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Fe R

This study examines the predictive performance of machine learning (ML) models in
revenue forecasting and investment strategies, focusing on monthly disclosures. Six
ML models are evaluated, with Random Forest achieving the highest accuracy and
exceeding analyst forecasts. Strategies based on its predictions yield an annualized
excess return of 51.29% after transaction costs. Most of the ML models we propose
generate higher returns than large language models (LLMs) and Autoregressive
Integrated Moving Average (ARIMA) models, demonstrating their effectiveness in
improving investment performance.

Keywords: Predicted revenue, Machine learning, Large language model, Analyst

forecast, Financial analysis, Taiwan stock market, ARIMA model
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1. Introduction

Data is the new oil of the 21st century, as initially stated by Clive Humby?, and
Andrew Ng further emphasizes that machine learning (ML) is the key to unlocking its
value.? This view highlights ML's ability to extract meaningful patterns from modern
financial markets' vast and intricate data. To improve the accuracy and adaptability of
revenue forecasts, we employ high-frequency data, which captures short-term
fluctuations and provides a more detailed view of firm performance than traditional
lower-frequency datasets. As revenue has become increasingly important as a forecasting
signal, we build on the approach of Kureljusic and Reisch (2022), who apply machine
learning (ML) techniques to predict annual revenue. Our study extends this line of
research by incorporating high-frequency monthly data to improve forecasting accuracy
and by examining the relationship between predicted revenue growth and stock returns.
We also benchmark the performance of ML models against large language models (LLMs)
and autoregressive integrated moving average (ARIMA) models.

Revenue represents the direct outcome of a company’s core operations, and its
sustained growth often signals competitive advantages and market potential. Its

significance stems from several factors. First, the Conceptual Framework for Financial

! https://en.wikipedia.org/wiki/Clive_Humby
2 https://mitsloan.mit.edu/ideas-made-to-matter/why-its-time-data-centric-artificial-intelligence
1
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Reporting has further de-emphasized the income statement, limiting earnings' ability to

fully convey information to investors due to mismatches between revenues and expenses

resulting from differences in recognition timing (Barker et al. (2020)). Second, revenue

is generally more resistant to discretionary manipulation, making it a more reliable

indicator of firm performance. Its persistence and incorporation of future earnings and

cash flow information enhance its value relevance and informational content (Chandra

and Ro (2008), Core, Guay, and Van Buskirk (2003)). Finally, the growing dominance of

the technology sector has amplified the importance of revenue in financial reporting.

Firms driven by intellectual capital and innovation devote substantial resources to

research and development (R&D) and the acquisition of intangible assets, often yielding

long-term benefits not immediately captured by financial statements. This delay distorts

traditional earnings-based metrics, diminishing their reliability as measures of firm value

(Chen and Wu (2020), Lev (2018), Srivastava (2014)). Unlike earnings, which are

influenced by the accounting treatment of capitalized expenditures, revenue reflects a

more immediate and consistent measure of firm performance (Barth, Li, and McClure

(2023)).

In empirical finance, revenue surprises have long been recognized for their

informational value, shaping market perceptions of firm performance. Empirical research

consistently documents their influence on stock prices and investor behavior (Chen and

2
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Yu (2022), Ertimur, Livnat, and Martikainen (2003), Jegadeesh and Livnat (2006)).

However, advances in information dissemination have fundamentally transformed

revenue surprise strategies. As financial markets become more efficient, market reactions

to revenue announcements have accelerated (Chordia, Subrahmanyam, and Tong (2014),

Martineau (2019)), reducing opportunities for investors to exploit these events post-

announcement. In this context, the ability to accurately forecast revenue growth prior to

public disclosure becomes increasingly valuable to investors.

Analyst forecasts have long been integral to capital markets, serving as essential

performance benchmarks and shaping investor expectations (Houston, Lev, and Tucker

(2010)). These forecasts facilitate communication between firms and external

stakeholders, with earnings and revenue being the primary areas of analysis (Graham,

Harvey, and Rajgopal (2005)). Revenue, in particular, is a central component of analysts’

assessments, offering a direct measure of a firm’s operational efficiency, growth prospects,

and product differentiation strategies (Ertimur, Mayew, and Stubben (2011)). However,

analyst forecasts are not universally available, and their periodic nature—typically issued

quarterly or annually—Ilimits the timeliness of information accessible to investors.

Traditional analyst-driven forecasting approaches may fail to capture short-term revenue

fluctuations, particularly in rapidly evolving industries where early revenue signals are

essential for investment strategies.

doi:10.6342/NTU202501949



This study employs ML techniques to produce more timely revenue forecasts,

offering a data-driven framework that enhances market responsiveness. Given the double-

entry bookkeeping structure of accounting and the inherent interdependencies among

financial variables, the field is well-suited for automated ML assessments (Libbrecht and

Noble (2015), Penman (2013), Soliman (2008)). ML algorithms process large-scale,

complex datasets, identify subtle patterns that may elude human analysts, and

continuously refine predictions as new information becomes available. These attributes

make ML particularly effective in enhancing both the frequency and accuracy of revenue

forecasts. Our study incorporates high-frequency monthly revenue data to improve

forecast precision and better capture short-term revenue dynamics. We further examine

whether these forecasts generate tradable signals that lead to economically significant

abnormal returns, addressing investors' primary focus on stock performance.

This study focuses on Taiwan's stock market for several reasons that make it an ideal

setting for examining the predictive capacity of ML in financial forecasting. First,

Taiwan’s unique practice of disclosing monthly revenue distinguishes it from other

markets, where revenue and quarterly reports are typically released simultaneously,

allowing only an assessment of the incremental informational value of revenue. Due to

Taiwan Stock Exchange (TSE) regulations, firms must release monthly revenue data at

least 20 days before quarterly reports (Chen and Yu (2022)). This regulatory requirement

4
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clarifies the distinction between revenue and other financial disclosures, enabling a more

precise evaluation of its relationship with stock returns while mitigating distortions from

other accounting variables.

Second, granular monthly revenue data availability offers a rich dataset that

enhances ML model accuracy. Frequent updates improve pattern recognition, enable

models to track short-term revenue fluctuations, and enhance adaptability to evolving

market conditions. A greater volume of observations also mitigates overfitting by

expanding the training sample, leading to more robust and generalizable predictions.

Additionally, more frequent data points allow ML models to detect nonlinear relationships

and subtle shifts in revenue patterns that coarser datasets may fail to capture, ultimately

improving predictive performance.

Finally, Taiwan’s stock market is heavily influenced by the technology sector, which

accounts for approximately 50% of total market capitalization. The sector consists

primarily of semiconductor, electronics manufacturing, and high-tech firms, where

intangible assets and R&D expenditures are fundamental drivers of value creation. Since

these expenditures are typically expensed as incurred, their benefits take time to

materialize, making earnings a less reliable indicator of firm performance (Chen and Wu

(2020), Wang et al. (2013), Yang and Chen (2003)). As a result, investors in technology-

driven industries tend to emphasize revenue as a more timely and reliable measure of

5
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financial health.

Artificial intelligence (AI) advancements have introduced alternative approaches to

financial forecasting. Generative Al, particularly LLMs such as GPT-4, has demonstrated

notable strengths in text analysis, interpretation, and generation. Recent studies suggest

that these models can rival financial analysts in numerical evaluation and judgment

(Lopez-Lira and Tang (2024)). While LLMs attain earnings prediction accuracy on par

with Neural Networks, their effectiveness in revenue forecasting, particularly in high-

frequency settings, remains underexamined. This study provides a systematic comparison

of LLMs and ML models in revenue forecasting.

The empirical results indicate that most ML models outperform LLMs, with Random

Forest achieving the highest predictive accuracy and generating superior risk-adjusted

returns in portfolio applications. The corresponding #-statistic exceeds the threshold of

three proposed by Harvey et al. (2016), supporting both statistical and economic

significance. These findings demonstrate the effectiveness of ML in financial forecasting

and quantitative asset management.

There are three primary contributions of this research. First, building on Kajiiter et

al. (2022), who reviewed 112 studies on interim reports and acknowledged their benefits

while noting that several important aspects have yet to be fully explored, we find that

monthly revenue disclosures enhance financial information relevance by providing both

6
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predictive and confirmatory value, as set forth in the Conceptual Framework for Financial

Reporting. Our findings indicate that ML-based revenue predictions improve forecasting

accuracy, strengthening the predictive value of revenue disclosures by helping market

participants anticipate firm performance. Additionally, these updates provide feedback

information, enabling investors to reassess prior expectations and refine their evaluations.

Second, more frequent disclosures enhance the informational content of financial

reports (Smith (2024)). While Kureljusic and Reisch (2022) focus on annual revenue

projections, we employ ML models to generate monthly forecasts, providing investors

with more timely financial data. A higher forecasting frequency contributes to market

efficiency by improving the responsiveness of estimates. Our results indicate that

Random Forest achieves a lower mean absolute percentage error (MAPE) of 8.0%,

compared to 13.29% reported by Kureljusic and Reisch (2022), suggesting improved

predictive accuracy under a higher-frequency setting.

Finally, with the growing interest in ML and LLMs, recent research has increasingly

examined their effectiveness in financial forecasting. While prior studies focus on their

ability to predict earnings per share (EPS) direction, we extend this analysis by

incorporating the latest GPT-40 model and high-frequency data to evaluate whether these

models can more precisely capture revenue magnitude. Our findings indicate that most of

our proposed ML models perform superior to LLMs in revenue forecasting, confirming

7
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their advantage in capturing revenue trends.

The remainder of this paper is structured as follows: Section 2 reviews the literature

on revenue, analyst forecasts, and ML applications in financial analysis. Section 3

provides an overview of the sample selection and research model. Section 4 presents

empirical results on ML predictive accuracy and profitability. Section 5 provides

additional analyses for robustness. Finally, Section 6 summarizes key findings, discusses

implications, and suggests directions for future research.

2. Literature Review

2.1 The Market Impact of Monthly Revenue Disclosures

Research on revenue disclosures has predominantly focused on the U.S. market

(Butler, Kraft, and Weiss (2007)) and international settings (Mensah and Werner (2008)),

with an emphasis on how quarterly and semi-annual reports influence capital market

behavior (Tsao, Lu, and Keung (2018)). In contrast, Taiwan’s regulatory framework is

distinctive, as it is the only market globally where listed and Over-the-Counter (OTC)

companies must disclose monthly revenue from the prior month by the 10th of the

following month. This requirement provides investors with revenue data significantly

earlier than in markets that rely solely on quarterly financial statements. Consequently,

these disclosures supplement quarterly earnings reports, offering additional financial

insight and a core indicator of a firm’s financial health. The early availability of revenue

8
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data enables investors and analysts to assess profitability and stock performance with

greater immediacy, offering a timelier perspective on operational efficiency.

