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中文摘要 

本研究探討機器學習（ML）模型在營收預測與投資策略上的表現，特別聚焦於

每月揭露的資料。我們評估六種 ML 模型，其中隨機森林（Random Forest）在

預測準確度上表現最佳，且優於分析師預測。根據其預測建構的投資策略，在扣

除交易成本後可產生年化超額報酬 51.29%。我們提出的大多數 ML 模型在報酬

表現上優於大型語言模型（LLMs）與自我回歸整合移動平均（ARIMA）模型，

顯示這些方法在提升投資績效方面具有明顯優勢。 

關鍵字: 營收預測;機器學習;大型語言模型;分析師預測;財務分析;台灣股 

市;ARIMA模型  
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英文摘要 

This study examines the predictive performance of machine learning (ML) models in 

revenue forecasting and investment strategies, focusing on monthly disclosures. Six 

ML models are evaluated, with Random Forest achieving the highest accuracy and 

exceeding analyst forecasts. Strategies based on its predictions yield an annualized 

excess return of 51.29% after transaction costs. Most of the ML models we propose 

generate higher returns than large language models (LLMs) and Autoregressive 

Integrated Moving Average (ARIMA) models, demonstrating their effectiveness in 

improving investment performance. 

Keywords: Predicted revenue, Machine learning, Large language model, Analyst 

forecast, Financial analysis, Taiwan stock market, ARIMA model  
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1. Introduction 

Data is the new oil of the 21st century, as initially stated by Clive Humby1, and 

Andrew Ng further emphasizes that machine learning (ML) is the key to unlocking its 

value.2 This view highlights ML's ability to extract meaningful patterns from modern 

financial markets' vast and intricate data. To improve the accuracy and adaptability of 

revenue forecasts, we employ high-frequency data, which captures short-term 

fluctuations and provides a more detailed view of firm performance than traditional 

lower-frequency datasets. As revenue has become increasingly important as a forecasting 

signal, we build on the approach of Kureljusic and Reisch (2022), who apply machine 

learning (ML) techniques to predict annual revenue. Our study extends this line of 

research by incorporating high-frequency monthly data to improve forecasting accuracy 

and by examining the relationship between predicted revenue growth and stock returns. 

We also benchmark the performance of ML models against large language models (LLMs) 

and autoregressive integrated moving average (ARIMA) models. 

Revenue represents the direct outcome of a company’s core operations, and its 

sustained growth often signals competitive advantages and market potential. Its 

significance stems from several factors. First, the Conceptual Framework for Financial 

                                                      
1 https://en.wikipedia.org/wiki/Clive_Humby 
2 https://mitsloan.mit.edu/ideas-made-to-matter/why-its-time-data-centric-artificial-intelligence 
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Reporting has further de-emphasized the income statement, limiting earnings' ability to 

fully convey information to investors due to mismatches between revenues and expenses 

resulting from differences in recognition timing (Barker et al. (2020)). Second, revenue 

is generally more resistant to discretionary manipulation, making it a more reliable 

indicator of firm performance. Its persistence and incorporation of future earnings and 

cash flow information enhance its value relevance and informational content (Chandra 

and Ro (2008), Core, Guay, and Van Buskirk (2003)). Finally, the growing dominance of 

the technology sector has amplified the importance of revenue in financial reporting. 

Firms driven by intellectual capital and innovation devote substantial resources to 

research and development (R&D) and the acquisition of intangible assets, often yielding 

long-term benefits not immediately captured by financial statements. This delay distorts 

traditional earnings-based metrics, diminishing their reliability as measures of firm value 

(Chen and Wu (2020), Lev (2018), Srivastava (2014)). Unlike earnings, which are 

influenced by the accounting treatment of capitalized expenditures, revenue reflects a 

more immediate and consistent measure of firm performance (Barth, Li, and McClure 

(2023)). 

In empirical finance, revenue surprises have long been recognized for their 

informational value, shaping market perceptions of firm performance. Empirical research 

consistently documents their influence on stock prices and investor behavior (Chen and 
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Yu (2022), Ertimur, Livnat, and Martikainen (2003), Jegadeesh and Livnat (2006)). 

However, advances in information dissemination have fundamentally transformed 

revenue surprise strategies. As financial markets become more efficient, market reactions 

to revenue announcements have accelerated (Chordia, Subrahmanyam, and Tong (2014), 

Martineau (2019)), reducing opportunities for investors to exploit these events post-

announcement. In this context, the ability to accurately forecast revenue growth prior to 

public disclosure becomes increasingly valuable to investors. 

Analyst forecasts have long been integral to capital markets, serving as essential 

performance benchmarks and shaping investor expectations (Houston, Lev, and Tucker 

(2010)). These forecasts facilitate communication between firms and external 

stakeholders, with earnings and revenue being the primary areas of analysis (Graham, 

Harvey, and Rajgopal (2005)). Revenue, in particular, is a central component of analysts’ 

assessments, offering a direct measure of a firm’s operational efficiency, growth prospects, 

and product differentiation strategies (Ertimur, Mayew, and Stubben (2011)). However, 

analyst forecasts are not universally available, and their periodic nature—typically issued 

quarterly or annually—limits the timeliness of information accessible to investors. 

Traditional analyst-driven forecasting approaches may fail to capture short-term revenue 

fluctuations, particularly in rapidly evolving industries where early revenue signals are 

essential for investment strategies. 
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This study employs ML techniques to produce more timely revenue forecasts, 

offering a data-driven framework that enhances market responsiveness. Given the double-

entry bookkeeping structure of accounting and the inherent interdependencies among 

financial variables, the field is well-suited for automated ML assessments (Libbrecht and 

Noble (2015), Penman (2013), Soliman (2008)). ML algorithms process large-scale, 

complex datasets, identify subtle patterns that may elude human analysts, and 

continuously refine predictions as new information becomes available. These attributes 

make ML particularly effective in enhancing both the frequency and accuracy of revenue 

forecasts. Our study incorporates high-frequency monthly revenue data to improve 

forecast precision and better capture short-term revenue dynamics. We further examine 

whether these forecasts generate tradable signals that lead to economically significant 

abnormal returns, addressing investors' primary focus on stock performance. 

This study focuses on Taiwan's stock market for several reasons that make it an ideal 

setting for examining the predictive capacity of ML in financial forecasting. First, 

Taiwan’s unique practice of disclosing monthly revenue distinguishes it from other 

markets, where revenue and quarterly reports are typically released simultaneously, 

allowing only an assessment of the incremental informational value of revenue. Due to 

Taiwan Stock Exchange (TSE) regulations, firms must release monthly revenue data at 

least 20 days before quarterly reports (Chen and Yu (2022)). This regulatory requirement 
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clarifies the distinction between revenue and other financial disclosures, enabling a more 

precise evaluation of its relationship with stock returns while mitigating distortions from 

other accounting variables. 

Second, granular monthly revenue data availability offers a rich dataset that 

enhances ML model accuracy. Frequent updates improve pattern recognition, enable 

models to track short-term revenue fluctuations, and enhance adaptability to evolving 

market conditions. A greater volume of observations also mitigates overfitting by 

expanding the training sample, leading to more robust and generalizable predictions. 

Additionally, more frequent data points allow ML models to detect nonlinear relationships 

and subtle shifts in revenue patterns that coarser datasets may fail to capture, ultimately 

improving predictive performance. 

Finally, Taiwan’s stock market is heavily influenced by the technology sector, which 

accounts for approximately 50% of total market capitalization. The sector consists 

primarily of semiconductor, electronics manufacturing, and high-tech firms, where 

intangible assets and R&D expenditures are fundamental drivers of value creation. Since 

these expenditures are typically expensed as incurred, their benefits take time to 

materialize, making earnings a less reliable indicator of firm performance (Chen and Wu 

(2020), Wang et al. (2013), Yang and Chen (2003)). As a result, investors in technology-

driven industries tend to emphasize revenue as a more timely and reliable measure of 
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financial health. 

Artificial intelligence (AI) advancements have introduced alternative approaches to 

financial forecasting. Generative AI, particularly LLMs such as GPT-4, has demonstrated 

notable strengths in text analysis, interpretation, and generation. Recent studies suggest 

that these models can rival financial analysts in numerical evaluation and judgment 

(Lopez-Lira and Tang (2024)). While LLMs attain earnings prediction accuracy on par 

with Neural Networks, their effectiveness in revenue forecasting, particularly in high-

frequency settings, remains underexamined. This study provides a systematic comparison 

of LLMs and ML models in revenue forecasting.  

The empirical results indicate that most ML models outperform LLMs, with Random 

Forest achieving the highest predictive accuracy and generating superior risk-adjusted 

returns in portfolio applications. The corresponding t-statistic exceeds the threshold of 

three proposed by Harvey et al. (2016), supporting both statistical and economic 

significance. These findings demonstrate the effectiveness of ML in financial forecasting 

and quantitative asset management. 

There are three primary contributions of this research. First, building on Kajüter et 

al. (2022), who reviewed 112 studies on interim reports and acknowledged their benefits 

while noting that several important aspects have yet to be fully explored, we find that 

monthly revenue disclosures enhance financial information relevance by providing both 
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predictive and confirmatory value, as set forth in the Conceptual Framework for Financial 

Reporting. Our findings indicate that ML-based revenue predictions improve forecasting 

accuracy, strengthening the predictive value of revenue disclosures by helping market 

participants anticipate firm performance. Additionally, these updates provide feedback 

information, enabling investors to reassess prior expectations and refine their evaluations. 

Second, more frequent disclosures enhance the informational content of financial 

reports (Smith (2024)). While Kureljusic and Reisch (2022) focus on annual revenue 

projections, we employ ML models to generate monthly forecasts, providing investors 

with more timely financial data. A higher forecasting frequency contributes to market 

efficiency by improving the responsiveness of estimates. Our results indicate that 

Random Forest achieves a lower mean absolute percentage error (MAPE) of 8.0%, 

compared to 13.29% reported by Kureljusic and Reisch (2022), suggesting improved 

predictive accuracy under a higher-frequency setting. 

Finally, with the growing interest in ML and LLMs, recent research has increasingly 

examined their effectiveness in financial forecasting. While prior studies focus on their 

ability to predict earnings per share (EPS) direction, we extend this analysis by 

incorporating the latest GPT-4o model and high-frequency data to evaluate whether these 

models can more precisely capture revenue magnitude. Our findings indicate that most of 

our proposed ML models perform superior to LLMs in revenue forecasting, confirming 
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their advantage in capturing revenue trends. 

The remainder of this paper is structured as follows: Section 2 reviews the literature 

on revenue, analyst forecasts, and ML applications in financial analysis. Section 3 

provides an overview of the sample selection and research model. Section 4 presents 

empirical results on ML predictive accuracy and profitability. Section 5 provides 

additional analyses for robustness. Finally, Section 6 summarizes key findings, discusses 

implications, and suggests directions for future research. 

2. Literature Review 

2.1 The Market Impact of Monthly Revenue Disclosures 

Research on revenue disclosures has predominantly focused on the U.S. market 

(Butler, Kraft, and Weiss (2007)) and international settings (Mensah and Werner (2008)), 

with an emphasis on how quarterly and semi-annual reports influence capital market 

behavior (Tsao, Lu, and Keung (2018)). In contrast, Taiwan’s regulatory framework is 

distinctive, as it is the only market globally where listed and Over-the-Counter (OTC) 

companies must disclose monthly revenue from the prior month by the 10th of the 

following month. This requirement provides investors with revenue data significantly 

earlier than in markets that rely solely on quarterly financial statements. Consequently, 

these disclosures supplement quarterly earnings reports, offering additional financial 

insight and a core indicator of a firm’s financial health. The early availability of revenue 
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data enables investors and analysts to assess profitability and stock performance with 

greater immediacy, offering a timelier perspective on operational efficiency. 

