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Abstract

Streaming media become more and more popular and important in recent years.
Among streaming platforms, Twitch is dominating the game streaming market. In 2021,
Twitch had 2,778,000 average concurrent viewers and 105,000 average concurrent stream-

€rS.

Similar to other streaming media, Twitch uses Content Delivery Network to provide
the service to massive viewers from all around the world. Content Delivery Network

(CDN), which is the key part of the streaming system, is crucial for the quality of service.

In the early work, a one-time experiment has been done to survey Twitch’s CDN.
However, due to the rapid growth of Twitch and the high cost of a detailed scan on CDN,

Twitch’s CDN remains largely unknown to the public.

In our previous work, we used the CJS model, which assumes every individual shares
the same time-dependent survival rate and capture probability, to estimate the CDN size.

However, different servers may have different survival rates and capture probability. If
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we assume every server has its own survival rate and capture probability, the computation

overhead of the CJS model may be too high since there are many parameters needed to

estimate. Besides, maximum likelihood estimation would have a large bias if the sample

size is too small [ 13].

In this research, I use the transaction count in hour periods to do clustering on the data

from 5 countries and use the CMR model with heterogeneity with these clustering results.

Next, [ use S_Dbw score [7] to evaluate the clustering results. However, I find a better

S Dbw score does not lead to have a lower error rate in the MLE-CJS model. Instead, if

Avg/Std in the number of sample servers larger than 0.3 of a cluster, it will tend to have a

larger the estimation error rate. As a result, the clustering results with number of clusters

less than 5 tend to have a lower estimation error rate since these clustering results contain

less clusters with Avg/Std larger than 0.3.

Keywords: Twitch, Content Delivery Network, Capture-Recapture Models, Cluster-

ing, Cormack-Jolly-Seber Models
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Chapter 1 Introduction

Videos make up over 80% of global Internet traffic today. There are three types of
online video services - stored video, conversational video, and live video. In the past,
stored videos such as YouTube and Netflix accounts for the major network traffic. How-
ever, due to the Covid-19 and the technical progress, the importance of live streaming

services has rapidly increased in recent years.

My research target is one of the most popular live-streaming platforms, Twitch. Twitch
is a platform that hosts game streams and eSport events, and it is the one dominating the
live video traffic now. In 2021, the platform had 2,778,000 average concurrent viewers
and 105,000 average concurrent streamers [ 9]. Due to the massive numbers of viewers
and streamers, Twitch accounts for more than 70% of the game streaming market with

51460 billion minutes total watched in 2021.

Twitch operates on a content distribution network (CDN) to service viewers all around
the world. The mechanism of streaming on Twitch can be divided into the streamer part
and the viewer part. In the streamer part, one could upload the video to the Internet, and
then the copies of content distributed to servers of the CDN. The viewers can draw the
videos by sending requests to one of the CDN servers. One of the advantages to deploy

CDN is reducing latency for viewers. It makes CDN a key to the quality of service in live

1 doi:10.6342/NTU202400040



streams.

To better understand how Twitch maintains its CDN with the rapid growth of demand,
continuous monitoring of the CDN is crucial. The early work [6] on the discovery of
Twitch’ s CDN showed that there were 876 servers in total from 12 countries in 2016.
However, this work is an one-time experiment. The average number of concurrent viewers
on Twitch has grown from 611 thousand in 2016 to 2.78 million in 2021. The rapid growth

in scale makes it difficult to track the latest accurate information on Twitch’s CDN.

It is a challenge to collect data from CDN continuously. A detailed scan to CDN is
costly, and high probing overhead may disturb the service itself. On the contrary, if the
probing overhead is controlled too low, one may be unable to collect enough data for a
convincing result. In our vision, we think CDN detection can be divided into two-phase.
Phase-1 is to sample and estimate the CDN size with lightweight probing traffic. If the

CDN size changes significantly, one could conduct a detailed scan in phase-2.

1.1 Motivation

In our early work [2 1], we focus on phase-1. We aim to find a long-term and lightweight
method to monitor the CDN population. Therefore, one could deploy a detailed scan on
the CDN after detecting CDN population change significantly. We borrowed the method
in biology, Capture-Mark-Recapture (CMR) model [?], to estimate the population of CDN
servers on Twitch. There are two kinds of CMR models, the Lincoln-Petersen (LP) model [

] and the Cormack-Jolly-Seber (CJS) model [4, &, 18]. The LP model is the simplest
CMR model that assumes the population is closed, which means the population won’t

change over time. The CJS model is more general than the LP model in that it allows a

9 doi:10.6342/NTU202400040



dynamic population. In our previous work, we have proven that the CJS model can have

a better estimation accuracy with 50% less probing traffic than the LP model.

However, the CJS model assumes that every individual shares the same time-dependent
capture probability and survival rate. This assumption may be too strong that different
CDN servers could have different capture probabilities and survival rates. On the contrary,
for the most general model, which assumes each server has its own time-dependent capture
probability and survival rate, the computation time may be too high. Besides, maximum
likelihood estimation would have a large bias if the sample size is too small [13]. That is
the reason why I try to do the clustering on the servers to allow individual heterogeneity

and avoid high computation overhead in the CJS model.

1.2 Research Goal and Challenges

Based on the theory of Open Capture-Recapture Models with Heterogeneity [ 1 6], my
research goal is to improve the estimation error rate by extending the CJS model to a more
general form and avoiding high computation overhead by using a clustering algorithm to
divide servers into groups. Therefore, we may improve the estimation accuracy of long-
term and cost-effective monitoring of Twitch’s CDN and avoid high computation overhead
in the estimation model in the meantime. Because the CJS model needs to estimate two
parameters and capture the probability and survival rate in every sample, the data should

be divided into several clusters with different values in these two parameters.

The server with a higher capture probability and survival rate tends to have a higher
count in “transactionList”. Thus, I use counts in “transactionList” to be the attributes.

Our CJS model samples at specific hours every day. For example, the model may sample

3 doi:10.6342/NTU202400040



from 12 pm to 1 pm every day. Therefore, transaction counts at different times of the day
would lead to different estimation results. According to the above two reasons, I use the

transaction counts in hour periods as the attributes to do clustering.

However, I encounter two challenges, discontinuous data, and unstable servers. The
former challenge, discontinuous data, is a problem in the dataset. Take the United States
data as an example, the dataset contains the data from April 13 to May 17. On April 28
and May 6, however, the crawler did not keep collecting data every hour. Because the
crawler did not work for 24 hours on some days, it may cause severe estimation bias when
the CJS model samples in the missing hours. The second challenge, unstable servers, is
the servers with very low transaction counts. It would lead to lower estimation accuracy

in the CJS model because these servers did not show up steadily.

The structure of the paper is as follows: Chapter 2 reviews the background research,
including the theories of the Capture-Mark-Recapture (CMR) model, the clustering algo-
rithm, and the clustering evaluation method. Chapter 3 introduces how Twitch’s dataset
was collected and what shows in this dataset. Chapter 4 describes the clustering method
and the analysis of the clustering result. Chapter 5 shows the estimation error rate of the
CJS model with the US data. Chapter 6 compares the results in the US-0 and the US-1,
and shows the CJS results in data from other regions. Chapter 7 shows the computation
time in the CJS model. Chapter 8 discusses another clustering method, online clustering.

Chapter 9 is the conclusion of my thesis.

4 doi:10.6342/NTU202400040



Chapter 2 Related Works

2.1 Capture-Recapture-Mark Model

Our goal is to monitor the server population continuously with as little probing traf-
fic as possible. We find the problem very similar to that of surveying the animal popu-
lations in the wild. In fact, frequent and exhaustive probes are costly and disturbing to
the ecosystem we aim to preserve, not to mention that one will never be sure of the true
population. Drawing from the observation, we explore the use of Capture, Mark, and Re-
capture (CMR) [9] for server population estimation. Elaborated below are the two models

we have experimented with in the study.

2.1.1 Lincoln-Petersen Model

Lincoln-Petersen (LP) [10, 15] is the simplest model of the CMR methods. To begin
with, one would capture a few animals, mark them, and release them back into the wild.
The proportion of the marked animals at this point will be the number of animals captured
(C) over the entire population (N). To close the deal, one would capture again. The pro-
portion of the marked animals should equal the number of marked animals (M) over the

number of animals captured in the 2nd round (R). Knowing C, M,  and R, one derives
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the animal population N as Eq. (2.1).

N=—" 2.1

The LP method works for a close population and assumes: (1) the animal popula-
tion in between 2 captures does not change and (2) the probability of the animals being
captured is independent and identical (i.i.d) over time. These can be too strong for CDN
discovery, where the server population is likely changing between crawling events and
the chance of discovering a server is not i.1.d, knowing the server allocation is biased to its
proximity to the client. Next, we introduce an open population CMR method that relaxes

the assumptions.

2.1.2 Cormack-Jolly-Seber Model

Cormack-Jolly-Seber (CJS) [4, &, 18] is designed to estimate an open population. In
that, an animal might stay alive with a varying survival rate over time, i.e., the population
can be dynamic. An animal might be captured with a varying probability over time as well,
i.e., the chance of an animal being captured does not need to be uniform, or identical. The
way it works is to capture and release the animals continuously. With the capturing history,
it co-estimates the population, survival rate, and capturing probability at every capture, by
maximum likelihood estimation (MLE) [2, 5, 12, 17]. The population at capture t (/V;)
is calculated as Eq. (2.2), where M; is the number of marked animals and P M, is the

proportion of marked animals.
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- PM,

N, (2.2)

In the interest of space, we present the most intuitive derivation [4] of the key term
M, and divert the readers to [1&] for details. Consider the probability of marked animals
being caught again in the future are identical for both marked animals released after the ¢
th capture (every animal released is marked) and marked animals not captured in the ¢ th

capture. We can derive Eq. (2.3).

R, Zy
= 23
CN, M, —CM,; @3)

C' Ny is the number of animals captured in round t, and C'M; is the number of marked
animals captured in round t. R; is the number of animals, captured in round t, and being
recaptured in the future. Z; is the number of marked animals not captured in round t, but
recaptured in the future. By manipulating the terms in Eq. (2.3), we come to M; and P M,

as Eq. (2.4) and Eq. (2.5).

M, = g+ CM, (2.4)
t
CM
PM, = - Nt (2.5)
t

Note the two terms, R; and Z;. They account for the chance of the animals being
recaptured in the future, which depends on whether they will survive in a future time and

the chance of them being recaptured at the time. The two terms are essential compounds
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of survival rates and capturing probabilities into the future. That is why, in CJS, the pop-
ulation estimations in the past are often adjusted as they are regressed to fit the new data.
As the new data are added, the values of R; and Z; are affected. In the meantime, the
population estimations in the past are adjusted. CJS is unique in that it takes into account

data in the past and the future.

Eq. (2.4) and Eq. (2.5) produce a biased estimation of the population. The tendency
is to overestimate and the bias can be large for small samples (e.g., animals that are hard
to capture or close to extinction), and the following extension Eq. (2.6) and Eq. (2.7) is

often applied to mitigate the bias.

(CNt —|— 1) k Zt

M, = M. 2.6
K R, + 1 +OM, (2.6)
CM,+1
PM, = "~ 2.
' ON, 31 (2.7)

2.2 CMR model with Heterogeneity

In the CJS model, it is assumed that survival rate and capturing probability are homo-
geneous among each individual. However, the assumptions may be too strong for CDN

servers because each server may have a different survival rate and capturing probability.

In the CMR model with heterogeneity [ 1 6], it provides a flexible framework of likelihood-
based models that allow individuals from different classes would have different survival
rates and capture probability. Thus, we try to use the CMR model with heterogeneity to

improve the estimation accuracy.
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To calculate the overall likelihood, we first consider the individual likelihood in the
homogeneous case. For the animal ¢ with known capture history C'H;, first capture time
fi, last capture time [;, and unknown departure time d;, we can derive the probability for

the observed capture history on the condition of f;, d; and the probability of departure time

given f;.

Prob(CH,|{fi, d;}) = H P (1 —py)t "o (2.8)

Jj=fi+1

The probability of this departure time d;, given f;, is Eq. 2.9

d;—1
(T @ = da) (2.9)
Jj=fi

Thus, based on the above two equations, we can calculate the probability of capture

history C'H; by summing up all possible departure times.

Prob(CH;|f;) :Z Hgb] (1 — pg) * H P ( )i} (2.10)

d=l; j=f; j=fi+1
To calculate the likelihood for animal 7 in heterogeneity case, we assume there are C
classes of animals. Each class has its own time-dependent capture probability and survival
rate. Each animal has a probability 7, of coming from class ¢ (sum(nc) = 1), which has
the capture probability p;. and the survival rate ¢;c at j th sample. Sum up the values of
Prob(Ch;|f;) = Prob(class = ¢) for ¢ = 1,2, ---C, we can derive the likelihood function

for animal ¢ in heterogeneity case.
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K d—1
Li=> m> {(]] ¢5)(1 = uc) H pi (1= pje) ™)} (2.11)
Jj=fi

=1 d=l; j=fi+1

For n observed animals, we can derive the overall likelihood function in the following

equation.

noC¢ K do (2.12)
= H Z Z{WC<H ¢]c ¢dc H p]” 1 - ij 1 x”)}
i=1 c=1 d=l; j=fi j=fi+1

The above equation is the full likelihood function of the CMR model with C classes

of animals.