Since the introduction of monthly revenue announcements in 1988 and their

refinement with the implementation of International Financial Reporting Standards (IFRS)

in 2013, the focus has shifted from individual to consolidated revenue disclosures. As

mandated by the Securities Exchange Act, firms must publish monthly operating data on

the TSE website, including revenue, year-over-year comparisons, cumulative revenue,

and percentage changes (Chen and Yu (2022)). These detailed disclosures enhance market

transparency and protect investor interests, facilitating continuous monitoring of

corporate performance and enabling more precise stock price adjustments, strengthening

market responsiveness and informational integrity.

Recent academic studies have increasingly analyzed the impact of revenue

information in stock price formation across different markets. Studies show that revenue

surprises are associated with substantial upward movements in stock prices, illustrating

its importance for investment decisions (Chen et al. (2014), Ertimur, Livnat, and

Martikainen (2003), Jegadeesh and Livnat (2006)). Rees and Sivaramakrishnan (2004)

explore the influence of revenue forecasts in shaping investor valuation processes.

Research on Taiwan’s market indicates that investor reactions to earnings and revenue

disclosures differ, particularly between quarterly earnings and monthly revenue growth.

9
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Stocks exhibiting strong revenue growth are more likely to deliver superior future returns

compared to those with weaker growth, emphasizing the relevance of monthly revenue

disclosures in improving price efficiency and addressing behavioral biases (Wang and

Lien (2022)).
2.2 The Effectiveness and Limitations of Analyst Revenue Forecasts

Sell-side financial analysts play a central role in bridging the information gap

between companies and market participants, synthesizing data from public and private

sources to produce research reports that include earnings projections, revenue estimates,

and valuation targets (Ramnath, Rock, and Shane (2008)). These assessments often reflect

prevailing market sentiment, assisting investors in portfolio decisions. Analysts'

perspectives influence investor behavior and enhance price formation and informational

efficiency. Their ability to distill complex information into meaningful forecasts makes

their projections an essential component of investment strategy formulation, facilitating

the flow of information between firms and the market.

In financial markets, revenue and earnings forecasts are widely used to assess a

company's strength (Gilliam (2014), Keung (2010)). The emphasis on revenue projections

illustrates their relevance in evaluating corporate value, as they offer a fundamental

measure of business expansion and competitive positioning. Revenue disclosures become

particularly significant when earnings reliability is compromised, such as in firms heavily

10
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engaged in R&D intensity. In these firms, investors react more strongly to revenue than

earnings surprises (Kama (2009)). As a result, analysts’ revenue forecasts provide

investors with an additional reference point beyond earnings-based measures, enhancing

the assessment of financial performance (Bilinski and Eames (2019), Huang and Hairston

(2023)).

Despite their importance, the opacity of analysts' valuation processes raises

questions about the reliability of their estimates (Bradshaw (2011), Brown et al. (2015)).

Lorenz and Homburg (2018) identify several factors affecting the precision of revenue

forecasts, including the projection horizon, timing of revisions, analysts’ experience,

update frequency, coverage scope, reputation, the volume of earnings estimates issued,

the boldness of predictions, and past forecasting performance. Moreover, a lack of

independence may introduce optimistic biases, as analysts seek to maintain favorable

relationships with corporate management or stimulate brokerage trading activity (Brown,

Lin, and Zhou (2022), Cowen, Groysberg, and Healy (2006), Lim (2001)), raising doubts

about their objectivity and accuracy.

To improve the transparency and reliability of revenue forecasting, this study applies

multiple ML models to generate data-driven predictions, offering a more structured and

replicable alternative to traditional analyst estimates. By evaluating the predictive

11
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performance of different ML approaches relative to analyst forecasts, we provide insights

into the effectiveness of algorithmic forecasting for market participants.
2.3 The Role of Machine Learning in Financial Forecasting

The emergence of Al has positioned ML as a transformative tool in modern finance.
ML techniques are generally categorized into supervised and unsupervised learning, with
the primary distinction being the presence of labeled data in training sets. Supervised
learning refers to settings in which each observation includes both input features and a
known output—commonly referred to as a label—allowing the model to learn the
relationship between inputs and outcomes (Kureljusic and Karger (2024)). In contrast,
unsupervised learning methods operate without labeled outputs and aim to uncover
hidden structures or patterns within the data, such as clustering firms based on financial
characteristics. This study focuses on supervised ML, which aims to minimize prediction
errors when forecasting actual outcomes, making it particularly effective in assessing
corporate performance.

The double-entry bookkeeping system, established by Luca Pacioli®, provides the
foundational accounting structure, capturing the interrelationships among financial
statement items through a well-defined logic. With their capacity to process high-

dimensional data, ML algorithms effectively model the complexities and dependencies

3 https://en.wikipedia.org/wiki/Luca_Pacioli
12
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within financial statements and other financial data, leading to more robust and accurate

corporate outcome predictions.

ML has demonstrated strong predictive capabilities for key financial market

indicators, including stock returns (Gu, Kelly, and Xiu (2020)), earnings (Cao and You

(2024); Chen et al. (2022); Hunt, Myers, and Myers (2022)), and revenue (Kureljusic and

Reisch (2022)). Compared to earnings, revenue is less affected by cost allocation methods

and accounting choices, resulting in greater data stability and lower volatility (Ku, 2011).

This stability enhances the predictive accuracy of ML models in revenue forecasting.

While Kureljusic and Reisch (2022) analyze revenue prediction using annual data, their

study does not account for the higher frequency of revenue disclosures and their

implications for market dynamics. As financial markets undergo rapid change and

regulations increasingly shape strategic corporate responses, our study extends this line

of research by employing monthly data to capture more granular revenue fluctuations and

enhance forecasting precision. Furthermore, by linking ML-generated revenue forecasts

to stock returns, we examine their role in shaping investor expectations and influencing

price dynamics.

3. Sample Selection and Research Methodology

3.1 Data and Sample Selection

13
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We examine companies listed on the TSE and OTC markets from 2013 to 2022. The
dataset includes daily stock returns, monthly revenues, quarterly financial statements,
annual report disclosures, and yearly analyst forecasts*, all sourced from the Taiwan
Economic Journal (TEJ) database, a primary source on Taiwan's corporate activities,
securities market operations, and economic indicators. The sample started in 2013 to
ensure consistency in financial reporting following Taiwan's adoption of IFRS. To
account for broader market risk factors, we supplement this dataset with Fama-French
five-factor data from Kenneth French’s developed markets factors website® and q-factor
data from the q-factor website.®

Table 1 outlines the sample selection criteria. TSE regulations require companies to
disclose the previous month's revenue by the 10th of each month, with extensions granted
to the next business day if the deadline falls on a holiday. We exclude firms that miss the
revenue announcement deadline to ensure that investors can reliably access the disclosed
information. Additionally, we omit financial firms due to their distinct characteristics,

which complicate comparisons with non-financial firms. Applying these selection criteria

4 Analyst forecast data consolidate research reports from multiple brokerage firms, including Yuanta,
Capital, SinoPac, JihSun, KGI, First, Fubon, Uni-President, Cathay, and Hua Nan.
% https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
® https://global-q.org/factors.html
14
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yields a final sample of 914,592 firm-day observations from 1,217 companies, providing

a broad and representative dataset for analysis.

Table 1 Sample Selection Criteria

Descriptions Observations Securities

Firm-daily for all publicly held companies available from

1,025,126 1,349
2013 to 2022

Delete observations for late reports (5,859) (90)
Delete observations in the financial industry (104,675) (42)
Total number of firm-daily observations 914,592 1,217

Note: This table outlines the sample selection process. The initial dataset consists of 1,025,126 firm-day
observations across 1,349 securities from 2013 to 2022. We excluded 5,859 observations (90 securities)
due to late reports, ensuring data accuracy. Additionally, 104,675 observations (42 securities) from the
financial industry were removed to avoid potential biases. The final sample comprises 914,592 firm-day

observations across 1,217 securities.

Table 2 presents the descriptive statistics of our sample. Panel A summarizes the

statistical properties of overall firm characteristics. The median daily return (7;;) of 0

indicates a symmetrical distribution of daily stock price fluctuations. The average actual

revenue (YR) of $532.518 billion is consistent with predictions from various ML models,

including Decision Tree (Y7R), Random Forest (YRFR), Gradient Boosting (YBR), Neural

Network (YNR), Nearest Neighbor (YNNR), and Elastic Net (YER), as well as analyst

forecasts (YAF), all measured annually in billions. This similarity highlights the need for

deeper analysis to distinguish differences among these predictive methods. The mean

natural logarithm of market value (InMFE) of 8.623 reflects variation in firm sizes,

ensuring sample representativeness (see Appendix A for variable definitions). Panel B

reports the annual sample distribution, where the lower number of observations in 2019

15
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(169,515) reflects the inclusion of only nine months of data.” In contrast, sample sizes
from 2020 to 2022 remained stable, averaging approximately 248,359 observations per
year, supporting the robustness of the dataset and its relevance to market conditions over

the study period.

Table 2 Descriptive Statistics

Panel A: Overall firm characteristics

Variables Mean S.D. P25 Median P75
r; 0.064 2.425 -0.899 0.000 0.881
YR 460.273 2600.715 25.388 60.068 187.833
YTR 456.172 2594.624 24.552 59.569 184.820
YRFR 454.674 2576.314 24.414 59.281 184.070
YBR 456.064 2591.391 24.288 57.868 184.732
YNR 465.787 2593.261 27.192 66.115 192.423
YNNR 439.688 2465.453 24.590 59.795 182.024
YER 465.919 2638.026 24.283 63.160 191.068
YAF 454.554 2465.691 27.601 63.650 194.151
InME 8.623 1.506 7.560 8.459 9.453
Panel B: Year-by-year sample size

Year Firm-daily Frequency (%) Cumulative (%)
2019 169,515 18.53 18.53

2020 240,272 26.27 44 81

2021 249,980 27.33 72.14

2022 254,825 27.86 100.00

Note: This table summarizes descriptive statistics for the main variables are reported in this table. Panel A
presents the overall firm characteristics, where 1;; denotes daily stock returns. 'YR' is the actual revenue,
while 'YTR, 'YRFR,' 'YBR,' 'YNR,' 'YNNR,' and 'YER' represent revenue predictions from ML models:
Decision Tree, Random Forest, Gradient Boosting, Neural Network, Nearest Neighbor, and Elastic Net,
respectively. 'YAF" stands for analyst forecasts. All revenue ('Y7R,''YRFR,''YBR,''YNR,' 'YNNR,' 'YER,' and
'YAF") are reported in billions, providing a consistent scale for comparison. 'InME' represents the natural

logarithm of the market value, offering insight into firm size. Panel B details the firm-daily observations,

" From January to March, only the annual reports from the preceding two years are accessible, resulting
in the unavailability of current-year information.
16
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frequency, and cumulative percentage from 2019 to 2022.