Since the introduction of monthly revenue announcements in 1988 and their 

refinement with the implementation of International Financial Reporting Standards (IFRS) 

in 2013, the focus has shifted from individual to consolidated revenue disclosures. As 

mandated by the Securities Exchange Act, firms must publish monthly operating data on 

the TSE website, including revenue, year-over-year comparisons, cumulative revenue, 

and percentage changes (Chen and Yu (2022)). These detailed disclosures enhance market 

transparency and protect investor interests, facilitating continuous monitoring of 

corporate performance and enabling more precise stock price adjustments, strengthening 

market responsiveness and informational integrity. 

Recent academic studies have increasingly analyzed the impact of revenue 

information in stock price formation across different markets. Studies show that revenue 

surprises are associated with substantial upward movements in stock prices, illustrating 

its importance for investment decisions (Chen et al. (2014), Ertimur, Livnat, and 

Martikainen (2003), Jegadeesh and Livnat (2006)). Rees and Sivaramakrishnan (2004) 

explore the influence of revenue forecasts in shaping investor valuation processes. 

Research on Taiwan’s market indicates that investor reactions to earnings and revenue 

disclosures differ, particularly between quarterly earnings and monthly revenue growth. 
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Stocks exhibiting strong revenue growth are more likely to deliver superior future returns 

compared to those with weaker growth, emphasizing the relevance of monthly revenue 

disclosures in improving price efficiency and addressing behavioral biases (Wang and 

Lien (2022)). 

2.2 The Effectiveness and Limitations of Analyst Revenue Forecasts 

Sell-side financial analysts play a central role in bridging the information gap 

between companies and market participants, synthesizing data from public and private 

sources to produce research reports that include earnings projections, revenue estimates, 

and valuation targets (Ramnath, Rock, and Shane (2008)). These assessments often reflect 

prevailing market sentiment, assisting investors in portfolio decisions. Analysts' 

perspectives influence investor behavior and enhance price formation and informational 

efficiency. Their ability to distill complex information into meaningful forecasts makes 

their projections an essential component of investment strategy formulation, facilitating 

the flow of information between firms and the market. 

In financial markets, revenue and earnings forecasts are widely used to assess a 

company's strength (Gilliam (2014), Keung (2010)). The emphasis on revenue projections 

illustrates their relevance in evaluating corporate value, as they offer a fundamental 

measure of business expansion and competitive positioning. Revenue disclosures become 

particularly significant when earnings reliability is compromised, such as in firms heavily 
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engaged in R&D intensity. In these firms, investors react more strongly to revenue than 

earnings surprises (Kama (2009)). As a result, analysts’ revenue forecasts provide 

investors with an additional reference point beyond earnings-based measures, enhancing 

the assessment of financial performance (Bilinski and Eames (2019), Huang and Hairston 

(2023)). 

Despite their importance, the opacity of analysts' valuation processes raises 

questions about the reliability of their estimates (Bradshaw (2011), Brown et al. (2015)). 

Lorenz and Homburg (2018) identify several factors affecting the precision of revenue 

forecasts, including the projection horizon, timing of revisions, analysts’ experience, 

update frequency, coverage scope, reputation, the volume of earnings estimates issued, 

the boldness of predictions, and past forecasting performance. Moreover, a lack of 

independence may introduce optimistic biases, as analysts seek to maintain favorable 

relationships with corporate management or stimulate brokerage trading activity (Brown, 

Lin, and Zhou (2022), Cowen, Groysberg, and Healy (2006), Lim (2001)), raising doubts 

about their objectivity and accuracy. 

To improve the transparency and reliability of revenue forecasting, this study applies 

multiple ML models to generate data-driven predictions, offering a more structured and 

replicable alternative to traditional analyst estimates. By evaluating the predictive 
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performance of different ML approaches relative to analyst forecasts, we provide insights 

into the effectiveness of algorithmic forecasting for market participants. 

2.3 The Role of Machine Learning in Financial Forecasting 

The emergence of AI has positioned ML as a transformative tool in modern finance. 

ML techniques are generally categorized into supervised and unsupervised learning, with 

the primary distinction being the presence of labeled data in training sets.  Supervised 

learning refers to settings in which each observation includes both input features and a 

known output—commonly referred to as a label—allowing the model to learn the 

relationship between inputs and outcomes (Kureljusic and Karger (2024)). In contrast, 

unsupervised learning methods operate without labeled outputs and aim to uncover 

hidden structures or patterns within the data, such as clustering firms based on financial 

characteristics. This study focuses on supervised ML, which aims to minimize prediction 

errors when forecasting actual outcomes, making it particularly effective in assessing 

corporate performance.  

The double-entry bookkeeping system, established by Luca Pacioli3, provides the 

foundational accounting structure, capturing the interrelationships among financial 

statement items through a well-defined logic. With their capacity to process high-

dimensional data, ML algorithms effectively model the complexities and dependencies 

                                                      
3 https://en.wikipedia.org/wiki/Luca_Pacioli 
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within financial statements and other financial data, leading to more robust and accurate 

corporate outcome predictions. 

ML has demonstrated strong predictive capabilities for key financial market 

indicators, including stock returns (Gu, Kelly, and Xiu (2020)), earnings (Cao and You 

(2024); Chen et al. (2022); Hunt, Myers, and Myers (2022)), and revenue (Kureljusic and 

Reisch (2022)). Compared to earnings, revenue is less affected by cost allocation methods 

and accounting choices, resulting in greater data stability and lower volatility (Ku, 2011). 

This stability enhances the predictive accuracy of ML models in revenue forecasting. 

While Kureljusic and Reisch (2022) analyze revenue prediction using annual data, their 

study does not account for the higher frequency of revenue disclosures and their 

implications for market dynamics. As financial markets undergo rapid change and 

regulations increasingly shape strategic corporate responses, our study extends this line 

of research by employing monthly data to capture more granular revenue fluctuations and 

enhance forecasting precision. Furthermore, by linking ML-generated revenue forecasts 

to stock returns, we examine their role in shaping investor expectations and influencing 

price dynamics. 

3. Sample Selection and Research Methodology 

3.1 Data and Sample Selection 
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We examine companies listed on the TSE and OTC markets from 2013 to 2022. The 

dataset includes daily stock returns, monthly revenues, quarterly financial statements, 

annual report disclosures, and yearly analyst forecasts4 , all sourced from the Taiwan 

Economic Journal (TEJ) database, a primary source on Taiwan's corporate activities, 

securities market operations, and economic indicators. The sample started in 2013 to 

ensure consistency in financial reporting following Taiwan's adoption of IFRS. To 

account for broader market risk factors, we supplement this dataset with Fama-French 

five-factor data from Kenneth French’s developed markets factors website5 and q-factor 

data from the q-factor website.6 

Table 1 outlines the sample selection criteria. TSE regulations require companies to 

disclose the previous month's revenue by the 10th of each month, with extensions granted 

to the next business day if the deadline falls on a holiday. We exclude firms that miss the 

revenue announcement deadline to ensure that investors can reliably access the disclosed 

information. Additionally, we omit financial firms due to their distinct characteristics, 

which complicate comparisons with non-financial firms. Applying these selection criteria 

                                                      
4 Analyst forecast data consolidate research reports from multiple brokerage firms, including Yuanta, 

Capital, SinoPac, JihSun, KGI, First, Fubon, Uni-President, Cathay, and Hua Nan. 
5 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
6 https://global-q.org/factors.html 
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yields a final sample of 914,592 firm-day observations from 1,217 companies, providing 

a broad and representative dataset for analysis. 

Table 1 Sample Selection Criteria 

Descriptions Observations Securities 

Firm-daily for all publicly held companies available from 

2013 to 2022 
1,025,126 1,349 

Delete observations for late reports (5,859) (90) 

Delete observations in the financial industry (104,675) (42) 

Total number of firm-daily observations 914,592 1,217 

Note: This table outlines the sample selection process. The initial dataset consists of 1,025,126 firm-day 

observations across 1,349 securities from 2013 to 2022. We excluded 5,859 observations (90 securities) 

due to late reports, ensuring data accuracy. Additionally, 104,675 observations (42 securities) from the 

financial industry were removed to avoid potential biases. The final sample comprises 914,592 firm-day 

observations across 1,217 securities. 

Table 2 presents the descriptive statistics of our sample. Panel A summarizes the 

statistical properties of overall firm characteristics. The median daily return (𝑟𝑖𝑡 ) of 0 

indicates a symmetrical distribution of daily stock price fluctuations. The average actual 

revenue (YR) of $532.518 billion is consistent with predictions from various ML models, 

including Decision Tree (YTR), Random Forest (YRFR), Gradient Boosting (YBR), Neural 

Network (YNR), Nearest Neighbor (YNNR), and Elastic Net (YER), as well as analyst 

forecasts (YAF), all measured annually in billions. This similarity highlights the need for 

deeper analysis to distinguish differences among these predictive methods. The mean 

natural logarithm of market value (lnME) of 8.623 reflects variation in firm sizes, 

ensuring sample representativeness (see Appendix A for variable definitions). Panel B 

reports the annual sample distribution, where the lower number of observations in 2019 
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(169,515) reflects the inclusion of only nine months of data.7 In contrast, sample sizes 

from 2020 to 2022 remained stable, averaging approximately 248,359 observations per 

year, supporting the robustness of the dataset and its relevance to market conditions over 

the study period. 

Table 2 Descriptive Statistics 

Panel A: Overall firm characteristics 

Variables Mean S.D. P25 Median P75 

𝑟𝑖𝑡 0.064 2.425 -0.899 0.000 0.881 

YR 460.273 2600.715 25.388 60.068 187.833 

YTR 456.172 2594.624 24.552 59.569 184.820 

YRFR 454.674 2576.314 24.414 59.281 184.070 

YBR 456.064 2591.391 24.288 57.868 184.732 

YNR 465.787 2593.261 27.192 66.115 192.423 

YNNR 439.688 2465.453 24.590 59.795 182.024 

YER 465.919 2638.026 24.283 63.160 191.068 

YAF 454.554 2465.691 27.601 63.650 194.151 

lnME 8.623 1.506 7.560 8.459 9.453 

Panel B: Year-by-year sample size 

Year Firm-daily Frequency (%) Cumulative (%) 

2019 169,515 18.53 18.53 

2020 240,272 26.27 44.81 

2021 249,980 27.33 72.14 

2022 254,825 27.86 100.00 

Note: This table summarizes descriptive statistics for the main variables are reported in this table. Panel A 

presents the overall firm characteristics, where 𝑟𝑖𝑡  denotes daily stock returns. 'YR' is the actual revenue, 

while 'YTR,' 'YRFR,' 'YBR,' 'YNR,' 'YNNR,' and 'YER' represent revenue predictions from ML models: 

Decision Tree, Random Forest, Gradient Boosting, Neural Network, Nearest Neighbor, and Elastic Net, 

respectively. 'YAF' stands for analyst forecasts. All revenue ('YTR,' 'YRFR,' 'YBR,' 'YNR,' 'YNNR,' 'YER,' and 

'YAF') are reported in billions, providing a consistent scale for comparison. 'InME' represents the natural 

logarithm of the market value, offering insight into firm size. Panel B details the firm-daily observations, 

                                                      
7 From January to March, only the annual reports from the preceding two years are accessible, resulting 

in the unavailability of current-year information. 
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frequency, and cumulative percentage from 2019 to 2022. 

3.2 Machine Learning Approaches for Revenue Forecasting 

This study applies six ML models—Decision Tree, Random Forest, Gradient 

Boosting, Neural Networks, Nearest Neighbors, and Elastic Net—to forecast revenue by 

capturing both linear and nonlinear patterns in financial data. These models range from 

the interpretable Decision Tree to the complex Neural Networks, allowing for a 

comprehensive evaluation of predictive accuracy. Random Forest and Gradient Boosting 

process high-dimensional data and capture feature interactions, Nearest Neighbors 

identifies localized patterns, Neural Networks model deep nonlinear relationships, and 

Elastic Net mitigates multicollinearity (Jiang, Gradus, and Rosellini (2020)). Appendix C 

provides an intuitive explanation of these models for greater clarity. 