2.3 Clustering Algorithm

2.3.1 K-means

K-means is one of the simplest clustering algorithms [14]. The target of k-means is
dividing n points into k clusters in which each point belongs to the cluster with the nearest
cluster center. Firstly, we have to choose the number of clusters. Let’s assume we choose
k as the number of clusters. The algorithm randomly chooses k different points as cluster
centers in the beginning. After choosing the initial cluster centers, k-means will assign
every data point to the nearest cluster. Based on all the points in each cluster, calculate the

mean of each cluster and assign the mean as the cluster center of each cluster. Next, we
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repeat assigning each point to the nearest cluster and recalculate each cluster center until

the cluster center doesn’t change between iterations.

K-means has some pros and cons. The main advantage is fast, which means k-means
is an efficient algorithm. On the contrary, k-means has two main disadvantages. Firstly,
the number of clusters has to be decided by the user. If the number of clusters to too large or
too small number, the clustering result will be very bad. Secondly, k-means cannot always
find the best cluster result. The different initial cluster centers may generate different

results, which means k-means may not be able to produce consistent results.

2.3.2 Mini-Batch K-Means

The Mini-batch K-means is a variant of the k-means algorithm which reduces the
time required for the k-means algorithm to find convergence. This algorithm uses small,
random, and fixed-size samples to generate batches and store them in memory. In each
iteration, a new random sample of the dataset is used to update the clusters - each data in
the batch would be assigned to the nearest cluster, and then update locations of the centers

based on the new result. The iteration will continue until convergence.

In the API of Mini-Batch K-Means, the default of the initial cluster centers i1s ’K-
Means++’ [1]. ’K-Means++’ is a method to speed up the convergence by choosing the
initial cluster centers with the distance between centers as large as possible. ’K-Means+
+’ starts by choosing a point from data as the first initial cluster center. In the next step,
calculate the distance between each point in data to the first initial cluster center. The
larger the distance between a point to the first initial cluster center, the higher the chance

of a point being chosen as the next initial cluster center. Repeat these steps until k cluster
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centers have been chosen.

2.3.3 Mean Shift

Mean-shift clustering is an unsupervised clustering algorithm [3]. It is a centroid-
based algorithm, which shifts each data point to the average of data points in its neighbor-
hood. Mean shift starts from initializing a sliding window for each point in the data. Next,
each sliding window is shifted toward the mean of the points in the sliding window. The

shift will continue until convergence, which means it has a maximum density of points.

The Mean-shift algorithm automatically decides the number of clusters. On the con-
trary, there is a parameter, ’bandwidth’, which determines the size of the sliding window.
In the API of Mean-shift [ | ], the default of ’bandwidth’ is provided by ’estimate bandwidth’,

which estimates the bandwidth for the data.

2.4 Clustering Evaluation - Sdb_w

Sdb_w validation [7] has a better performance than other clustering algorithms in
many kinds of situations [11]. The basic idea of Sdb_w is to consider both inter-cluster
density and intra-cluster variance. In the following paragraphs, I will introduce two terms,

inter-cluster density, and intra-cluster variance, respectively.

The inter-cluster density is expressed as Dens_bw, which is used to evaluate the den-
sity of the clusters and density among clusters, shown as Eq. 2.13. A good clustering result

will have a low density among clusters in comparison with the density of the clusters.
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1 density(u;;)
5 1 _ J 2.13
ens_bw(c) cle—1 Z[ Z ~max{density(v;), density(v; | ( )
=1 j=1,i#j ’

The intra-cluster variance will be evaluated by the average scattering for clusters. We

use Scat to express intra-cluster variance as Eq. 2.14.

Scat(e) = = 3 (@) /o(3)] (2.14)

By the definition of the above two terms, the clustering validation S Dbw is defined

as Eq. 2.15:

S Dbw(c) = Scat(c) + Dens_bw(c) (2.15)

The lower value of S Dbw represents the better clustering result.
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Chapter 3 Pilot Experiment

In this section, I will introduce Twitch’s CDN discovery done by our lab member,

Caleb Wang, and the data mining in this dataset which is done by me.

3.1 Data Set

This dataset is collected by Wang in 2020 and 2021 [20]. It contains Twitch’s CDN

servers from all around the world.

3.1.1 Twitch CDN Discovery

Twitch is an interactive live-streaming service for gaming, entertainment, and more.
Take the statistics in February 2022 as an example, the average number of viewers is
2.96M, and the maximum number of viewers is 5.52M [19]. Twitch is one of the most

popular live-streaming service providers around the world.

As shown in Fig. 3.1, for each viewing request, the client starts by connecting to the
load balancer (Usher), which replies with the file containing the addresses of the playlist
server corresponding to different videos. After that, the client sends the request to the

playlist server for a video playlist (.m3u8 file) containing an order of URLSs, each pointing
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Load Balancer
(usher.ttvnw.net)

Playlist Server Video Server
(video-weaver.hkg01 @ (video-edge-7eaa2c.hkg01
.hls.ttvnw.net) master playlist .abs.hls.ttvnw.net)

(.m3u8 file)

B = B

video playlist Client video segment
(.m3u8 file) (.ts file)

Figure 3.1: 3-Way Redirection Video Lookup
to the content server of a video segment (.ts file).

Although the early work on Twitch [6], Twitch’s CDN remains a lot of unknowns
to the public. The CDN network of Twitch is very large. If we try to scan the whole of
Twitch’s CDN continuously, it will cause a high amount of probing traffic. To monitor
Twitch’s CDN without high-volume traffic, we borrowed the method from biology, the

CMR model, to estimate the CDN size with a low amount of probing overhead.

3.1.2 Data Collection

Our lab member, Wang, implemented the crawler by using Twitch’s API and VPN
server to collect the CDN data from different regions. In the beginning, Wang used public
Twitch APIs to get real-time information about channel viewer count. Based on the statis-
tics of viewer count, the algorithm will choose the top K channels that account for 80%
of the total viewers. Next, Wang initiated the VPN connections in Docker containers. A

container is a process that runs on the top of the operating system’s kernel. Compared to
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a virtual machine, a container is low resource-intensive to isolate applications from their
environments and work uniformly across systems in the meantime. In the end, Wang se-
lected VPN servers in 18 different countries that contain about 75% traffic on Twitch. In
each country, Wang deployed VPN servers with a wide geographic span. For example,

there were 7 VPN servers on both the west coast and east coast of the United States.

3.1.3 Data Structure

The data is stored in MongoDB, and the dataset in MongoDB is divided into several
collections that each represent VPN servers in one country. In each data in the collection
of the database, there are nine different attributes as shown below. I will introduce seven of
these attributes. [’ id’, ’vpnServerld’, ’channel’, ’language’, ’serverPool’, ’start’, ’end’,

’transactionList’, addrPool’]

> id’: It is the primary key in MongoDB. It is auto-generated by MongoDB. Each

data has its unique ’_id’ in the database for identification purposes.

vpnServerld’: It represents which VPN server this connection used. In each con-

nection, only one VPN server was used.

’channel’: It means what the streamer was in this connection. The algorithm selected

the top K channels, and the crawler chose one of the K channels to connect.

’language’: The channel languages we selected are English(en), Spanish(es), Ko-
rean(ko), Chinese(zh), and French(fr), which cover nearly 70% of channels on Twitch

according to the statistics in TwitchTracker [19].

’start’: This is the start time of the connection. The time is accurate to seconds. (e.g.
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2020-10-19T20:56:04)

’end’: This is the end time of the connection. Same as the ’start’, the time is accurate

to seconds.

‘transactionList’: This attribute is the record of probing. It contains a list of times and
the corresponding server IPs. The times in the list are neither earlier than ’start’ nor later
than ’end’. The following experiments use values in this attribute to simulate ’capture’
events in the CMR model. (e.g. ’2020-10-19T14:56:08’: °52.223.247.211°, *2020-10-

19T15:02:04°: °45.113.128.160”)

3.2 Data from different regions

The data was collected through VPN servers from 18 countries in 2021. The number

of data in different countries is shown in the below figure Fig. 3.2.

Japan: 67773
South Korea: 42157 + 19351

UK: 183635 o US: 284250
France: 171046 e Canada: 137927
Germany: 124287 e Australia: 64641
Netherlands: 140551 e Brazil: 79405
Italy: 79485 e Turkey: 69502
Spain: 73729 °

®

Denmark: 71444
Sweden: 60249
Poland: 72090
Ukraine: 162506
Russian: 35876

Figure 3.2: Data Size in Each Region

The definition of a’ unit’ in the data size is how many ’_id” in the datasets. The bold

words mean the number of data in these countries is over 100,000. Among these data,
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we can notice that the number of data in the US (the United States) is the largest. I dug
into the data in countries with more data and plotted the relationship between dates and

numbers of observed IPs, as shown in Fig. 3.3, Fig. 3.4, Fig. 3.5, Fig. 3.6, Fig. 3.7.
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Figure 3.3: Number of servers in the US
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Figure 3.4: Number of servers in the UK
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Figure 3.5: Number of servers in France
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Figure 3.6: Number of servers in the Netherlands
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Figure 3.7: Number of servers in Germany
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As the figure shows above, the number of IPs in the United States is relatively stable,
which ranges from about 300 to 500 in 2021. Since the US data is the most abundant, [ use
the data in the United States to demonstrate the data mining and clustering method. The

CJS model results with the UK, France, Netherlands, and Germany data are in Chapter 6.

3.3 Data mining

The total number of data in the US is 284250, and the total number of servers in
this dataset is 619. The data is distributed in two time periods. The earlier one is from
November 26th to December 2nd 2020. The latter one is from April 13th to May 17th
2021. Eventually, I chose the data in the later period for the following two reasons. Firstly,
the data in the earlier period has no data on November 28th, 2020. The missing data on
November 28th may cause the CMR model to have a lower estimation accuracy. Secondly,
the data size between the two periods differs a lot. The number of data in the earlier period
1s 23011 while the number of the latter one is 261238. The size of the later one is over 10
times larger than the earlier one. Based on the above two reasons, I chose the data from

April 13th to May 17th in 2021 to do the research.

3.3.1 Subnet Overlook: 24 Subnet Mask

For the data in the ’transactionList’, I count how many times did each subnet appear.
The result is in Fig. 3.8. It is obvious that the transaction count is highly concentrated in
several specific subnets, such as ’52.223.228°,°52.223.227°,°99.181.96’, and 192.16.65".
All four subnets mentioned above have been recorded in ’transactionList’ more than one

million times, which contains 88.8% of the whole data.
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'562.223.228": 1,775,263, '52.223.227": 1,196,750, '52.223.226" 368,422,
'92.223.224": 11,662, '52.223.225": 11,936, '52.223.229" 4,674,
'92.223.243": 11,925, '562.223.244": 303,296,

'52.223.246": 10,220, '52.223.247". 5, '52.223.248" 1

'99.181.96.": 3,709,849, '99.181.97." 278,321, '99.181.65." 2,
'"192.16.65.": 1,253,922,

Figure 3.8: Transaction Count in Subnets

3.3.2 Hour-Count Distribution

In our CMR model, we would sample the server for a fixed period every day to
estimate the whole population of servers. Thus, it is important to check the data each

hour.

To find the relationship between the counts of ’transactionList’ in each hour, I plot
Fig. 3.9. The x-axis is the hour range from 00 to ”23”. The y-axis is the total times that

the servers are observed in the corresponding hour of every day.

ip: all
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Figure 3.9: Hour-Count Distribution of All Servers in the US

I find that the servers from the same subnet have a similar hour-count relationship.
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Take the *52.223.228’ subnet as an example, the left chart in Fig. 3.10is a server, *°52.223.228.8°,
in ’52.223.228’ subnet, and the right chart in Fig. 3.10 is the total count of all servers in
’52.223.228’ subnet. Both charts have a peak in the hour of 11’ to 13 and remain low
from *18’ to ’07’. The hour-count charts of other servers in the ’°52.223.228” subnet share a

similar shape. As a consequence, it makes sense to divide the servers by 24 subnet masks.

Ip: 52.223.228.8 subnet: 52.223.228
’fﬂ'\l 250000

~
8000 / j\
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/ \
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hour hour

~—
count

Figure 3.10: Hour-Count Distribution - 52.223.228.8 and 52.223.228

3.4 Continuous Data

The CJS model takes the historical data and future data into consideration. This leads
to the estimation number in the first two days and the last two days will have a relatively
large bias since the model does not converge well on these days. Thus, we only choose

the data with working hours equal to 24 for more than 7 continuous days to deploy the

CJS model.

