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摘要 

台灣造山帶位於弧陸碰撞帶，由菲律賓海板塊的呂宋島弧向西以及歐亞板塊

向東斜向碰撞在此造成褶皺逆衝帶，形成一系列南北走向的活動斷層。台灣西南

部位於褶皺逆衝帶的前緣位置，並且在 2016年受到美濃地震的影響，使得此區域

的斷層活動變得更加不穩定。台灣西南部境內包含台南與高雄都會區，有台灣高

鐵公司（以下稱「高鐵」）鐵路、台灣鐵路管理局（以下稱「台鐵」）鐵道以及國

道高速公路通過。近年來也陸續設立了多個產業園區以及數條預計建設的交通設

施。而先前的研究透過 GNSS等測地資料發現，在台灣西南部跨斷層兩側有明顯速

度落差，支持現今的地表斷層潛移的現象，跨越活動斷層的交通設施與產業園區

就可能受到跨斷層速度差受到影響甚至是破壞。因此為了要獲取台灣西南部的速

度場，本研究使用歐洲太空總署（European Space Agency, ESA）的 Sentinel-1A 的

SAR 影像，在升軌方向使用 146 幅影像，觀測時間從 2016 年 3 月到 2021 年 11

月；在降軌方向使用 130 張影像，觀測時間從 2016 年 5 月到 2022 年 2 月。我們

使用永久散射體雷達干涉（Persistent Scatterer InSAR, PSInSAR）的 StaMPS/MTI 

(Stanford Method for Persistent Scatterers/ Multi-Temporal InSAR)演算法，針對目標

區域的活動斷層造成的地表變形以及關鍵基礎設施的變形製作時間序列觀測資料。

本研究結果顯示在中央地質調查所的後甲里斷層兩側的速度落差在垂直方向上約

為 3~6毫米/年，呈現由北向南遞增的情形；在車瓜林斷層兩側的速度落差在東西

方向上約為 4~8毫米/年；而在台灣地震模型（Taiwan Earthquake Model, TEM）右

昌斷層兩側的速度落差在東西方向上約為 5毫米/年。並在斷層兩側的位移在時間

序列上也可以明顯見到相反的變形趨勢，足見這些斷層可能存在斷層潛移的情形。

針對關鍵基礎設施高鐵沿線以及台鐵沿線，在部分跨越活動斷層路段兩側也同樣

取得時間序列變形趨勢。在高鐵沿線變形最大處即跨越地調所車瓜林斷層處，達

到橫向水平位移的容許規範約為 7 年；而台鐵沿線變形最大處即跨越右昌斷層處，

達到縱向水平位移的容許規範約為 10年；國道 7號等規劃路線，其沿線跨越斷層
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處的變形量也將在 10年內達到 H等級。產業園區類的基礎設施，雖然不像交通系

統容易受到地表變形立即的危害，但部分園區接近有潛移活動的活動斷層敏感區，

亦需要更多的觀測來留意。本研究比對前人針對斷層特性的研究，在斷層處的變

形趨勢皆符合，並且也與前人利用測地技術測得之可能存在斷層潛移之結果符合。

因此，本研究建議未來在台灣西南部地區活動斷層附近設置之關鍵基礎設施能更

加留意活動斷層活動性帶來的影響。 

 

關鍵字：永久散射體差分干涉技術、關鍵基礎設施、台灣西南部、活動斷層 
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Abstracts 

The Taiwan mountain belt features many active faults resulting from the oblique 

collision between the two tectonics (Suppe, 1984). Geodetic observations in previous 

studies show that sharp velocity gradients across active faults in SW Taiwan, suggesting 

the presence of surface fault creep. Synthetic Aperture Radar (SAR), which is an active 

system that transmits microwaves to surface targets and receives backscatters from them, 

has a lot of benefits such as cloudy-free, day-and-night monitoring, and all-weather 

detection. In this study, SAR images derived from the ESA’s Sentinel-1A satellite were 

used. 166 SAR images from March 9, 2016, to November 14, 2021, in the ascending 

direction (ASC) and 133 SAR images from May 10, 2016, to February 8, 2022, in the 

descending direction (DES), which cover the whole study area are used to detect surface 

deformation. I use the PSInSAR algorithm of StaMPS/MTI to create time series data of 

surface deformation and target deformation of the critical infrastructure. At the maximum 

deformation place along the Taiwan High Speed Rail Corporation (THSR) railroad, which 

crosses the Chekualin fault, will reach the allowable level for lateral horizontal 

displacement within 7 years. Along the Taiwan Railway Administration MOTC. (TR) 

railroad, at the maximum deformation place, which crosses the Youchang fault, will reach 

the allowable level for longitudinal horizontal displacement within 10 years. For planned 

routes like National Highway No. 7, the deformation at locations where active fault 
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crosses is expected to reach Class H within 10 years. Although infrastructure in industrial 

parks is not affected by surface deformations immediately, some parks are close to 

sensitive areas with potential active fault creep, requiring more monitoring. This study's 

findings are consistent with previous research on fault characteristics and are in line with 

the results obtained through geodetic techniques indicating potential fault creep. 

Therefore, it is recommended that future critical infrastructure near active fault zones in 

southwestern Taiwan should pay more attention to the impact of fault creep. 

 

Keywords: PSInSAR, Critical infrastructures, SW Taiwan, Active faults 
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Chapter 1 Introduction 

1.1 Motivations 

The Taiwan mountain belt features many active faults resulting from the oblique 

collision between the two tectonics (Suppe, 1984). This collision produces a series of N–

S trending active fold-and-thrust belt with destructive earthquakes (Shyu et al., 2005; Lin 

et al., 2010; Ching et al., 2011). South Western (SW) Taiwan at the southwestern foreland 

of the Taiwan fold-thrust belt, which has a series of active faults (Fig. 1.1), is influenced 

by the 2016 Meinong earthquake showing that fault activity in this region has become 

more unstable (Huang et al., 2016). Within SW Taiwan, it encompasses the metropolitan 

areas of Tainan and Kaohsiung, traversed by the THSR railroad, TR railroad, and the 

National Freeway network. In recent years, multiple industrial parks and several planned 

transportation facilities have also been established in this area, such as National Freeway 

no.7, Kaoping Expressway, and THSR extending routine to Pingtung (高鐵延伸屏東新

闢路線可行性評估，2020) (Fig. 1.2). 

In SW Taiwan, active faults have shown complicated deformation patterns based on 

geodetic observations (Huang et al., 2006, 2009; Ching et al., 2007, 2011; Huang et al., 

2016). Rapid surface velocities and sharp velocity gradients across some active faults 

suggest the presence of surface fault creep. There are many active faults in SW Taiwan, 

including the Houchiali fault, Chekualin fault, Chishan fault, and Hsiaokangshan fault 
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(林啟文等, 2000). When the active faults with creeping, which pass through critical 

infrastructures and population-dense areas, the accumulation of damage in a structure will 

cause a change in the dynamic characteristics of the structure (Rytter, 1993); for example, 

the Chihshang fault in eastern Taiwan with a total 4.8 mm/yr velocity change across a 

fault creeping site with broken embankment (Lee et al., 2003), the Hayward fault in 

California, USA with a 2 mm/yr velocity difference across fault which causes street 

displacement (Lanari et al., 2007), and the Central San Andreas fault in California, USA 

with a creep rate 2.5 ± 0.2 cm/yr, which causes the potential damage on the fault-crossing 

canal (Tymofyefyeva et al., 2019; Scott, 2021). 
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Fig.  1.1. Active fault map of Taiwan published in 2021. Different colors represent different types 

of active faults Central Geological Survey, CGS). 
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1.2 Purposes 

Using creepmeter and GNSS observations were the common way to estimate creeping 

motion in the past; however, these traditional methods can only provide sparse point data. 

This will cause greater errors during interpolation when we try to get dense data. In recent 

years, the form of radar processing method called Synthetic Aperture Radar (SAR) 

technique, which can be used to produce wide-range observations and use the PSInSAR 

algorithm to pick a more stable point relatively to grab more stable scatterers on the 

surface, such as roads, buildings, and bridges. Through this method, we can estimate 

surface displacements in line of sight (LOS) of right-looking satellite mean velocity in a 

specific period and do decomposition to get uplift rates around critical infrastructure in 

SW Taiwan. 