3.2.1 Decision Tree 

A Decision Tree partitions data through sequential binary splits, maximizing target 

variable homogeneity within each region. Given an input x, the prediction function is: 

𝑓𝑇(𝑥) = ∑𝑚  𝑐𝑚𝐼(𝑥 ∈ 𝑅𝑚) (1) 

where 𝑅𝑚  denotes the 𝑚 -th partition, 𝑐𝑚  is the constant prediction value for each 

region, and 𝐼(𝑥 ∈ 𝑅𝑚) is an indicator function that equals 1 if 𝑥 belongs to 𝑅𝑚 and 0 

otherwise. While Decision Trees are interpretable but prone to overfitting, necessitating 
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ensemble methods such as Random Forest and Gradient Boosting for improved stability 

(Breiman et al. (1984), Gu, Kelly, and Xiu (2020)). 

3.2.2 Random Forest 

Random Forest enhances predictive accuracy by aggregating multiple Decision 

Trees trained on bootstrapped samples, reducing overfitting and improving generalization 

(Breiman (2001)). Each tree is trained on a randomly selected subset of features, reducing 

inter-tree correlation and enhancing robustness. The final prediction is obtained by 

averaging across 𝐵 individual trees: 

𝑓𝑅𝐹(𝑥) =
1

𝐵
∑𝑏=1
𝐵  𝑓𝑏(𝑥) (2) 

where 𝑓𝑏(𝑥) represents the output of the 𝑏-th tree. 

3.2.3 Gradient Boosting 

Gradient Boosting iteratively refines predictions by adding weak learners that 

correct residual errors (Friedman (2001), Schapire (1990)). The prediction function is: 

𝑓𝐺𝐵(𝑥) = 𝐹𝑀(𝑥) = ∑  

𝑀

𝑚=1

𝛾𝑚ℎ𝑚(𝑥) (3) 

where 𝑀 is the number of boosting iterations, 𝛾𝑚 is the learning rate, and ℎ𝑚(𝑥) is 

the base learner at iteration 𝑚. 
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3.2.4 Neural Networks 

Neural Networks approximate nonlinear relationships through multiple processing 

layers (Aggarwal (2023), Cybenko (1989), Hornik, Stinchcombe, and White (1989), 

McCulloch and Pitts (1943)). Each layer transforms input data through weighted 

connections and activation functions. The forward propagation equation is: 

𝑎(𝑙) = 𝜎(𝑊(𝑙)𝑎(𝑙−1) + 𝑏(𝑙)) 
(4) 

where 𝑊(𝑙)  and 𝑏(𝑙)  are the weight matrix and bias vector for layer 𝑙 , and 𝜎  is an 

activation function (e.g., ReLU, Sigmoid). Backpropagation optimizes the weight 

parameters using gradient descent or Adam. While Neural Networks effectively capture 

complex patterns, they require significant computational resources and careful 

regularization to mitigate overfitting. 

3.2.5 Nearest Neighbors  

Nearest Neighbors predicts outcomes based on the similarity between data points in 

feature space (Chung, Williams, and Do (2022), Cover and Hart (1967), Fix (1985)). The 

prediction function is: 

𝑓𝑁𝑁(𝑥) =
1

𝑘
∑  

𝑖∈𝑁𝑘(𝑥)

𝑦𝑖 
(5) 

where 𝑁𝑘(𝑥)  denotes the set of 𝑘  nearest neighbors of 𝑥 , and 𝑦𝑖  represents their 

corresponding target values. The choice of 𝑘 affects performance: a small 𝑘 increases 



doi:10.6342/NTU202501949

20 
 

sensitivity to noise, while a large 𝑘 smooths predictions but may obscure local patterns. 

Despite its simplicity, Nearest Neighbors becomes computationally expensive in high-

dimensional settings due to the need for pairwise distance calculations. 

3.2.6 Elastic Net 

Elastic Net integrates Lasso (L1) and Ridge (L2) regularization to address 

multicollinearity and feature selection in high-dimensional settings (Gu, Kelly, and Xiu 

(2020), Zou and Hastie (2005)). Its objective function is: 

𝛽̂𝐸𝑁 = arg⁡min
𝛽

 {
1

2𝑛
∑  

𝑛

𝑖=1

  (𝑦𝑖 − 𝑋𝑖𝛽)
2 + 𝜆 [𝛼∑  

𝑝

𝑗=1

  |𝛽𝑗| + (1 − 𝛼)∑  

𝑝

𝑗=1

 𝛽𝑗
2]} 

(6) 

where 𝜆 regulates the penalty strength, and 𝛼 determines the relative contribution of 

L1 and L2 regularization. By incorporating both penalty terms, Elastic Net can handle 

correlated predictors, improve feature selection efficiency, and enhance model stability. 

In financial forecasting, it is applied to identify influential variables in large datasets, 

mitigating collinearity and improving model interpretability. 

3.2.7 Model Training and Optimization 

We use 60 financial statement variables covering corporate growth, profitability, 

asset utilization, cash flow, and risk management. The same feature set is applied 

consistently across all six ML models, ensuring comparability in predictive performance. 
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The full set of variables is documented in Appendix B, highlighting their scope and 

relevance. A four-year rolling window is employed to train the models, ensuring that only 

the most recent data is used for forecasting. The window advances progressively, 

maintaining temporal separation between training and test sets, enhancing out-of-sample 

accuracy. This design is consistent with prior studies—Chen et al. (2022) adopt a three-

year window, while Hunt et al. (2022) use five years of data. We employ a four-year 

horizon as a practical compromise and conduct robustness tests using alternative window 

lengths to evaluate the sensitivity of forecasting performance. 

For model evaluation, we employ K-fold cross-validation following Cerulli (2022). 

The dataset is divided into K equal subsets, where each subset is used once as the 

validation set while the remaining subsets are used for training. All models are estimated 

using consistent hyperparameter settings to ensure comparability. Standardization is 

applied to maintain feature consistency. After cross-validation, each model is retrained on 

the full training set and validated on a holdout sample to assess robustness. 

3.3 Predictive Performance of Machine Learning and Analysts 

In evaluating the predictive accuracy of our ML models, we compare their revenue 

forecasts with those issued by analysts. Because multiple analyst forecasts exist for a 

given firm within a year, and some analysts initiate forecasts in the preceding year, early 

forecasts may deviate from actual outcomes due to significant events or economic shifts. 
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To improve sample representativeness, we base our approach on Lai, Lin, and Liu (2011) 

and select the first revenue forecast issued within the fiscal year. Using December 31 as 

the cutoff date, we assess forecast accuracy based on annual revenue estimates. Since 

analysts provide only annual forecasts, we train ML models on data from the preceding 

four years to predict the subsequent year's revenue, ensuring comparability between the 

two approaches. 

To assess predictive performance, we employ four widely used error metrics: Mean 

Absolute Error (MAE), MAPE, Mean Squared Error (MSE), and Root Mean Square Error 

(RMSE). These measures capture different aspects of forecast accuracy, enabling a 

comprehensive evaluation of model performance. MAE reflects the average absolute 

error in predictions, making it a clear and reliable metric that is relatively unaffected by 

outliers. MAPE measures the average absolute percentage error, allowing for relative 

comparisons across datasets, though it is sensitive to observations where actual values 

approach zero. MSE computes the average squared errors, penalizing larger deviations 

more heavily, while RMSE preserves the original measurement scale and allows for more 

intuitive understanding. 

The error metrics are computed as follows: 
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𝑀𝐴𝐸 =
1

𝑛
∑  

𝑛

𝑖−1

|𝑦𝑖 − 𝑦̂𝑖| 

 

(7) 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑  

𝑛

𝑖−1

|
𝑦𝑖 − 𝑦̂𝑖
𝑦𝑖

| 

 

(8) 

𝑀𝑆𝐸 =
1

𝑛
∑  

𝑛

𝑖−1

(𝑦𝑖 − 𝑦̂𝑖)
2 

 

(9) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  

𝑛

𝑖−1

  (𝑦𝑖 − 𝑦̂𝑖)2 

 

(10) 

where 𝑦𝑖  represents the actual observed revenue (𝑌𝑅𝑖)  for observation 𝑖 , and 𝑦̂𝑖 

denotes the corresponding predicted value. For ML models, 𝑦̂𝑖 corresponds to forecasts 

generated by Decision Tree (𝑌𝑇𝑅𝑖) , Random Forest (𝑌𝑅𝐹𝑅𝑖) , Gradient Boosting 

(𝑌𝐵𝑅𝑖), Neural Networks(𝑌𝑁𝑅𝑖), Nearest Neighbors (𝑌𝑁𝑁𝑅𝑖), or Elastic Net (𝑌𝐸𝑅𝑖). 

The analyst forecast is denoted as 𝑌𝐴𝐹𝑖. 

3.4 Forecasting Revenue Changes Using Machine Learning Models 

Announced revenue, often called Monthly Revenue Surprise, is a key market 

indicator that can trigger significant price movements. Given the efficiency of market 

reactions, this study develops an ML-based revenue forecasting strategy to predict 

revenue changes ahead of announcements. Employing a rolling forecast framework, the 

model updates with newly released revenue data each month, ensuring forecasts remain 

adaptive and current. After January's revenue is announced, the model incorporates this 

information to predict February's revenue, continuing this process every month. To assess 
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year-over-year revenue changes, investors can then compare forecasted revenue with the 

same period in the prior year, denoted as Revenue Last Year (RLY). 

To quantify this comparison, we define Δ𝑅𝐿𝑌 as the percentage change between 

the predicted revenue and the corresponding period’s revenue from the previous year: 

Δ𝑅𝐿𝑌 =
𝑦̂𝑖 − 𝑅𝐿𝑌

|𝑅𝐿𝑌|
 (11) 

where Δ𝑅𝐿𝑌  represents the predicted year-over-year revenue change, 𝑦̂𝑖  denotes the 

forecasted revenue from our ML models (𝑇𝑅𝑖 , 𝑅𝐹𝑅𝑖 , 𝐵𝑅𝑖 , 𝑁𝑅𝑖, 𝑁𝑁𝑅𝑖, or 𝐸𝑅𝑖), and 𝑅𝐿𝑌 

is the revenue from the same period last year. This formulation provides a systematic and 

objective benchmark for evaluating revenue growth expectations, enabling a direct 

comparison between forecasted and historical revenue trends. 

3.5 Stock Portfolio Strategies Based on ML Revenue Forecasts 

Stocks are allocated into decile portfolios based on predicted revenue changes 

following the cutoff date of the prior revenue announcement. The portfolio with the 

largest anticipated revenue growth is designated Portfolio 10, while the one with the 

smallest predicted change is labeled Portfolio 1. Our investment strategy taking a long 

position in the top decile portfolio based on predicted growth and a short position in the 

bottom decile portfolio. 

The main purpose of this study is to assess the impact of revenue forecasts on stock 

market performance. To capture the full effect of revenue predictions, we track stock 
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price movements from the release of the prior revenue announcement to the market 

reaction following the subsequent disclosure. Given the market's efficient response to 

revenue announcements, we forecast revenue one month in advance and hold positions 

until the day after the subsequent announcement. Specifically, the portfolio is formed one 

month prior to the announcement based on the predicted revenue. For instance, when 

forecasting January's revenue, the portfolio is formed based on predictions made by 

January 10 and held until February 11, the day after the revenue disclosure. This approach 

isolates the impact of revenue announcements while mitigating confounding effects from 

other market events (Taylor and Tong (2023)). 

To evaluate the investment outcomes of these portfolios, we estimate alpha—

defined as the intercept term from standard asset pricing regressions that captures 

abnormal returns unexplained by systematic risk factors. Specifically, we employ two 

widely used benchmark models: the Fama and French (2015) five-factor model and the 

Hou, Xue, and Zhang (2015) q-factor model. These models assess whether ML-based 

revenue forecasts are systematically linked to stock returns and whether predicted 

revenue growth translates into positive and statistically significant alpha. 

4. Empirical Results 

This section evaluates the predictive performance of six ML models—Decision Tree, 

Random Forest, Gradient Boosting, Neural Network, Nearest Neighbor, and Elastic 
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Net—in revenue forecasting. We also assess their ability to generate excess returns and 

conduct robustness tests to validate their predictive capability. The analysis examines the 

applicability of ML models to financial forecasting. 