3.4.1 Datain the US

In the US dataset, the number of servers in 2021 is shown as the Fig. 3.11. The
number of servers is quite steady from April 13 to May 6 the number is between 250 to

350. However, there was a significant jump in the number on May 7 the number of servers
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is more than 450. The number stayed at more than 450 until May 16.
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Figure 3.11: Number of IPs in the US

To understand the reason for discontinuity in server number, I checked how many
hours did the crawler collect the US data every day. The Fig. 3.12 shows the working
hours, which represents how many hours are recorded in the “transactionList” every day
in 2021. There are only two periods that the crawler functioned 24 hours for more than 7
continuous days, April 29 to May 5 and May 7 to May 16. I will use the US-0 to represent
the data from April 29 to May 5, the US-1 for the data from May 7 to May 16, and the
US-All for the data from April 13 to May 17. Nevertheless, the crawler only worked for

less than 20 hours on May 6, so did some dates that were not in the US-0 and period-1.
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Figure 3.12: Number of Working Hours in US-All

The Fig. 3.13 shows the data on May 6, the date that the crawler did not work for
24 hours. The blue line is the number of servers every hour, and the orange line is the
counts in “transactionList” every hour. Before the 18-hour clock, the numbers of IPs and
transaction counts are almost zero. In fact, 12 over 24 hours on May 6 did not have any

data collection record.
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Figure 3.13: Number of IPs and Transaction Count on May 6

Because the CJS model samples in a few specific hours every day, the data missing
in some hours may lower the estimation accuracy. For example, if the CJS model samples
from 12 pm to 2 pm, the model would not be able to work normally on May 6 since the
”transactionList” didn’t have any record in these hours. Furthermore, we evaluate the
accuracy of the model by comparing the estimation number to the ’baseline’, which is
the total number of IPs collected in one day. If the crawler works less than 24 hours, the
"baseline’ may not be close to the ground truth. Thus, I try to use the data from the periods,
the US-0 (April 29 to May 5) and the US-1 (May 7 to May 16) to do clustering, which are

the only two periods that meet the CJS model needs in the US data.

Take the US-1 as an example, the state of the data is shown in Table 3.1. The first
value in every row is the number of hours the crawler collects data, which is all equal to 24
in the US-1 (May 7 to May 16). Next, "total count’ means the count in transactionList”
on that date. In the end, mini hour count’ represents the minimum transaction count in
one hour, which means it would be 0 if the working hours are less than 24. The average

daily data size in the US-1 is approximately 10 times the data on May 6 and May 17, which
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means the data is much more robust in the US-1. That is one of the reasons why I chose

data from the US-0 and period-1 to do clustering, which is shown in Chapter 4.3.

dates | working hours transaction counts mini hour count

May-6 12 51894 0

May-7 24 436552 13101
May-8 24 511106 13064
May-9 24 460176 9374
May-10 24 362727 10053
May-11 24 403603 11393
May-12 24 438546 7760
May-13 24 444512 8894
May-14 24 473601 13575
May-15 24 487068 10961
May-16 24 255964 5757
May-17 7 40057 0

Table 3.1: Data from 2021 May 6 to May 17

3.4.2 Datain Other Regions

To see which data meets the criterion that could be deployed on the CJS model, I
dug into the data in the UK, France, Netherlands, and Germany. Fig. 3.14, Fig. 3.15,
Fig. 3.16, and Fig. 3.17 show the transaction count and working hours on each date. In
these figures, the blue lines are the number of working hours, and the orange lines are the

number of transaction counts.
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Figure 3.14: Transaction Count and Working Hours in the UK
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Figure 3.15: Transaction Count and Working Hours in France
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Figure 3.16: Transaction Count and Working Hours in the Netherlands
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Figure 3.17: Transaction Count and Working Hours in Germany
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In the data of these four regions, there are six periods have the working hours equal to
24 for more than 7 continuous days. There are April 29 to May 05 (UK-0) and May 07 to
May 15 (UK-1) in the UK, April 29 to May 05 in France, June 18 to June 27 (Netherlands-
0), and June 30 to July 13 (Netherlands-1) in the Netherlands, and June 04 to June 14 in
Germany. In Chapter 6, I will use the CJS model to estimate the number of servers in

these 6 periods.
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Chapter 4 Clustering Method

Based on the observation in Chapter 3, this chapter proposes the methodology of

clustering and the evaluation of the clustering results.

4.1 Number of Servers Every Hour in US-1

In the beginning, I checked the number of servers every hour in US-1. In the Fig.
4.1, the blue line is the number of IPs in the corresponding hour of all days, and the orange
line is the transaction count in every hour of all days. To be noticed, the number of IPs
indicated in the blue line is the number of distinct IPs, not the *average’ number of IPs in
these hours. The blue line has a negative correlation with the orange line. This may be
caused by the mechanism of the Usher, which would block our crawler if we kept probing
during the peak hours. The peak of the number of IPs is from *00’ to *01°, which is mostly
close to the number of the ’baseline’ servers in one day. That may be the reason why the
CJS model has the best estimation accuracy with sampling at 12 am, which is shown in

the next chapter.

Fig. 4.2 to Fig. 4.7 is the number of IPs and 'new IP’ in every hour from May 7 to
May 17. The orange lines are the numbers of IPs, and the blue lines are the numbers of

the 'new IP’. "New IP’ is the IP that shows in this hour but not in the previous hour. In the
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Figure 4.1: Number of IPs and Transaction Counts in US-1

Fig. 4.2, the peaks of the number of servers are in 00’ to 02’ and °23’, and the bottom is

in ’07’ to ’15’ in the data of May 7. Similar to Fig. 4.1, the data in US-1 has a relatively

low number of IPs, approximately 100, in 07’ to *15” and a relatively high number of IPs

in ’23’ to ’02’.

g
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Figure 4.2: Number of 'new IPs’ and ’IPs’ on may-7

In the Fig. 4.2 to Fig. 4.7, the 'new IP’ in 9 of the 11 days has a peak in *17’ to ’23".

Because many new IPs start to appear in 17’ to ’23’, the peaks of the number of IPs are

in ’23’ to ’02’. In the off-peak time, 07’ to *15°, the numbers of 'new IP’ are almost zero,
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which shows that Twitch’s CDN seldom changes the servers during the off-peak time. Fig.

4.8 shows the number of the distinct new IPs in the corresponding hour of US-1.
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Figure 4.3: Number of 'new IPs’ and ’IPs’ on may-8 and may-9
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Figure 4.4: Number of 'new IPs’ and ’IPs’ on May 10 and May 11
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Figure 4.5: Number of 'new IPs’ and ’IPs’ on May 12 and May 13

35

doi:10.6342/NTU202400040



Numbers of new_ip & ip in 2021-05-14

Numbers of new_ip & ip in 2021-05-15

\

00010203 04050607 08091011121314 151617181920 2122 23
hour

Figure 4.6: Number of 'new IPs’ and ’IPs’ on May 14 and May 15

500 500
= =
s 5
¢ 300 o 300 1
3 2
- =
5 200 s 200
E
: 5
100 \ 100 A
O T T T ™ L L T T L T T T 0
00010203 04050607 08091011121314 15161718 1920 212223
hour
Numbers of new_ip & ip in 2021-05-16
300 300
250 250
- =S
& 3
£ w0 = 200
= [
7] 3
& 150 e 150
U] -]
€ 100 § 100
-] 3
=
50
0

00010203040506070809101112131415161718192021 2223
hour

AN |

Numbers of new_ip & ip in 2021-05-17

RIS AL A N A S S S B e s s S e e e S s e e e
00010203 04050607 06091011121314151617181920212223
hour

Figure 4.7: Number of 'new IPs’ and ’IPs’ on May 16 and May 17

The peak in the Fig. 4.8 is ’17°. Over 70% of new servers in Fig. 4.8 concentrate in

16’ to ’21°. Thus, the sample time in the CJS model should choose after the peak of the

new IP to fit the ’baseline’, which is the total number of servers observed in one day.
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Figure 4.8: Number of 'new IPs’ in US-1

4.2 K-Means Clustering of US-1 - Preliminaries

In the previous chapter, I show that each server in the same 24 subnet mask has a
similar ”hour-count chart”. Therefore, I select the transaction counts in the specific hours
of the day as attributes to do clustering. Taking the Fig. 4.9 as an instance, I divide 24 hours
into three periods with US-All. The blue line is the number of IPs, and the orange line
1s the number of transaction counts. In this case, each server would have three attributes,
the transaction count in hour period 1, the transaction count in hour period 2, and the
transaction count in hour period 3. Next, the servers would use these three attributes to do

clustering.

4.2.1 Clustering Algorithm

K-means is one kind of flat geometry clustering for general purposes. It will separate
data into k groups with equal variance. In Fig. 4.10, the XYZ labels, 00 ~ 07, 08 ~ 15,

and 16 ~ 23 represent the transaction counts in these hour periods. I choose three as the
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Figure 4.9: Number of IPs and Transaction Count in Every Hour - US-All

number of clusters, and then the space between the clusters is wide enough that k-means
can successfully separate the data. Therefore, I choose k-means to do clustering. We can
clearly observe that the orange cluster is the servers that have the largest counts in all
three-hour periods. The green cluster stands for the servers mainly shown in one one-hour

period. The servers in the blue cluster have the least counts in all three-hour periods.
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Figure 4.10: Clustering Result with K-means
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4.2.2 Dimension Reduction

Dimension reduction can avoid the curse of dimension and enable the data to show
in two-dimensional images. I use principal component analysis (PCA), a linear transfor-
mation technique, to reduce data into two-dimensional space. Next, I deploy k-means to
do clustering on the two-dimensional data, and the result is in Fig. 4.11. The overall result
is similar to the clustering result without dimension reduction. In this picture, the inter-
cluster variance is much larger than the intra-cluster variance so we can confirm that the

clustering result is fine.
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Figure 4.11: Clustering Result with PCA

4.2.3 Internal Evaluation

There are two kinds of clustering analysis, internal evaluation, and external evalua-
tion. In external evaluation, the clustering is compared to the ’ground truth”, which does
not exist in our experiment. Thus, I use one of the best internal evaluation methods, the

S dbw index, to evaluate the clustering results.

Firstly, I examine the clustering result without PCA (Fig. 4.10) and with PCA (Fig.
4.11). The S_Dbw scores of the clustering result with PCA (0.3601) are slightly better

than the result without PCA (0.3673). However, the attributes after dimension reduction
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lose their original meaning, which means we could not directly get the properties of the

clusters through the figure.

Next, I evaluate the different clustering results with different numbers of clusters, a
parameter in k-means. As the below images Fig. 4.12, when the number of clusters is 2 or
4, the S Dbw scores show that the results are much worse than the clustering result with
a number of clusters equal to 3. If the number of clusters is set to be larger than 4, the

clustering result will get even worse.
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[ J
20000 H 20000
s .
10000 ’ 10000 ’
ol 4% ol 4%
-10000 -10000
0 50000 100000 150000 200000 0 50000 100000 150000 200000
n_cluster: 2 n_cluster: 4
S Dbw: ©.5267170413404888 S Dbw: 1.0620020470782143

Figure 4.12: Number of Clusters equal 2 or 4

To explore more possible combinations of the features, I try to use counts in different
hour periods to be the attributes. As the Table 4.1, I divide 24 hours into n hour periods
with different ”slide_hour”. ’n_period” represents the number of hour periods in 24 hours,
and “slide_hour” indicates sliding windows for hour periods. For example, ’n_period:3,
slide hour:0” means 3-hour periods are 00’ to ’07°, 08’ to ’15°, and ’16’ to ’23’, and ”
n_period:3, slide hour:3” means 3 hour periods are 03’ to *10°, ’11° to °18’, and 19’ to

’02’°. The total number of combinations with the number of hour periods equaling 3 is 7.

After computing the transaction counts in each hour period for all IPs, I use PCA
to reduce the dimensions to 2, do clustering, and compute S_Dbw scores based on the

attributes after PCA, which is shown in Table 4.1. Among all the results, ”n_period:3,
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slide_hour:2” has the best performance in the S Dbw score.

After I check all the results, I find that for the result with n_period=3, "n_period:3,
slide_hour:0”, ’n_period:3, slide hour:1”, ”n_period:3, slide hour:2”, and ”n period:3,
slide hour:7” are all same, which means the servers’ distribution of 3 clusters are same in
these clustering results. So are the ’n_period:4, slide_hour:0”, ’n_period:4, slide_hour:1”,
”n_period:4, slide hour:2”, ”n_period:4, slide hour:3”, and "n_period:6, slide hour:0”,
they all have the same servers’ distribution of 3 clusters to the result of ”n_period:3,
slide hour:0”. In actuality, all the clustering results with S Dbw score less than 0.37

have the same servers’ distribution of 3 clusters.

In the end, I deploy the clustering result of ”n_period:3, slide hour:0” to the CJS

model with heterogeneity, which is shown in the next chapter.
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n_period slide hour | S Dbw score
3 0 0.3601
3 1 0.3549
3 2 0.3504
3 3 0.4792
3 4 0.5270
3 5 0.4227
3 6 0.3818
3 7 0.3635
4 0 0.3946
4 1 0.3584
4 2 0.3591
4 3 0.3598
4 4 0.4601
4 5 0.4480
6 0 0.3586
6 1 0.4549
6 2 0.4653
6 3 0.4695

Table 4.1: S Dbw Scores with n_period = 3, 4, 6 (n_cluster=3)

4.3 Alternative Dataset

I use k-means to do clustering on the data in US-1. In the beginning, I setthen_cluster
to be 3 and the features to be ’n_period:3, slide hour:0”. As the Fig. 4.13, compared to
the clustering result in the previous section, the S dbw score with US-1 is more than 3

times larger than the clustering result with US-AlI.
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Figure 4.13: Clustering Results in US-1 and US-All (n_clusters=3)

[ try to do clustering with different numbers of clusters. I use the feature ’n_period:3,

slide_hour:0”, and do k-mean without a fixed random seed 10 times for each n_clusters

=2to 8. The S _dbw scores are shown in Table. 4.2.