3.2 Machine Learning Approaches for Revenue Forecasting

This study applies six ML models—Decision Tree, Random Forest, Gradient
Boosting, Neural Networks, Nearest Neighbors, and Elastic Net—to forecast revenue by
capturing both linear and nonlinear patterns in financial data. These models range from
the interpretable Decision Tree to the complex Neural Networks, allowing for a
comprehensive evaluation of predictive accuracy. Random Forest and Gradient Boosting
process high-dimensional data and capture feature interactions, Nearest Neighbors
identifies localized patterns, Neural Networks model deep nonlinear relationships, and
Elastic Net mitigates multicollinearity (Jiang, Gradus, and Rosellini (2020)). Appendix C

provides an intuitive explanation of these models for greater clarity.
3.2.1 Decision Tree

A Decision Tree partitions data through sequential binary splits, maximizing target
variable homogeneity within each region. Given an input x, the prediction function is:
fr(x) = ¥mcml(x € Rp) (1)

where R,, denotes the m-th partition, c,, is the constant prediction value for each

region, and I(x € R,;,) is an indicator function that equals 1 if x belongs to R, and 0

otherwise. While Decision Trees are interpretable but prone to overfitting, necessitating

17

doi:10.6342/NTU202501949



ensemble methods such as Random Forest and Gradient Boosting for improved stability

(Breiman et al. (1984), Gu, Kelly, and Xiu (2020)).
3.2.2 Random Forest

Random Forest enhances predictive accuracy by aggregating multiple Decision
Trees trained on bootstrapped samples, reducing overfitting and improving generalization
(Breiman (2001)). Each tree is trained on a randomly selected subset of features, reducing
inter-tree correlation and enhancing robustness. The final prediction is obtained by

averaging across B individual trees:

1
frr(¥) = 5 Xb=1/o(*) 2)

where fj,(x) represents the output of the b-th tree.
3.2.3 Gradient Boosting

Gradient Boosting iteratively refines predictions by adding weak learners that

correct residual errors (Friedman (2001), Schapire (1990)). The prediction function is:

fon(®) = Fu () = ) V() G)

where M is the number of boosting iterations, Y, is the learning rate, and h,,(x) is

the base learner at iteration m.
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3.2.4 Neural Networks

Neural Networks approximate nonlinear relationships through multiple processing
layers (Aggarwal (2023), Cybenko (1989), Hornik, Stinchcombe, and White (1989),
McCulloch and Pitts (1943)). Each layer transforms input data through weighted

connections and activation functions. The forward propagation equation is:

a® = g(W®al-D 4 pO) @

where W® and b® are the weight matrix and bias vector for layer [, and o is an
activation function (e.g., ReLU, Sigmoid). Backpropagation optimizes the weight
parameters using gradient descent or Adam. While Neural Networks effectively capture
complex patterns, they require significant computational resources and careful

regularization to mitigate overfitting.
3.2.5 Nearest Neighbors

Nearest Neighbors predicts outcomes based on the similarity between data points in
feature space (Chung, Williams, and Do (2022), Cover and Hart (1967), Fix (1985)). The

prediction function is:

1
fin@ =7 D v “

iENK(%)

where Nj(x) denotes the set of k nearest neighbors of x, and y; represents their

corresponding target values. The choice of k affects performance: a small k increases
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sensitivity to noise, while a large k smooths predictions but may obscure local patterns.
Despite its simplicity, Nearest Neighbors becomes computationally expensive in high-

dimensional settings due to the need for pairwise distance calculations.

3.2.6 Elastic Net

Elastic Net integrates Lasso (L1) and Ridge (L2) regularization to address
multicollinearity and feature selection in high-dimensional settings (Gu, Kelly, and Xiu

(2020), Zou and Hastie (2005)). Its objective function is:

n 14 p

N 1

Bew = argmin %Z (i = XiB)? + 2 aZ 18] +<1—a)_Z B? ©
1= j= j=

where A regulates the penalty strength, and a determines the relative contribution of
L1 and L2 regularization. By incorporating both penalty terms, Elastic Net can handle
correlated predictors, improve feature selection efficiency, and enhance model stability.
In financial forecasting, it is applied to identify influential variables in large datasets,
mitigating collinearity and improving model interpretability.
3.2.7 Model Training and Optimization

We use 60 financial statement variables covering corporate growth, profitability,
asset utilization, cash flow, and risk management. The same feature set is applied

consistently across all six ML models, ensuring comparability in predictive performance.
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The full set of variables is documented in Appendix B, highlighting their scope and

relevance. A four-year rolling window is employed to train the models, ensuring that only

the most recent data is used for forecasting. The window advances progressively,

maintaining temporal separation between training and test sets, enhancing out-of-sample

accuracy. This design is consistent with prior studies—Chen et al. (2022) adopt a three-

year window, while Hunt et al. (2022) use five years of data. We employ a four-year

horizon as a practical compromise and conduct robustness tests using alternative window

lengths to evaluate the sensitivity of forecasting performance.

For model evaluation, we employ K-fold cross-validation following Cerulli (2022).

The dataset is divided into K equal subsets, where each subset is used once as the

validation set while the remaining subsets are used for training. All models are estimated

using consistent hyperparameter settings to ensure comparability. Standardization is

applied to maintain feature consistency. After cross-validation, each model is retrained on

the full training set and validated on a holdout sample to assess robustness.
3.3 Predictive Performance of Machine Learning and Analysts

In evaluating the predictive accuracy of our ML models, we compare their revenue

forecasts with those issued by analysts. Because multiple analyst forecasts exist for a

given firm within a year, and some analysts initiate forecasts in the preceding year, early

forecasts may deviate from actual outcomes due to significant events or economic shifts.
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To improve sample representativeness, we base our approach on Lai, Lin, and Liu (2011)

and select the first revenue forecast issued within the fiscal year. Using December 31 as

the cutoff date, we assess forecast accuracy based on annual revenue estimates. Since

analysts provide only annual forecasts, we train ML models on data from the preceding

four years to predict the subsequent year's revenue, ensuring comparability between the

two approaches.

To assess predictive performance, we employ four widely used error metrics: Mean

Absolute Error (MAE), MAPE, Mean Squared Error (MSE), and Root Mean Square Error

(RMSE). These measures capture different aspects of forecast accuracy, enabling a

comprehensive evaluation of model performance. MAE reflects the average absolute

error in predictions, making it a clear and reliable metric that is relatively unaffected by

outliers. MAPE measures the average absolute percentage error, allowing for relative

comparisons across datasets, though it is sensitive to observations where actual values

approach zero. MSE computes the average squared errors, penalizing larger deviations

more heavily, while RMSE preserves the original measurement scale and allows for more

intuitive understanding.

The error metrics are computed as follows:
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1
MAE = ;Z lyi — ¥il (7)
i—1
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100% = Vi
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RMSE = |~ (i =92
i—-1

where y; represents the actual observed revenue (YR;) for observation i, and 7;

denotes the corresponding predicted value. For ML models, y; corresponds to forecasts

generated by Decision Tree (YTR;), Random Forest (YRFR;), Gradient Boosting

(YBR;), Neural Networks(YNR;), Nearest Neighbors (YNNR;), or Elastic Net (YER;).

The analyst forecast is denoted as YAF;.
3.4 Forecasting Revenue Changes Using Machine Learning Models

Announced revenue, often called Monthly Revenue Surprise, is a key market

indicator that can trigger significant price movements. Given the efficiency of market

reactions, this study develops an ML-based revenue forecasting strategy to predict

revenue changes ahead of announcements. Employing a rolling forecast framework, the

model updates with newly released revenue data each month, ensuring forecasts remain

adaptive and current. After January's revenue is announced, the model incorporates this

information to predict February's revenue, continuing this process every month. To assess
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year-over-year revenue changes, investors can then compare forecasted revenue with the
same period in the prior year, denoted as Revenue Last Year (RLY).
To quantify this comparison, we define ARLY as the percentage change between

the predicted revenue and the corresponding period’s revenue from the previous year:

i — RLY (11)

ARLY =
|RLY|

where ARLY represents the predicted year-over-year revenue change, y; denotes the
forecasted revenue from our ML models (TR;, RFR;, BR;, NR;, NNR;, or ER;),and RLY
is the revenue from the same period last year. This formulation provides a systematic and
objective benchmark for evaluating revenue growth expectations, enabling a direct

comparison between forecasted and historical revenue trends.
3.5 Stock Portfolio Strategies Based on ML Revenue Forecasts

Stocks are allocated into decile portfolios based on predicted revenue changes
following the cutoff date of the prior revenue announcement. The portfolio with the
largest anticipated revenue growth is designated Portfolio 10, while the one with the
smallest predicted change is labeled Portfolio 1. Our investment strategy taking a long
position in the top decile portfolio based on predicted growth and a short position in the
bottom decile portfolio.

The main purpose of this study is to assess the impact of revenue forecasts on stock

market performance. To capture the full effect of revenue predictions, we track stock
24
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price movements from the release of the prior revenue announcement to the market

reaction following the subsequent disclosure. Given the market's efficient response to

revenue announcements, we forecast revenue one month in advance and hold positions

until the day after the subsequent announcement. Specifically, the portfolio is formed one

month prior to the announcement based on the predicted revenue. For instance, when

forecasting January's revenue, the portfolio is formed based on predictions made by

January 10 and held until February 11, the day after the revenue disclosure. This approach

isolates the impact of revenue announcements while mitigating confounding effects from

other market events (Taylor and Tong (2023)).

To evaluate the investment outcomes of these portfolios, we estimate alpha—

defined as the intercept term from standard asset pricing regressions that captures

abnormal returns unexplained by systematic risk factors. Specifically, we employ two

widely used benchmark models: the Fama and French (2015) five-factor model and the

Hou, Xue, and Zhang (2015) g-factor model. These models assess whether ML-based

revenue forecasts are systematically linked to stock returns and whether predicted

revenue growth translates into positive and statistically significant alpha.