In this study, I calculated velocity difference across active structures, which have large 

surface deformation, along transportation systems and industrial parks to classify the 

allowable deformation time of these critical infrastructures in SW Taiwan. 
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1.3 Study area 

SW Taiwan spans approximately from Tainan City to Pingtung County, and this 

region is located at the southwestern front of the western foothill with a series of active 

faults. A lot of critical infrastructures were built, such as the THSR railroad, TR railroad, 

National Freeway, Science Park, Industrial Park, and some planned routines. These 

critical infrastructures are very close to or transected by active faults (Fig 1.2; Fig. 1.3). 

Except of these existing humanmade buildings, there are other infrastructure under 

planning (e.g., Freeway no. 7, THSR extending plan). There are more detailed 

descriptions of those active faults and the factors of deformation in the next chapter. 

Except for the active faults, there are other tectonic features such as mud diapirs and 

mud volcanoes in this area. A mud diapir is defined as an intrusive structure marked by 

the slow upward migration of clay-rich sediments and fluid emissions (Kopf, 2002; Chen 

et al., 2014). Cone-shaped mud volcanoes represent the last manifestation of diapirism, 

which is a well-known geological phenomenon near the area of ongoing collisional 

tectonics (Brown and Westbrook, 1988; Brown, 1990; Pérez-Belzuz et al., 1997; Kopf, 

2002; Chen et al., 2014). Ching et al. (2016) found that the GNSS geodetic observations 

here do not fit their 2D dislocation model. Thus, they inferred the mechanism of vertical 

deformation is not fully contributed from active faults but an onshore mud diapir (Fig. 

1.4). The distribution of these onshore mud tectonics (Fig. 1.5) is near the critical 

https://www.sciencedirect.com/science/article/pii/S1367912013005440#b0015
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infrastructures such as THSR railroad, Dashe Park, and Nanzi Park so that can cause the 

damage to infrastructures due to its active mud flow underground (Tanaka et al., 2020; 

Lo et al., 2023). 
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Fig. 1.2. Critical Infrastructure in SW Taiwan (Chinese ver.) 
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doi: 10.6342/NTU202400130
9 

 

 

  

Fig. 1.3. Critical Infrastructure in SW Taiwan. Left is Science Parks and Industrial Parks. Right is 

linear (transportation) systems. The orange line is THSR railroad. The black line with white dot is TR 

railroad. The black polygon is Science Park and Industrial Park. The blue line is planning route of 

Freeway No.7. The dark red line is active structures. HSH is Hsinhua fault, ChC is Chungchou fault, 

HCL is Houchiali fault, HSK is Hsiaokangshan fault, CKL is Chekualin fault, YC is Youchang fault, 

FS is Fengshan fault, FSF is Fengshan hill frontal structure, and CS is Chishan fault. 
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Fig. 1.5. The distribution of mud volcanoes onshore and mud diapirs offshore superimposed on the 0-5 

km residual gravity anomaly map (Lo et al., 2023) and critical infrastructures in SW Taiwan. 

Fig. 1.4. 2D tectonic kinematic model for SW Taiwan (Ching et al., 2016). 
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Chapter 2 Literature review 

2.1 Geology setting 

 This study suggests the presence of surface fault creep based on previous studies, 

which showed the sharp velocity gradients and complicated deformation patterns in SW 

Taiwan on the basis of geodetic result. The following section introduces the geology and 

faults of the study area. 

Taiwan is on the site of the collision belt between the Philippine Sea plate and the 

Eurasian plate (Fig. 2.1) (Suppe, 1984; Ching et al., 2007). The Philippine Sea plate is 

advancing northwestward at a rate of 82 mm/yr towards the Eurasian plate. (Yu et al., 

1997). SW Taiwan is located at the fold-and-thrust belts, consisting of many active faults. 

This region is one of the areas with the most active structures activity (Ching et al., 2011). 

The vertical velocities from the Western Foothills to the Central Range in SW Taiwan had 

been estimated to uplift rate of 10 to 20 mm/yr (Ching et al., 2007). Because the Eurasian 

plate performed subduction to the Philippine Sea plate, there were a series of N-S trending 

faults in this area. The active faults include the Houchiali fault, the Hsiaokangshan fault, 

the Chishan fault, the Chaochou fault, the Youchang fault, the Chungchou fault, and the 

Fengshan fault from east to west in this area (Shyu et al., 2016; Shyu et al., 2020).  
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Fig. 2.1. The geotectonic framework of Taiwan (Yu et al., 1997; Ching et al. 2007). 
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2.1.1 Stratigraphy of SW Taiwan 

 The stratigraphy we used here is obtained from stratigraphic columns and reflection 

profiling data (Chi, 1981; Wu et al., 2002; Huang et al., 2004). The stratigraphy in our 

study area is as following (Fig. 2.2; Table 2.1): 

(1) Liushuang Formation 

It is mainly composed of dark gray to bluish-gray mudstone and interbedded shale 

with sandstone and siltstone. The thickness is approximately 1040 meters (何春蓀，

1975). 

(2) Erhchuangchi Formation 

It is composed of interbedded shale and fine to medium-grained sandstone. The 

sandstone contains abundant marine mollusk fossils and fragments of driftwood with an 

exposed thickness is about 750 meters (何春蓀，1975). 

(3) Gutingkeng Formation 

This formation can be divided into upper and lower layers. The upper layer is 

primarily composed of dark gray, fine-grained sandy siltstone or sandy mudstone, with 

localized thin lenses of convex-shaped sandstone layers. The thickness is about 540 to 

1000 meters, and it contains abundant fossils of soft-bodied animals (孫習之等，1960). 

The lower layer has a similar composition to the upper layer but has better sorting and the 

thickness is about 4000 meters. 
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Fig. 2.2. The stratigraphy map in SW Taiwan (Central Geological survey, 2002). 
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Table 2.1: Stratigraphy in SW Taiwan (Chi, 1981; Wu et al., 2002; Huang et al., 2004). Fm. = 

Formation, Sh. = Shale, Ss. = Sand stone. 
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2.1.2 Active faults 

 According to the map of active fault map of Taiwan published in 2021 derived by 

Central Geological Survey, MOEA (Fig. 1.1), the active faults can be divided into the 

Holocene active faults (第一類活動斷層) and the Late Pleistocene active faults (第二類

活動斷層). We also use Taiwan Earthquake Model (TEM) fault map (Fig. 2.3), the main 

faults in this study area are included below:  

Fig. 2.3. Major on-land seismogenic structures of Taiwan. There are 45 structures in Taiwan. The black 

lines are the original structures (Shyu et al., 2016). The red lines show the new structures in Taiwan. 
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1. Hsinhua fault (HSH) 

The Hsinhua fault extending from Naba to Beishi, Hsinhua Dist., Tainan with 6 km 

length. This fault is dominated by right-lateral motion with vertical motion with ENE 

trending (張麗旭等，1947). According to the borehole result, the Hsinhua fault has high 

dipping angle (陳文山等，2011). Huang et al. (2004) proposed that the Hsinhua fault is 

a back thrusting fault with 70∘dipping angle from the equilibrium profile result. The 

parallel-fault horizontal velocity is -9.7 mm/yr and the uplift rate is 2.8 mm/yr based on 

GPS observations (饒瑞鈞等，2005). It is a Holocene active fault. 

2. Houchiali fault (HCL) 

 The length of this fault is about 12 km (林朝棨，1957; Sun, 1964) with a 45∘dip 

(Shyu et al., 2016). This fault is dominated by the reverse and right-lateral motion. By 

using the aerial photograph analysis, the Houchiali fault is identified at eastern wedge of 

the Tainan Tableland (Sun, 1964). This tectonic is assumed a blind fault with detachment 

(Fruneau et al., 2001). The long-term uplift rate of Tainan tableland upthrown side is 

about 4 mm/yr based on the regional Holocene relative sea-level curve (Chen and Liu, 

2000). The short-term uplift rate, according to precise leveling data, is about 11~13 mm/yr 

on the Tainan Tableland (Huang et al., 2009). It is a Late Pleistocene active fault. 