”stdev of S Dbw scores” in Table.

4.2 represents the standard deviation of the 10 S_Dbw scores of each n_clusters. For the

n_clusters =2 to 8, the S Dbw score tends to be better as the number of clusters gets larger.

When the number of clusters equals to 8, it has the best mean S Dbw score, 0.3398, among

these results.

n_clusters | mean S _Dbw scores | stdev of S Dbw scores
2 1.1379 0.2645
3 0.8343 0.3407
4 0.5669 0.1912
5 0.4849 0.2382
6 0.4583 0.1447
7 0.3792 0.0900
8 0.3398 0.1085

Table 4.2: Clustering Results with Number of Clusters = 2 to 8
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To find out the reason why the best number of clusters are different between the

clustering results with US-All and with US-1, I dig into the subnets in each cluster when

the n_cluster=3 first.

cluster

US-1

US-All

0

99.181.96(10), 192.16.65.(48)
52.223.227(31), 52.223.228(25)

99.181.96(10)

52.223.226(67), 52.223.244(41)
99.181.97(79), 192.16.65(13)

52.223.227(3), 52.223.228(28)

52.223.224(19), 52.223.225(34)
52.223.226(1)

52.223.228(14), 52.223.229(12)
52.223.243(97)

52.223.246(35), 52.223.247(2)
52.223.248(1)
99.181.65(1)

99.181.96(6), 99.181.97(2)

52.223.224(19), 52.223.225(34)
52.223.226(74), 52.223.227(30)
52.223.228(21), 52.223.229(12)
52.223.243(97), 52.223.244(71)
52.223.246(35), 52.223.247(3)
52.223.248(1)
99.181.65(1)
99.181.96(6), 99.181.97(83)
192.16.65(82)

Table 4.3: Clustering Results with Different Data - n_clusters=3

Table 4.3 shows the subnets in each cluster of a clustering result with US-1 and the

result with US-All when the n_cluster=3, n_period=3, and slide hour=0. The number

in the brackets is the number of servers in the subnet of the cluster. In cluster-0 of the

clustering result with US-All, the subnet is 99.181.96, which has the servers with the

largest transaction counts in all 3 periods.
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subnet US-1 US-All | ratio of US-1/US-All
449686 | 1428415 0.315
99.181.96(10) | 378697 | 989846 0.383
513367 | 1291581 0.397
192.16.65(48) | 704711 | 876326 0.804
52.223.227(31) | 1117383 | 1801669 0.620
52.223.228(25) | 561842 | 682912 0.823

Table 4.4: Transaction Counts in 3-period of the Servers from cluster-0

However, in the clustering result with US-1, the subnet 192.16.65, 52.223.227, and

52.223.228 are added into cluster-0. This is because the transaction counts in the 3-period

of these 3 subnets are relatively closer to the transaction counts of 99.181.96 in US-1.

Table. 4.4 shows the total transaction count of 3-period in US-1 and US-ALlI for the servers

from cluster-0 (US-1) in Table. 4.3. For the servers in cluster-0 subnet 99.181.96, the ratio

of the 3-period transaction count in US-1 and US-All is [0.315, 0.383, 0.397]. However,

for the servers in cluster-O subnet 192.16.65, 52.223.227, and 52.223.228, this ratio is

[0.804, 0.620, 0.823], which means the capture probability relatively increases compared

to the servers in cluster-0 subnet 99.181.96. In the end, k-means divides the servers in

these subnets into cluster-0 with servers in 99.181.96 in US-1.

Secondly, I dig into a clustering result with US-1 when the n_cluster=8 with the same

features n_period=3 and slide_hour=0. The subnets in each cluster are shown in Table 4.5.
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cluster

subnet(number of IPs)

52.223.226(26), 52.223.244(41)

52.223.225(4), 52.223.226(1)
52.223.243(51), 52.223.247(2) 52.223.248(1)
99.181.65(1), 99.181.96.(6)

52.223.228(25), 52.223.227(3), 192.16.65(61)

52.223.224(4), 52.223.225(2)
52.223.243(46), 52.223.246(28)

52.223.224(14), 52.223.225(28), 52.223.228(14)
52.223.229(12), 52.223.246(7), 99.181.97.(1)

52.223.227(28), 99.181.96.(1)

52.223.224(1), 52.223.226(41), 99.181.97.(80)

99.181.96.(9)

Table 4.5: Subnets in Each cluster - n_clusters=8

Compared to the clustering result in US-All (n_cluster=3), 9 out of 10 servers in sub-

net 99.181.96 still have the largest transaction counts in all 3-hour periods and be divided

into an independent cluster. The leftover server in subnet 99.181.96 has a relatively lower

value of transaction count in 3-hour periods, this makes it be divided into another cluster.

In Fig. 4.14, it is the 3D plot of the clustering result with US-1 when the n_cluster=8.

Between the green cluster(cluster-2) and the blue cluster(cluster-0), there is an obvious

gap in the y-axis, transaction count in hour period 2 (08’ to ’15”).
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Figure 4.14: K-Means with US-1

Table 4.6 shows the average 3-period transaction counts of each cluster of Table 4.5
in US-1 and US-AIl. In cluster-0, cluster-4, and cluster-6, the average transaction counts
in hour period 2, largely decrease, which is only 1.7%, 5.1%, and 1.5% of the average
number in US-All. On the contrary, in cluster-2 and cluster-5, the average transaction
counts in hour period 2 of US-1 still remain 58% and 80% of US-All. As a result, there is
an obvious gap between [cluster-2, cluster-5] and [cluster-0, cluster-4, cluster-6], which

leads to the servers being divided into different clusters in US-1.
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cluster

US-1

US-All

AN W B~ W

[1585, 2, 238]
[40, 0, 12]

[4378, 10598, 4707]

[150, 0, 52]
[325, 52, 97]

[14082, 9723, 8203]

[1008, 1, 133]

[47243, 40019, 54505]

[3615, 153, 1054]

[40, 0, 16]

[5624, 18249, 5700]

[150, 0, 69]

[475, 1032, 244]
[19878, 12157, 12240]
[3020, 106, 816]
[144784, 100580, 131880]

Table 4.6: The Average 3-Period Transaction Count in US-1 and US-All

4.4 Alternative Clustering Method

I also use mean shift, a centroid-based algorithm, to find the best number of clus-

ters on US-1. Fig. 4.15 shows the clustering results by mean-shift with the feature, ”

n_periods:3, slide _hour:0”. The number of clusters decided by the mean-shift algorithm

is 8. The centers of the clusters in the 3D plot of Mean-Shift, the right figure Fig. 4.15, is

shown in Table. 4.7. The S_dbw score is very low, only 0.0972, which is less than the half

value of the mean S_dbw score in the clustering results with k-means when the n_cluster

is also 8.
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Figure 4.15: Mean-Shift with n_periods=3 and slide hour=0

cluster color center location
cluster 0  blue [654, 11, 109]
cluster 1 orange [5778, 7831, 6078]
cluster 2 green [1332, 16628, 1723]
cluster 3 red [13711, 9409, 7681]
cluster 4 purple | [46878, 42820, 55720]
cluster 5 brown | [49086, 37101, 55913]
cluster 6 pink | [45211, 38794, 49966]
cluster 7 gray | [24496, 18525, 22820]

Table 4.7: Centers of the clusters in Mean Shift

4.5 Alternative Clustering Metrics

In the next chapter, I show that S Dbw is not a good metric for the CJS model.
Therefore, I develop additional metrics to evaluate clustering results, ’Std/Avg’, “mean

Std/Avg’, ’cluster size’, and *min cluster size’.

The definition of ’Std/Avg’ is shown in Eq. 4.1. It is calculated by a series of sample

numbers in one cluster. For example, for a clustering result in US-0 (April 29 to May 05),
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its Ist cluster has 100 servers in total. The numbers of 1st cluster’s servers in the sample
hour from April 29 to May 05 are [80, 60, 70, 85, 60, 70, 85], and each number in the
series 1s the sample number on one date. I use this series of sample numbers to calculate
the standard deviation (std) and average (avg). A higher value of ’Std/Avg’ represents the

numbers of sample servers fluctuating more widely.

To be notified, *Std/Avg’ is used for each cluster, not for an entire clustering result.
For a clustering result with n_cluster = 3, there would be 3 *Std/Avg’ for each cluster. I
use 'mean Std/Avg’ for an entire clustering result, which is computed by the mean value

of Std/Avg from all clusters in that clustering result.

"Cluster size’ is the number of IPs in one cluster, and 'min cluster size’ is the size
of the minimum cluster in one clustering result. I developed these metrics because a too-
small sample size would lead to a large estimation bias in MLE [13]. To avoid such large
bias in the MLE-based CJS model, I add ’cluster size’ for each cluster and min cluster

size’ for each clustering result.

Std/Avg = Standard Deviation/Average Number 4.1)

4.6 Random Clustering - Baseline

To be the control group for other clustering results, I randomly divide the servers into

n clusters with roughly equal size to generate 20 clustering results for each n =2 to 8.

The average S Dbw scores of the random clustering are much larger than k-means

and mean shift clustering. The S Dbw scores of the random clustering results range from
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1.6 t0 2.8 in US-0. The S_Dbw scores of the random clustering results range from about 1
to 4.5 in US-1. The details of the random clustering results are shown in chapter 5.3, CJS

with Random Clustering Results.
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Chapter 5 CJS Estimation Error

The goal of my data mining and clustering works is to improve the accuracy of the
CJS model by enabling heterogeneity in servers and avoiding high computation overhead
in the CJS model. In this section, I will show the (1) estimation result of the CJS model

done by Jill [22] and me and (2) the analysis of the CJS model results done by me.

5.1 Population Estimation of CJS Model - Preliminaries

In the chapter 5.1, we deploy the CJS model on US-1 (May 07 to May 16), which
has the longest continuous working hour equal to 24 in the US data. We use the k-means
clustering result,”n periods=3, slide hour=0”, with US-All, which has the same servers’
distribution in 3 clusters as all the results with S Dbw scores less than 0.37 in Table. 4.1,
to deploy on the CJS model. Also, I use the mean-shift result with US-1, which is shown
in Fig. 4.15, to deploy on the CJS model. In the mean-shift result, servers are divided into

& clusters.

5.1.1 Estimation Error Rate

Jill used the clustering result done by me in above to deploy on the MLE-CJS model

with heterogeneity. Jill defines the error rate of the CJS model on one date as the following
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Eq. 5.1.

error rate(%) = (baseline — estimation number)/baseline x 100% (5.1)

Inthe Eq. 5.1, ”baseline” is the number of servers the crawler discovered in the whole
day, which is the best knowledge of the ground truth of the total number of CDN servers.
Because the CJS model often does not converge well on the first and last two days, the
error rate of each result is the mean value of the error rate in estimation dates without the
first and last two days. With the different sample hours, the estimation error rate of the

CJS model is shown in Table 5.1.

error rate 12 am 6 am 12 pm 6pm

no clustering 0.82% 35.38% 81.64% 55.81%
k-means 1.92% 35.38% X 54.87%
mean-shift 1.87% 37.52% X 37.29%

Table 5.1: Estimation model - Error Rate

All three estimation models have the lowest error rate when the sample time is 12
am. This result can be explained in Fig. 4.1. The number of IPs has the maximum value
when the time is ’00’. On the contrary, the number of IPs has the minimum value when
the time is *12°. If the sample is in the *12° o’clock, some IPs may never show up. This

could be the reason why the CJS model has the worst error rate when sampling in *12”.

For the k-means and mean-shift results, the CJS models fail to converge when the
sample hour is 12 pm. It may be caused by the servers from some clusters not showing
in the first few days, this will make the CJS model unable to calculate the first few days

capture probability in these clusters.

54 doi:10.6342/NTU202400040



5.1.2 Dig into Cluster 2 in K-Means

To discover the reason why the estimation model with k-means (n_cluster=3) has a
higher error rate than the model without clustering when the sample hour is 12 am, I dig
into cluster-2 in the k-means result which contains most servers with the lowest transaction
counts as shown in the right plot of Fig. 4.13. The number of servers in cluster-2 is 570,

which accounts for 93% of total servers. The Fig. 5.1 shows the hour-count distribution

plot in cluster-2 and cluster-0 + cluster-1.
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Figure 5.1: Transaction Counts in Different Clusters - K-Means with US-All

I do further clustering to cluster-2. As the images in Fig. 5.2, I divide the servers
in cluster-2 into 3 or 4 clusters. When the number of clusters is 4, the clustering gets a
better result in the S_Dbw score. It indicates that in cluster-2, one can further divide it into
several clusters. As for the green cluster in the right figure of Fig. 5.2 (n_cluster=4), which
represents the servers with the highest transaction counts in all 3 periods from cluster-2,

the subnet of the servers is ’°52.223.227" (28).

