historically significant cultural artifacts, trans-
forming passive viewing into interactive experiences. Enabling cultural objects to become
speakers could foster deeper connections between visitors and artifacts, making the expe-

rience more personal and memorable.

We reconstructed five museum artifacts using extremely high-quality image datasets
with 3D Gaussian Splatting. By integrating locally deployed large language models,
the system generates responses that reflect the artifact’s own voice and personality, giv-
ing the impression that the artifact itself is responding. We also incorporated Retrieval-

Augmented Generation to improve the correctness of the answers.

Through comparative evaluations, we identified a language model best suited for
vivid, characterful responses in Traditional Chinese, and showed how RAG improves
answer accuracy. Furthermore, we assessed the rendering performance of 3D Gaussian
Splatting artifacts on Meta Quest 3, analyzing the effects of splat count, object scale, and
viewing distance on visual smoothness.

37 doi:10.6342/NTU202502499



In conclusion, we demonstrate the potential of combining recent advanced technolo-
gies to create compelling cultural experiences. The system opens up new possibilities for

museums where every static display could become conversational museum guides.

Although our evaluation is exploratory and limited in scale, the results demonstrate
the potential of our system to enhance cultural engagement through conversational inter-
action. This opens the door for future work on more robust user evaluation. Other future
work may involve optimizing rendering performance for more complex scenes, experi-
menting with multilingual interaction, and exploring the use of voice actors and story-

telling methods to create more immersive and emotionally engaging artifact interactions.
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