4.1 Revenue Forecast Accuracy of Machine Learning and Analyst Estimates 

We first compare the predictive accuracy of six ML models with analyst forecasts in 

annual revenue prediction. Model performance is assessed using four standard metrics: 

MAE, MAPE, MSE, and RMSE, where lower values indicate greater precision. These 

measures are widely used to evaluate forecasting accuracy. We refer to Lewis (1982), who 

notes that MAPE facilitates model comparability. A MAPE below 10% indicates high 

accuracy, 10–20% suggests good predictions, 20–50% reflects reasonable predictions and 

values exceeding 50% imply poor accuracy. 

Table 3 reports the revenue prediction accuracy of ML models and analyst forecasts. 

The Random Forest (YRFR) model demonstrates the highest predictive accuracy, yielding 

the lowest errors across all metrics, including MAE, MSE, RMSE, and an MAPE of 

10.030%. In contrast, analyst forecasts (YAF) exhibit substantially larger error magnitudes 

in terms of MAPE (24.664%), but still outperform four ML models—Gradient Boosting 

(YBR), Neural Network (YNR), Nearest Neighbor (YNNR), and Elastic Net (YER)—across 

several error measures. The differences in predictive accuracy are statistically significant 

for MAPE (p = 0.0355) and marginally significant for MAE and RMSE (p = 0.0586), 
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suggesting that the superior accuracy of tree-based ML models, particularly Random 

Forest, likely stems from their ability to capture nonlinear relationships and complex 

interactions in financial data, enabling more precise revenue forecasts compared to 

analyst estimates. 

4.2 Assessing the Forecast Accuracy of Machine Learning Models for Revenue 

We evaluate the predictive accuracy of ML models in forecasting next-month 

revenue using a four-year rolling window for training. Model performance is assessed 

using MAPE8, as it provides an intuitive and comparable measure of forecasting accuracy, 

remains unaffected by differences in firm size, and effectively evaluates model 

performance across varying revenue scales. Figure 1 presents the MAPE for six ML 

models. The Decision Tree records zero training error but a nonzero test error, indicating 

overfitting. This observation aligns with prior literature, as Decision Trees are highly 

flexible and can fully capture patterns in training data, but they also learn noise, leading 

to weak generalization (Kotsiantis (2013)). Ensemble learning mitigates this issue by 

aggregating multiple trees to enhance robustness. Among the models, Random Forest 

achieves the lowest MAPE in training and test sets, demonstrating superior predictive 

                                                      
8 MAPE provides a standardized measure of prediction accuracy across firms by capturing relative error 

proportions. Since each monthly revenue forecast corresponds to a distinct MAPE value, we use the 

median MAPE as the primary accuracy metric to mitigate the influence of extreme values. 
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performance. In contrast, other ML models exhibit higher MAPE values, suggesting their 

limited ability to capture revenue patterns effectively. 

Next, we compare predicted and actual average revenue, directly assessing their 

deviations. Figure 2 illustrates the predicted versus actual revenue trends from 2019 to 

2022 across six ML models. The dashed orange line represents revenue forecasts, while 

the solid gray line denotes actual revenue. Random Forest demonstrates substantial 

predictive accuracy, closely tracking revenue movements over time, highlighting its 

reliability even in complex revenue environments. In contrast, Neural Network, Nearest 

Neighbor, and Elastic Net models display greater deviations from actual revenue but still 

capture the overall trend. 

We extract its feature importance rankings—calculated based on the matrix of 

variable importance used when building the classifier. The values are scaled proportional 

to the largest value in the set—to further analyze Random Forest’s predictive advantage. 

The results identify accounts payable and notes payable, accounts receivable and notes 

receivable, current liabilities, net operating income, and operating expenses as the most 

influential factors in revenue forecasting (Figure 3). Net operating income and expenses 

reflect a firm's fundamental business performance, capturing cash flow and profitability. 

Accounts receivable and accounts payable indicate sales and procurement activities, 

driving future working capital and revenue fluctuations. Current liabilities represent 
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short-term financial obligations affecting a firm's ability to sustain growth. Combining 

these features enables Random Forest to leverage historical financial data, cash flow 

patterns, and operational strategies to enhance monthly revenue predictions  

4.3 Portfolio Performance from Machine Learning Revenue Forecasts 

While some ML models do not achieve the highest revenue forecasting accuracy, 

investment applications do not necessarily require precise point estimates of individual 

firms' revenue. Instead, the ability to distinguish between firms with stronger and weaker 

revenue growth prospects is more relevant. Gu, Kelly, and Xiu (2020) emphasize that ML 

models' ranking ability is more critical in investment applications than point forecast 

accuracy. Following this principle, we construct decile portfolios based on the relative 

revenue changes predicted by ML models and implement a long-short (10−1) strategy. 

Even if specific ML models exhibit larger absolute prediction errors, as long as they 

capture the directional trend, they can still generate excess returns. Additionally, we seek 

to examine whether Random Forest's predictive accuracy translates into superior 

investment performance. 

This study evaluates the abnormal returns generated by portfolios constructed based 

on revenue forecasts from various ML models, as detailed in Table 4. The table presents 

cumulative abnormal returns (CAR) associated with forecasted annual revenue changes 

(∆RLY). Panel A reports CAR from the day following the last revenue announcement to



doi:10.6342/NTU202501949

30 
 

Table 3 Revenue Prediction Accuracy of Machine Learning Models and Analyst Forecasts 

Prediction Quality Measure YTR YRFR YBR YNR YNNR YER YAF Prob>F 

MAE 90.482 35.901 49.550 73.017 73.668 77.089 55.946 0.0586 

MSE 1267958.500 44997.851 166442.460 85885.735 132196.140 188293.770 62028.157 0.4174 

RMSE 1126.037 212.127 407.974 293.063 363.588 433.928 249.055 0.0586 

MAPE 14.954 10.030 32.602 47.890 65.082 101.307 24.664 0.0355 

Note: This table compares the revenue prediction accuracy of ML models and analyst forecasts. 'YTR,' 'YRFR,' 'YBR,' 'YNR,' 'YNNR,' and 'YER' represent revenue predictions 

generated by Decision Tree, Random Forest, Gradient Boosting, Neural Network, Nearest Neighbor, and Elastic Net, respectively. 'YAF' denotes Analyst Forecasts. Prediction 

accuracy is evaluated using standard error metrics, where lower values indicate more accurate predictions. The Prob > F column reports the significance level from an F-test, 

assessing whether differences in prediction accuracy across models are statistically significant. 
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Figure 1 Comparison of Training and Testing MAPE Across Machine Learning 

Models 

Figure 1 illustrates the Mean Absolute Percentage Error (MAPE) for six ML models: 

Decision Tree, Random Forest, Gradient Boosting, Neural Network, Nearest Neighbor, 

and Elastic Net. MAPE serves as an indicator of prediction accuracy, with lower scores 

corresponding to better outcomes The blue bars represent MAPE on the training dataset, 

while the red bars correspond to MAPE on the testing dataset. A substantial disparity 

between training and testing MAPE suggests potential overfitting, where strong in-

sample performance does not translate into accurate out-of-sample predictions. 
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Figure 2 Predicted and Actual Revenues Across Machine Learning Models 

Figure 2 compares predicted and actual revenues from 2019 to 2022 across six ML models: Decision Tree, Random Forest, Gradient Boosting, 

Neural Network, Nearest Neighbor, and Elastic Net. The orange dashed line represents the predicted revenue generated by each model, while the 

gray solid line displays the actual observed revenue over time. The x-axis captures the time progression quarterly, and the y-axis reflects revenue 

in billions of dollars. This figure demonstrates the performance of different models in forecasting revenue patterns over time. 
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Figure 3 Top 10 Feature Importance in the Random Forest Model 

Figure 3 highlights the ten variables with the highest importance scores as determined by the Random Forest model. On the x-axis are the 

importance scores, capturing the extent to which each feature contributes to the model, while the y-axis labels the features themselves. A higher 

importance score indicates a more significant influence on the model's output. 
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the subsequent announcement month, while Panels B and C adjust for risk using the 

Fama-French five-factor and q-factor models. The results reveal a strong association 

between ML-based revenue forecasts and abnormal returns. 

 For unadjusted returns, the 10−1 portfolio strategy based on the Random Forest 

model generated an abnormal return of 5.539% (t-statistic = 4.55); even after risk 

adjustments, Random Forest retained abnormal returns of 5.513% (t-statistic = 4.20). 

using the Fama-French five-factor model and 5.581% (t-statistic = 4.13) with the q-

factor model. These consistent findings demonstrate the robustness of Random Forest 

in generating excess returns, even after accounting for various risk factors.  

While Decision Tree, Gradient Boosting, Nearest Neighbor, and Elastic Net do not 

surpass Random Forest in predictive accuracy, they still yield statistically significant 

abnormal returns. These results suggest that while their point forecasts may be less 

precise, their ability to rank stocks based on revenue changes remains effective. The 

positive abnormal returns indicate that even models with relatively higher forecasting 

errors can still contribute to profitable investment strategies, provided they capture 

fundamental revenue trends. 

By contrast, Neural Network fails to generate meaningful investment returns, with 

unadjusted, Fama-French five-factor, and q-factor adjusted returns of 0.429% (t-

statistic = 0.45), 0.670% (t-statistic = 0.76), and 0.739% (t-statistic = 0.78), respectively. 
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This underperformance may stem from overfitting, high model complexity, or limited 

training data, which restrict its ability to generalize revenue predictions into tradable 

signals. These findings reveal the varying effectiveness of ML models in translating 

revenue forecasts into stock market performance. 

To evaluate the robustness of these investment strategies across firms of different 

sizes, we conduct a subsample analysis (Panel D) and examine equally weighted 

portfolios (Panel E). The results indicate that all models exhibit consistent performance 

across large-cap and small-cap stocks and in equally weighted portfolios. This 

consistency confirms the effectiveness of ML models in forecasting revenue changes 

and highlights their applicability across different market segments. 

To assess the investment implications of financial forecasts, we also construct 

portfolios based on both analyst forecasts and ML-predicted annual revenues. The 

results show that CARs are statistically insignificant, regardless of the forecast source. 

This outcome is attributable to two factors. First, analyst forecasts are available only on 

an annual basis, resulting in a limited sample size that constrains the ability to generate 

statistically significant portfolio returns. Second, the availability of monthly revenue 

disclosures enables the market to continuously update its expectations, diminishing the 

timeliness of annual forecasts. To further evaluate predictive performance, we compare 

ML models with alternative forecasting approaches, including LLMs and ARIMA 
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models, as discussed in Sections 5.2 and 5.3. 

The results in Table 4 indicate that ML models have strong potential in predicting 

revenue fluctuations and constructing profitable investment portfolios. Among the 

evaluated models, Random Forest consistently generates the highest abnormal returns 

with strong statistical significance. Its superior predictive performance and investment 

profitability are likely attributable to ensemble learning, which aggregates the outputs 

of multiple decision trees to improve predictive performance, bootstrap sampling, 

which mitigates overfitting, and aggregation, which improves prediction stability by 

averaging multiple decision trees, ensuring robustness against the influence of 

individual variables. 

Figure 4 presents the annual fluctuations in abnormal returns generated by various 

ML models from 2019 to 2022, evaluating their predictive robustness in dynamic 

market conditions. Mclean and Pontiff (2016) observe that the effectiveness of 

predictive signals often weakens as arbitrage activities intensify and market liquidity 

improves, raising the question of whether ML models can sustain consistent 

profitability over time. 

As shown in Figure 4, most ML models consistently generated positive abnormal 

returns, demonstrating their resilience to evolving market conditions. Although Neural 

Network and Nearest Neighbor recorded slight negative returns in 2019 and 2022 (-
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1.031% and -0.712%, respectively), they remained positive in other years. Despite these 

fluctuations, the overall trend suggests that ML models effectively predict abnormal 

returns across different periods. This pattern reflects the adaptability of ML techniques 

to shifting market dynamics and supports the use of ML-based revenue forecasting as 

an investment strategy.  