4. Empirical Results

This section evaluates the predictive performance of six ML models—Decision Tree,

Random Forest, Gradient Boosting, Neural Network, Nearest Neighbor, and Elastic
25
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Net—in revenue forecasting. We also assess their ability to generate excess returns and

conduct robustness tests to validate their predictive capability. The analysis examines the

applicability of ML models to financial forecasting.
4.1 Revenue Forecast Accuracy of Machine Learning and Analyst Estimates

We first compare the predictive accuracy of six ML models with analyst forecasts in

annual revenue prediction. Model performance is assessed using four standard metrics:

MAE, MAPE, MSE, and RMSE, where lower values indicate greater precision. These

measures are widely used to evaluate forecasting accuracy. We refer to Lewis (1982), who

notes that MAPE facilitates model comparability. A MAPE below 10% indicates high

accuracy, 10-20% suggests good predictions, 20—50% reflects reasonable predictions and

values exceeding 50% imply poor accuracy.

Table 3 reports the revenue prediction accuracy of ML models and analyst forecasts.

The Random Forest (YRFR) model demonstrates the highest predictive accuracy, yielding

the lowest errors across all metrics, including MAE, MSE, RMSE, and an MAPE of

10.030%. In contrast, analyst forecasts (YAF) exhibit substantially larger error magnitudes

in terms of MAPE (24.664%), but still outperform four ML models—Gradient Boosting

(YBR), Neural Network (YNR), Nearest Neighbor (YNNR), and Elastic Net (YER)—across

several error measures. The differences in predictive accuracy are statistically significant

for MAPE (p = 0.0355) and marginally significant for MAE and RMSE (p = 0.0586),
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suggesting that the superior accuracy of tree-based ML models, particularly Random
Forest, likely stems from their ability to capture nonlinear relationships and complex
interactions in financial data, enabling more precise revenue forecasts compared to

analyst estimates.
4.2 Assessing the Forecast Accuracy of Machine Learning Models for Revenue

We evaluate the predictive accuracy of ML models in forecasting next-month
revenue using a four-year rolling window for training. Model performance is assessed
using MAPES?, as it provides an intuitive and comparable measure of forecasting accuracy,
remains unaffected by differences in firm size, and effectively evaluates model
performance across varying revenue scales. Figure 1 presents the MAPE for six ML
models. The Decision Tree records zero training error but a nonzero test error, indicating
overfitting. This observation aligns with prior literature, as Decision Trees are highly
flexible and can fully capture patterns in training data, but they also learn noise, leading
to weak generalization (Kotsiantis (2013)). Ensemble learning mitigates this issue by
aggregating multiple trees to enhance robustness. Among the models, Random Forest

achieves the lowest MAPE in training and test sets, demonstrating superior predictive

8 MAPE provides a standardized measure of prediction accuracy across firms by capturing relative error
proportions. Since each monthly revenue forecast corresponds to a distinct MAPE value, we use the
median MAPE as the primary accuracy metric to mitigate the influence of extreme values.
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performance. In contrast, other ML models exhibit higher MAPE values, suggesting their

limited ability to capture revenue patterns effectively.

Next, we compare predicted and actual average revenue, directly assessing their

deviations. Figure 2 illustrates the predicted versus actual revenue trends from 2019 to

2022 across six ML models. The dashed orange line represents revenue forecasts, while

the solid gray line denotes actual revenue. Random Forest demonstrates substantial

predictive accuracy, closely tracking revenue movements over time, highlighting its

reliability even in complex revenue environments. In contrast, Neural Network, Nearest

Neighbor, and Elastic Net models display greater deviations from actual revenue but still

capture the overall trend.

We extract its feature importance rankings—calculated based on the matrix of

variable importance used when building the classifier. The values are scaled proportional

to the largest value in the set—to further analyze Random Forest’s predictive advantage.

The results identify accounts payable and notes payable, accounts receivable and notes

receivable, current liabilities, net operating income, and operating expenses as the most

influential factors in revenue forecasting (Figure 3). Net operating income and expenses

reflect a firm's fundamental business performance, capturing cash flow and profitability.

Accounts receivable and accounts payable indicate sales and procurement activities,

driving future working capital and revenue fluctuations. Current liabilities represent
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short-term financial obligations affecting a firm's ability to sustain growth. Combining

these features enables Random Forest to leverage historical financial data, cash flow

patterns, and operational strategies to enhance monthly revenue predictions
4.3 Portfolio Performance from Machine Learning Revenue Forecasts

While some ML models do not achieve the highest revenue forecasting accuracy,

investment applications do not necessarily require precise point estimates of individual

firms' revenue. Instead, the ability to distinguish between firms with stronger and weaker

revenue growth prospects is more relevant. Gu, Kelly, and Xiu (2020) emphasize that ML

models' ranking ability is more critical in investment applications than point forecast

accuracy. Following this principle, we construct decile portfolios based on the relative

revenue changes predicted by ML models and implement a long-short (10—1) strategy.

Even if specific ML models exhibit larger absolute prediction errors, as long as they

capture the directional trend, they can still generate excess returns. Additionally, we seek

to examine whether Random Forest's predictive accuracy translates into superior

investment performance.

This study evaluates the abnormal returns generated by portfolios constructed based

on revenue forecasts from various ML models, as detailed in Table 4. The table presents

cumulative abnormal returns (CAR) associated with forecasted annual revenue changes

(ARLY). Panel A reports CAR from the day following the last revenue announcement to
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Table 3 Revenue Prediction Accuracy of Machine Learning Models and Analyst Forecasts

Prediction Quality Measure YTR YRFR YBR YNR YNNR YER YAF Prob>F
MAE 90.482 35.901 49.550 73.017 73.668 77.089 55.946 0.0586
MSE 1267958.500 44997.851 166442.460 85885.735 132196.140 188293.770 62028.157  0.4174
RMSE 1126.037 212.127 407.974 293.063 363.588 433.928 249.055 0.0586
MAPE 14.954 10.030 32.602 47.890 65.082 101.307 24.664 0.0355

Note: This table compares the revenue prediction accuracy of ML models and analyst forecasts. 'YTR,' 'YRFR,' 'YBR,' 'YNR,' 'YNNR,' and 'YER' represent revenue predictions
generated by Decision Tree, Random Forest, Gradient Boosting, Neural Network, Nearest Neighbor, and Elastic Net, respectively. ' YAF" denotes Analyst Forecasts. Prediction
accuracy is evaluated using standard error metrics, where lower values indicate more accurate predictions. The Prob > F column reports the significance level from an F-test,

assessing whether differences in prediction accuracy across models are statistically significant.
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Figure 1 Comparison of Training and Testing MAPE Across Machine Learning
Models

Figure 1 illustrates the Mean Absolute Percentage Error (MAPE) for six ML models:
Decision Tree, Random Forest, Gradient Boosting, Neural Network, Nearest Neighbor,
and Elastic Net. MAPE serves as an indicator of prediction accuracy, with lower scores
corresponding to better outcomes The blue bars represent MAPE on the training dataset,
while the red bars correspond to MAPE on the testing dataset. A substantial disparity
between training and testing MAPE suggests potential overfitting, where strong in-

sample performance does not translate into accurate out-of-sample predictions.
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Figure 2 Predicted and Actual Revenues Across Machine Learning Models

Figure 2 compares predicted and actual revenues from 2019 to 2022 across six ML models: Decision Tree, Random Forest, Gradient Boosting,
Neural Network, Nearest Neighbor, and Elastic Net. The orange dashed line represents the predicted revenue generated by each model, while the
gray solid line displays the actual observed revenue over time. The x-axis captures the time progression quarterly, and the y-axis reflects revenue
in billions of dollars. This figure demonstrates the performance of different models in forecasting revenue patterns over time.
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Figure 3 Top 10 Feature Importance in the Random Forest Model

Figure 3 highlights the ten variables with the highest importance scores as determined by the Random Forest model. On the 3{]3\ \are the

importance scores, capturing the extent to which each feature contributes to the model, while the y-axis labels the features themsei es. A hlgher
W

importance score indicates a more significant influence on the model's output.
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the subsequent announcement month, while Panels B and C adjust for risk using the

Fama-French five-factor and g-factor models. The results reveal a strong association

between ML-based revenue forecasts and abnormal returns.

For unadjusted returns, the 10—1 portfolio strategy based on the Random Forest

model generated an abnormal return of 5.539% (z-statistic = 4.55); even after risk

adjustments, Random Forest retained abnormal returns of 5.513% (z-statistic = 4.20).

using the Fama-French five-factor model and 5.581% (¢-statistic = 4.13) with the g-

factor model. These consistent findings demonstrate the robustness of Random Forest

in generating excess returns, even after accounting for various risk factors.

While Decision Tree, Gradient Boosting, Nearest Neighbor, and Elastic Net do not

surpass Random Forest in predictive accuracy, they still yield statistically significant

abnormal returns. These results suggest that while their point forecasts may be less

precise, their ability to rank stocks based on revenue changes remains effective. The

positive abnormal returns indicate that even models with relatively higher forecasting

errors can still contribute to profitable investment strategies, provided they capture

fundamental revenue trends.

By contrast, Neural Network fails to generate meaningful investment returns, with

unadjusted, Fama-French five-factor, and g-factor adjusted returns of 0.429% (-

statistic = 0.45), 0.670% (z-statistic = 0.76), and 0.739% (z-statistic = 0.78), respectively.
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This underperformance may stem from overfitting, high model complexity, or limited

training data, which restrict its ability to generalize revenue predictions into tradable

signals. These findings reveal the varying effectiveness of ML models in translating

revenue forecasts into stock market performance.

To evaluate the robustness of these investment strategies across firms of different

sizes, we conduct a subsample analysis (Panel D) and examine equally weighted

portfolios (Panel E). The results indicate that all models exhibit consistent performance

across large-cap and small-cap stocks and in equally weighted portfolios. This

consistency confirms the effectiveness of ML models in forecasting revenue changes

and highlights their applicability across different market segments.

To assess the investment implications of financial forecasts, we also construct

portfolios based on both analyst forecasts and ML-predicted annual revenues. The

results show that CARs are statistically insignificant, regardless of the forecast source.

This outcome is attributable to two factors. First, analyst forecasts are available only on

an annual basis, resulting in a limited sample size that constrains the ability to generate

statistically significant portfolio returns. Second, the availability of monthly revenue

disclosures enables the market to continuously update its expectations, diminishing the

timeliness of annual forecasts. To further evaluate predictive performance, we compare

ML models with alternative forecasting approaches, including LLMs and ARIMA
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models, as discussed in Sections 5.2 and 5.3.

The results in Table 4 indicate that ML models have strong potential in predicting

revenue fluctuations and constructing profitable investment portfolios. Among the

evaluated models, Random Forest consistently generates the highest abnormal returns

with strong statistical significance. Its superior predictive performance and investment

profitability are likely attributable to ensemble learning, which aggregates the outputs

of multiple decision trees to improve predictive performance, bootstrap sampling,

which mitigates overfitting, and aggregation, which improves prediction stability by

averaging multiple decision trees, ensuring robustness against the influence of

individual variables.