3. Fengshan fault (FS) 

Sun (1964) inferred the scarp with NNW trending to Fengshan Hill northeast is the 
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evidence of Fengshan fault by aerial photograph analysis. The Fengshan fault is a left-

lateral dominated with a minor reverse structure. Its length is 16.8 km and dip at 85∘in 

the East direction (Sun, 1964; Deffontaines et al., 1997; Shyu et al., 2020). The slip rate 

is about 10 mm/yr based on GPS data (Ching et al., 2007). 

4. Hsiaokangshan fault (HKS) 

Sun (1964) found the scarps along the west of Dagang Shan and Hsiaokangshan by 

aerial photograph analysis. The Hsiaokangshan fault is a blind fault that has a reverse 

motion with NNE trending (Hsu and Chang, 1979). The flexure scarp on the top of this 

fault is the evidence to prove that the Hsiaokangshan fault is a blind fault (Suppe, 1983; 

陳文山等，2010). Its depth is 8 km (Sun, 1964) with east-dipping at 30∘ (Chen et al., 

2008b; Shyu et al., 2016). The long-term slip rate is 5.7±1.4 mm/yr at the central part of 

the HKS fault based on borehole data (陳文山等，2010). It is a Late Pleistocene active 

fault. 

5. Chekualin fault (CKL) 

The Chekualin fault is a reverse fault with right-lateral motion. Its length is about 25 

km and extends from Neimen Dist. to Ciaotou Dist., Kaohsiung. According to field survey 

data, the Chekualin fault locate at the foot-wall of the Chishan fault, the nearest distance 

between two faults is about 0.5~1 km (陳文山等，2012). The velocities related to the 

SR01 GPS station decrease from 50~60 mm/yr (near the Chishan fault) to 40 mm/yr (east 
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of the Hsiaokangshan fault), which shows that the Chishan fault and Chekualin fault are 

absorbing a shortening rate of approximately 10 to 20 mm/yr (饒瑞鈞，2006；胡植慶

等，2012，2016). The average long-term uplift rate 3.4±1.6 mm/yr based on calibrated 

14C age (Ding et al., 2017). It is a Holocene active fault. 

6. Chishan fault (CS) 

 The Chishan fault extends from Chishan Dist. to Renwu Dist., Kaohsiung. The fault 

is divided into two different faults called Neyin and Chishan because of different features 

(陳文山等，2005). Its length is 34.8 km (Lin et al., 2007). Its dip are 75∘ and 80∘ in the 

north and south parts, respectively (耿文溥，1967; Chen et al., 2012; Shyu et al., 2016). 

Based on geologic observations, the Chishan fault is a left-lateral strike-slip fault 

(Lacombe et al., 2001), and some branch faults show the strain on the slickenside (陳柏

村，2005). Based on geodetic data, however, the Chishan fault is a reverse fault with 

minor right-lateral motion (Ching et al., 2007; Hu et al.,2007; Lacombe et al., 2001) and 

the main fault remains locked (陳柏村，2009). The slip rate of this fault is about 

1.10±0.36 mm/yr (Shyu et al., 2016). It is a Holocene active fault. 

7. Chaochou fault 

The Chaochou fault is a reverse fault with left-lateral motion which is located at the 

boundary between the western foothill and southern central range. Its length is about 89 

km (詹新甫，1964) and dip at 75゜(Shyu et al., 2016) in the eastern side. There are small 
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bulges at northern bank of the Laonong River by field survey (楊貴三，1986). The GPS 

measurements show that the perpendicular velocity across fault decrease from 53.7 

mm/yr to 49.8 mm/yr from east to west (饒瑞鈞等，2008). It is a Late Pleistocene active 

fault. 

8. Chungchou fault (ChC) 

The Chungchou fault is near the Hsinhua fault. Its length is 29.7 km with 30∘dip. It’s 

an NNE-SSW striking structure. The uplift rate of the hanging wall is ranges from 5-8 

mm/yr determined from borehole data (Chen and Liu, 2000; Chen, 2010), and slip rate at 

12.20 ± 0.60 mm/yr (Shyu et al., 2016). 

9. Youchang fault (YC) 

The previous study found there are fault scarps with NE-SW striking between 

Youchang and Shoushan villages based on the photogeology method (Sun, 1964) so 

Cheng et al. (2007) inferred that there is a fault named Youchang fault. The Youchang 

fault is a reverse dominated fault with minor left-lateral motion and with NE-SW striking 

(Shyu et al., 2020). Its length is 4 km and dip at 75∘in the SW direction (Sun, 1964; Ching 

et al., 2007; Shyu et al., 2020). The slip rate is at 0.92~5.46 mm/yr (Shyu et al., 2020). 
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2.2 Region surface deformation in SW Taiwan 

 Ching et al. (2007) used 103 continuous GNSS stations data in SW Taiwan with 

respect to a stable continental margin station S01R, which is located at Penghu Island, to 

estimate the vertical velocities in SW Taiwan. They found that the uplift rate of 10 to 20 

mm/yr is distributed in the Western Foothills and the Central Range. The subsidence rate 

of 5 to 20 mm/yr is concentrated in the coastal area north of Kaohsiung City, especially 

in the southernmost area of the Pingtung Plain. In Ching et al. (2011), there are 1843 

leveling and 199 continuous GNSS measurements from 2000 to 2008 used to measure 

vertical deformation rates. At the southern part of the Western Foothills, the rate of ~18.5 

mm/yr was measured. In addition, the short-term and long-term rates are consistent. 

 Ching et al. (2016) found the sharp velocities gradients in the region of 

Hsiaokangshan fault (HKSF) and Chishan fault (CHNF) by campaign-mode GNSS 

observations and CGS precise leveling measurements between 2002 and 2010 to 

understand the crustal deformation in SW Taiwan (Fig. 2.4). They found the velocities on 

the west side of the HKSF are subsidence. The velocity eastward is up to ~ 18 mm/yr 

between the HKSF and the CHNF. The velocities on the east side of CHNF are then 

subsidence again. 

Currently, with satellite provide high-resolution images, Huang et al. (2016) used ERS 

and Envisat images to estimate the surface deformation in SW Taiwan (Fig. 2.5). East of 
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the Chiayi land subsidence area, there is 5–15 mm/yr surface uplift between the Meishan 

fault and the Tsochen fault detected by InSAR and CGNSS, and the area of uplift roughly 

outlines the shallow seismicity zone in the Western Foothills. According to foresaid, there 

are significantly deformation near active faults and coast area in SW Taiwan. We can 

focus on place that with high uplift rate, and discuss the mechanisms of surface 

deformation. Lu et al. (2023) found the postseismic deformation rates are 1.5 and 2 times 

higher than the interseismic period in E-W and vertical directions, respectively. The 

significant linear deformation in the E-W direction located at the southern part of SW 

Taiwan, such as HKS, CS, and YC faults; while HCL, HSH, and HKS faults have linear 

deformation in the vertical direction by using advanced multi-temporal InSAR which 

constrained by continuous GNSS data during 2016 to 2018. 

Tsukahara and Takada (2018) further use L-band SAR images to process PSInSAR, 

which is corrected by GNSS data to remove ionospheric error, and leveling data to detect 

aseismic growth of Tainan tableland in SW Taiwan (Fig. 2.6). They found the very rapid 

uplift velocity at the eastern flank of the Tainan tableland. The maximum velocity reaches 

37 mm/yr in the northern part. They interpret that the main cause of this uplift rate 

contributed by mud diapirs and also have a shallow fault motion which adds a short-

wavelength perturbation before and during the Meinong earthquake. 
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2.3 Critical infrastructure monitoring in Taiwan 

In Taiwan, there are some studies about Critical infrastructures. 張中白等 (2004) 

and Wang et al. (2011) used leveling, GPS, and DInSAR observations to monitor the 

subsidence at Zhongli Industrial Park, Taoyuan, which has 4 cm in cumulative subsidence 

and 4 mm/yr subsidence rate (Fig. 2.9); Hwang et al. (2008) used GPS and leveling data 

to monitor the section of THSR that pass through an area of Yunlin County (Fig. 2.10). 