Figure 5 presents the monthly average abnormal returns generated by various ML 

models from 2019 to 2022, highlighting their performance fluctuations under different 

market conditions. The results indicate that ML models produced positive abnormal 

returns for most of the period, albeit with varying degrees of volatility. Among them, 

Random Forest recorded the highest peak return, reaching 10.21% in May, while its 

lowest return was observed in January at -0.809%. Other models exhibit greater 

variability, experiencing pronounced fluctuations throughout the year. A more granular 

analysis reveals that market dynamically, suggesting that making predictions only once 

per year may fail to capture these variations and adapt to an evolving investment 

environment. 
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Table 4 Cumulative Abnormal Returns Based on Revenue Predictions from Machine Learning Models 

Panel A: Cumulative Excess Returns from Previous to Current Revenue Announcement 

Return Decision Tree Random Forest Gradient Boosting Neural Network Nearest Neighbor Elastic Net 

1 (low) -0.040 -0.260 -0.101 1.453 0.860 1.163 

2 -0.033 -0.043 0.334 0.673 0.181 0.684 

3 0.035 0.309 0.665 2.121 1.111 0.448 

4 0.578 0.351 0.612 1.420 1.519 0.718 

5 1.125 1.150 1.216 1.651 0.929 0.769 

6 1.777 0.611 1.999 1.686 2.047 1.322 

7 1.946 2.801 2.755 2.315 1.929 2.319 

8 2.679 2.325 3.082 1.422 2.120 2.416 

9 2.183 2.909 3.675 2.017 2.068 2.133 

10 (high) 4.890 5.279 2.627 1.881 2.742 4.270 

10−1 4.930*** 5.539*** 2.728*** 0.429 1.882** 3.107*** 

t-statistic (4.75) (4.55) (2.69) (0.45) (2.57) (3.47) 

Panel B: Risk-Adjusted Portfolio Returns Based on the Fama-French Five-Factor Model 

FF5 Decision Tree Random Forest Gradient Boosting Neural Network Nearest Neighbor Elastic Net 

1 (low) -0.060 -0.401 -0.537 2.118 1.428 1.309 

2 -0.333 0.255 0.104 0.570 0.494 0.865 

3 -0.192 -0.043 0.104 2.168 1.341 0.308 

4 0.678 0.282 0.395 0.778 1.289 0.657 

5 1.031 1.197 1.345 2.053 0.777 1.035 
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6 1.542 0.907 2.213 1.792 1.798 1.375 

7 2.174 2.642 2.919 2.674 2.191 2.112 

8 2.516 2.378 3.019 1.822 2.468 2.180 

9 2.335 3.616 4.139 2.098 2.601 2.853 

10 (high) 4.589 5.747 2.586 2.062 2.448 4.324 

10−1 4.877*** 5.513*** 2.066* 0.670 1.944** 2.987*** 

t-statistic (4.17) (4.20) (1.82) (0.76) (2.44) (3.21) 

Panel C: Risk-Adjusted Returns Using q-Factor Model 

q-factor Decision Tree Random Forest Gradient Boosting Neural Network Nearest Neighbor Elastic Net 

1 (low) 0.024 -0.165 -1.130 2.019 1.247 0.860 

2 -0.084 -0.096 0.086 0.617 0.135 0.394 

3 -0.457 -0.211 0.619 2.299 1.255 0.142 

4 0.957 0.281 0.629 0.725 2.184 0.511 

5 1.382 1.140 1.485 2.001 1.168 0.638 

6 1.834 0.607 1.610 1.791 2.130 1.530 

7 3.181 2.832 2.822 2.013 1.751 2.214 

8 2.904 2.926 3.079 1.448 2.015 1.692 

9 2.757 3.035 3.846 2.277 3.117 2.335 

10 (high) 4.481 5.120 2.644 2.021 2.425 4.399 

10−1 4.799*** 5.581*** 1.723 0.739 1.906** 3.436*** 

t-statistic (3.97) (4.13) (1.55) (0.78) (2.50) (3.61) 

Panel D: Subsample Analysis for Large-Cap and Small-Cap Stocks 
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Large-cap  Decision Tree Random Forest Gradient Boosting Neural Network Nearest Neighbor Elastic Net 

Return 10−1 4.862*** 5.117*** 3.270*** 0.410 2.146*** 3.041*** 

 t-statistic (4.52) (4.45) (3.11) (0.48) (2.78) (3.38) 

FF5 10−1 5.065*** 5.142*** 3.398*** -0.159 1.514* 2.414*** 

 t-statistic (4.58) (4.11) (3.15) (-0.19) (1.78) (2.80) 

q-factor 10−1 5.521*** 4.996*** 3.252*** 0.376 1.960** 3.026*** 

 t-statistic (4.84) (3.90) (2.98) (0.44) (2.35) (3.25) 

Small-cap  Decision Tree Random Forest Gradient Boosting Neural Network Nearest Neighbor Elastic Net 

Return 10−1 5.014*** 5.228*** 3.737*** 0.385 0.835** 4.117*** 

 t-statistic (10.30) (10.56) (7.50) (0.92) (2.22) (7.50) 

FF5 10−1 4.971*** 5.357*** 3.677*** 0.382 0.854** 4.289*** 

 t-statistic (9.49) (10.63) (7.44) (0.77) (2.13) (6.63) 

q-factor 10−1 5.106*** 5.951*** 3.541*** 0.172 0.845** 4.186*** 

 t-statistic (9.20) (12.72) (7.25) (0.37) (2.13) (6.83) 

Panel E: Equal-Weighted Portfolio Returns 

Equal-weighted Decision Tree Random Forest Gradient Boosting Neural Network Nearest Neighbor Elastic Net 

Return 10−1 416.833*** 437.011*** 263.380*** 32.632 263.380*** 333.771*** 

 t-statistic (9.61) (9.95) (7.08) (0.88) (7.08) (9.88) 

FF5 10−1 386.209*** 453.686*** 253.467*** 30.262 226.396*** 339.388*** 

 t-statistic (9.07) (9.64) (6.37) (0.82) (5.75) (9.10) 

q-factor 10−1 390.489*** 443.433*** 263.669*** 27.319 248.261*** 353.508*** 

 t-statistic (8.42) (9.71) (6.99) (0.72) (6.37) (9.44) 
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Note: This table presents the cumulative abnormal returns based on revenue predictions from various ML models. Panel A displays cumulative excess returns from the day 

following the previous revenue announcement to the current month's revenue announcement. Data is sorted into deciles based on predicted revenues, with "10−1" representing 

the difference between the highest and lowest deciles. Panels B and C report risk-adjusted returns using the Fama-French five-factor and q-factor models. Panel D presents a 

subsample analysis for large-cap and small-cap stocks, and Panel E shows results for equal-weighted portfolios.
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Figure 4 Average Excess Returns for Machine Learning Models Over the Years 

Figure 4 shows the annual fluctuations in excess returns for various ML models—Decision Tree, Random Forest, Gradient Boosting, Neural 

Network, Nearest Neighbor, and Elastic Net—from 2019 to 2022. The x-axis displays the time in years, whereas the y-axis reflects the 

corresponding percentages return rates, capturing the performance of each ML model in generating abnormal returns annually. 
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Figure 5 Average Excess Returns for Machine Learning Models Across Months  

Figure 5 displays the monthly variations in excess returns for various ML models—Decision Tree, Random Forest, Gradient Boosting, Neural 

Network, Nearest Neighbor, and Elastic Net—from 2019 to 2022. The x-axis displays the time in months, while the y-axis reflects the 

corresponding percentages return rates, capturing the fluctuations in abnormal returns across different models each month. 
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4.4 Isolating Predictive Performance from Revenue Announcement Effects 

To ensure that the investment window purely reflects the predictive ability of ML-

based revenue forecasts, we further isolate its impact from any market reactions 

following the actual revenue disclosure. For instance, the January sales announcement 

is released on February 10. To prevent potential distortions from post-announcement 

market responses, the portfolio is held from January 10 (the prior month’s revenue 

announcement date) to February 9 (the day before the January sales announcement). 

This adjustment eliminates potential bias from including February 10 and 11, as returns 

on these days may reflect market responses to the actual revenue disclosure. 

Table 5 reports CAR under this alternative holding period, confirming that the 

results remain robust. ML-based revenue forecasts generate significant abnormal 

returns even when strictly excluding actual revenue announcements. This analysis 

further validates that the observed returns stem from the informational content of 

revenue predictions rather than market reactions to realized revenues. 

Table 5 Excluding the Effect of Revenue Announcements 

Portfolio Return (10−1) FF5 (10−1) q-factor (10−1) 

Decision Tree 4.375*** 4.039*** 4.671*** 

 (3.78) (3.29) (4.24) 

Random Forest 4.822*** 4.340*** 4.885*** 

 (3.75) (2.96) (3.64) 

Gradient Boosting 2.347** 2.215** 2.054** 

 (2.49) (2.29) (2.15) 

Neural Network 0.997 1.429 0.516 

 (0.95) (1.24) (0.80) 

Nearest Neighbor 1.988*** 1.883*** 1.316* 
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 (3.06) (2.58) (1.86) 

Elastic Net 2.341*** 2.034*** 2.655*** 

 (3.11) (2.63) (3.23) 

Note: This table reports the cumulative abnormal returns after excluding the effect of revenue 

announcements, based on portfolios constructed using six ML models. The "10−1" portfolio represents 

the return spread between the top and bottom deciles of predicted revenue growth. 

4.5 Short-Term Abnormal Returns from Machine Learning Revenue Forecasts 

Understanding short-window returns is crucial for assessing the immediate market 

response to revenue announcements. This analysis focuses on a narrow event window, 

capturing investors' direct reactions to new information while minimizing the influence 

of confounding factors. We evaluate CAR over three short-term event windows—[-1, 

+1], [-2, +2], and [-3, +3]—to measure the effectiveness of different ML models in 

predicting short-term market movements. 

Table 6 presents the short-term window analysis results, examining market 

fluctuations before and after revenue announcements. Except for the Nearest Neighbor, 

most ML models continue to generate significantly positive abnormal returns within 

short windows, further demonstrating the predictive value of ML-based revenue 

forecasts in short-horizon market reactions. Among these models, Random Forest 

consistently produces significantly positive returns across most event windows, 

demonstrating its ability to capture short-term price movements and generate excess 

returns. 

Table 6 Cumulative Abnormal Returns in Short Windows 

Panel A: Excess Return  

Portfolio (10−1) [-1,+1] [-2,+2] [-3,+3] 
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Decision Tree 0.902* 1.278** 1.551** 

 (1.87) (2.18) (2.50) 

Random Forest 0.864 1.428** 1.632** 

 (1.60) (2.27) (2.38) 

Gradient Boosting 0.652 0.888** 1.001** 

 (1.54) (2.54) (2.21) 

Neural Network -0.928* -0.913* -0.964* 

 (-1.82) (-1.80) (-1.88) 

Nearest Neighbor -0.059 -0.184 0.243 

 (-0.15) (-0.43) (0.55) 

Elastic Net 0.808* 1.715*** 1.981*** 

 (1.80) (3.56) (3.37) 

Panel B: Risk-Adjusted Returns Using Fama-French Five-Factor Model 

Portfolio (10−1) [-1,+1] [-2,+2] [-3,+3] 

Decision Tree 1.174** 1.103* 1.495** 

 (2.51) (1.73) (2.09) 

Random Forest 1.149** 1.214* 1.776** 

 (2.19) (1.76) (2.23) 

Gradient Boosting 0.721 0.899** 1.349*** 

 (1.59) (2.28) (2.77) 

Neural Network -0.785 -0.749 -0.830 

 (-1.56) (-1.30) (-1.59) 

Nearest Neighbor 0.135 -0.362 0.006 

 (0.37) (-0.74) (0.01) 

Elastic Net 0.865* 1.596*** 1.796*** 

 (1.81) (3.03) (2.98) 

Panel C: Risk-Adjusted Returns Using q-Factor Model 

Portfolio (10−1) [-1,+1] [-2,+2] [-3,+3] 

Decision Tree 0.966** 1.166* 1.736** 

 (2.07) (1.92) (2.45) 

Random Forest 0.925* 1.312** 2.062*** 

 (1.73) (2.03) (2.68) 

Gradient Boosting 0.594 0.812** 1.441*** 

 (1.32) (2.18) (3.13) 

Neural Network -0.915* -0.917* -0.749 

 (-1.75) (-1.70) (-1.37) 

Nearest Neighbor 0.017 -0.260 0.098 

 (0.05) (-0.57) (0.21) 
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Elastic Net 0.758 1.786*** 1.919*** 

 (1.62) (3.48) (3.14) 

Note: This table presents the cumulative abnormal returns for short-term event windows, including [-

1,+1], [-2,+2], and [-3,+3], based on portfolios constructed using six ML models. The "10−1" portfolio 

represents the return spread between the highest and lowest predicted revenue portfolios. Panel A reports 

raw excess returns, while Panels B and C report returns adjusted for risk based on the Fama-French five-

factor model (FF5) and q-factor models. 