The Table. 5.2 shows the subnets in 3 clusters. The subnet of cluster-0, which rep-
resents servers with the highest transaction counts in 3 periods, is 99.181.96°, and the
subnet in cluster-1 is ’52.223.227°,°52.223.228’. 1 discovered that the servers with higher
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Figure 5.2: Clustering Again in K-Means Cluster-2

transaction counts, including cluster-0, cluster-1, and the green cluster (right plot in Fig.
5.2) in cluster-2, all come from the subnets - °52.223.227°,°52.223.228’, and *99.181.96°.
As for the servers from other subnets, their transaction counts are all lower than the servers

from cluster-0, cluster-1, and the green cluster in cluster-2.
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cluster subnet number of servers
cluster-0 | 99.181.96 10
cluster-1 | 52.223.28 28
52.223.27 3
cluster-2 | 52.223.228 21
52.223.227 30
52.223.226 74
52.223.225 34
52.223.224 19
52.223.229 12
52.223.243 97
52.223.244 71
52.223.246 35
52.223.247 3
52.223.248 1
99.181.97 83
99.181.96 6
99.181.65 1
192.16.65 82

Table 5.2: Subnets in Each Cluster - K-Means with US-All

5.2 CJS with Multiple K-Means Clustering Results

In this section, I discover the relationship between the CJS model and clustering

results by using multi-clustering results with the data in US-0 and US-1 to deploy on the

CJS model.
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5.2.1 Clustering Result with US-1 - May 07 to May 16

To inspect the relationship between the CJS model and clustering results, I remove
the random seed in k-means and do clustering 10 times for each number of clusters equal
to 2 to 8 with the feature ”n_period=3, slide_hour=0" with data in US-1. The sample hour

of the CJS model is 12 am, which has the lowest error rate.

5.2.1.1 S_Dbw Score and Estimation Error Rate

There are 70 clustering results in total, the S Dbw score and the error rate of the CJS
model are shown in Fig. 5.3. All the CJS models with clustering have a higher error rate

than the CJS model without clustering, 0.82%.
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Figure 5.3: S_Dbw Score and Error Rate - US-1

In my previous expectation, a clustering result with a better S Dbw score would tend
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to have a CJS model with a better error rate, which means the dots in Fig. 5.3 should close
to a slant line from the button left to the top right. However, the result is far away from
my previous anticipation. In fact, for those results with about 1% error rates, the number
of clusters is mainly equal to 2, 3, and 4, which have S Dbw scores ranging from 0.3 to

1.4.

Table 5.3 shows the correlation matrix of the number of clusters, S Dbw score, error
rate, and standard deviation of error rate every day (stdev). The correlation between the
S Dbw score and the error rate is -0.5717, which means a better S Dbw score (lower
value) tends to have a worse error rate (higher value). The correlation between the number
of clusters and the S Dbw score is -0.7144, and the correlation between the number of
clusters and the error rate is 0.7193, which means a larger number of clusters tends to

have a better S Dbw score and a worse error rate.

H n _cluster S Dbw errorrate  stdev

n_cluster 1.0000 -0.7144 0.7193 0.6783
S Dbw -0.7144  1.0000 -0.5717 -0.5442
error rate 0.7193  -0.5717  1.0000 0.9943
stdev 0.6783  -0.5442  0.9943 1.0000

Table 5.3: Correlation Matrix - US-1

Table 5.4 shows the mean value of S Dbw and the error rate with the number of
clusters equal to 2 to 8. When the number of clusters is equal to 2, the mean S_Dbw score
is 1.1379, however, the mean error rate is only 0.87%. When the number of clusters equals

8, the S Dbw score improves to 0.3398, however, the error rate rises to 6.68%.

Fig. 5.4 shows the correlation of S Dbw and error rate when the number of clusters
equals 2 to 8. When the number of clusters equals 2 to 4, the correlation of S Dbw and the

error rate is negative. However, when the number of clusters equals 5 to 8, the correlation
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n_cluster H S Dbw mean | error rate mean

2 1.1379 0.0087
3 0.8343 0.0153
4 0.5669 0.0401
5 0.4849 0.0499
6 0.4583 0.0591
7 0.3792 0.0604
8 0.3398 0.0668

Table 5.4: Mean Value of S Dbw and Error Rate with n_cluster=2 to 8

of S_Dbw and the error rate is positive, which means a better S Dbw score tends to have

a better error rate.
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Figure 5.4: The Correlation of S Dbw and Error Rate - US-1

5.2.1.2 Alternative Clustering Metrics

To find out the reason for a larger number of clusters tend to have a higher error rate,
[ use the alternative metrics, Std/Avg, mean Std/Avg, cluster size, and min cluster size, to

inspect the CJS model results.

Fig. 5.5 shows the relationship between the Std/Avg and the error rate of each cluster
in each clustering result. I use the term, cluster error rate, to represent the error rate of

a cluster. In this figure, I remove one extreme value with cluster error rate > 2.5 in this
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plot to show other data more clearly. For the clusters with Std/Avg less than 0.3, all the
clusters have cluster error rates less than 0.80%. However, for the clusters with Std/Avg

larger than 0.3, the mean cluster error rate is 9.57%.

When the n_cluster=2,3, there are 54.00% of clusters with Std/Avg larger than 0.3.
On the contrary, when the n_cluster=4,5,6,7,8, there are 80.07% of clusters with Std/Avg
larger than 0.3. This phenomenon may be explained by when the number of clusters gets
larger, some clusters may only contain unstable servers which do not show steadily. Fig.
5.5 indicates the CJS model cannot converge well when the cluster has high Std/Avg. As

a result, the CJS model with a larger number of clusters tends to have a worse error rate.
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Figure 5.5: Std/Avg and Cluster Error Rate - US-1

I dug into the reason for the high cluster error rate, and then I found the estimation
numbers of some clusters were 0 on May 13. However, the baseline number is as usual as

the example shown in Table. 5.5. The reason why estimation numbers on May 13 are 0
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is that when the servers are divided into too many clusters, the sample numbers in some
clusters are 0 on May 13 while the baseline is not 0, which would lead to high Std/Avg as

well as a high cluster error rate.

H May9 May 10 Mayll May12 May 13 May 14

baseline number 67 67 67 67 67 67
estimation number 67.0 67.0012 67.0 67.0 0.0 67.0

Table 5.5: An Example of Estimation Number = 0 - US-1

To find out how the estimation number wrongly equals 0 affect error rates, I dig into
how many clusters in each clustering result have an estimation number wrongly equaling
0 on one date (est 0 clusters), and how many IPs are in such clusters of each clustering
result (est 0 _ip). The correlation of error rate and est_0_clusters is 0.7164, and the corre-
lation of error rate and est 0 ip is 0.9960. It indicates that a high est 0 ip would lead to

a high error rate of the clustering result.

Next, I dig into the (1) Std/Avg of the clusters estimation numbers are wrongly equal
to 0 on one date and (2) which date estimation numbers are wrongly equal to 0. The mean
Std/Avg of such clusters is 0.3896, and the standard deviation of Std/Avg is 0.0476. The
date estimation numbers are wrongly equal to 0 concentrates on May 13, only one cluster

has the estimation number wrongly equal to 0 on May 10 (May 13: 110, May 10: 1).

To be notified, est 0 clusters and est 0 ip need to compare the estimation number
with the baseline. est 0 clusters and est 0 _ip can explain why high Std/Avg leads to a

high error rate, however, these metrics could not be computed without a baseline.

I think a cluster with a small size may lead to a high probability of the estimation
number of a cluster being wrongly equal to 0 as well as a high cluster error rate. Thus, I

dig into the relationship of cluster size and cluster error rate, which is shown in Fig. 5.6.

62 doi:10.6342/NTU202400040



Almost all the clusters with cluster error rates larger than 0.15 have cluster sizes less than
100. The correlation between the cluster size and cluster error rate is -0.2070, which is

closer to 0 than the correlation between the Std/Avg and cluster error rate, 0.3392.

Cluster Error Rate & Cluster Size - us_period 1

E00 A b ® n cluster=2
® n cluster=3
400 | n cluster=4
) ® n cluster=5
- ® n cluster=6
n 300 ® n cluster=7
-
& ® n cluster=8
=
o 200
100
04 .

0.0 05 10 15 20 25
Cluster Error Rate

Figure 5.6: Cluster Size and Cluster Error Rate - US-1

In the above content, I show that for each cluster, a higher Std/Avg and a lower cluster
size would lead to a higher cluster error rate. Next, [ use 'min cluster size’ and *'mean Std/
Avg’ to inspect the error rate of each clustering result. In Fig. 5.7, the clustering results
with higher error rate (dark color) are concentrated in the top-left corner, which indicates

lower min cluster size and higher mean Std/Avg would tend to generate a higher error rate.
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Figure 5.7: Min Cluster Size, Mean Std/Avg, and Error Rate - US-1

The correlation matrix of n_cluster, error rate, mean std/avg, and min cluster size is
shown in Table. 5.6. The correlation between error rate and mean std/avg is 0.6956, and
the correlation between error rate and min cluster size is -0.5246. The correlation justifies

again that lower min cluster size and higher mean Std/Avg would tend to have a higher

error rate.
H n_cluster error rate mean std/avg min cluster size
n_cluster 1.0000 0.7193 0.6101 -0.6740
error rate 0.7193 1.0000 0.4619 -0.5246
mean std/avg 0.6101 0.4619 1.0000 -0.4393
min cluster size || -0.6740  -0.5246 -0.4393 1.0000

Table 5.6: Correlation Matrix of Min Cluster Size and Mean Std/Avg - US-1
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5.2.2 Clustering Result with US-0 - April 29 to May 05

5.2.2.1 S_Dbw Score and Estimation Error Rate

In US-0, the result of the CJS model without clustering is shown in Fig. 5.8 when the

sample hour is 12 am. The error rate is about 5.92%, which is worse than the error rate,

0f 0.82%, in US-1.
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Figure 5.8: The CJS model without Clustering - US-0

Same to the clustering result with US-1, I do k-means 10 times for each number of

clusters equal to 2 to 8 with feature ”n_period=3, slide_hour=0". The S Dbw scores and

the error rates of the CJS model results are shown in Fig. 5.9. In US-0, several CJS results

with clustering have a better error rate than the result without clustering, which does not

happen in US-1.
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Figure 5.9: S Dbw Score and Error Rate - US-0

The correlation matrix of the number of clusters, S Dbw score, error rate, and stan-

dard deviation of error rate (stdev) in US-0 is shown in Table. 5.7. Similar to the CJS

results in US-1, the correlation between S_Dbw score and error rate is negative, and the

correlation between the number of clusters and error rate is positive.

H n_cluster S Dbw errorrate  stdev

n_cluster 1.0000 -0.7163 0.5712  0.7551
S Dbw -0.7163  1.0000 -0.3466 -0.5208
error rate 0.5712  -0.3466 1.0000  0.8127
stdev 0.7551  -0.5208 0.8127 1.0000

Table 5.7: Correlation Matrix - US-0

Fig. 5.10 shows the correlation of S Dbw and error rate when the number of clusters

equals to 2 to 8. Unlike Fig. 5.4 in US-1, in US-0, the correlation of S_Dbw and error rate

doesn’t have an obvious increase as the number of clusters gets larger. When the number
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of clusters = 6, 7, and 8, the correlations of S Dbw and error rate are close to 0 (0.0467,
0.0266, 0.0445).
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Figure 5.10: The Correlation of S_Dbw and Error Rate - US-0

5.2.2.2 Alternative Clustering Metrics

Similar to the analysis of US-1, I use the alternative metrics, Std/Avg, mean Std/Avg,

cluster size, and min cluster size, to inspect the CJS model results.

Fig. 5.11 shows the relationship between the Std/Avg and the mean cluster error rate
of each cluster. The correlation of Std/Avg and the cluster error rate is 0.9347. For the
clusters with Std/Avg less than 0.3, the mean cluster error rate is 1.90%. However, for the

clusters with Std/Avg larger than 0.3, the mean cluster error rate increases to 58.14%.

When the n_cluster=2,3, there are 4.08% of clusters with Std/Avg larger than 0.3.
On the contrary, when the n_cluster=4,5,6,7,8, there are 23.45% of clusters with Std/Avg
larger than 0.3. As a result, the CJS model with a larger number of clusters tends to have

a worse error rate.

Similar to US-1, the estimation number of some clusters in US-0 is wrongly equal
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Figure 5.11: Std/Avg and Cluster Error Rate - US-0

to 0 on a date. Again, I dig into how many clusters in each clustering result have an
estimation number wrongly equaling O on one date (est 0 clusters), and how many IPs
are in such clusters of each clustering result (est 0 ip). The correlation of error rate and
est 0 clusters is 0.7195, and the correlation of error rate and est 0 ip is 0.8151. Once
again, it indicates that a high est 0 ip would lead to a high error rate of the clustering

result.

Also, I dig into the (1) Std/Avg of the clusters estimation numbers are wrongly equal
to 0 on one date and (2) which date estimation numbers are wrongly equal to 0, which is
shown below. The mean Std/Avg of such clusters is 1.2204, and the standard deviation of
Std/Avg is 0.1450. The date estimation numbers are wrongly equal to 0 concentrates on
May 1, only one cluster has the estimation number wrongly equal to 0 on May 2 (May 01:
59, May 02: 1).