They found the largest cumulative subsidence is about 22 cm from 210K to 240K of 

THSR. Recently, Lu et al. (2023) found 7 active faults around their study area with 

different deformation rate. The critical infrastructure in his study area, 45% of total 

lengths of Freeway were faced with higher than 10mm/yr in the E-W component and 50% 

of total lengths of Railway were in the face of higher 10mm/yr in the vertical component. 

According to these studies, we can know that there is the surface deformation near these 

critical infrastructures. In SW Taiwan, most studies only focus on individual critical 

infrastructure, lacking of deformation for a wide range of critical infrastructure by InSAR. 
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Fig. 2.4. GNSS and leveling observations. Top is horizontal velocities relative to S01R from 2002 to 

2010. Bottom is vertical velocity field during the period from 2000 to 2010 (Ching et al., 2016). 
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Fig. 2.5. InSAR results from Huang et al. (2016) (a) Mean annual line of sight (LOS) velocity 

during 1995–1999 (frame 3123) or 1995–2001 (frames 3141 and 3159). (b) Mean annual LOS 

velocity during 2005–2008. The circles are continuous GNSS (CGNSS) stations and the color in 

the circles indicates the CGNSS derived LOS velocity in the same time period as InSAR. 
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Fig. 2.6. Uplift rate calculated by using ALOS data. Colored circle is uplift rate obtained from 

leveling survey (Ching et al., 2016; Tsukahara and Takada, 2018). 
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Fig. 2.7. The subsidence along LOS, showing a duplet deformation pattern at Jhon-Li (JL) and Guei-

Shan (GS) Industrial Parks (Wang et al., 2011). 

Fig. 2.8. Subsidence from GPS and leveling with respect to THSR stations (Hwang et al., 2008). 
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Chapter 3 Method 

 In recent years, primary detecting methods such as GNSS, leveling, and InSAR have 

been used in surface deformation. To get a wide range of time-series displacements and 

the velocity field near critical infrastructure across active faults in SW Taiwan, I acquired 

Sentinel-1 SAR images processed by the PSInSAR algorithm and verified the PS 

observations by using GNSS stations data. 

 

3.1 Radar (RAdio Detection And Ranging) 

Radar (Radio Detection and Ranging) is an active system that emits microwaves to 

detect a target on the surface. When measuring the bounce back energy, the radar sensor 

can be separated into two systems. One is a non-imaging system and the other is an 

imaging system. The former system can only range the distance between a target and the 

satellite, and the latter not only can range distance but can be processed in a 2D image. 

This study uses Synthetic Aperture Radar (SAR), which is one of the imaging systems.  

With different purposes, there are different wavelengths and frequencies on SAR 

satellites (Table 3.1). These microwaves with a longer wavelength, which can penetrate 

through clouds and vegetation. The C-band Sentinel-1 satellite with 5.6 cm is used in this 

study. 
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Band Frequency (GHz) Wavelength (mm) Satellites 

Ka-band 26-40 5-11.3  

Ku-band 12-18 16.7-25  

X-band 8-12 25-37.5 TerraSAR-X 

C-band 4-8 37.5-75 Sentinel-1 

S-band 2-4 75-150  

L-band 1-2 150-300 ALOS-1, ALOS-2 

 

3.2 Side-Looking Airborne Radar (SLAR) and Synthetic Aperture Radar (SAR) 

3.2.1 SLAR 

The traditional type of sensing geometry is nadir-looking radar, which can only 

distinguish targets from arrival time (echolocation) so that this sensing geometry cannot 

distinguish between two objects that are equal distances from the sensor. To avoid 

echolocation that is produced from nadir-looking radar, a radar had been installed airborne 

to monitor targets, and this type was called Side-Looking Aperture Radar (SLAR). In the 

geometry of SLAR, satellite get the echoes from different objects at different times so 

that we can identify them clearly (Fig. 3.1). To get a large scope of surface, radars have 

been installed on satellites; however, resolution decreases accordingly. 

 The slant-range resolution (𝑅𝑟𝑎𝑛𝑔𝑒) means the minimum unit that can distinguish the 

Table 3.1: Microwave frequency and wavelength used on satellite (data from ESA). 
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distance between two points in the ranging direction. In the theoretical value, the 

resolution is half of pulse length (PL) (Fig. 3.1) which is equal to half of 𝑐 ∗ 𝜏;  

𝑅𝑟𝑎𝑛𝑔𝑒 =
𝑃𝐿

2
=

𝑐𝜏

2
 

where 𝑅𝑟𝑎𝑛𝑔𝑒 is slant-range resolution, c is the speed of light, and 𝜏 is pulse duration; 

however, the slant-range resolution is determined by the incidence angle in a real situation 

(Fig. 3.2). 

𝑅𝑟𝑎𝑛𝑔𝑒 =
𝑐𝜏

2𝑠𝑖𝑛𝜃
 

where 𝜃 is incidence angle. 

 The azimuth resolution (𝑅𝑎𝑧𝑖) is the width of swath in the flight direction which is 

determined by the beam width of the antenna and slant range distance (Fig. 3.3). The 

equation is following: 

𝑅𝑎𝑧𝑖 = 𝑆𝑅 × 𝛽     𝛽 =
𝜆

𝐴𝐿
 

where SR is slant-range distance, 𝛽 is beam width, 𝜆 is wavelength, and AL is the length 

of antenna. According to the equation, the longer the antenna, the better the azimuth 

resolution. 

3.2.2 SAR 

With the demand for high-resolution radar images, the concept of SAR has been 

established. Each pixel in the SAR image has the phase and amplitude information, which 

is the mean of whole backscatters in the LOS direction. The receiving antenna on the 
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satellite receives echo in a different position due to platform motion (Fig. 3.4) (Moreira 

et al., 2013). This concept is to increase a virtual aperture antenna longer than the physical 

antenna length. SAR uses side-looking to decrease Doppler frequency shifts from 

platform motion. By overlapping these signals, it can increase the Signal-to-Noise Ratio 

(SNR) to provide better resolution than traditional radar image. It offers high-resolution 

and weather-independent images day and night to monitor surface targets. The radar 

image with SAR processing has better resolution and can be used to separate surface 

objects more clearly (Fig.3.5). 

 

3.3 InSAR and DInSAR 

Interferometry SAR (InSAR) uses two SAR images, which are acquired on different 

dates, to process phase interferometry and to produce Digital Elevation Model (DEM) 

(Fig. 3.6). After the success of differential interferometry technique to process the Landers 

earthquake to obtain displacements (Massonnet et al., 1993), the Differential 

interferometry SAR (DInSAR) technique have been widely used in estimate surface 

deformation (Prati et al., 2010; Stramondo et al., 2016; Pepe and Cal𝑜̀ , 2017). The 

DInSAR technique is to calculate the phase difference in two images of the same area 

that were collected at different periods to get an interferogram. The phase difference will 

be displayed in a fringe pattern, and we can get displacement by unwrapping (Fig. 3.7). 
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The phase of deformation can be monitored by removing the phase contributed by terrain, 

orbit, and atmospheric effects. The interferometric phase can be formulated as: 

∅𝑡𝑜𝑡𝑎𝑙 = ∅𝑡𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑦+∅𝑑𝑒𝑓+∅𝑜𝑟𝑏𝑖𝑡 + ∅𝑎𝑝𝑠 + ∅𝑛𝑜𝑖𝑠𝑒 

where ∅𝑡𝑜𝑡𝑎𝑙  is the total phase change of two SAR images, ∅𝑑𝑒𝑓  is the phase due to 

surface deformation in the line-of-sight (LOS) direction, ∅𝑜𝑟𝑏𝑖𝑡  is the phase of orbit 

inaccuracies, ∅𝑎𝑝𝑠 is the phase due to tropospheric delay, and ∅𝑛𝑜𝑖𝑠𝑒 is the phase error. 