4.6 Post-Revenue Announcement Drift and Machine Learning Forecasts 

This section examines whether revenue announcements lead to a drift effect in the 

month following their release, analogous to the post-earnings announcement drift 

(PEAD) that Ball and Brown (1968), Bernard and Thomas (1989), Foster, Olsen, and 

Shevlin (1984), Jegadeesh and Titman (1993) identify. We analyze CAR from the 

second day after the announcement to the end of the month ([+2, +EOM]) to assess the 

predictive effectiveness of various ML models. For example, when the revenue for 

January is announced, we use the forecasts to predict February revenue and form 

portfolios accordingly. These portfolios are held from the second trading day after the 

official February revenue announcement (typically released on February 10) through 

the end of February. 

Table 7 reports CAR for each ML model over this period. The results indicate that, 

except for Random Forest, most ML models generate insignificant abnormal returns 

post-announcement. This limited drift effect may indicate improvements in the 

information environment, which allow investors to process and incorporate new 

information more efficiently, reducing the persistence of abnormal returns. Fink (2021) 



doi:10.6342/NTU202501949

48 
 

finds that PEAD has weakened recently, suggesting a more efficient market response 

to financial disclosures. Additionally, revenue announcements in Taiwan are typically 

concise, providing monthly revenue, year-over-year comparisons, and cumulative data, 

which may further accelerate market reactions and limit post-announcement drift. 

Among the models examined, Random Forest is the only one that continues to generate 

statistically significant positive abnormal returns, suggesting that it captures revenue-

related signals that persist beyond the initial market reaction. 

Table 7 Cumulative Abnormal Returns from Post-Announcement to Month-End 

Portfolio Return (10−1) FF5 (10−1) q-factor (10−1) 

Decision Tree 1.615 1.561 1.432 

 (1.59) (1.34) (1.34) 

Random Forest 1.814* 2.238* 1.807 

 (1.70) (1.85) (1.61) 

Gradient Boosting -0.215 -0.504 -0.217 

 (-0.45) (-0.98) (-0.44) 

Neural Network -0.219 0.254 0.100 

 (-0.34) (0.38) (0.16) 

Nearest Neighbor 0.418 0.265 0.463 

 (0.69) (0.40) (0.73) 

Elastic Net -0.057 -0.951 -0.099 

 (-0.08) (-1.34) (-0.13) 

Note: This table presents cumulative abnormal returns from the post-announcement period to the end of 

the month. The analysis employs six ML models. The "10−1" represents the return difference between 

the highest and lowest predicted revenue portfolios. 

4.7 Machine Learning Predictions in the Technology Sector 

Revenue plays a central role in valuing technology firms, given the earnings 

volatility and uncertainty associated with R&D-intensive businesses (Kothari, Laguerre, 

and Leone (2002)). Prior research finds that markets react more strongly to revenue 
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surprises in technology firms than those with lower R&D intensity (Chandra and Ro 

(2008), Kama (2009)), reinforcing the importance of revenue as a key valuation metric. 

We classify firms into technology and non-technology industries based on TSE industry 

definitions to assess industry-specific effects. The technology industry includes 

semiconductors, computers and peripherals, optoelectronics, communications and 

internet, electronic components, electronic distribution, and information services, while 

all other industries fall into the non-technology category. 

Table 8 presents differences in ML model performance across industries. Panel A 

reports that ML models generate higher abnormal returns in the technology industry, 

whereas Panel B shows lower returns in non-technology firms. ML models exhibit 

statistically significant abnormal returns in most technology firms, though their 

predictive performance declines in non-technology industries. These findings support 

differentiated investment strategies across industries, reflecting the greater importance 

of revenue in technology firms, where rapid revenue growth often translates into higher 

stock returns. 

Further analysis reveals that Random Forest consistently delivers strong 

performance across both industries, generating the highest risk-adjusted abnormal 

returns. In this analysis, Nearest Neighbor models become statistically insignificant in 
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both industries, possibly due to diminished predictive effectiveness resulting from the 

reduced sample size. 

We find that the Elastic Net model yields significantly stronger revenue 

forecasting performance for technology firms than for non-technology firms, 

suggesting that the financial and operational features of tech companies are more 

effectively utilized by machine learning models. The top five predictors are Last Year’s 

Monthly Revenue, Inventory, Cumulative Revenue, Last Year’s Cumulative Revenue, 

and Net Operating Income. In technology firms, past revenue and inventory levels serve 

as reliable predictors of future revenue. In rapidly innovating industries, higher 

inventory typically reflects expectations of strong demand, rather than excess stock. 

Table 8 Portfolio Returns Across Technology and Non-Technology 

Panel A: Technology Industry 

Portfolio Return (10−1) FF5 (10−1) q-factor (10−1) 

Decision Tree 4.707*** 4.545*** 5.186*** 

 (5.94) (5.59) (6.23) 

Random Forest 4.735*** 4.819*** 4.599*** 

 (5.00) (4.81) (4.66) 

Gradient Boosting 5.385*** 5.440*** 4.777*** 

 (4.91) (4.52) (4.02) 

Neural Network 0.286 0.369 0.900 

 (0.33) (0.36) (0.92) 

Nearest Neighbor 0.869 0.474 0.653 

 (1.02) (0.53) (0.69) 

Elastic Net 5.977*** 6.094*** 6.167*** 

 (5.33) (5.26) (5.46) 

Panel B: Non-Technology Industry 

Portfolio Return (10−1) FF5 (10−1) q-factor (10−1) 

Decision Tree 4.539*** 4.601*** 4.531*** 
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 (3.26) (3.14) (3.09) 

Random Forest 4.678*** 4.291*** 4.498*** 

 (3.40) (2.81) (3.01) 

Gradient Boosting 1.929* 1.732 1.429 

 (1.73) (1.43) (1.27) 

Neural Network -0.199 -0.329 -0.202 

 (-0.19) (-0.34) (-0.18) 

Nearest Neighbor 0.639 0.510 0.442 

 (0.78) (0.64) (0.51) 

Elastic Net -0.250 -1.450 -0.912 

 (-0.20) (-1.11) (-0.67) 

Note: This table presents the portfolio performance based on ML predictions for technology (Panel A) 

and non-technology (Panel B) industries. 

4.8 Robustness tests 

4.8.1 Effect of Training Window Length in Machine Learning Forecasts 

To assess the robustness of our ML models' predictive performance, we extend the 

analysis by incorporating rolling windows of 2-year, 3-year, and 5-year periods to 

evaluate the stability of ML models across different training sets. This approach allows 

us to examine whether the length of the training window affects forecasting accuracy 

and the ability to predict abnormal returns. 

Table 9 presents the results, showing that ML models maintain stable predictive 

performance across all time horizons. Furthermore, as the training period lengthens, 

most models generate higher abnormal returns, suggesting that ML effectively 

integrates historical data to enhance forecasting precision. This improvement may stem 

from two factors. First, a longer training window provides more diverse and 

representative observations, enabling models to capture structural patterns rather than 
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overfitting to short-term noise. Second, because financial data are often cyclical and 

volatile, shorter samples may fail to span different macroeconomic regimes, limiting 

the model’s ability to generalize over time. This observation suggests that longer 

training windows contribute to greater model stability and statistical significance. 

More specifically, the Random Forest model consistently delivers the highest 

abnormal returns across different training windows, reporting 4.739%, 4.465%, and 

6.007% for the 2-year, 3-year, and 5-year periods, respectively. These findings are 

consistent with its strong performance in the 4-year rolling window used in the primary 

analysis. Likewise, other ML models exhibit comparable trends, confirming the 

robustness of the primary analysis and demonstrating that the length of the training 

window does not materially affect the overall predictive effectiveness of ML models. 

Table 9 Abnormal Returns from Portfolios Across Different Rolling Windows 

Portfolio Excess return 2yrs 3yrs 5yrs 

Decision Tree 10−1 3.809*** 3.890*** 5.031*** 

 t-statistic (4.52) (4.11) (3.59) 

Random Forest 10−1 4.739*** 4.465*** 6.007*** 

 t-statistic (5.31) (4.04) (4.03) 

Gradient Boosting 10−1 2.596*** 1.870* 2.465* 

 t-statistic (2.88) (1.81) (1.72) 

Neural Network 10−1 0.261 0.736 -0.179 

 t-statistic (0.48) (1.04) (-0.21) 

Nearest Neighbor 10−1 2.065*** 1.609** 2.258** 

 t-statistic (3.09) (2.20) (2.49) 

Elastic Net 10−1 2.383*** 2.298** 5.287*** 

 t-statistic (3.12) (2.55) (4.30) 

Note: This table presents the abnormal returns of portfolios based on various rolling windows, utilizing 

six ML models. Results are reported for 2-year, 3-year, and 5-year rolling windows. 
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4.8.2 Portfolio Performance and Revenue per Share Analysis 

This section examines how revenue per share (RPS) growth influences portfolio 

performance while adjusting for the effect of outstanding shares. RPS, defined as 

monthly revenue divided by the number of outstanding shares, provides a revenue-

based measure that adjusts for potential dilution. By isolating the impact of changes in 

outstanding shares, RPS enables a clearer distinction between genuine improvements 

in operating efficiency and superficial revenue growth driven by equity issuance or 

asset expansion. This adjustment is particularly important when evaluating firms with 

varying capital structures or aggressive financing policies. 

Table 10 presents portfolio performance based on RPS forecasts. Most ML models 

generate statistically significant abnormal returns after adjusting for outstanding shares. 

However, Nearest Neighbors does not produce significant excess returns, implying that 

distance-based methods may have limited effectiveness in capturing revenue signals 

when share dilution is considered. Among all models, Random Forest achieves the 

highest performance, with excess returns of 3.737%, which remained statistically 

significant after adjusting for risk using the Fama-French five-factor and q-factor 

models. These findings confirm the robustness of Random Forest as an effective 

predictive model. 

Table 10 Portfolio Performance Based on Revenue per Share Predictions 

Portfolio Return (10−1) FF5 (10−1) q-factor (10−1) 

Decision Tree 3.712*** 3.579*** 3.728*** 
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 (4.89) (4.36) (4.30) 

Random Forest 3.737*** 3.235*** 3.734*** 

 (3.94) (3.15) (3.40) 

Gradient Boosting 3.027*** 3.356*** 3.413*** 

 (3.57) (3.56) (3.82) 

Neural Network 0.029 0.055 0.059 

 (0.04) (0.07) (0.08) 

Nearest Neighbor -0.167 -0.562 -0.314 

 (-0.24) (-0.68) (-0.43) 

Elastic Net 1.892*** 1.843*** 2.163*** 

 (2.91) (2.68) (3.17) 

Note: This table presents the portfolio performance based on revenue per share predictions. 