68 doi:10.6342/NTU202400040



The scatter plot of cluster size and the cluster error rate is shown in Fig. 5.12. All the
clusters with cluster error rates > 0.2 have cluster sizes < 100. The correlation between
the cluster size and cluster error rate is -0.1431, which is closer to 0 than the correlation

between the Std/Avg and cluster error rate, 0.93
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Figure 5.12: Cluster Size and Cluster Error Rate - US-0

For each clustering result, I inspect the min cluster size, Std/Avg, and error rate as
shown in Fig. 5.13. In the top-left corner of Fig. 5.13, there are a lot of clustering results
with an error rate larger than 0.08. Once again, it indicates that higher Std/Avg and lower

min cluster size would tend to have a higher error rate.
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Figure 5.13: Min Cluster Size, Mean Std/Avg, and Error Rate - US-0

The correlation matrix of n_cluster, error rate, mean Std/Avg, and min cluster size is
shown in Table. 5.8. The correlation between error rate and mean Std/Avg is 0.5472, and
the correlation between error rate and min cluster size is -0.2532. The correlation justifies

again that lower min cluster size and higher mean Std/Avg would tend to have a higher

error rate.
H n_cluster error rate mean Std/Avg min cluster size
n_cluster 1.0000 0.5712 0.6724 -0.4793
error rate 0.5712 1.0000 0.4430 -0.2532
mean Std/Avg 0.6724 0.4430 1.0000 -0.2060
min cluster size | -0.4793  -0.2532 -0.2060 1.0000

Table 5.8: Correlation Matrix of Min Cluster Size and Mean Std/Avg - US-0
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5.3 CJS with Random Clustering Results

In this section, I deploy the CJS model with random clustering results to compare

with the k-means results in US-0 and US-1.

For each n_cluster = 2 to 8, I do random

clustering 20 times to divide servers into clusters of approximately the same size.

5.3.1 Random Clustering Results in US-0

In Fig. 5.14, it shows the error rate and S Dbw score of k-means results (green dots)

and random clustering results (blue dots). The error rate from random clustering results

is about 6%, which is close to the error rate of the CJS model without clustering, 5.92%.
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Figure 5.14: K-Means Results and Random Clustering Results - US-0

The error rate of the CJS model and the S_Dbw scores of the random clustering results

with n_cluster =2 to 8 are shown in Fig. 5.15.
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error rates between 0.055 to 0.06, while the S Dbw scores range from 1.6 to 2.8.
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Figure 5.15: Error Rate and S Dbw of Random Clustering Results - US-0

The correlation matrix of the random clustering results in US-0 is shown in Table.
5.9. The correlation between S_Dbw and the error rate is close to 0, which means the
S _Dbw score has little matter with the error rate in the random clustering results. Besides,
the correlation between n_cluster and the error rate is also close to 0, which shows the

phenomenon that the error rate gets worse as n_cluster gets larger does not exist here.

H n_cluster S Dbw errorrate  stdev

n_cluster | 1.0000  0.3275  0.0417  0.0015
S_Dbw 0.3275  1.0000 -0.0168 -0.0338
error rate || 0.0417 -0.0168 1.0000 -0.7964
stdev 0.0015 -0.0338 -0.7964  1.0000

Table 5.9: Correlation Matrix - Random Clustering in US-0

For each cluster in every clustering result in US-0, the cluster error rate and the Std/

Avg is shown in Fig. 5.16. All the clusters have Std/Avg less than 0.2 in random clustering
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results, while the maximum Std/Avg is larger than 1.2 in US-0 k-means results. The
correlation of Std/Avg and cluster error rate is 0.2840, while the correlation of Std/Avg
and cluster error rate in k-means results is 0.9347. The correlation of Std/Avg and cluster

error rate in random clustering is closer to 0 than the correlation in k-means results.
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Figure 5.16: Cluster Error Rate and Std/Avg of Random Clustering Results - US-0

The reason why random clustering results get a better error rate, in general, is because
the estimation numbers are not wrongly equal to 0 in random clustering results. In the
random clustering results, no cluster wrongly estimates the number of servers to 0 on all
dates. However, for the k-means results, this situation happens in many clusters. I think it
is because K-means divides the servers too "well”. Because k-means uses the transaction
counts in 3 3-hour periods as the attributes, it has a higher probability of dividing the
servers that do not show in the sample hour but show on baseline into the same cluster. As
a result, k-means generates many clusters with a sample number equal to 0 but a baseline

number not equal to 0, which causes the CJS model to wrongly estimate the number to 0
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on one date.

5.3.2 Random Clustering Results in US-1

In Fig. 5.17, it shows the error rate and S_Dbw score of k-means results and random

clustering results. The error rate of random clustering results is better than the error rate

of k-means results. This could be also explained by the estimation numbers not wrongly

equal to 0 in random clustering results, while it happens usually in the k-means results of

US-1.
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Figure 5.17: K-Means Results and Random Clustering Results - US-1

The error rate of the CJS model and the S Dbw scores of the random clustering

results with n_cluster = 2 to 8 are shown in Fig. 5.18. The error rates are concentrated

from 0.0076 to 0.0094, while the S Dbw scores range from about 1.0 to 4.5.

The correlation matrix of the random clustering results in US-1 is shown in Table.
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Figure 5.18: Error Rate and S Dbw of Random Clustering Results - US-1

5.10. The correlation of n_cluster and the error rate is 0.2323, while this correlation in
k-means results is 0.5712, which means n_cluster has a smaller impact on the error rate in
the random clustering results. The correlation of S Dbw and the error rate is -0.2212, this
correlation is also closer to 0 in the random clustering results than in the k-means results

(-0.3466).

n cluster S Dbw errorrate  stdev

n_cluster | 1.0000 -0.4273  0.2323  0.2106
S _Dbw -0.4273  1.0000 -0.2212  0.0036
error rate || 0.2323  -0.2212  1.0000  -0.4869
stdev 0.2106  0.0036 -0.4869 1.0000

Table 5.10: Correlation Matrix - Random Clustering in US-1

For each cluster in every clustering result in US-1, the cluster error rate and the Std/
Avg are shown in Fig. 5.19. All the clusters have Std/Avg less than 0.34 in random

clustering results, while the maximum Std/Avg is larger than 2.5 in k-means results. The
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correlation of Std/Avg and cluster error rate is -0.0135, while the correlation of Std/Avg

and cluster error rate in k-means results is 0.3392. Similar to US-0, the correlation of

Std/Avg and cluster error rate in random clustering is closer to 0 than the correlation in

k-means results.
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Figure 5.19: Cluster Error Rate and Std/Avg of Random Clustering Results - US-1
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Chapter 6 Sensitivity Analysis

In this chapter, I compare the CJS model results in the US-0 and US-1. Besides, I
deploy the CJS model in 6 periods from 4 different regions to see whether the CJS model

with and without heterogeneity could fit into other data.

6.1 CJS Model in US-0 V.S. US-1

In the United States data, there are 2 periods with working hours equal to 24 for more
than 7 continuous days, US-0 and US-1. In the last chapter, | have shown and analyzed

the US data. In this chapter, I will compare the CJS model results from the 2 data.

Table. 6.1 shows the total number of servers, the error rate of the CJS model without
clustering, and Std/Avg without clustering. In this table, I calculate Std/Avg by sample
number and baseline number without clustering on each date in the US-0 and US-1. The
Std/Avg of the sample number in the 2 periods are all below 0.3, and the error rates of the

CJS model without clustering are all below 6%.
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US-0 | US-1

total number of servers 322 538
error rate (no clustering) 5.92% | 0.82%
Std/Avg (sample number) || 0.1109 | 0.2858
Std/Avg (baseline number) || 0.0377 | 0.1123

Table 6.1: Overview of US-0 and US-1

6.1.1 Estimation Error Rate in the US

In Table. 6.2, I compare the correlation in multiple k-means results and random

clustering results. For the k-means results in both 2 data, a larger number of clusters

tends to have a worse error rate. As for the S Dbw score, if a result with a better S Dbw

score (lower value) would lead to a better error rate (lower value) in the CJS model, the

correlation of S Dbw and error rate should be positive. However, in both k-means and

random clustering results of the US-0 and US-1, the correlations of S Dbw and error rate

are all negative, which means S _Dbw is not a good metric for the CJS model in the US

data.

data correlation || US-0 US-1
k-means n_cluster || 0.5712 | 0.7193
S Dbw -0.3466 | -0.5717
random clustering | n_cluster || 0.0417 | 0.2323
S Dbw -0.0168 | -0.2212

Table 6.2: Correlation with Error Rate - the US
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6.1.2 Cluster Error Rate in the US

Also, I have dug into the error rate of each cluster - cluster error rate. I use 2 metrics,

Std/Avg and cluster size, to evaluate their correlation with the cluster error rate, which is

shown in Table. 6.3.

data correlation || US-0 US-1
k-means n_cluster || 0.1494 | 0.1686
Std/Avg 0.9347 | 0.3392
cluster size || -0.1431 | -0.2070
random clustering | n_cluster 0.0561 | 0.1903
Std/Avg 0.2840 | -0.0135
cluster size || -0.0458 | -0.1791

Table 6.3: Correlation with Cluster Error Rate - the US

From the above results, I find that Std/Avg could be a good metric for cluster error

rate when Std/Avg is high (k-means). On the contrary, the correlations of cluster size and

cluster error rate are closer to 0 than in k-means results. In the random clustering results,

the Std/Avg of clusters are all less than 0.20 in US-0 and 0.34 in US-1, and their correlation

of Std/Avg and cluster error rate are low, 0.2840 in US-0 and -0.0135 in US-1. On the

contrary, in the k-means results, the maximum Std/Avg exceed 1.1 in US-0 and 0.6 in

US-1, and their correlation of Std/Avg and cluster error rate are relatively high, 0.9347 in

US-0 and 0.3392 in US-1.
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6.2 CJS Model in the United Kingdom

In the United Kingdom data, there are 2 periods with working hours equal to 24 for

more than 7 continuous days (UK-0: April 29 to May 05, UK-1: May 07 to May 15). I

use the data in the two periods to generate the clustering results with k-means. For each

n_cluster equals 2 to 8, I run k-means 10 times with the feature, n_period=3, slide hour=0.

When the sample time is 12 am, the CJS model fails to converge. Hence, I dig into

how many servers in each hour, shown in Fig. 6.1. At 12 am, there are only 97 and 98 IPs

in the UK-0 and UK-1 of the United Kingdom data. There are many IPs that seldom or

never show up at 12 am. Only the main servers were shown at 12 am, which leads to the

CJS model cannot converge. Therefore, I change the sample time to the hour with most

IPs in the Transaction List, 20 o’clock.
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Figure 6.1: The Number of IPs in the UK of each hour

6.2.1 S Dbw Score and Estimation Error Rate

In the UK-0, from April 29 to May 05, the result of the CJS model without clustering

is shown in Fig. 6.2. The error rate is 114%, which is much more terrible than the result

in the US-0 and US-1.
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Figure 6.2: The Estimation Result of the CJS model without Clustering - the UK-0

As for the CJS model with clustering, the error rate is worse than the CJS model

without clustering. In Fig. 6.3, all the estimation results have an error rate larger than

130%, which are all higher than the CJS without clustering. In UK-0, 20 out of 70 results

with clustering even have an error rate > 10000%. I define the results with an error rate

< 10000% as “converge” and results with an error rate > 10000% as not converge”. I

remove the ’not converge” results from Fig. 6.3.
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Figure 6.3: The CJS Result of the UK-0

In the UK-1, May 07 to May 15, the result of the CJS model without clustering is

shown in Fig. 6.4. The error rate is 144%, which is much more terrible than the result in

the US-0 and US-1.
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Figure 6.4: The Estimation Result of the CJS model without Clustering - the UK-1
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As for the CJS model with clustering, all the estimation results have an error rate of
over 220%, which is higher than the CJS without clustering as shown in Fig. 6.5. In UK-1,
17 out of 70 results do not converge (error rate > 10000%). I remove the “not converge”

results in Fig. 6.5.
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Figure 6.5: The CJS Result of the UK-1

6.2.2 Why CJS Model Cannot Fit Well in the UK

To find out the reason why the CJS model cannot fit well in the UK data, I dig into
the number of servers in sample hour and the baseline, which is shown in Fig. 6.6. On
May 05 in UK-0, May 08, and May 09 in UK-1, the number of IPs in the sample hour was
only about 100, which is much less than the numbers on other dates. Besides, the standard
deviations of the number of IPs in the sample hour in 2 periods are all above 200, and the

Std/Avg of sample number without clustering are 0.5346 and 0.6575. On the contrary, the
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Std/Avg of sample numbers in the US are 0.1109 and 0.2858, which are much lower than
the numbers in the UK. Based on the above two reasons, I think it is why the CJS model

cannot fit well in the UK data.
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Figure 6.6: The Number of IPs in Each Date - the UK

When n_cluster = 8, 6 out of 10 results in the UK-0 and 7 out of 10 results in the
UK-1 do not converge. I find that it is caused by the capture probabilities of some clusters
being extremely low. Take one cluster from a clustering result with n_cluster=8 in UK-0
as an example, the capture probability equal to 3.23 * 10~® on May 02 and 3.33 % 1076
on May 05, as shown in Table. 6.4. In this cluster, there are 94 out of 110 servers only
shown in the sample hour on one date. Among these servers which only show on one
date, the dates are distributed on 6 out of 7 dates (April 29 to May 05), which makes them
hard to converge in the CJS model. As a result, the estimation number in this cluster will
be extraordinarily large since the estimation number is calculated by the sample number

divided by capture probability, which is extremely low on specific dates.