Figure 4 presents the annual fluctuations in abnormal returns generated by various

ML models from 2019 to 2022, evaluating their predictive robustness in dynamic

market conditions. Mclean and Pontiff (2016) observe that the effectiveness of

predictive signals often weakens as arbitrage activities intensify and market liquidity

improves, raising the question of whether ML models can sustain consistent

profitability over time.

As shown in Figure 4, most ML models consistently generated positive abnormal

returns, demonstrating their resilience to evolving market conditions. Although Neural

Network and Nearest Neighbor recorded slight negative returns in 2019 and 2022 (-
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1.031% and -0.712%, respectively), they remained positive in other years. Despite these

fluctuations, the overall trend suggests that ML models effectively predict abnormal

returns across different periods. This pattern reflects the adaptability of ML techniques

to shifting market dynamics and supports the use of ML-based revenue forecasting as

an investment strategy.

Figure 5 presents the monthly average abnormal returns generated by various ML

models from 2019 to 2022, highlighting their performance fluctuations under different

market conditions. The results indicate that ML models produced positive abnormal

returns for most of the period, albeit with varying degrees of volatility. Among them,

Random Forest recorded the highest peak return, reaching 10.21% in May, while its

lowest return was observed in January at -0.809%. Other models exhibit greater

variability, experiencing pronounced fluctuations throughout the year. A more granular

analysis reveals that market dynamically, suggesting that making predictions only once

per year may fail to capture these variations and adapt to an evolving investment

environment.
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Table 4 Cumulative Abnormal Returns Based on Revenue Predictions from Machine Learning Models

Panel A: Cumulative Excess Returns from Previous to Current Revenue Announcement

Return Decision Tree Random Forest Gradient Boosting Neural Network Nearest Neighbor Elastic Net
1 (low) -0.040 -0.260 -0.101 1.453 0.860 1.163

2 -0.033 -0.043 0.334 0.673 0.181 0.684

3 0.035 0.309 0.665 2.121 1.111 0.448

4 0.578 0.351 0.612 1.420 1.519 0.718

5 1.125 1.150 1.216 1.651 0.929 0.769

6 1.777 0.611 1.999 1.686 2.047 1.322

7 1.946 2.801 2.755 2315 1.929 2.319

8 2.679 2.325 3.082 1.422 2.120 2416

9 2.183 2.909 3.675 2.017 2.068 2.133
10 (high) 4.890 5.279 2.627 1.881 2.742 4.270
10—1 4.930%*** 5.530%** 2.728%H* 0.429 1.882%* 3.107%**
t-statistic (4.75) (4.55) (2.69) (0.45) (2.57) (3.47)
Panel B: Risk-Adjusted Portfolio Returns Based on the Fama-French Five-Factor Model

FF5 Decision Tree Random Forest Gradient Boosting Neural Network Nearest Neighbor Elastic Net
1 (low) -0.060 -0.401 -0.537 2.118 1.428 1.309

2 -0.333 0.255 0.104 0.570 0.494 0.865

3 -0.192 -0.043 0.104 2.168 1.341 0.308

4 0.678 0.282 0.395 0.778 1.289 0.657

5 1.031 1.197 1.345 2.053 0.777 1.035
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6 1.542 0.907 2.213 1.792 1.798 130

7 2.174 2.642 2919 2.674 2.191 2.112

8 2.516 2.378 3.019 1.822 2.468 2.180
9 2.335 3.616 4.139 2.098 2.601 2.853
10 (high) 4.589 5.747 2.586 2.062 2.448 4.324
10—1 4.877*** 5.513%** 2.066* 0.670 1.944%* 2.987**x*
t-statistic (4.17) (4.20) (1.82) (0.76) (2.44) (3.21)
Panel C: Risk-Adjusted Returns Using q-Factor Model

q-factor Decision Tree Random Forest Gradient Boosting Neural Network Nearest Neighbor Elastic Net
1 (low) 0.024 -0.165 -1.130 2.019 1.247 0.860
2 -0.084 -0.096 0.086 0.617 0.135 0.394

3 -0.457 -0.211 0.619 2.299 1.255 0.142
4 0.957 0.281 0.629 0.725 2.184 0.511

5 1.382 1.140 1.485 2.001 1.168 0.638
6 1.834 0.607 1.610 1.791 2.130 1.530
7 3.181 2.832 2.822 2.013 1.751 2214
8 2.904 2.926 3.079 1.448 2.015 1.692
9 2.757 3.035 3.846 2277 3.117 2.335
10 (high) 4.481 5.120 2.644 2.021 2.425 4.399
10—1 4.799%** 5.581*** 1.723 0.739 1.906%* 3.436%**
t-statistic (3.97) (4.13) (1.55) (0.78) (2.50) (3.61)

Panel D: Subsample Analysis for Large-Cap and Small-Cap Stocks
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Large-cap Decision Tree ~ Random Forest Gradient Boosting Neural Network Nearest Neighbor ~ Elastic Net
Return 10—1 4.862%** S5.117%%* 3.270%** 0.410 2.146%** 3.041%**
t-statistic (4.52) (4.45) (3.11) (0.48) (2.78) (3.38)
FF5 10—1 5.065%** 5.142%** 3.398%** -0.159 1.514%* 2.414%*%
t-statistic (4.58) (4.11) (3.15) (-0.19) (1.78) (2.80)
q-factor 10—1 5.521%** 4.996%** 3.252%** 0.376 1.960** 3.026%**
t-statistic (4.84) (3.90) (2.98) (0.44) (2.35) (3.25)
Small-cap Decision Tree ~ Random Forest Gradient Boosting ~ Neural Network ~ Nearest Neighbor  Elastic Net
Return 10—1 5.014%** 5.228%** 3.737%** 0.385 0.835%* 4.117%**
t-statistic (10.30) (10.56) (7.50) (0.92) (2.22) (7.50)
FF5 10—1 4.971*H* 5.357%** 3.677*** 0.382 0.854%* 4.289%H*
t-statistic (9.49) (10.63) (7.44) (0.77) (2.13) (6.63)
q-factor 10—1 5.106%** 5.951%** 3.541%** 0.172 0.845%* 4.186%**
t-statistic (9.20) (12.72) (7.25) (0.37) (2.13) (6.83)
Panel E: Equal-Weighted Portfolio Returns
Equal-weighted Decision Tree ~ Random Forest Gradient Boosting Neural Network Nearest Neighbor Elastic Net
Return 10—1 416.833%** 437.011%** 263.380%** 32.632 263.380%** 333.771%**
t-statistic (9.61) (9.95) (7.08) (0.88) (7.08) (9.88)
FF5 10—1 386.209%** 453.686%** 253.467*** 30.262 226.396%** 339.388***
t-statistic (9.07) (9.64) (6.37) (0.82) (5.75) (9.10)
g-factor  10—1 390.489%*** 443 .433%** 263.669%** 27.319 248.261*** 353.508%**
t-statistic (8.42) (9.71) (6.99) (0.72) (6.37) (9.44)
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Note: This table presents the cumulative abnormal returns based on revenue predictions from various ML models. Panel A displays cumulative excess returns from the day
following the previous revenue announcement to the current month's revenue announcement. Data is sorted into deciles based on predicted revenues, with "10—1" representing
the difference between the highest and lowest deciles. Panels B and C report risk-adjusted returns using the Fama-French five-factor and q-factor models. Panel D presents a

subsample analysis for large-cap and small-cap stocks, and Panel E shows results for equal-weighted portfolios.
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Figure 4 Average Excess Returns for Machine Learning Models Over the Years

Figure 4 shows the annual fluctuations in excess returns for various ML models—Decision Tree, Random Forest, Gradient Boosting, Neural

Network, Nearest Neighbor, and Elastic Net—from 2019 to 2022. The x-axis displays the time in years, whereas the y-axis reflects the

corresponding percentages return rates, capturing the performance of each ML model in generating abnormal returns annually.
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Figure 5 Average Excess Returns for Machine Learning Models Across Months

Figure 5 displays the monthly variations in excess returns for various ML models—Decision Tree, Random Forest, Gradient Boosting, Neural

Network, Nearest Neighbor, and Elastic Net—from 2019 to 2022. The x-axis displays the time in months, while the y-axis reflects the

corresponding percentages return rates, capturing the fluctuations in abnormal returns across different models each month.
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4.4 Isolating Predictive Performance from Revenue Announcement Effects

To ensure that the investment window purely reflects the predictive ability of ML-

based revenue forecasts, we further isolate its impact from any market reactions

following the actual revenue disclosure. For instance, the January sales announcement

is released on February 10. To prevent potential distortions from post-announcement

market responses, the portfolio is held from January 10 (the prior month’s revenue

announcement date) to February 9 (the day before the January sales announcement).

This adjustment eliminates potential bias from including February 10 and 11, as returns

on these days may reflect market responses to the actual revenue disclosure.

Table 5 reports CAR under this alternative holding period, confirming that the

results remain robust. ML-based revenue forecasts generate significant abnormal

returns even when strictly excluding actual revenue announcements. This analysis

further validates that the observed returns stem from the informational content of

revenue predictions rather than market reactions to realized revenues.

Table 5 Excluding the Effect of Revenue Announcements

Portfolio Return (10—1) FF5 (10—-1) g-factor (10—1)

Decision Tree 4.375%** 4.039%** 4.671%**
(3.78) (3.29) (4.24)

Random Forest 4.822%%* 4.340%** 4.885%**
(3.75) (2.96) (3.64)

Gradient Boosting 2.347%* 2.215%* 2.054**
(2.49) (2.29) (2.15)

Neural Network 0.997 1.429 0.516
(0.95) (1.24) (0.80)

Nearest Neighbor 1.988*#:* 1.883%* 1.316*

44

doi:10.6342/NTU202501949



(3.06) (2.58) (1.86)
Elastic Net 2.34]1 %% 2.034%% 2.655%**
(3.11) (2.63) (3.23)

Note: This table reports the cumulative abnormal returns after excluding the effect of revenue

announcements, based on portfolios constructed using six ML models. The "10—1" portfolio represents

the return spread between the top and bottom deciles of predicted revenue growth.

4.5 Short-Term Abnormal Returns from Machine Learning Revenue Forecasts

Understanding short-window returns is crucial for assessing the immediate market

response to revenue announcements. This analysis focuses on a narrow event window,

capturing investors' direct reactions to new information while minimizing the influence

of confounding factors. We evaluate CAR over three short-term event windows—(-1,

+1], [-2, +2], and [-3, +3]—to measure the effectiveness of different ML models in

predicting short-term market movements.