4.8.3 Portfolio Performance After Excluding the Construction Industry 

Chen, Liu, and Chiao (2022) emphasize the distinct revenue recognition method 

used in the construction industry, where firms primarily adopt the completed contract 

method. This approach results in significant revenue fluctuations, introducing potential 

distortions in financial forecasting models. To validate our findings, we conduct a 

robustness analysis by excluding the construction sector from our sample, enabling a 

more accurate evaluation of potential biases and enhancing the reliability of our 

findings. Removing construction firms ensures that our investment strategy’s 

effectiveness is not influenced by industry-specific accounting treatments that could 

artificially affect revenue predictions and portfolio performance. 

Table 11 reports portfolio performance based on predicted monthly revenue 

changes after excluding the construction industry. The results show that our investment 

strategy remains effective following this exclusion, confirming the robustness and 
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generalizability of our results. Among the models, Random Forest delivers the strongest 

performance, generating excess returns of 5.809%, with statistical significance 

maintained even after risk adjustments using the Fama-French five-factor and q-factor 

models. 

Table 11 Portfolio Performance Excluding the Construction Sector 

Portfolio Return (10−1) FF5 (10−1) q-factor (10−1) 

Decision Tree 5.329*** 5.950*** 5.662*** 

 (4.98) (5.42) (4.98) 

Random Forest 5.809*** 5.446*** 5.988*** 

 (4.55) (3.99) (4.58) 

Gradient Boosting 3.079*** 3.237*** 3.655*** 

 (2.71) (3.61) (3.41) 

Neural Network 0.604 0.314 0.486 

 (0.63) (0.32) (0.50) 

Nearest Neighbor  1.584** 1.604* 1.516* 

 (2.01) (1.94) (1.83) 

Elastic Net 3.418*** 3.124*** 3.472*** 

 (3.76) (3.20) (3.69) 

Note: This table presents the portfolio performance of machine learning models after excluding the 

construction industry. 

5. Additional Analysis 

5.1 Strategy Profitability After Accounting for Transaction Costs 

Novy-Marx and Velikov (2016) find that many investment strategies experience a 

substantial decline in profitability once transaction costs are incorporated, often 

rendering abnormal returns negligible. To assess the practical feasibility of our strategy, 

we incorporate transaction costs into the evaluation framework, ensuring that the 

observed excess returns remain statistically and economically meaningful. This 
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adjustment enables a more realistic assessment of whether the strategy retains 

profitability under real-world trading frictions. 

We employ a comprehensive transaction cost framework to provide a conservative 

yet realistic evaluation of the strategy’s viability. The cost structure includes a 0.6% 

securities transaction tax, a 0.57% brokerage fee, and a 0.08% short-selling fee. 

Additionally, we include a one-month 0.13% funding cost based on the average loan 

interest rate from the top five banks. We also incorporate a one-month -0.02% interest 

revenue from securities lending, where a negative value reflects a positive return. These 

components collectively amount to 1.36% of total transaction costs, establishing a 

structured basis for evaluating the strategy's economic sustainability. 

Figure 6 reports the post-cost abnormal returns across different ML models. After 

transaction costs, the Random Forest strategy generates an abnormal return of 4.179%9, 

followed by Decision Tree: 3.570%, Gradient Boosting: 1.368%, Nearest Neighbors: 

0.522%, and Elastic Net: 1.747%. In contrast, the Neural Network model, already 

statistically insignificant in preliminary tests, yields a negative return of -0.931%. 

These results demonstrate the varying degrees of resilience among ML-driven 

investment strategies when subjected to real-world trading frictions. Despite transaction 

                                                      
9
Given a monthly return of 3.570%, the annualized return is approximately 51.29%, calculated as (1 +

0.0357)12 − 1. 
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costs, most ML-based portfolios deliver positive abnormal returns, confirming these 

approaches' robustness and practical relevance. Accounting for transaction costs in 

investment strategy assessments is essential, as it allows for a more accurate evaluation 

of a strategy's long-term profitability under realistic trading conditions. Moreover, these 

findings illustrate the potential of ML-driven models to sustain excess returns even in 

the presence of market frictions. 

Figure 6 Transaction Costs and Excess Returns for Machine Learning Models 

Figure 6 compares transaction costs and excess returns across six ML models: Decision 

Tree, Random Forest, Gradient Boosting, Neural Network, Nearest Neighbor, and 

Elastic Net. The orange bars represent the excess returns achieved by each strategy, 

while the gray bar denotes the associated transaction cost. 

 

5.2 Investment Performance of Large Language Model Forecasts 

Generative AI, notably LLMs such as GPT-4, has achieved significant progress in 

text analysis, interpretation, and generation. Recent research suggests that these models 

can approximate financial analysts' capabilities in numerical analysis and decision-
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making (Lopez-Lira and Tang (2024)). Additionally, some studies show that LLMs 

perform exceptionally well in settings with high analyst disagreement, accurately 

predicting quarterly earnings Kim, Muhn, and Nikolaev (2025). Building on this 

foundation, our study extends prior methodologies by employing LLMs to forecast 

higher-frequency monthly revenues and comparing their predictive performance with 

ML models. 

To refine previous approaches, we introduce several methodological 

improvements. First, we utilize GPT-4o, an advanced iteration of GPT-4 Turbo. GPT-

4o improves response quality and replicates financial analysts' reasoning processes 

more accurately, enhancing predictive accuracy. Additionally, while prior studies 

predicted binary directions, confidence levels, and three levels of magnitude, our study 

categorizes revenue growth rates into ten deciles, allowing for a more detailed and 

granular analysis. 

Our methodology follows a structured process to ensure robust predictions. We 

anonymize and standardize company financial statements to mitigate biases stemming 

from the model's prior knowledge. To ensure a fair comparison, both ML and LLM 

models are trained on identically processed datasets, where all company-specific 

information is anonymized, and financial variables are standardized. We then apply 

chain-of-thought (CoT) prompting to guide GPT-4o in identifying financial trends, 
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computing key ratios, and deriving economic insights. The model subsequently predicts 

monthly revenue changes, assigning them to ten tiers, where 1 represents the lowest 

predicted revenue growth and 10 the highest (Wei et al. (2022)). 

Table 12 presents portfolio performance based on LLM-generated forecasts. The 

10−1 portfolio constructed from LLM-based predictions yields a return of 1.609% (t-

statistic = 2.18), which remains statistically significant after adjusting for risk factors, 

with excess returns of 1.416% (t-statistic = 1.94) and 1.294% (t-statistic = 1.66) under 

the Fama-French five-factor and q-factor models, respectively. 

Compared to ML models (Table 4), investment strategies based on LLMs generate 

lower returns, exceeding only those derived from Neural Networks. These findings 

illustrate fundamental differences in predictive approaches. While LLMs can process 

structured financial data, the returns achieved through these models remain lower than 

those of most quantitative methods. Among ML approaches, Random Forest 

demonstrates greater effectiveness in capturing financial patterns and trends, making it 

more suitable for revenue forecasting. 

Table 12 Portfolio Performance Based on Large Language Model Predictions 

Portfolio Return FF5 q-factor 

1 (low) 0.616 0.929 0.918 

2 1.488 1.331 1.363 

3 1.580 1.541 1.326 

4 1.577 1.486 1.612 

5 2.005 2.126 1.863 

6 1.525 1.613 1.325 
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7 2.002 1.932 1.816 

8 1.544 1.206 1.065 

9 1.615 1.558 1.951 

10 (high) 2.225 2.197 2.434 

10−1 1.609** 1.416* 1.294* 

t-statistic (2.18) (1.94) (1.66) 

Note: This table presents the portfolio performance based on predictions from a Large Language Model 

(LLM). Portfolios are sorted into deciles based on LLM-predicted revenue, with Portfolio 1 (low) 

representing the lowest predicted revenue and Portfolio 10 (high) representing the highest. 

5.3 Investment Performance of ARIMA-Based Forecasts 

This section evaluates the forecasting performance of the ARIMA model in 

revenue prediction and compares it with ML approaches. ARIMA has been widely 

applied in time series forecasting, including stock returns (Dong et al. (2020)), EPS 

(Bao et al. (1983), Brown (1993), Hopwood and Newbold (1980)), and revenue 

estimation (Huang et al. (2017), Liu and Sun (2020)). While ARIMA is effective in 

short-term forecasting by capturing historical patterns, trends, and cyclical fluctuations, 

its predictive accuracy depends on the stability of these patterns (Ripley (2002), Wang 

et al. (2018)). Consequently, its performance may deteriorate in environments 

characterized by structural breaks or regime shifts. Building on prior research, we apply 

ARIMA to monthly revenue forecasting and assess its predictive accuracy relative to 

ML models. 

We estimate ARIMA models using a rolling window approach, training on 12-, 

24-, 36-, and 48-month periods to predict the subsequent month's revenue. This method 

ensures forecasts incorporate recent data patterns, making it well-suited for short-term 
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prediction. However, unlike ML models that employ the full dataset, ARIMA relies on 

a fixed-length historical window, which may constrain its ability to capture long-term 

trends. 

To optimize ARIMA specifications across firms, we employ Stata’s xtarimau 

command, which selects the best-fitting model based on the Hyndman and Khandakar 

(2008) algorithm. The selection process evaluates candidate models using the Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC) to balance 

predictive accuracy and model complexity. 

Table 13 reports portfolio performance based on ARIMA-generated revenue 

forecasts. The 10− 1 strategy produces statistically significant abnormal returns. 

However, ARIMA generates lower returns than most ML methods, exceeding only 

those of the Neural Networks model. Moreover, its t-statistics generally fall below 3, 

suggesting weaker statistical significance and indicating the greater effectiveness of ML 

methods in predicting revenue changes. 

Table 13 Portfolio Performance Based on Autoregressive Integrated Moving 

Average 

Portfolio Win(12) Win(24) Win(36) Win(48) 

Return     

10−1 1.787*** 1.552*** 1.803*** 1.596** 

t-statistic (3.29) (2.88) (3.12) (2.36) 

FF5     

10−1 1.636*** 1.434*** 1.670*** 1.498** 

t-statistic (2.77) (2.55) (2.75) (2.06) 

q-factor     
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10−1 1.564*** 1.577*** 1.600*** 1.550** 

t-statistic (2.64) (2.78) (2.70) (2.10) 

Note: This table presents the performance of portfolios based on predictions from the Autoregressive 

Integrated Moving Average (ARIMA) model using different rolling windows. Win(12), Win(24), 

Win(36), and Win(48) represent rolling windows of 12, 24, 36, and 48 months, respectively. 

5.4 Investment Performance of EPS Forecasts 

This section extends the analysis to evaluate the predictive performance of ML 

models in forecasting EPS. As a critical financial metric directly tied to stock 

performance, EPS provides an alternative benchmark for assessing the effectiveness of 

ML-based forecasting models. This analysis examines whether ML models exhibit 

similar predictive strength across different financial indicators and whether revenue 

forecasts offer superior investment signals compared to EPS forecasts. 

Table 14 reports portfolio returns based on ML-predicted EPS growth. The 10−1 

portfolio remains statistically significant across most ML models, confirming that ML-

driven EPS forecasts embed predictive value. Random Forest, the best-performing 

model, delivers an annualized return of 39.328%, compared to 66.468% for revenue 

forecasts 10 . Other ML models, including Decision Trees and Gradient Boosting, 

generate statistically significant abnormal returns based on EPS predictions, albeit at 

lower levels than revenue forecasts. 

                                                      
10 The annualized return is calculated using the compound interest formula (1 + 𝑟)𝑛 − 1, where 𝑟 

denotes the periodic return and 𝑛 is the number of periods per year. For example, a quarterly return of 

9.832% yields an annualized return of approximately 45.52%, and a monthly return of 5.539% 

yields an annualized return of approximately 90.97%. 
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Despite the effectiveness of ML in EPS forecasting, the investment profitability is 

substantially lower than that derived from revenue-based predictions. This result 

suggests that while revenue and EPS forecasts contain predictive signals, revenue 

growth is a more effective trading signal, likely due to its timeliness and direct impact 

on investor expectations. In contrast, EPS may be subject to greater accounting 

discretion and reporting frequency, limiting its ability to generate excess returns. 