The traditional DInSAR method has some limits such as the decorrelation caused by 

temporal error and low SNR due to noise in the vegetation area, which would lead to low 

coherence to produce an interferogram. To solve these problems aforesaid, Persistent 

Scatterers InSAR (PSInSAR) has been proposed. 

3.4 Persistent Scatterers Interferometry (PSInSAR) 

PSInSAR is one of the most famous techniques in the InSAR method. This method 

can get stable ground objects to improve the low SNR situation. The Persistent Scatterers 

(PSs) concept in SAR had been proposed by Ferretti et al. (2000) called Permanent 

ScattererTM or Persistent Scatterer Interferometry (PSI). The PSI uses amplitude to choose 

objects, which have stable signals as PSs. This parameter is called the Amplitude 

Dispersion Index (ADI). Scatterers with an ADI lower than 0.25 can be chosen as PSs for 

obtaining surface displacement. 
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3.4.1 Produce interferogram 

 In this study, we use the StaMPS/MTI (Stanford Method for Persistent Scatterers/ 

Multi-Temporal InSAR) algorithm which is based on PSI concept proposed by Hooper et 

al. (2003, 2007a, 2007b, 2008). This algorithm uses single look complex (SLC) which 

are image in the same image plane of satellite data acquisition. Then, we use 

Interferometric synthetic aperture radar Scientific Computing Environment (ISCE) 

software. The initial development of this project received funding from NASA's Earth 

Science Technology Office (ESTO) through the Advanced Information Systems 

Technology (AIST) 2008. Currently, funding is provided through the NASA-ISRO SAR 

(NISAR) project. In this step, all of SAR images are paired with the reference image to 

create interferograms and remove the contribution of terrain. Finally, we use orbital data 

and DEM to geocode interferograms. 

3.4.2 Phase stability analysis 

The StaMPS method uses a higher ADI threshold (lower than 0.4) and phase analysis, 

which is based on the spatial correlation between displacements and other errors, to select 

PS (Fig. 3.8). The concept of PS is to choose the surface objects, which have a more stable 

signal such as building, road, or other anthropogenic structures. In Fig. 3.9, Hooper 

simulates 100 measurements in different situations, the pixel has a strong reflection object 
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which can provide a more stable signal (right) than a non-PS pixel (left). Using these 

stable objects, we can filter noise and get a more reliable time series result. 

𝐷𝐴 =
𝜎𝐴

𝜇𝐴
 

where 𝐷𝐴 is the amplitude parameter of a pixel; 𝜇𝐴 is the average amplitude of each pair; 

𝜎𝐴  is the standard deviation of amplitude of each pair. In StaMPS, Hooper suggests 

default 𝐷𝐴 value is 0.4. We use the default value to select PSs. The ADI (𝐷𝐴) of pixel is 

higher than 0.4 means the signal is unstable and will be abandoned; conversely, it will be 

retained as PSC (Persistent Scatterers Candidate) for further analysis. 

 

 

 

Fig. 3.1. The geometry of SLAR LOS direction (Lillesand and Kiefer., 1994). The echoes of house A 

and house B return to antenna at different time. 
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Fig. 3.2. The geometry of slant-range and ground range. (Modified from Ezeoke et al., 2014). 

Fig. 3.3. The schematic figure of azimuth resolution. 𝛽 is beam width. SR is slant-range. 
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Fig. 3.4. Concept of an array of real antenna position forming a synthetic aperture (Lillesand et al., 

2015) 

Fig. 3.5. The comparation between amplitude images. Left is the signal from one receiving. Right is 

improved by SAR technique (derived by Massonnet and Feigl, 1998). 
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Fig. 3.6. The concept of phase unwrapping (Osmanoğlu et al., 2016). 

Fig. 3.7. Radar interfering schematic diagram (謝嘉聲，2006). A1 and A2 is location of antenna at 

different time. B is distance between two antennas. H is flying height. “r” is distance at first antenna 

and ground. r + δ is distance between second antenna and ground. α is angle between B and 

horizontal line. θ is look angle. 
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 Fig. 3.9. Persistent Scatterer feature (Hooper, 2007). (a) The stability of surface object signal 

when there are no PS in pixel. (b) The stability of surface object signal when there are PS in pixel. 

Fig. 3.8. PSInSAR workflow 
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3.5 Data collection 

A set of data provided by the C-band Sentinel-1 satellite from the ESA acquired 

during the period from March 9, 2016 to November 14, 2021, are used in this study. To 

detect this area, Sentinel-1 data used in this study are from ASC (path 69) and DES (path 

105) which cover the SW Taiwan from Tainan to Pingtung (Table 3.2). To process 

PSInSAR, we need to choose one reference image. In the ASC and DES tracks, we choose 

the reference image acquired on January 17, 2019 (Figure 3.10) and January 7, 2019 

(Figure 3.11), respectively.  

 

 

Satellite Sentinel-1 

Direction Ascending Descending 

Heading angle -10.59∘ -169.49∘ 

Incidence angle 29.1° - 46.0° 

Path no. 69 105 

Reference image 2019/01/17 2019/01/07 

Band C-band (5.6 cm) 

 

Table 3.2: Sentinel-1 satellite information 
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Fig. 3.11. The PSInSAR baseline graph shows the temporal/ perpendicular baseline distribution of 

data of the orbit path 69. Blue lines represent the interferogram of two SAR acquisitions in black 

dots. 

Fig. 3.10. The PSInSAR baseline graph shows the temporal/ perpendicular baseline distribution of 

data of the orbit path 105. Blue lines represent the interferogram of two SAR acquisitions in black 

dots. 
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The Global Navigation Satellite System (GNSS) consists of the United States’ GPS 

(Global Positioning System), Russia’s GLONASS (Global Navigation System), China’s 

BeiDou Navigation Satellite System, and the European Union's Galileo system. GNSS is 

based on some real-time positioning, navigation, and time calibration. The global 

geocentric coordinate system is adopted and the origin of the coordinates is the center of 

the Earth, and the distance between the surface observation point and the technical 

satellite is obtained by measurement, and the coordinates of the surface position are 

obtained. GNSS can provide the three-dimensional coordinate location (longitude, 

latitude, and elevation) so that GNSS can be used to detect surface deformation (Segall 

and Davis, 1997). 

The continuous GNSS data from 2016 to 2021 used in this study were processed by 

the GPS lab at the Institute of Earth Sciences, Academia Sinica. And GPS lab uses GIPSY 

to calculate the resolution of GNSS data. To calculate the surface deformation, this study 

used GNSS time-series data to compare the InSAR result. GNSS time-series is the 

resolution of everyday location. For long-term observations, the GNSS time-series 

includes many signals from different sources. This study used Matlab to calculate the best 

fit of E-W direction, N-S direction, and Vertical direction of GNSS. There are 70 GNSS 

stations in our study area (Fig. 3.12). The workflow for producing GNSS data is below. 

In the first step, I checked the statistical dispersion of raw data and then we get rid of the 
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data out of 3 standard deviations in each direction. In the second step, I used the result 

produced in the first step to calculate the best-fit velocity. Then, I removed the values 

caused by antenna change, coseismic displacement, and secular (season) variation we can 

decrease error and get more precise GPS velocity data to correct PSInSAR data. 

  

Fig. 3.12. GNSS stations in our study area. Black dots represent GNSS stations. Dark red lines 

represent active structures. 



doi: 10.6342/NTU202400130
43 

 

Chapter 4 Result 

4.1 PS velocity fields in LOS direction 

 In this section, we would show the PSInSAR result in LOS direction with GNSS 

reference, and inversion to vertical direction result. I carefully checked all the 

interferograms and removed weird ones to reduce errors (see supplementary 1). The result 

of this study shows the sharp velocity across primary active faults in SW Taiwan. 