Table 6 presents the short-term window analysis results, examining market

fluctuations before and after revenue announcements. Except for the Nearest Neighbor,

most ML models continue to generate significantly positive abnormal returns within

short windows, further demonstrating the predictive value of ML-based revenue

forecasts in short-horizon market reactions. Among these models, Random Forest

consistently produces significantly positive returns across most event windows,

demonstrating its ability to capture short-term price movements and generate excess

returns.

Table 6 Cumulative Abnormal Returns in Short Windows

Panel A: Excess Return

Portfolio (10—1) [-1,+1] [-2,+2] [-3,+3]
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Decision Tree 0.902* 1.278** 1.551**

(1.87) (2.18) (2.50)
Random Forest 0.864 1.428** 1.632%*%*
(1.60) (2.27) (2.38)
Gradient Boosting 0.652 0.888** 1.001**
(1.54) (2.54) (2.21)
Neural Network -0.928* -0.913* -0.964*
(-1.82) (-1.80) (-1.88)
Nearest Neighbor -0.059 -0.184 0.243
(-0.15) (-0.43) (0.55)
Elastic Net 0.808* 1.715%** 1.981***
(1.80) (3.56) (3.37)
Panel B: Risk-Adjusted Returns Using Fama-French Five-Factor Model
Portfolio (10—1) [-1,+1] [-2,+2] [-3,+3]
Decision Tree 1.174%* 1.103* 1.495%*
(2.51) (1.73) (2.09)
Random Forest 1.149%* 1.214%* 1.776**
(2.19) (1.76) (2.23)
Gradient Boosting 0.721 0.899** 1.349%**
(1.59) (2.28) (2.77)
Neural Network -0.785 -0.749 -0.830
(-1.56) (-1.30) (-1.59)
Nearest Neighbor 0.135 -0.362 0.006
(0.37) (-0.74) (0.01)
Elastic Net 0.865* 1.596%** 1.796%**
(1.81) (3.03) (2.98)
Panel C: Risk-Adjusted Returns Using q-Factor Model
Portfolio (10—1) [-1,+1] [-2,+2] [-3,+3]
Decision Tree 0.966** 1.166* 1.736%**
(2.07) (1.92) (2.45)
Random Forest 0.925* 1.312%* 2.062%**
(1.73) (2.03) (2.68)
Gradient Boosting 0.594 0.812%* 1.4471%%**
(1.32) (2.18) (3.13)
Neural Network -0.915%* -0.917* -0.749
(-1.75) (-1.70) (-1.37)
Nearest Neighbor 0.017 -0.260 0.098
(0.05) (-0.57) (0.21)
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Elastic Net 0.758 1.786%** 1.919%#*
(1.62) (3.48) (3.14)

Note: This table presents the cumulative abnormal returns for short-term event windows, including [-

1,+1], [-2,+2], and [-3,+3], based on portfolios constructed using six ML models. The "10—1" portfolio
represents the return spread between the highest and lowest predicted revenue portfolios. Panel A reports
raw excess returns, while Panels B and C report returns adjusted for risk based on the Fama-French five-

factor model (FF5) and g-factor models.

4.6 Post-Revenue Announcement Drift and Machine Learning Forecasts

This section examines whether revenue announcements lead to a drift effect in the

month following their release, analogous to the post-earnings announcement drift

(PEAD) that Ball and Brown (1968), Bernard and Thomas (1989), Foster, Olsen, and

Shevlin (1984), Jegadeesh and Titman (1993) identify. We analyze CAR from the

second day after the announcement to the end of the month ([+2, +EOM)]) to assess the

predictive effectiveness of various ML models. For example, when the revenue for

January is announced, we use the forecasts to predict February revenue and form

portfolios accordingly. These portfolios are held from the second trading day after the

official February revenue announcement (typically released on February 10) through

the end of February.

Table 7 reports CAR for each ML model over this period. The results indicate that,

except for Random Forest, most ML models generate insignificant abnormal returns

post-announcement. This limited drift effect may indicate improvements in the

information environment, which allow investors to process and incorporate new

information more efficiently, reducing the persistence of abnormal returns. Fink (2021)
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finds that PEAD has weakened recently, suggesting a more efficient market response

to financial disclosures. Additionally, revenue announcements in Taiwan are typically

concise, providing monthly revenue, year-over-year comparisons, and cumulative data,

which may further accelerate market reactions and limit post-announcement drift.

Among the models examined, Random Forest is the only one that continues to generate

statistically significant positive abnormal returns, suggesting that it captures revenue-

related signals that persist beyond the initial market reaction.

Table 7 Cumulative Abnormal Returns from Post-Announcement to Month-End

Portfolio Return (10—1) FF5 (10—1) g-factor (10—1)
Decision Tree 1.615 1.561 1.432
(1.59) (1.34) (1.34)
Random Forest 1.814%* 2.238* 1.807
(1.70) (1.85) (1.61)
Gradient Boosting -0.215 -0.504 -0.217
(-0.45) (-0.98) (-0.44)
Neural Network -0.219 0.254 0.100
(-0.34) (0.38) (0.16)
Nearest Neighbor 0.418 0.265 0.463
(0.69) (0.40) (0.73)
Elastic Net -0.057 -0.951 -0.099
(-0.08) (-1.34) (-0.13)

Note: This table presents cumulative abnormal returns from the post-announcement period to the end of
the month. The analysis employs six ML models. The "10—1" represents the return difference between

the highest and lowest predicted revenue portfolios.

4.7 Machine Learning Predictions in the Technology Sector

Revenue plays a central role in valuing technology firms, given the earnings

volatility and uncertainty associated with R&D-intensive businesses (Kothari, Laguerre,

and Leone (2002)). Prior research finds that markets react more strongly to revenue
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surprises in technology firms than those with lower R&D intensity (Chandra and Ro

(2008), Kama (2009)), reinforcing the importance of revenue as a key valuation metric.

We classify firms into technology and non-technology industries based on TSE industry

definitions to assess industry-specific effects. The technology industry includes

semiconductors, computers and peripherals, optoelectronics, communications and

internet, electronic components, electronic distribution, and information services, while

all other industries fall into the non-technology category.

Table 8 presents differences in ML model performance across industries. Panel A

reports that ML models generate higher abnormal returns in the technology industry,

whereas Panel B shows lower returns in non-technology firms. ML models exhibit

statistically significant abnormal returns in most technology firms, though their

predictive performance declines in non-technology industries. These findings support

differentiated investment strategies across industries, reflecting the greater importance

of revenue in technology firms, where rapid revenue growth often translates into higher

stock returns.

Further analysis reveals that Random Forest consistently delivers strong

performance across both industries, generating the highest risk-adjusted abnormal

returns. In this analysis, Nearest Neighbor models become statistically insignificant in
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both industries, possibly due to diminished predictive effectiveness resulting from the

reduced sample size.

We find that the Elastic Net model yields significantly stronger revenue

forecasting performance for technology firms than for non-technology firms,

suggesting that the financial and operational features of tech companies are more

effectively utilized by machine learning models. The top five predictors are Last Year’s

Monthly Revenue, Inventory, Cumulative Revenue, Last Year’s Cumulative Revenue,

and Net Operating Income. In technology firms, past revenue and inventory levels serve

as reliable predictors of future revenue. In rapidly innovating industries, higher

inventory typically reflects expectations of strong demand, rather than excess stock.

Table 8 Portfolio Returns Across Technology and Non-Technology

Panel A: Technology Industry

Portfolio Return (10—1) FF5 (10—1)  g-factor (10—1)
Decision Tree 4.707%** 4.545%** 5.186%**
(5.94) (5.59) (6.23)
Random Forest 4.735%%* 4.819%** 4.599%**
(5.00) (4.81) (4.66)
Gradient Boosting 5.385%** 5.440%** 4.7T7***
(4.91) (4.52) (4.02)
Neural Network 0.286 0.369 0.900
(0.33) (0.36) (0.92)
Nearest Neighbor 0.869 0.474 0.653
(1.02) (0.53) (0.69)
Elastic Net 5.977*** 6.094%** 6.167%**
(5.33) (5.26) (5.46)
Panel B: Non-Technology Industry
Portfolio Return (10—1) FF5 (10—1)  g-factor (10—1)
Decision Tree 4.539%** 4.601*** 4.531%**
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(3.26) (3.14) (3.09)

Random Forest 4.678%** 4291 *** 4.498%**
(3.40) (2.81) (3.01)
Gradient Boosting 1.929%* 1.732 1.429
(1.73) (1.43) (1.27)
Neural Network -0.199 -0.329 -0.202
(-0.19) (-0.34) (-0.18)
Nearest Neighbor 0.639 0.510 0.442
(0.78) (0.64) (0.51)
Elastic Net -0.250 -1.450 -0.912
(-0.20) (-1.11) (-0.67)

Note: This table presents the portfolio performance based on ML predictions for technology (Panel A)

and non-technology (Panel B) industries.

4.8 Robustness tests

4.8.1 Effect of Training Window Length in Machine Learning Forecasts

To assess the robustness of our ML models' predictive performance, we extend the

analysis by incorporating rolling windows of 2-year, 3-year, and 5-year periods to

evaluate the stability of ML models across different training sets. This approach allows

us to examine whether the length of the training window affects forecasting accuracy

and the ability to predict abnormal returns.

Table 9 presents the results, showing that ML models maintain stable predictive

performance across all time horizons. Furthermore, as the training period lengthens,

most models generate higher abnormal returns, suggesting that ML effectively

integrates historical data to enhance forecasting precision. This improvement may stem

from two factors. First, a longer training window provides more diverse and

representative observations, enabling models to capture structural patterns rather than
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overfitting to short-term noise. Second, because financial data are often cyclical and

volatile, shorter samples may fail to span different macroeconomic regimes, limiting

the model’s ability to generalize over time. This observation suggests that longer

training windows contribute to greater model stability and statistical significance.

More specifically, the Random Forest model consistently delivers the highest

abnormal returns across different training windows, reporting 4.739%, 4.465%, and

6.007% for the 2-year, 3-year, and 5-year periods, respectively. These findings are

consistent with its strong performance in the 4-year rolling window used in the primary

analysis. Likewise, other ML models exhibit comparable trends, confirming the

robustness of the primary analysis and demonstrating that the length of the training

window does not materially affect the overall predictive effectiveness of ML models.