These findings demonstrate that ML models achieve strong predictive 

performance in revenue forecasting and exhibit efficacy in EPS prediction, though with 

diminished return-generating potential. This additional analysis reinforces the 

robustness of the results and further supports the distinct advantage of monthly revenue 

forecasts in driving investment performance. 

Table 14 Machine Learning Forecasting Performance on EPS 

Portfolio Return (10−1) FF5 (10−1) q-factor (10−1) 

Decision Tree 9.254*** 9.656*** 10.666*** 

 (4.39) (3.48) (3.76) 

Random Forest 9.832*** 10.968*** 11.100*** 

 (4.85) (5.61) (5.44) 

Gradient Boosting 9.773*** 9.375*** 10.627*** 

 (4.80) (5.29) (5.21) 

Neural Network -0.282 0.507 -0.148 

 (-0.17) (0.25) (-0.07) 

Nearest Neighbor 5.342** 5.981 4.909* 

 (2.43) (1.51) (1.85) 

Elastic Net 9.523*** 10.567*** 10.327*** 

 (3.83) (3.82) (3.60) 

Note: This table evaluates the forecasting performance of ML models on EPS. 
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6. Conclusion 

This study applies six ML models—Decision Tree, Random Forest, Gradient 

Boosting, Neural Network, Nearest Neighbor, and Elastic Net—to forecast monthly 

revenues. Among these models, Random Forest exhibits the highest predictive accuracy. 

To evaluate the economic significance of the forecasts, we form investment portfolios 

sorted by predicted revenue growth and test their ability to generate abnormal returns. 

Empirical evidence shows that all machine learning models—except Neural 

Networks—deliver statistically significant positive alphas, outperforming both LLM 

and ARIMA benchmarks. The Random Forest model consistently delivers the most 

potent performance across multiple robustness tests. 

The primary advantage of ML lies in its ability to process and analyze large 

datasets with minimal human intervention, thus reducing potential errors. These models 

capture complex patterns and nonlinear relationships, particularly in high-dimensional 

financial data. Given that revenue disclosures occur monthly, ML models can rapidly 

adapt to evolving trends, enhancing the timeliness of revenue forecasts. The empirical 

findings support this assertion, demonstrating that ML-based revenue predictions 

provide more timely and accurate signals than traditional forecasting methods. 

This study has two primary limitations. First, the analysis is conducted within the 

context of the Taiwanese securities market, where revenue disclosure is subject to 
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unique regulatory requirements. Although regulatory regimes differ across markets, the 

findings may still offer relevant implications for economies with comparable reporting 

structures. The limited accessibility of public analyst forecast reports imposes 

considerable information costs on individual investors, potentially hindering timely 

access to revenue expectations. More frequent revenue forecasts could improve market 

transparency, support better-informed investment decisions, and enhance capital market 

efficiency. 

Second, financial information may be influenced by economic cycles, industry 

shifts, firm-specific characteristics, and regulatory changes, all of which contribute to 

the non-stationarity of the data. These factors pose challenges to maintaining stable and 

accurate forecasting models over time. Further investigation may account for evolving 

political and economic conditions and adjust feature design when necessary. 

Future research could extend these ML frameworks to forecast other important 

financial indicators, including cash flows and firm-level risk measures. Another 

promising avenue involves integrating unstructured data, such as news sentiment and 

social media analytics, with structured financial data to enhance predictive performance. 

However, such integration presents methodological complexities and requires advanced 

natural language processing (NLP) methodologies to extract meaningful signals. 
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Addressing these issues would further enhance the practical relevance of ML models in 

financial forecasting and investment strategies.  
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Appendix A. Variables Definitions 

Variable Definition 

∆RLY Year-over-year growth rate of predicted revenue. 

∆RPSLY Year-over-year growth rate of predicted revenue per share. 

BR Predicted revenue using Gradient Boosting. 

CAR Cumulative abnormal returns are calculated from the day after the 

previous revenue announcement to the current month's revenue 

announcement. 

EPS Earnings per share, calculated as net income after taxes minus preferred 

dividends, divided by the weighted average number of common shares 

outstanding. 

ER Predicted revenue using Elastic Net. 

lnME Natural logarithm of market equity, defined as ln(shares outstanding × 

unadjusted closing price). 

NNR Predicted revenue using Nearest Neighbors. 

NR Predicted revenue using Neural Networks. 

𝑟𝑖𝑡 Daily stock returns. 

RFR Predicted revenue using Random Forest. 

RLY Revenue from the previous fiscal year. 

TR Predicted revenue using Decision Tree. 

𝑌𝐴𝐹 Annual revenue forecast by brokerage analysts (in billions). 

YBR Annual predicted revenue using Gradient Boosting (in billions). 

YER Annual predicted revenue using Elastic Net (in billions). 

YNNR Annual predicted revenue using Nearest Neighbors (in billions). 

YNR Annual predicted revenue using Neural Networks (in billions). 

YR Annual actual revenue (in billions). 

YRFR Annual predicted revenue using Random Forest (in billions). 

𝑌𝑇𝑅 Annual predicted revenue using Decision Tree (in billions). 
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Appendix B. Feature Variables and Economic Significance 

This study selects 60 variables for ML model training to capture a company's financial condition, operational performance, capital structure, and 

market indicators. Each variable's economic significance is summarized below: 

No. Variable Category Economic Significance 

1 Cumulative Revenue Monthly Revenue Tracks year-to-date progress toward annual goals. 

2 Month-over-Month Revenue Monthly Revenue Reflects seasonal changes and trends. 

3 Last Year's Cumulative Revenue Monthly Revenue Serves as a comparative benchmark. 

4 Last Year's Monthly Revenue Monthly Revenue Benchmarks current performance. 

5 Monthly Revenue Growth Rate Monthly Revenue Key short-term revenue forecasting indicator. 

6 Revenue Growth Rate Monthly Revenue Indicator of growth potential, directly influencing revenue forecasts. 

7 After-Tax Net Profit Growth Rate Income Statement Vital for assessing distributable profits to shareholders. 

8 EBIT (Earnings Before Interest and Taxes) Income Statement Assesses core profitability and debt repayment capacity. 

9 Gross Operating Profit Income Statement Direct impact on the company's profitability. 

10 Net Operating Income Income Statement Core measure of profitability after cost deductions. 

11 Non-Operating Income and Expenses Income Statement Offers insights into non-core profitability. 

12 Operating Expenses Income Statement Direct impact on profitability. 

13 Operating Gross Profit Growth Rate Income Statement Reflects gross profit potential, impacting profitability. 

14 Operating Profit Income Statement Key indicator of operational efficiency. 

15 Operating Profit Growth Rate Income Statement Indicates operational efficiency and profitability. 

16 Operating Profit Variability Income Statement Essential for profitability stability and risk assessment. 

17 Ordinary Net Profit Growth Rate Income Statement Essential for long-term operational stability predictions. 
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18 Pre-Tax Profit Income Statement Reflects overall profitability before taxes. 

19 Pre-Tax Profit Growth Rate Income Statement Affects overall financial health prediction. 

20 Recurring Net Profit Growth Rate Income Statement Reflects the company's regular profitability excluding one-off items. 

21 Accounts Payable and Notes Balance Sheet Influences cash turnover and short-term debt. 

22 Accounts Receivable and Notes Balance Sheet Affects cash flow and turnover. 

23 Cash and Cash Equivalents Balance Sheet Reflects liquidity and short-term debt repayment ability. 

24 Current Liabilities Balance Sheet Reflects short-term financial pressure. 

25 Depreciable FA Growth Rate Balance Sheet Influences capital expenditure strategies. 

26 Goodwill and Intangible Assets Balance Sheet Impacts brand value and market competitiveness. 

27 Inventory Balance Sheet Influences capital utilization and sales potential. 

28 Net Worth Growth Rate Balance Sheet Measures financial health from an investor perspective. 

29 Property, Plant, and Equipment (PPE) Balance Sheet Critical for assessing production capabilities. 

30 Short-Term Loans Balance Sheet Affects short-term liquidity and repayment ability. 

31 Total Asset Growth Rate Balance Sheet Indicates potential for expansion and future revenue implications. 

32 Total Assets Balance Sheet Indicates overall scale and growth potential. 

33 Total Liabilities Balance Sheet Key to assessing financial stability and risk. 

34 Total Shareholder Equity Balance Sheet Essential measure of financial stability. 

35 Year-End Cash and Equivalents Balance Sheet Indicates year-end liquidity and debt repayment ability. 

36 Free Cash Flow Cash Flow Statement Key for evaluating financial flexibility. 

37 After-Tax Net Profit Margin Financial Ratios Indicator of ultimate profit efficiency. 

38 Cash Flow per Share Financial Ratios Indicates cash flow creation ability. 

39 Comprehensive Income per Share Financial Ratios Reflects total per-share earnings 

40 Comprehensive ROA Financial Ratios Assesses overall asset efficiency and profitability. 
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41 Comprehensive ROE Financial Ratios Indicates total return, covering all aspects. 

42 Dividend Yield Financial Ratios Assesses shareholder value through dividend return. 

43 Earnings per Share (EPS) Financial Ratios Reflects per-share earnings and value. 

44 Financial Leverage Financial Ratios Reflects financial risk and capital structure. 

45 Fixed Asset Turnover Ratio Financial Ratios Indicates revenue generated per unit of fixed asset. 

46 Gross Profit Margin Financial Ratios Reflects profit potential and pricing ability. 

47 Interest Coverage Ratio Financial Ratios Evaluates ability to cover interest expenses. 

48 Monthly Revenue per Share Financial Ratios Guides shareholder return assessments. 

49 Net Operating Cycle Days Financial Ratios Essential for cash flow management. 

50 Operating Income per Share Financial Ratios Indicator of stock shares and revenue relationship. 

51 Operating Leverage Financial Ratios Indicates profit fluctuation in response to revenue changes. 

52 Operating Profit per Share Financial Ratios Shows profitability of operating activities. 

53 Pre-Tax Profit Margin Financial Ratios Key profitability measure. 

54 Pre-Tax Profit per Share Financial Ratios Helpful in assessing shareholder returns. 

55 Quarter-End Common Stock Market Value Financial Ratios Reflects quarter-end market performance. 

56 ROA (Return on Assets) Financial Ratios Measures asset utilization efficiency. 

57 ROE (Return on Equity, Post-Tax) Financial Ratios Evaluates shareholder returns and value creation. 

58 Revenue Variability Financial Ratios Indicates market demand and operational stability. 

59 Tobin's Q Financial Ratios Indicates growth potential via market value vs. replacement cost. 

60 Total Asset Return Growth Rate Financial Ratios Reflects asset management efficiency over time. 
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Appendix C. Intuitive Explanation of Machine Learning Models 

To facilitate understanding for readers less familiar with machine learning techniques, 

this appendix provides an intuitive summary of the six models applied in this study. 

While the formal definitions and formulas are presented in the main text, this section 

explains each method using simplified language and analogies. 

 

Decision Tree 

A Decision Tree asks a series of yes/no questions to split the data and make 

predictions. It creates branches based on which variable best separates the data at each 

step. The model is easy to understand but may overfit the training data. 

 

Random Forest 

A Random Forest builds many Decision Trees using random subsets of data and 

features, then averages their predictions. Like asking multiple experts and taking the 

average answer, it helps reduce overfitting and improve accuracy. 

 

Gradient Boosting 

Gradient Boosting builds trees one at a time. Each new tree focuses on fixing the 

mistakes made by the previous one, gradually improving the overall prediction. This 

step-by-step refinement can lead to highly accurate results. 

 

Neural Networks 

Neural Networks mimic how the human brain processes information. They use 

multiple layers of "neurons" to transform input data and learn complex patterns. These 

models are powerful but require a lot of data and computing power. 

 

Nearest Neighbors 

This model predicts outcomes based on similarity. If a company is similar to five 

others, its future performance is predicted by averaging those five. It works well for 

local patterns but is less efficient when data has many variables. 

 

Elastic Net 

Elastic Net combines two regularization techniques—Lasso (which removes 

unimportant variables) and Ridge (which keeps coefficients small)—to improve 

prediction when many variables are correlated. It’s useful for selecting key predictors 

in financial data. 

 