The first result is PSInSAR velocity in the ASC track and the reference image is 

2019/01/07. The velocity on the south side of the CKL fault is about 10 mm/yr and about 

5 mm/yr on the north side of the CKL fault, the velocity on the west side on the south 

section of the HCL fault is about 4 mm/yr and about 2 mm/yr at the east side of the HCL 

fault, and the velocity on the south side of the YC fault is about 8 mm/yr and about 5 

mm/yr on north side of the YC fault (Fig 4.1). The standard deviation (STD) of PS LOS 

velocities at the ASC track. We can see that the value of man-made buildings, such as 

railways, roads, and bridges is lower than 2 mm/yr (Fig. 4.2). 

The second result is PSInSAR velocity in the DES track, and the reference image is 

2019/01/17. The velocity at the west side on the south section of the HCL fault is about 5 

mm/yr and about 3 mm/yr at the east side of the HCL fault; the velocity on the west side 

of the FS fault is about -2 mm/yr and about 5 mm/yr on the north side of the FS fault (Fig 

4.3). Fig. 4.4 shows the STD of the LOS velocities at the DES track. We can also see that 
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the value of man-made buildings, such as railways, roads, and bridges is lower than 2 

mm/yr. 
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Fig. 4.2. PSInSAR result in LOS direction at ASC track.  Dark red lines represent active structures. 

Fig. 4.1. The standard deviation in ASC track. Dark red lines represent active structures. 



doi: 10.6342/NTU202400130
46 

 

 

  

 

Fig. 4.3. PSInSAR result in LOS direction at DES track. Dark red lines represent active 

structures. 

Fig. 4.4. The standard deviation in DES track. Dark red lines represent active structures. 
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4.2 Correct PSInSAR by GNSS velocity 

To assess PSInSAR results, we use GNSS stations data to correct. The PSInSAR 

shows displacements in LOS directions; however, GNSS measurements show 

displacements in E, N, and U directions. Therefore, to compare these two data, we 

projected GNSS data to LOS direction. The projection equation is following (Miller, 

2015): 

GNSSLOS = [ −sinθ ∗ sin(α − 270) − sinθ ∗ cos(α − 270)  cosθ] ∗ [ 
𝑉𝐸
𝑉𝑁
𝑉𝑈

 ] 

where GNSSLOS is projected GNSS velocity in LOS direction, θ is incline angle, VE is 

GNSS velocity in East-West direction, VN is GNSS velocity in North-South direction, 

VU is GNSS velocity in uplift direction, and α  is heading angle of azimuth direction 

(angle values see Table 4.1). The selected reference point is GS31, which has relatively 

stable time-series velocity in three directions (Fig. 4.5). The period here is from 2016 

after Meinong to 2020. Presumably, the stable area is considered as a spatial reference 

(low variation displacement value near GNSS station GS31), and PSInSAR results were 

compared to GNSS observations. 
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 The following result is the velocity of PS and GNSS observations in the LOS 

direction, and the reference point is GNSS station GS31. In the ASC track, we can see the 

pattern of two observations has the same trending at GS31 station and near active faults 

(Fig 4.6). In the DES track, there is also have good comparison of PS and GNSS 

observations (Fig 4.7).   

  

Fig. 4.5. GNSS station GS31 time-series and best-fit velocities in E, N, and U directions. Blue dots 

represent time-series velocities. Red line is the best-fit velocity. Black vertical lines represent the 

2016 Meinong earthquake and the antenna change. 
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Fig. 4.6. PSInSAR result reference to GNSS observations and the comparison of both data 

at GS31 station in ASC track. The white star is the reference point (GS31 station). The dots 

are GNSS stations in the study area. 
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Fig. 4.7. PSInSAR result reference to GNSS observations and the comparison both data at GS31 

station in DES track. The white star is the reference point (GS31 station). The dots are GNSS 

stations in the study area. 
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To correct PS observations by using GNSS observations, I calculated the correlation 

between two data (Fig. 4.8). According to Fig. 4.8, the GNSS observations and PS results 

show high-positive correlation (both directions larger than 0.7). Thus, I used GNSS 

observations to correct InSAR results by linear method. The step is as following: 

⚫ Take the average PS velocity within 200 meters around the GNSS stations 

⚫ Subtract the GNSS observations from the PS average velocity 

⚫ Interpolate the difference to the whole study area 

⚫ Raw PSs velocity plus difference 

After the correction, the difference between GNSS and PSInSAR is lower than 5 mm/yr 

in both tracks (Fig. 4.9; Fig. 4.10). 

Fig. 4.8. The correlation between GNSS velocities in the LOS direction and PS velocities in the LOS 

direction. The left one is in ASC track. The right one is in DES track. 
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Fig. 4.10. The difference between GNSS and PSInSAR (mean value of PS 

within 200 meters) on GNSS stations in the ASC track.  

Fig. 4.9. The difference between GNSS and PSInSAR (mean value of PS 

within 200 meters) on GNSS stations in the DES track.  
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4.3 Decomposition 

 In the study, I processed two LOS directions of PS velocity fields. Because of having 

two directions InSAR observations, I can decompose the result into vertical (Fig. 4.11) 

and E-W (Fig. 4.12) directions. Here, I used the InSAR3Ddisp Matlab script derived by 

Lin (2021) (https://github.com/LiChiehLin/3D_decomposition), which presumes the 

contribution of N-S component is 0 because the orbital track of the satellite is nearly 

parallel to the N-S direction. The main contribution of active faults is the E-W direction 

so that the error caused by neglecting the N-S component is acceptable (Fuhrmann and 

Garthwaite, 2019). The resolution of decomposition is 100 meters in each grid. In the 

vertical direction, the velocity difference of the HCL fault and HKS fault is 6 mm/yr and 

3 mm/yr, respectively. Dade Park, Ciaotou Park, TR railroad, and THSR railroad are 

crossed by the faults mentioned above. In the E-W direction, the velocity difference of 

the CKL fault, YC fault, and FS fault is 4 mm/yr, 4 mm/yr, and 3 mm/yr, respectively. TR 

railroad, THSR railroad, and Freeway systems are crossed by the fault mentioned above. 

The allowable time of these transportation systems will be discussed in the next Chapter. 

 

 

https://github.com/LiChiehLin/3D_decomposition
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Fig. 4.11. Use two direction InSAR observations to decompose into velocity in vertical direction.  
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Fig. 4.12. Use two direction InSAR observations to decompose into velocity in E-W direction.  
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4.4 Comparison PS and leveling 

  To verify our PS result, I used leveling data derived by CGS (經濟部地質調查所，

2022), which has time span from 2016 to 2022. The location of other leveling survey 

lines has sparse PS observations so we cannot have a good comparison. Therefore, I 

showed 2 leveling survey lines, which cross the HCL fault and HKS fault, respectively. 

The PS observation here is in the vertical direction, which is extracted along the leveling 

survey line. 

  The velocities between leveling and PS observations have the same patterns in both 

profiles. The difference of PS and leveling of most points along the profile line is lower 

than 1 mm/yr and the largest difference is lower than 3 mm/yr in both the HCL (Fig. 

4.13) and HKS profile (Fig. 4.14). The fourth leveling point of HKS shows a larger error 

and has a different pattern compared to other points (Fig. 4.15). 
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Fig. 4.13. The difference of PS and leveling in HCL profile. Top is the location of HCL profile. 

Bottom is the comparison of velocity of PS and leveling data. 
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Fig. 4.14. The difference of PS and leveling in HKS profile. Top is the location of HKS profile. 

Bottom is the comparison of velocity of PS and leveling data. 
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Fig. 4.15. The weird leveling point at different time span (經濟部地質調查所，2022). 
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Chapter 5 Discussion 

5.1 Active fault motion 

 The PSInSAR result shows the velocity change along fault so that we can plot the 

profile line and time-series displacements. The velocity differences across some active 

faults have sharp changing. 

In the middle of the Houchiali (HCL) fault, the velocity differences are about 4 

mm/yr and 2 mm/yr in the vertical and E-W directions, respectively (Fig. 5.1), this value 

is lower than the previous study result, which is about 10 mm/yr (Huang et al, 2006). The 

time-series displacements along the profile line across the HCL fault shows the larger 

deformation on the hanging wall, but the velocity decrease from 7 (before 2019) to 3 

mm/yr (after 2019) in the ASC track (Fig. 5.2). 