Table 9 Abnormal Returns from Portfolios Across Different Rolling Windows

Portfolio Excess return 2yrs 3yrs Syrs
Decision Tree 10—1 3.809%** 3.890%** 5.031%**
t-statistic (4.52) (4.11) (3.59)
Random Forest 10—1 4.7739%H%* 4.465%** 6.007%**
t-statistic (5.31) (4.04) (4.03)
Gradient Boosting 10—1 2.596%H** 1.870* 2.465*
t-statistic (2.88) (1.81) (1.72)
Neural Network 10—1 0.261 0.736 -0.179
t-statistic (0.48) (1.04) (-0.21)
Nearest Neighbor 10—1 2.065%** 1.609%* 2.258%*
t-statistic (3.09) (2.20) (2.49)
Elastic Net 10—1 2.383%H* 2.298%* 5.287%**
t-statistic (3.12) (2.55) (4.30)

Note: This table presents the abnormal returns of portfolios based on various rolling windows, utilizing

six ML models. Results are reported for 2-year, 3-year, and 5-year rolling windows.
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4.8.2 Portfolio Performance and Revenue per Share Analysis

This section examines how revenue per share (RPS) growth influences portfolio

performance while adjusting for the effect of outstanding shares. RPS, defined as

monthly revenue divided by the number of outstanding shares, provides a revenue-

based measure that adjusts for potential dilution. By isolating the impact of changes in

outstanding shares, RPS enables a clearer distinction between genuine improvements

in operating efficiency and superficial revenue growth driven by equity issuance or

asset expansion. This adjustment is particularly important when evaluating firms with

varying capital structures or aggressive financing policies.

Table 10 presents portfolio performance based on RPS forecasts. Most ML models

generate statistically significant abnormal returns after adjusting for outstanding shares.

However, Nearest Neighbors does not produce significant excess returns, implying that

distance-based methods may have limited effectiveness in capturing revenue signals

when share dilution is considered. Among all models, Random Forest achieves the

highest performance, with excess returns of 3.737%, which remained statistically

significant after adjusting for risk using the Fama-French five-factor and g-factor

models. These findings confirm the robustness of Random Forest as an effective

predictive model.

Table 10 Portfolio Performance Based on Revenue per Share Predictions

Portfolio Return (10—1) FF5 (10—1)  g-factor (10—1)
Decision Tree 3.712%%* 3.579%#* 3.728%#*
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(4.89) (4.36) (4.30)

Random Forest 3.737%** 3.235%** 3.734%**
(3.94) (3.15) (3.40)
Gradient Boosting 3.027%%* 3.356%** 3.413%%*
(3.57) (3.56) (3.82)
Neural Network 0.029 0.055 0.059
(0.04) (0.07) (0.08)
Nearest Neighbor -0.167 -0.562 -0.314
(-0.24) (-0.68) (-0.43)
Elastic Net 1.892%** 1.843%** 2.163%**
(2.91) (2.68) (3.17)

Note: This table presents the portfolio performance based on revenue per share predictions.

4.8.3 Portfolio Performance After Excluding the Construction Industry

Chen, Liu, and Chiao (2022) emphasize the distinct revenue recognition method
used in the construction industry, where firms primarily adopt the completed contract
method. This approach results in significant revenue fluctuations, introducing potential
distortions in financial forecasting models. To validate our findings, we conduct a
robustness analysis by excluding the construction sector from our sample, enabling a
more accurate evaluation of potential biases and enhancing the reliability of our
findings. Removing construction firms ensures that our investment strategy’s
effectiveness is not influenced by industry-specific accounting treatments that could
artificially affect revenue predictions and portfolio performance.

Table 11 reports portfolio performance based on predicted monthly revenue
changes after excluding the construction industry. The results show that our investment

strategy remains effective following this exclusion, confirming the robustness and
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generalizability of our results. Among the models, Random Forest delivers the strongest

performance, generating excess returns of 5.809%, with statistical significance

maintained even after risk adjustments using the Fama-French five-factor and g-factor

models.

Table 11 Portfolio Performance Excluding the Construction Sector

Portfolio Return (10—1) FF5 (10—1)  g-factor (10—1)
Decision Tree 5.3209%** 5.950%** 5.662%**
(4.98) (5.42) (4.98)
Random Forest 5.809%** 5.446%** 5.988***
(4.55) (3.99) (4.58)
Gradient Boosting 3.079%** 3.237%** 3.655%**
(2.71) (3.61) (3.41)
Neural Network 0.604 0.314 0.486
(0.63) (0.32) (0.50)
Nearest Neighbor 1.584** 1.604* 1.516%*
(2.01) (1.94) (1.83)
Elastic Net 3.418%** 3.124%** 3.472%**
(3.76) (3.20) (3.69)

Note: This table presents the portfolio performance of machine learning models after excluding the

construction industry.

5. Additional Analysis

5.1 Strategy Profitability After Accounting for Transaction Costs

Novy-Marx and Velikov (2016) find that many investment strategies experience a

substantial decline in profitability once transaction costs are incorporated, often

rendering abnormal returns negligible. To assess the practical feasibility of our strategy,

we incorporate transaction costs into the evaluation framework, ensuring that the

observed excess returns remain statistically and economically meaningful. This

55

doi:10.6342/NTU202501949



adjustment enables a more realistic assessment of whether the strategy retains
profitability under real-world trading frictions.

We employ a comprehensive transaction cost framework to provide a conservative
yet realistic evaluation of the strategy’s viability. The cost structure includes a 0.6%
securities transaction tax, a 0.57% brokerage fee, and a 0.08% short-selling fee.
Additionally, we include a one-month 0.13% funding cost based on the average loan
interest rate from the top five banks. We also incorporate a one-month -0.02% interest
revenue from securities lending, where a negative value reflects a positive return. These
components collectively amount to 1.36% of total transaction costs, establishing a
structured basis for evaluating the strategy's economic sustainability.

Figure 6 reports the post-cost abnormal returns across different ML models. After
transaction costs, the Random Forest strategy generates an abnormal return of 4.179%°,
followed by Decision Tree: 3.570%, Gradient Boosting: 1.368%, Nearest Neighbors:
0.522%, and Elastic Net: 1.747%. In contrast, the Neural Network model, already
statistically insignificant in preliminary tests, yields a negative return of -0.931%.

These results demonstrate the varying degrees of resilience among ML-driven

investment strategies when subjected to real-world trading frictions. Despite transaction

9Given a monthly return of 3.570%, the annualized return is approximately 51.29%, calculated as (1 +

0.0357)12 — 1.
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costs, most ML-based portfolios deliver positive abnormal returns, confirming these
approaches' robustness and practical relevance. Accounting for transaction costs in
investment strategy assessments is essential, as it allows for a more accurate evaluation
of a strategy's long-term profitability under realistic trading conditions. Moreover, these
findings illustrate the potential of ML-driven models to sustain excess returns even in

the presence of market frictions.

Figure 6 Transaction Costs and Excess Returns for Machine Learning Models

Figure 6 compares transaction costs and excess returns across six ML models: Decision
Tree, Random Forest, Gradient Boosting, Neural Network, Nearest Neighbor, and
Elastic Net. The orange bars represent the excess returns achieved by each strategy,

while the gray bar denotes the associated transaction cost.
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5.2 Investment Performance of Large Language Model Forecasts

Generative Al notably LLMs such as GPT-4, has achieved significant progress in
text analysis, interpretation, and generation. Recent research suggests that these models

can approximate financial analysts' capabilities in numerical analysis and decision-
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making (Lopez-Lira and Tang (2024)). Additionally, some studies show that LLMs

perform exceptionally well in settings with high analyst disagreement, accurately

predicting quarterly earnings Kim, Muhn, and Nikolaev (2025). Building on this

foundation, our study extends prior methodologies by employing LL.Ms to forecast

higher-frequency monthly revenues and comparing their predictive performance with

ML models.

To refine previous approaches, we introduce several methodological

improvements. First, we utilize GPT-40, an advanced iteration of GPT-4 Turbo. GPT-

40 improves response quality and replicates financial analysts' reasoning processes

more accurately, enhancing predictive accuracy. Additionally, while prior studies

predicted binary directions, confidence levels, and three levels of magnitude, our study

categorizes revenue growth rates into ten deciles, allowing for a more detailed and

granular analysis.

Our methodology follows a structured process to ensure robust predictions. We

anonymize and standardize company financial statements to mitigate biases stemming

from the model's prior knowledge. To ensure a fair comparison, both ML and LLM

models are trained on identically processed datasets, where all company-specific

information is anonymized, and financial variables are standardized. We then apply

chain-of-thought (CoT) prompting to guide GPT-40 in identifying financial trends,
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computing key ratios, and deriving economic insights. The model subsequently predicts
monthly revenue changes, assigning them to ten tiers, where 1 represents the lowest
predicted revenue growth and 10 the highest (Wei et al. (2022)).

Table 12 presents portfolio performance based on LLM-generated forecasts. The
10—1 portfolio constructed from LLM-based predictions yields a return of 1.609% (¢-
statistic = 2.18), which remains statistically significant after adjusting for risk factors,
with excess returns of 1.416% (z-statistic = 1.94) and 1.294% (z-statistic = 1.66) under
the Fama-French five-factor and g-factor models, respectively.

Compared to ML models (Table 4), investment strategies based on LLMs generate
lower returns, exceeding only those derived from Neural Networks. These findings
illustrate fundamental differences in predictive approaches. While LLMs can process
structured financial data, the returns achieved through these models remain lower than
those of most quantitative methods. Among ML approaches, Random Forest
demonstrates greater effectiveness in capturing financial patterns and trends, making it

more suitable for revenue forecasting.

Table 12 Portfolio Performance Based on Large Language Model Predictions

Portfolio Return FF5 g-factor
1 (low) 0.616 0.929 0.918
2 1.488 1.331 1.363
3 1.580 1.541 1.326
4 1.577 1.486 1.612
5 2.005 2.126 1.863
6 1.525 1.613 1.325
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7 2.002 1.932 1.816

8 1.544 1.206 1.065
9 1.615 1.558 1.951
10 (high) 2.225 2.197 2.434
10—1 1.609** 1.416* 1.294%*
t-statistic (2.18) (1.94) (1.66)

Note: This table presents the portfolio performance based on predictions from a Large Language Model
(LLM). Portfolios are sorted into deciles based on LLM-predicted revenue, with Portfolio 1 (low)

representing the lowest predicted revenue and Portfolio 10 (high) representing the highest.

5.3 Investment Performance of ARIMA-Based Forecasts

This section evaluates the forecasting performance of the ARIMA model in

revenue prediction and compares it with ML approaches. ARIMA has been widely

applied in time series forecasting, including stock returns (Dong et al. (2020)), EPS

(Bao et al. (1983), Brown (1993), Hopwood and Newbold (1980)), and revenue

estimation (Huang et al. (2017), Liu and Sun (2020)). While ARIMA is effective in

short-term forecasting by capturing historical patterns, trends, and cyclical fluctuations,

its predictive accuracy depends on the stability of these patterns (Ripley (2002), Wang

et al. (2018)). Consequently, its performance may deteriorate in environments

characterized by structural breaks or regime shifts. Building on prior research, we apply

ARIMA to monthly revenue forecasting and assess its predictive accuracy relative to

ML models.