date April 30 | May 01 May 02 May 03 | May 04 | May 05

capture probability | 0.0357 | 0.0536 | 3.23 %1078 | 0.0282 | 0.1023 | 3.33 x10°°
sample number 2 6 12 19 29 2

Table 6.4: Cluster-2 in CJS result of n_cluster=8, label=2
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Also, I dig into Std/Avg and cluster error rate in ”converge” k-means results (error
rate < 10000%), which are shown in Fig. 6.7 and Fig. 6.8. The maximum Std/Avg of the
clusters is over 0.8 (UK-0) and 1 (UK-1). The correlations of Std/Avg and cluster error

rate are 0.6824 (UK-0) and 0.8052 (UK-1).
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Figure 6.7: Std/Avg and Cluster Error Rate in K-Means - the UK-0
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Figure 6.8: Std/Avg and Cluster Error Rate in K-Means - the UK-1

6.2.3 CJS Model with Random Clustering

Similar to what I have done to the US data, I do random clustering 20 times for each

n_cluster = 2 to 8 in the UK-0 as well as in the UK-1. The CJS model with k-means and

random clustering in the UK-0 and UK-1 are shown in Fig. 6.9 and Fig. 6.10. CJS models

with random clustering results obviously have lower error rates than k-means in both the

UK-0 and UK-1. Besides, all the CJS models with random clustering converge (error rate

<10000%) in the UK-0 and UK-1.
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Figure 6.9: K-Means and Random Clustering - the UK-0
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Figure 6.10: K-Means and Random Clustering - the UK-1
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In the UK-0, the error rate and S_Dbw of random clustering results are shown in Fig.
6.11, and the correlation matrix is shown in Table. 6.5. The correlation between S Dbw

and the error rate is -0.4812, and the correlation between n_cluster and the error rate is

0.7661.
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Figure 6.11: Error Rate and S Dbw of Random Clustering - UK-0

n_cluster S Dbw errorrate stdev

n cluster || 1.0000 -0.6294 0.7661  0.7615
S Dbw -0.6294  1.0000 -0.4812 -0.4992
error rate || 0.7661  -0.4812  1.0000  0.9924
stdev 0.7615  -0.4992  0.9924  1.0000

Table 6.5: Correlation Matrix - Random Clustering in UK-0

In the UK-1, the error rate and S_Dbw of random clustering results are shown in Fig.
6.12, and the correlation matrix is shown in Table. 6.6. The correlation between S Dbw
and the error rate is -0.2038, and the correlation between n_cluster and the error rate is

0.1589.
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Figure 6.12: Error Rate and S_Dbw of Random Clustering - UK-1

H n_cluster S Dbw errorrate  stdev

n_cluster 1.0000 -0.5022  0.1589 0.0510
S Dbw -0.5022  1.0000 -0.2038 -0.2390
errorrate || 0.1589  -0.2038  1.0000  0.8422
stdev 0.0510 -0.2390 0.8422 1.0000

Table 6.6: Correlation Matrix - Random Clustering in UK-1

For each cluster in random clustering results, the cluster error rate and the Std/Avg

are shown in Fig. 6.13 and Fig. 6.14. The correlations of Std/Avg and cluster error

rate are 0.6836 in UK-0 and 0.7522 in UK-1, which are much larger than the correlations

of random clustering in the US-0 (0.2840) and the US-1 (-0.0135). The reason why the

correlation of Std/Avg and cluster error rate in the UK with random clustering results is

larger than the correlation in the US with random clustering results may be explained by

all the clusters of random clustering results in the US having Std/Avg < 0.34, while the

Std/Avg of clusters from random clustering in the UK could up to 0.65 (UK-0) and 0.8
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(UK-1). When the Std/Avg is high, Std/Avg has a more obvious relationship with cluster

error rate.
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Figure 6.13: Std/Avg and Cluster Error Rate of Random Clustering - UK-0
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Figure 6.14: Std/Avg and Cluster Error Rate of Random Clustering - UK-1

6.3 CJS Model in France

In the France data, there is one period, April 29 to May 05, with working hours equal
to 24 for more than 7 continuous days. The sample hour I choose is *19°, which is the

hour that contains the largest number of servers.

6.3.1 S Dbw Score and Estimation Error Rate

The result of the CJS model without clustering is shown in Fig. 6.15. The error rate
1s about 6.12%, which is worse than the result in the US, but much better than the result

in UK-0 and UK-1.

The results of the CJS model with clustering are shown in Fig 6.16. When the number
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Figure 6.15: The Estimation Result of the CJS model without Clustering - France

of clusters equals 2 and 3, some CJS results achieve better error rates than the CJS model
without clustering. The best error rate among all results is 1.47%, which happens when
the number of clusters equals 2. On the contrary, when the number of clusters is equal to

7 and 8, all the CJS results have error rates larger than 25%.
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Figure 6.16: The CJS Result of France

The correlation matrix of the number of clusters, S Dbw score, error rate, and stan-

dard deviation of error rate (stdev) in France is shown in Table. 6.7. Same as the CJS

results with k-means in the US data, the correlation between S_Dbw score and error rate

is negative, and the correlation between the number of clusters and error rate is positive.

n_cluster S Dbw errorrate stdev
n_cluster || 1.0000 -0.5716 0.8329  0.7510
S Dbw -0.5716  1.0000 -0.4871 -0.4625
error rate || 0.8329  -0.4871  1.0000  0.9489
stdev 0.7510  -0.4625 0.9489  1.0000

Table 6.7: Correlation Matrix - France
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6.3.2 Why CJS Model Can Fit in France

To be the control group for the result in the UK, I also dig into the number of IPs on
each date in France data, as shown in Fig. 6.17. The standard deviation of the number of
servers in the sample hour is 158.58, and Std/Avg of the sample number without clustering
1s 0.27. Compared to Std/Avg in the UK, which is 0.5346 in UK-0 and 0.6575 UK-1, the
number of sample servers is more stable in France. Besides, all the numbers of sample
servers are larger than 300, while some numbers of sample servers are only about 100 in
the UK. As a result, the error rate of the CJS model with and without clustering is much

lower in France than in the UK.
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Figure 6.17: The Number of IPs in Each Date - France

Also, I dig into Std/Avg and cluster error rate in k-means results, which is shown
in Fig. 6.18. The maximum Std/Avg of the clusters is over 0.7, which is lower than the
maximum Std/Avg of k-means results in the UK-0 and UK-1. The correlation of Std/Avg

and the cluster error rate is 0.5726.
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Figure 6.18: Std/Avg and Cluster Error Rate in K-Means - France

6.3.3 CJS Model with Random Clustering

In Fig. 6.19, CJS models with random clustering results obviously have lower error
rates than k-means. The error rates of random clustering results are all better than the CJS

model without clustering, 6.12%.

The error rate and S_Dbw of random clustering results are shown in Fig. 6.20, and
the correlation matrix is shown in Table. 6.8. The correlation between S Dbw and the
error rate is 0.0655, and the correlation between n_cluster and the error rate is 0.1890.
Both correlations show that error rates of random clustering results have little matter with

S Dbw and n_cluster in France.

95 doi:10.6342/NTU202400040



error rate

MLE-CJS error rate

Error Rate & S_Dbw - France

0.40 - * e random
. ® kmeans
0.35 - ‘ '\.
L ‘ °
o o
130 A ®
030 ~‘ . ", o0
0.25 1 ®
0.20 A
L * L * L
01s{ @
® °
0.10 - ...
0.05 1 .
L wc o amumfingeee et o0 o
000 i T T T T T T
05 10 15 20 25 30
S Dbw
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Figure 6.20: Error Rate and S_Dbw of Random Clustering - France

For each cluster in random clustering results, the cluster error rate and the Std/Avg are
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n cluster S Dbw errorrate  stdev
n_cluster | 1.0000 -0.1231  0.1890 -0.2066
S Dbw | -0.1231 1.0000  0.0655  0.0354
errorrate | 0.1890  0.0655  1.0000 -0.0946
stdev -0.2066  0.0354  -0.0946  1.0000

Table 6.8: Correlation Matrix - Random Clustering in France

shown in Fig. 6.21. All clusters in France data have Std/Avg less than 0.4. The correlation

of Std/Avg and cluster error rate is 0.1642, which is much less than the correlations in the

UK-0 (0.6836) and UK-1 (0.7522). It justifies again that for the clusters with low Std/

Avg (ex: random clustering results in the US and France), the correlations of Std/Avg and

cluster error rate would be low. On the contrary, for the clusters with high Std/Avg (ex:

the UK), Std/Avg matters a lot to cluster error rate.
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Figure 6.21: Std/Avg and Cluster Error Rate of Random Clustering - France
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6.4 CJS Model in the Netherlands

In the Netherlands data, there are two periods, Netherlands-0: June 18 to June 27
and Netherlands-1: June 30 to July 13, with working hours equal to 24 for more than 7
continuous days. The sample hour I chose is *19°, which is the same as the sample hour

in France.

6.4.1 S Dbw Score and Estimation Error Rate

The results of the CJS model without clustering are shown in Fig. 6.22 and Fig.
6.23. The error rates are 88.82% and 342% respectively, which are all much worse than
the result in the US. On June 21 in Netherlands-0, the baseline number of servers is 17,
however, the estimated number of CJS models is about 100, which contributes a lot to the

mean error rate of the Netherlands-0 without clustering.
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Figure 6.22: The Estimation Result of the CJS model without Clustering - Netherlands-0
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Figure 6.23: The Estimation Result of the CJS model without Clustering - Netherlands-1

The result of the CJS model with k-means is shown in Fig. 6.24 and Fig. 6.25. There
60 out of 70 results do not converge in both Netherlands-0 and Netherlands-1. All the

clustering results with n_cluster > 3 do not converge.
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Figure 6.24: The CJS Result of the Netherlands - Netherlands-0
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Figure 6.25: The CJS Result of the Netherlands - Netherlands-1

6.4.2 Why CJS Model Cannot Fit Well in the Netherlands

The error rates of the CJS model with clustering are very large in the Netherlands

data. To find out the reason why the CJS model does not fit in the Netherlands data, I dig

into the number of servers in the sample hour and the baseline of each date, which is shown

in Fig. 6.26. The number of IPs in a sample hour is often less than 100, while there are only

3 days in the UK-0 and UK-1 has a sample number close to 100. The standard deviation of

the number of IPs in sample hour is 99.69 and 28.79 in Netherlands-0 and Netherlands-1

respectively. Considering the average number of IPs in sample hour is 55.10 and 47.64 in

Netherlands-0 and Netherlands-1, the Std/Avg of sample numbers are 1.8093 and 0.6043.

As a result, many CJS results in the Netherlands data do not converge.
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Figure 6.26: The Number of IPs in Each Date - Netherlands

Because there are too many results that are “not converge”, it is meaningless to dis-
cuss the correlation between Std/Avg and the cluster error rate of k-means in the Nether-

lands,

6.4.3 CJS Model with Random Clustering

In Fig. 6.27 and Fig. 6.28, CJS models with random clustering results have lower er-
ror rates than k-means. There are 15 out of 140 results that do not converge in Netherlands-
0 and 26 out of 140 results that do not converge in Netherlands-1. I remove the not con-
verge result from the following scatter plots. For the converging results in both Netherlands-
0 and Netherlands-1, the error rates of random clustering results are all better than the CJS

model without clustering.
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Figure 6.28: K-Means and Random Clustering - Netherlands-1
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In the Netherlands-0, the error rate and S Dbw of random clustering results are shown
in Fig. 6.29, and the correlation matrix is shown in Table. 6.8. The correlation between
S _Dbw and the error rate is -0.4164, and the correlation between n_cluster and the error

rate 1s 0.3714.
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Figure 6.29: Error Rate and S_Dbw of Random Clustering - Netherlands-0

n cluster S Dbw errorrate  stdev

n_cluster || 1.0000 -0.5198 03714 -0.0773
S_Dbw -0.5198  1.0000 -0.4164 0.1426
error rate || 0.3714 -0.4164 1.0000  0.4641
stdev -0.0773  0.1426  0.4641 1.0000

Table 6.9: Correlation Matrix - Random Clustering in Netherlands-0

In the Netherlands-1, the error rate and S Dbw of random clustering results are shown
in Fig. 6.30, and the correlation matrix is shown in Table. 6.10. The correlation between
S _Dbw and the error rate is -0.6240, and the correlation between n_cluster and the error

rate is 0.3379.
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Figure 6.30: Error Rate and S Dbw of Random Clustering - Netherlands-1

n cluster S Dbw errorrate  stdev

n _cluster | 1.0000 -0.2892  0.3379  0.3390
S_Dbw -0.2892  1.0000  -0.6240 -0.6431
error rate || 0.3379  -0.6240  1.0000  0.9907
stdev 0.3390 -0.6431 0.9907  1.0000

Table 6.10: Correlation Matrix - Random Clustering in Netherlands-1

The cluster error rate and the Std/Avg in the Netherlands-0 and Netherlands-1 are
shown in Fig. 6.31 and Fig. 6.32. The correlations of Std/Avg and cluster error rate are
0.5069 in Netherlands-0 and 0.6937 in Netherlands-1. It shows again that the data with
high Std/Avg (ex: the UK and the Netherlands), would have a higher correlation of Std/
Avg and cluster error rate than the data with low Std/Avg (ex: random clustering results

in the US and France).
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Figure 6.31: Std/Avg and Cluster Error Rate of Random Clustering - Netherlands-0
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Figure 6.32: Std/Avg and Cluster Error Rate of Random Clustering - Netherlands-1
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6.5 CJS Model in Germany

In the German data, there is one period, June 04 to June 14, with working hours equal
to 24 for more than 7 continuous days. The sample hour is 19°, which is the same as the

sample hour of France and the Netherlands.