The velocity difference along the THSR railroad across the CKL fault is about 6 

mm/yr in the E-W direction within 1000 meters (Fig. 5.3). The time-series displacements 

along the THSR railroad across the CKL fault show the larger deformation on the hanging 

wall. The velocity remains constant are about 10 mm/yr and 9 mm/yr in the ASC and DES 

tracks, respectively (Fig. 5.4). 

The velocity difference along the TR railroad across the YC fault is about 5 mm/yr 

in the E-W direction within 1000 meters (Fig. 5.5). And the time-series displacement 

trending shows that the hanging wall is faster than the foot wall in both track. The time-
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series displacements along the THSR railroad across the YC fault shows the larger 

deformation on the hanging wall. The velocity difference is about 3 mm/yr in both ASC 

and DES tracks, and the velocity decreases about 2 mm/yr after 2019 (Fig. 5.6).  

The pattern of decreasing on the HCL and YC faults is similar to the non-linear post-

seismic pattern processed by the piecewise linear functions proposed in previous studies 

(Altamimi et al. 2007, 2011; Blick and Donnelly 2016; Klein et al. 2019). Although our 

time-series is without pre-seismic observations, we still can see the pattern of P1 before 

2019 in Fig. 5.2, which shows the post-seismic curve so that we infer that this non-linear 

decay is finished in 2019. And if we want to better fit this kind of data in the future, we 

can subtract the inter-seismic velocities, which are estimated by using neighboring GNSS 

stations from the post-seismic time series (Yu and Kuo, 2001; Chen et al., 2020). 
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Fig. 5.1. The velocity change along p1-p2 profile line at HCL fault  
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Fig. 5.2. The time-series displacements at p1 to p4 which are across the HCL fault in LOS direction. 
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Fig. 5.3. The velocity change along p1-p2 profile line at CKL fault 
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Fig. 5.4. The time-series displacements at p1 to p4 which are across the CKL fault in LOS direction. 
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Fig. 5.5. The velocity change along p1-p2 profile line at YC fault 
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Fig. 5.6. The time-series displacements at p1 to p5 which are across the YC fault in LOS direction. 
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5.2 Infrastructure deformation 

5.2.1 Transportation systems 

The transportation systems in our study area include Taiwan High Speed Rail (THSR), 

Taiwan Railway (TR), and Freeway. The observations show the velocity difference at 

some places on these transportation systems. In this section, I will compare our result 

with the allowable deformation of different pavements. 

THSR 

86% of the THSR tracks are J-slab tracks with a gauge of 1435 mm. This kind of 

track is laid on top of prestressed concrete, which can no longer withstand tensile loads, 

especially in surface deformation area. The allowable deformation limits (容許變形值) 

of J-slab track are 50 mm/ 100 meters and 65 mm/ 100 meters in vertical and horizontal 

directions, respectively (THSR, 2011).  

The deformation pattern of THSR railroads, according to the PS result and 

decompose result, is near the HKS, CKL, and FS faults. (Fig. 5.7; Fig. 5.8). Therefore, I 

plotted the profile along the THSR railroad (Fig. 5.9), and the time-series displacements 

on different side of these velocity changing boundaries. The distance chosen between the 

two points is 100 meters. In THSR-1, the THSR railroad across the HKS fault shows the 

main contribution is a vertical component, and the velocities difference is about 1 mm/yr 

(Fig. 5.10). In THSR-2, the THSR railroad across the CKL fault, shows the main 
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contribution is the E-W component, and the velocities difference across the CKL fault is 

about 6 mm/yr (Fig. 5.11). In THSR-3, although there is no fault trace cut through the 

THSR railroad, there still have sharp velocities change. The main contribution is the E-

W component, and the velocities difference here decreases to about 2 mm/yr (Fig. 5.12). 

The entire Taiwan High Speed Rail (THSR) railroad in our study area is constructed 

in the viaduct type with prestressed concrete. According to the allowable deformation 

limits of the track with a gauge of 1453 mm (Fig. 5.13), the equation of allowable 

deformation in horizontal direction is as following: 

𝑇ℎ =  
𝑀ℎ

𝑉ℎ
 , 𝑀ℎ =  

1.3 × 𝐿

2000
 

where 𝑇ℎ is the time required for the horizontal deformation to reach the allowable limit, 

𝑀ℎ  is allowable deformation is horizontal direction, and L is the bridge span. The 

equation of allowable deformation in the vertical direction is as following: 

𝑇𝑣 =  
𝑀𝑣

𝑉𝑣
 , 𝑀𝑣 =  

𝐿

2000
 

where 𝑇𝑣 is the time required for the horizontal deformation to reach the allowable limit 

and 𝑀𝑣 is allowable deformation is the horizontal direction. 

To verify our result, I compare the result with a previous study (Li, 2020), they use 

the GNSS observations and leveling data from THSR company to calculate the allowable 

time along the railroad which cross the CKL fault (Fig. 5.14) (Table 5.1). I neglected the 
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points, which have larger error than observations. At the T331K+500~T331K+600 (cross 

CKL fault), it will reach to allowable deformation within 7 years. 

  

Fig. 5.7. The velocity field near THSR railroad in vertical and E-W directions. 

Fig. 5.8. PSInSAR result near THSR railroad with sharp velocity change in LOS direction. 

Left is ASC track. Right is DES track. The dark orange line is THSR railroad. The white 

rectangular is the time-series location. CS is the Chishan fault. 
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Fig. 5.9. The profile along THSR railroad. From 323K to 347K is from N to S direction. 

The black one is velocity. The gray one is error.  
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Fig. 5.10. The time-series displacement in THSR-1 

Fig. 5.12. The time-series displacement in THSR-3 

Fig. 5.11. The time-series displacement in THSR-2 
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Fig. 5.14. The allowable deformation limits of THSR track (gauge: 1435 mm). Top 

is vertical direction. Bottom is horizontal direction. L is the bridge span. 

Fig. 5.13. The location of the THSR mileage. Purple circle is THSR mileage. White star is 

T331+500~T331+600. 
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TR 

 The TR railroad (track) is mainly composed of ballast, crossties, subgrade, and track 

assembly fittings. According to the safety regulations for track facilities, the condition of 

crossties will affect the overall safety of the track. When the deformation of the track 

reaches to certain level, it will cause damage to the crossties (Federal Railroad 

Administration (TRA), 2017). In this section, I will discuss the deformation limits of TR’s 

track with a gauge of 1067 mm. 

In TR railroad, I also focus on the sections that with obvious velocity difference 

boundaries (Fig. 5.15; Fig. 5.16). I plotted the profile along the TR railroad from 4 km 

north of the YC fault to the right bank of the Kaoping River (Fig. 5.17). There are many 

velocity changing boundaries so I plotted the time-series displacements on different sides 

of them. The TR-1 across the Youchang fault shows sharp velocity change, which has a 

Table 5.1: The horizontal, vertical deformation, and allowable time on the CKL 

section. The values in parentheses represent the allowable time from Li (2020). 
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horizontal contribution, is about 4 mm/yr on the different sides of the fault within 100 

meters (Fig. 5.18). In TR-2, which has a horizontal contribution, shows the velocity 

difference across the north of the FS fault. The velocity changing is about 3 mm/yr within 

100 meters (Fig. 5.19). In TR-3, which has a horizontal contribution, there is about a 1 

mm/yr difference located at the east side of the FS fault (Fig. 5.20). 

 The railroad in our study area includes the Western Trunk Line (西部鐵路縱貫線) 

and the Pingtung Line. The deformation of the railroad can be divided into different types, 

including level, longitudinal level, and alignment (Table. 5.2; The regulations of railway 

construction, Taiwan Railway MOC). Here I only discuss longitudinal level and 

alignment in this study. If the displacements accumulated by the same velocity rate, it will 

reach the allowable limit within 10 years in both longitudinal level and alignment types. 
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Fig. 5.16. The velocity field near TR railroad in vertical and E-W directions. 

Fig. 5.15. PSInSAR result near TR railroad with sharp velocity change in LOS direction. Left is 

ASC track. Right is DES track. The black line is TR railroad. The white rectangular is the time-

series location. FSF is the Fengshan hills frontal structure. FS is the Fengshan fault. 
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Fig. 5.17. The profile along TR railroad. From 0K to 50K is from N to S direction. 
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Fig. 5.19. The time-series displacement in TR-2 

Fig. 5.18. The time-series displacement in TR-1 

Fig. 5.20. The time-series displacement in TR-3.         
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Table 5.2: The allowable deformation and deformation types of rail track (gauge: 1067 mm), Taiwan 

Railway Administration (2010). 
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Planning route 

In SW Taiwan, except for the route mentioned above, there still planned 

transportation systems that will be built in the future, such as Freeway no.7 (N7), Kaoping 

Expressway (KP-ex), and THSR Pingtung system (THSR-P).  

In the N7 system, I also focus on the sections with obvious differences (Fig. 5.21; 

Fig. 5.22). I plotted the profile line along the N7 route, which shows the velocity changing 

boundaries near the FS fault trace (Fig. 5.23) so that I plotted the time-series displacement 

at different sides of the FS fault. The N7-1 has a sharp velocity difference east of the FS 

structure, showing the main contribution in the horizontal direction of about 3 mm/yr 

within 200 meters (Fig. 5.24). In N7-2, the velocity difference, which shows the main 

contribution in the vertical direction, is about 3 mm/yr within 200 meters at the different 

sides of the FS structure (Fig. 5.25).  

The KP-ex system and THSR-P systems have the universal design at the deformation 

region, which is near the FS fault (Fig. 5.26; Fig. 5.27). I plotted the profile along the 

THSR-P and KP-ex route of the universal design, which shows the velocity changing at 

the FS fault in the vertical direction (Fig. 5.28); however, the point here is very rare so I 

plotted time-series displacement. In THSR KP-1, it shows the main contribution in the 

vertical direction, the velocity difference is about 4 mm/yr (Fig. 5.29). 

 According to the regulation of pavement in “Highway Maintenance Manual (2019)” 

made by Freeway Bureau, MOTC, the allowable deformation of pavement can be divided 
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into 3 classes (Table. 5.2). The depression and upheaval mean that the deformation within 

each pavement, and the faulting means that the deformation between different pavements 

(Fig. 5.30). By considering displacements and neglecting other factors, the N7-1 will 

reach to H class within 25 years in the threshold of depression and upheaval, and it will 

reach to H class within 20 years in the threshold of faulting. The THSR KP-1 is compared 

to the highway limits. It will reach to H class within 25 years in the threshold of depression 

and upheaval, and it will reach to H class within 10 years in the threshold of faulting; the 

THSR KP-1 compare to the track with a gauge of 1453 mm, calculated by equation above, 

it will reach the allowable time within 17 years. 
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Fig. 5.21. PSInSAR result near N7 route with sharp velocity change in LOS direction. 

Left is ASC track. Right is DES track. The black line is Freeway no. 7. 

Fig. 5.22. The velocity field near N7 system in vertical and E-W directions. 
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Fig. 5.23. The profile along N7 route. From 0K to 20K is from N to S direction. 
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Fig. 5.24. The time-series displacement in N7-1 

Fig. 5.25. The time-series displacement in N7-2 
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Fig. 5.27. The velocity field near KP-ex and THSR-P systems in vertical and E-W directions. 

Fig. 5.26. PSInSAR result near KP-ex and THSR-P systems with sharp velocity change in LOS 

direction. The dark green line is KP-ex system. The dark purple line is THSR-P system. The 

white rectangular is the time-series location. 
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Fig. 5.28. The profile along THSR-P and KP-ex route. From 0K to 4K is from W to E direction. 
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Table 5.1: The allowable deformation of freeway pavement derived by Freeway Bureau, MOTC (2019). 

Fig. 5.29. The time-series displacement in THSR KP-1 

Fig. 5.30. The schematic of Faulting and Depression (Upheaval) of pavement. 
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5.2.2 Industrial parks 

 The unequal deformation not only can cause damage to transportation systems but 

can have a great impact on industrial parks. This section shows the industrial parks, which 

have unequal deformation within the park. The Yongkang Park, Tainan is cut through by 

the Hsinhua fault (HSH), which has a velocity difference is about 4~5 mm/yr south of the 

fault trace in the LOS and vertical directions (Fig. 5.31; Fig. 5.32). The Dade Park, 

Kaohsiung is cut through by the HKS fault, which has unequal deformation is about 1~3 

mm/yr (Fig. 5.33; Fig. 5.34). The velocity difference in Yanchao and Ciaotou Park, 

Kaohsiung which is cut through by the CKL fault is about 3~7 mm/yr within the park 

(Fig. 5.35; Fig. 5.36). 

 The “Regulations for the Delineation, Amendment and Revocation of Geologically 

Sensitive Area Status” from CGS illustrates the sensitive area of an active fault. This area 

is based on a fault deformation zone based on historical earthquake data and geological 

drilling data. There are only 3 active faults that have sensitive areas in our study area, 

namely the HSH, HSK, and CS faults. The sensitive area of the HSH fault is 150 meters 

on both sides of the fault trace. The sensitive areas of the HKS fault and CS fault are 200 

meters and 100 meters in the hanging wall and foot wall, respectively. Along the fault 

traces of the CGS, only the Ciaotou Park area is intersected by a fault, while the other 

parks are not within any sensitive zone. However, the parks have unequal deformation 
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within parks near the fault traces, and even some parks are intersected by TEM fault traces 

based on the PS observations. In addition, the areas near some faults are also active, such 

as the Houchiali fault and the Chekualin fault. Although we cannot confirm the 

deformation here is caused by fault activity, it is still necessary to pay attention to such 

deformation near the active faults. Thus, it is recommended to establish active fault 

sensitive areas in the future. 

  

Fig. 5.31. The velocity field near the Yongkang park in LOS and decomposition directions. 
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Fig. 5.32. The velocity along AB profile line and the time-series displacement at Yongkang 

Park in decomposition and LOS directions, respectively. 
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Fig. 5.33. The velocity field near the Dade Park in LOS and decomposition directions. 
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Fig. 5.34. The velocity along AB profile line and the time-series displacement at Dade Park in 

LOS and decomposition directions, respectively. 
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Fig. 5.35. The velocity field near the Yanchao and Ciaotou park in LOS and decomposition 

directions. 
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Fig. 5.36. The velocity along AB profile line and the time-series displacement at Ciaotou and 

Yanchao Park in LOS and decomposition directions. 
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Chapter 6 Conclusions 

 This study uses StaMPS/MTI algorithm to process PSInSAR from 2016 (after the 

Meinong earthquake) to 2022. I generated velocity fields near active faults, transportation 

systems, and industrial parks in SW Taiwan. The conclusions are as following: 

There are many active faults across urban areas in our study area. The PSI result 

shows reliable displacements by removing spatial-temporal error because of the stable 

signals reflected from human objects. Thus, we can get the velocity and time-series 

displacements across the active faults. Although the result is during the interseismic 

period, we can still see the displacements so there should be surface fault creep along 

some active structures. The slip rates are shown below: the HCL fault has 3~6 mm/yr, the 

HKS fault has 1~2 mm/yr, the CKL fault has 4~8 mm/yr, and the YC fault has 1~3 mm/yr. 

According to the observations, THSR will reach to limit within 7 years, the TR railroad 

will reach to limit within 10 years, and the Freeway system will reach to H class within 

10 years. Although the Freeway systems mentioned above and industrial parks are not 

affected immediately, the accumulation of deformation would have an impact on them in 

the future. Through this study, we know the present-day situation of surface deformation 

on active faults and critical infrastructures of urban areas in SW Taiwan. There is still 

need for more geodetic observations to monitor to provide a better vision of future hazards. 
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Supplementary 1: Interferograms 

Figure A.1: Ascending track 
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Fig. A.2: Descending track 
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