6.5.1 S Dbw Score and Estimation Error Rate

The result of the CJS model without clustering is shown in Fig. 6.33. The error rate

is about 61.10%, which is much worse than the result in the US and France.
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Figure 6.33: The Estimation Result of the CJS model without Clustering - Germany

Fig 6.34 shows the CJS results without error rates > 10000% (not converge). There
are 6 out of 70 results that do not converge. All the CJS results have an error rate larger
than 40%, which is better than the results in the UK and the Netherlands but worse than

the results in the US and France.
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Figure 6.34: The CJS Result of Germany

6.5.2 Why CJS Model Cannot Fit Well in Germany

To find out the reason why the CJS model does not fit well in the German data, I dig

into the number of servers in sample hour and the baseline of each date, which is shown in

Fig. 6.35. The standard deviation of the number of servers in the sample hour is 177.11,

and the Std/Avg of the sample number without clustering is 0.4090, which is larger than

the Std/Avg in France data (0.27) and the US data (US-0: 0.1109, US-1: 0.2858). Besides,

on June 07, June 11, and June 14, the sample number is below 300. For the CJS model

without clustering and the CJS model with the number of clustering equal to 2 and 3, all the

estimation numbers have error rates larger than 100% on June 07, which decreases over

40% of the number of servers in baseline compared to the last day. The sudden decrease

in sample number also causes a large bias in the CJS model.
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Figure 6.35: The Number of IPs in Each Date - Germany

Also, I dig into Std/Avg and cluster error rate in ”converge” k-means results (error
rate < 10000%), which is shown in Fig. 6.36. The maximum Std/Avg of the clusters is
over 1, which is higher than the maximum Std/Avg in France. The correlation of Std/Avg

and the cluster error rate is 0.8279.
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Figure 6.36: Std/Avg and Cluster Error Rate in K-Means - Germany

6.5.3 CJS Model with Random Clustering

The CJS models with random clustering results and k-means are shown in Fig. 6.37.
The error rates of random clustering results are concentrated in 0.6 to 0.7, while The error

rates of k-means results range from 0.4 to 0.9.
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Figure 6.37: K-Means and Random Clustering - Germany

The error rate and S_Dbw of random clustering results are shown in Fig. 6.38, and
the correlation matrix is shown in Table. 6.11. The correlation between S Dbw and the

error rate is -0.0324, and the correlation between n_cluster and the error rate is -0.3484.
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Figure 6.38: Error Rate and S Dbw of Random Clustering - Germany

n cluster S Dbw errorrate  stdev

n_cluster || 1.0000 -0.2305 -0.3484  0.0619
S_Dbw -0.2305 1.0000  -0.0324 -0.1215
error rate || -0.3484 -0.0324  1.0000  0.7900
stdev 0.0619  -0.1215 0.7900  1.0000

Table 6.11: Correlation Matrix - Random Clustering in Germany

For each cluster in every clustering result in Germany, the cluster error rate and the
Std/Avg are shown in Fig. 6.39. The correlation of Std/Avg and the cluster error rate is

0.8401.
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Figure 6.39: Std/Avg and Cluster Error Rate of Random Clustering - Germany

Take the random clustering results in different regions as examples, for the data with

low Std/Avg such as the US and France, the correlations of Std/Avg and cluster error

rate are relatively low (US-0: 0.2840, US-1: -0.0135, France: 0.1642). On the other

hand, for the data with high Std/Avg such as the UK, the Netherlands, and Germany, the

correlations of Std/Avg and cluster error rate are relatively high (UK-0: 0.6836, UK-1:

0.7522, Netherlands-0: 0.5069, Netherlands-1: 0.6937, Germany: 0.8401). In conclusion,

when Std/Avg is high, Std/Avg could be a good metric for cluster error rate.
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Chapter 7 Computation Time of the
CJS Model

In my research, how to avoid high computation overhead is one of the key perfor-
mances in the CJS model. In this chapter, I show the computation time in the CJS model

of different periods from different regions.

7.1 Computation Time in the US Data

In the US data with k-means clustering results, the computation time with the num-
ber of clusters = 2 to 8 is shown in Fig. 7.1 . All the computation time in the US-0 is
less than 5 seconds, and all the computation time in the US-1 is less than 14 seconds. The
period length of the US-1 is longer than the US-0, thus, the computation times in the US-
1 are longer than in the US-0. Furthermore, the correlations between computation time
and number of clusters are 0.9755 and 0.9708 in in the US-0 and US-1. As a result, the

computation time in Fig. 7.1 is close to a linear model.
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Figure 7.1: Computation Time of K-Means Clustering Results in the US

7.2 Computation Time in Different Regions

To discover how the clustering helps the CJS model avoid high computation over-
head in different data, I dig into the correlation between the number of clusters and the
computation time of the CJS in different regions, shown in Table. 7.1. The ’correlation’
in Table. 7.1 represents the correlation between CJS computation time and number of
clusters. All the correlations between CJS computation time and the number of clusters
are higher than 0.9472, which means it is close to a perfect positive correlation. As the
number of clusters gets larger, the computation time of the CJS will tend to have a linear

growth.

All the CJS models with k-means take less than 1 minute. The computation time
and the number of clusters are close to a linear model when the number of clusters is 2 to
8. However, when the n_cluster is too high, the CJS may not converge since the capture
histories in some classes are too small to have enough data to derive for all parameters.
Besides, the CJS computation time would increase as the period length gets longer. One
could decide on an upper limit on the number of clusters based on the time constraints of

the CJS model.
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data period length (day) | correlation | max time (second)

US-0 7 0.9755 4.24
US-1 10 0.9708 13.58
UK-0 7 0.9588 6.15
UK-1 9 0.9562 15.23
France 7 0.9584 6.97
Netherlands-0 10 0.9751 8.82
Netherlands-1 14 0.9472 41.21
Germany 11 0.9585 45.15

Table 7.1: Computation Time in the CJS model with K-Means
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Chapter 8 Discussions

8.1 Online Clustering

To explore the clustering results with different periods of data, I try to do clustering
online in the US data. Clustering online means clustering with the data collected so far.
For example, the result of the first date, April 13, is used in the data on April 13. The result
of the 10th date, April 22, is used in the data in the first 10th date. In the beginning, I used
one-time k-means for online clustering, as shown in Fig. 8.1. Since the n_cluster with the
best S Dbw scores on different dates are unstable, I try to use mean-shift clustering to let
the algorithm choose n_cluster automatically, as shown in Fig. 8.2. The S Dbw scores of
mean shift float a lot in the first few days. After April 29, the S Dbw scores of the mean
shift are often less than 0.1. The number of clusters mean-shift chosen is not fixed. Mean

shift tends to choose more n_cluster when the data contains more dates.
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Figure 8.1: Online Clustering with K-Means - n_cluster=2 to 8
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Figure 8.2: Online Clustering with Mean Shift
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Chapter 9 Conclusion and Future

Work

9.1 Conclusion

The goal of this research is to build the CMR model with heterogeneity for CDN
server population estimation without high computation overhead in the CJS model. I dis-
covered that the servers from the same 24-bit subnet have similar hour-count distribution.

Hence, I try to use transaction counts in different hours to be the attributes for clustering.

In the beginning, I do clustering on the US-All. I divide 24 hours into 3 hour periods,
00’ to ’07°, 08 to ’15°, ’16’ to °23°. 1 use the transaction counts in these hour periods
as the attributes to do clustering. When the number of clusters is 3, the S_dbw score is
0.3673, which is much better than the results with several clusters is 2 or 4. Next, I use
principal components analysis (PCA) to reduce the data dimension from 3 to 2 and do
clustering again. The S_dbw score is 0.3601, which is slightly better than the clustering

result without PCA.

To explore all the possibilities of hour periods chosen, I divide 24 hours into 3, 4, and

6 periods, and slide the time window of periods. When the number of clusters is 3, I find
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that all the clustering results with S Dbw score less than 0.37 are the same. Thus, I use
the number of periods equal to 3 and sliding hours equal to 0 to do the clustering, which

is one of the clustering results with an S _Dbw score less than 0.37.

I also do clustering to US-0 and US-1. I find that the best number of clusters is not 3
in the US-1. I use mean-shift on the US-1 data and find that the number of clusters decided
by the algorithm is 8. Furthermore, I remove the fixed random seed in k-means and run

k-means 10 times for each n_cluster = 2 to § in both US-0 and US-1.

Firstly, we deploy the k-means result with US-All and mean-shift with US-1 to the
CJS model with heterogeneity. The estimation model without clustering has a lower er-
ror rate than the model with clustering when the sample time is 12 pm. In this sample
hour, the error rate of the model without clustering is 0.82% while the model with k-means
(n_clusters=3) is 1.92% and the model with mean-shift (n_clusters=8) is 1.87%. Although
these clustering results do not improve the accuracy of the CJS model, the clustering re-
sult with k-means indicates that the servers can be divided into a few 'main’ servers and
’support’ servers which only show in a specific period. All the main servers come from 3

specific subnets, ’52.223.227°,°52.223.228°,°99.181.96’.

For the CJS model with multi-run of k-means in the US data, the correlation of
S_Dbw score and error rate in the CJS model with heterogeneity are all negative in the
US-0 and US-1. It indicates that a clustering result with a better S Dbw score tends to
have a worse error rate in the CJS model. Besides, the CJS model tends to have a worse

error rate when n_cluster gets larger.

Next, I deploy the CJS model with random clustering results. In general, the CJS

model with random clustering results has a lower error rate than the CJS model with k-
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means in both US-0 and US-1. It could be explained by k-means dividing the servers too
“well”. K-means has a higher probability of dividing the servers that do not show in the
sample hour but show on baseline into the same cluster. As a result, k-means generates

many clusters that wrongly estimate the number to 0 on one date.

Since S Dbw may not be a good metric for the CJS model, I use the additional met-
ric, Std/Avg, to evaluate the cluster error rate in each result. For the data with high Std/
Avg (ex: k-means in the US data), the correlations between Std/Avg and cluster error rate
are relatively high. On the other hand, for the data with low Std/Avg (ex: random clus-
tering results in the US data), the correlations between Std/Avg and cluster error rate are

relatively low.

In Chapter 6, I deploy the CJS model with heterogeneity in different periods from
other regions. I discovered that the CJS model cannot fit well in the UK, the Nether-
lands, and German data. All the CJS models with and without clustering in these regions
have error rates larger than 40%. On the other hand, the error rates of the CJS model in
France are 6.12% (no clustering) and 1.47% to 40% (k-means). The reason why the CJS
model cannot fit well in some regions may be explained by the high Std/Avg of the sam-
ple numbers without clustering. Std/Avg is 0.5346 in UK-0 and 0.6575 in UK-1, 1.8093
in Netherlands-0 and 0.6043 in Netherlands-1, and 0.4090 in Germany. On the contrary,
Std/Avg is only 0.27 in France, 0.1109 in US-0, and 0.2858 in US-1 and period-1. If the

Std/Avg is too high, the CJS model may fail to converge well.

Also, I dig into the Std/Avg of each cluster in different data. The result is similar to the
US data - for the data with high Std/Avg (ex: the UK, the Netherlands, and Germany), the

correlations between Std/Avg and cluster error rate are relatively high. On the contrary, for
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the random clustering results in France, all the Std/Avg are less than 0.4, and its correlation

with the cluster error rate is only 0.1642, which is relatively low.

In Chapter 7, I discovered that the correlation between the number of clusters and the
computation time of the CJS model with k-means are all above 0.9472. In this experiment,
the relationship between the number of clusters and CJS computation time is close to a
linear model. However, when the n_cluster is too high, the CJS may not converge since
the capture histories in some clusters are too small to have enough data to derive for all
parameters. In this research, all the CJS computation times are less than 1 minute. Nev-
ertheless, the CJS computation time would increase as the period length gets longer. One

could decide on an upper limit for the number of clusters based on the time constraints of

the CJS model.

In chapter 8, I try to do clustering online. I find that the best number of clusters is
not fixed in the US data. The best number of clusters ranges from 3 to 8 in the k-means

and mean-shift results through the US data in 2021.

9.2 Future Work

In my research, I discovered that k-means cannot improve the error rate of the CJS
model. Many clusters from k-means results wrongly estimate the number to 0 on one
date. Std/Avg in clusters can help avoid such issues. For the data with high Std/Avg, the
correlation of Std/Avg and cluster error rate is high. Besides, maybe the lower limit of

cluster sizes could avoid the high Std/Avg in clusters.

For the CJS model in other regions, the CJS model cannot fit well in the UK, the

Netherlands, and Germany. This may be caused by the high Std/Avg in the data. In these
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data, the sample number often suddenly decreases significantly into a small value. This
may be caused by the measurement error or the mechanism of Twitch’s CDN. Besides,
the CJS model with some k-means results do not converge. I think when the number of

servers is low on some dates, it is wise to avoid clustering into too many clusters.
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