We estimate ARIMA models using a rolling window approach, training on 12-,

24-, 36-, and 48-month periods to predict the subsequent month's revenue. This method

ensures forecasts incorporate recent data patterns, making it well-suited for short-term
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prediction. However, unlike ML models that employ the full dataset, ARIMA relies on

a fixed-length historical window, which may constrain its ability to capture long-term

trends.

To optimize ARIMA specifications across firms, we employ Stata’s xtarimau

command, which selects the best-fitting model based on the Hyndman and Khandakar

(2008) algorithm. The selection process evaluates candidate models using the Akaike

Information Criterion (AIC) and Bayesian Information Criterion (BIC) to balance

predictive accuracy and model complexity.

Table 13 reports portfolio performance based on ARIMA-generated revenue

forecasts. The 10— 1 strategy produces statistically significant abnormal returns.

However, ARIMA generates lower returns than most ML methods, exceeding only

those of the Neural Networks model. Moreover, its ¢-statistics generally fall below 3,

suggesting weaker statistical significance and indicating the greater effectiveness of ML

methods in predicting revenue changes.

Table 13 Portfolio Performance Based on Autoregressive Integrated Moving

Average
Portfolio Win(12) Win(24) Win(36) Win(48)
Return
10—1 1.787%** 1.552%%* 1.803#** 1.596**
t-statistic (3.29) (2.88) (3.12) (2.36)
FF5
10—1 1.636%** 1.434%%* 1.670%** 1.498**
t-statistic (2.77) (2.55) (2.75) (2.06)
g-factor
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10—1 1.564%%* 1.577%%* 1.600%** 1.550%*
t-statistic (2.64) (2.78) (2.70) (2.10)

Note: This table presents the performance of portfolios based on predictions from the Autoregressive

Integrated Moving Average (ARIMA) model using different rolling windows. Win(12), Win(24),
Win(36), and Win(48) represent rolling windows of 12, 24, 36, and 48 months, respectively.

5.4 Investment Performance of EPS Forecasts

This section extends the analysis to evaluate the predictive performance of ML
models in forecasting EPS. As a critical financial metric directly tied to stock
performance, EPS provides an alternative benchmark for assessing the effectiveness of
ML-based forecasting models. This analysis examines whether ML models exhibit
similar predictive strength across different financial indicators and whether revenue
forecasts offer superior investment signals compared to EPS forecasts.

Table 14 reports portfolio returns based on ML-predicted EPS growth. The 10—1
portfolio remains statistically significant across most ML models, confirming that ML-
driven EPS forecasts embed predictive value. Random Forest, the best-performing
model, delivers an annualized return of 39.328%, compared to 66.468% for revenue
forecasts 1°. Other ML models, including Decision Trees and Gradient Boosting,
generate statistically significant abnormal returns based on EPS predictions, albeit at

lower levels than revenue forecasts.

10 The annualized return is calculated using the compound interest formula (1 + )™ — 1, where r
denotes the periodic return and n is the number of periods per year. For example, a quarterly return of
9.832% yields an annualized return of approximately 45.52%, and a monthly return of 5.539%

yields an annualized return of approximately 90.97%.
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Despite the effectiveness of ML in EPS forecasting, the investment profitability is

substantially lower than that derived from revenue-based predictions. This result

suggests that while revenue and EPS forecasts contain predictive signals, revenue

growth is a more effective trading signal, likely due to its timeliness and direct impact

on investor expectations. In contrast, EPS may be subject to greater accounting

discretion and reporting frequency, limiting its ability to generate excess returns.

These findings demonstrate that ML models achieve strong predictive

performance in revenue forecasting and exhibit efficacy in EPS prediction, though with

diminished return-generating potential. This additional analysis reinforces the

robustness of the results and further supports the distinct advantage of monthly revenue

forecasts in driving investment performance.

Table 14 Machine Learning Forecasting Performance on EPS

Portfolio Return (10—1) FF5 (10-1) g-factor (10—1)
Decision Tree 9.254%** 9.656%** 10.666***
(4.39) (3.48) (3.76)
Random Forest 9.832%** 10.968*** 11.100%**
(4.85) (5.61) (5.44)
Gradient Boosting 9.773%%x* 0.375%%** 10.627%**
(4.80) (5.29) (5.21)
Neural Network -0.282 0.507 -0.148
(-0.17) (0.25) (-0.07)
Nearest Neighbor 5.342%* 5.981 4.909*
(2.43) (1.51) (1.85)
Elastic Net 9.523%** 10.567*** 10.327%%*
(3.83) (3.82) (3.60)

Note: This table evaluates the forecasting performance of ML models on EPS.
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6. Conclusion

This study applies six ML models—Decision Tree, Random Forest, Gradient

Boosting, Neural Network, Nearest Neighbor, and Elastic Net—to forecast monthly

revenues. Among these models, Random Forest exhibits the highest predictive accuracy.

To evaluate the economic significance of the forecasts, we form investment portfolios

sorted by predicted revenue growth and test their ability to generate abnormal returns.

Empirical evidence shows that all machine learning models—except Neural

Networks—deliver statistically significant positive alphas, outperforming both LLM

and ARIMA benchmarks. The Random Forest model consistently delivers the most

potent performance across multiple robustness tests.

The primary advantage of ML lies in its ability to process and analyze large

datasets with minimal human intervention, thus reducing potential errors. These models

capture complex patterns and nonlinear relationships, particularly in high-dimensional

financial data. Given that revenue disclosures occur monthly, ML models can rapidly

adapt to evolving trends, enhancing the timeliness of revenue forecasts. The empirical

findings support this assertion, demonstrating that ML-based revenue predictions

provide more timely and accurate signals than traditional forecasting methods.

This study has two primary limitations. First, the analysis is conducted within the

context of the Taiwanese securities market, where revenue disclosure is subject to
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unique regulatory requirements. Although regulatory regimes differ across markets, the

findings may still offer relevant implications for economies with comparable reporting

structures. The limited accessibility of public analyst forecast reports imposes

considerable information costs on individual investors, potentially hindering timely

access to revenue expectations. More frequent revenue forecasts could improve market

transparency, support better-informed investment decisions, and enhance capital market

efficiency.

Second, financial information may be influenced by economic cycles, industry

shifts, firm-specific characteristics, and regulatory changes, all of which contribute to

the non-stationarity of the data. These factors pose challenges to maintaining stable and

accurate forecasting models over time. Further investigation may account for evolving

political and economic conditions and adjust feature design when necessary.

Future research could extend these ML frameworks to forecast other important

financial indicators, including cash flows and firm-level risk measures. Another

promising avenue involves integrating unstructured data, such as news sentiment and

social media analytics, with structured financial data to enhance predictive performance.

However, such integration presents methodological complexities and requires advanced

natural language processing (NLP) methodologies to extract meaningful signals.
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Addressing these issues would further enhance the practical relevance of ML models in

financial forecasting and investment strategies.
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Appendix A. Variables Definitions

Variable Definition

ARLY Year-over-year growth rate of predicted revenue.

ARPSLY Year-over-year growth rate of predicted revenue per share.

BR Predicted revenue using Gradient Boosting.

CAR Cumulative abnormal returns are calculated from the day after the
previous revenue announcement to the current month's revenue
announcement.

EPS Earnings per share, calculated as net income after taxes minus preferred
dividends, divided by the weighted average number of common shares
outstanding.

ER Predicted revenue using Elastic Net.

InME Natural logarithm of market equity, defined as In(shares outstanding x
unadjusted closing price).

NNR Predicted revenue using Nearest Neighbors.

NR Predicted revenue using Neural Networks.

Tit Daily stock returns.

RFR Predicted revenue using Random Forest.

RLY Revenue from the previous fiscal year.

TR Predicted revenue using Decision Tree.

YAF Annual revenue forecast by brokerage analysts (in billions).

YBR Annual predicted revenue using Gradient Boosting (in billions).

YER Annual predicted revenue using Elastic Net (in billions).

YNNR Annual predicted revenue using Nearest Neighbors (in billions).

YNR Annual predicted revenue using Neural Networks (in billions).

YR Annual actual revenue (in billions).

YRFR Annual predicted revenue using Random Forest (in billions).

YTR Annual predicted revenue using Decision Tree (in billions).
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Appendix B. Feature Variables and Economic Significance

This study selects 60 variables for ML model training to capture a company's financial condition, operational performance, capital structure, and

market indicators. Each variable's economic significance is summarized below:

No. Variable Category Economic Significance

1 Cumulative Revenue Monthly Revenue Tracks year-to-date progress toward annual goals.

2 Month-over-Month Revenue Monthly Revenue Reflects seasonal changes and trends.

3 Last Year's Cumulative Revenue Monthly Revenue Serves as a comparative benchmark.

4 Last Year's Monthly Revenue Monthly Revenue Benchmarks current performance.

5 Monthly Revenue Growth Rate Monthly Revenue Key short-term revenue forecasting indicator.

6 Revenue Growth Rate Monthly Revenue Indicator of growth potential, directly influencing revenue forecasts.
7 After-Tax Net Profit Growth Rate Income Statement Vital for assessing distributable profits to shareholders.
8 EBIT (Earnings Before Interest and Taxes) Income Statement Assesses core profitability and debt repayment capacity.
9 Gross Operating Profit Income Statement Direct impact on the company's profitability.

10 Net Operating Income Income Statement Core measure of profitability after cost deductions.

11 Non-Operating Income and Expenses Income Statement Offers insights into non-core profitability.

12 Operating Expenses Income Statement Direct impact on profitability.

13 Operating Gross Profit Growth Rate Income Statement Reflects gross profit potential, impacting profitability.
14  Operating Profit Income Statement Key indicator of operational efficiency.

15  Operating Profit Growth Rate Income Statement Indicates operational efficiency and profitability.

16  Operating Profit Variability Income Statement Essential for profitability stability and risk assessment.
17  Ordinary Net Profit Growth Rate Income Statement Essential for long-term operational stability predictions.
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18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Pre-Tax Profit

Pre-Tax Profit Growth Rate
Recurring Net Profit Growth Rate
Accounts Payable and Notes
Accounts Receivable and Notes
Cash and Cash Equivalents
Current Liabilities

Depreciable FA Growth Rate
Goodwill and Intangible Assets
Inventory

Net Worth Growth Rate

Property, Plant, and Equipment (PPE)
Short-Term Loans

Total Asset Growth Rate

Total Assets

Total Liabilities

Total Shareholder Equity
Year-End Cash and Equivalents
Free Cash Flow

After-Tax Net Profit Margin

Cash Flow per Share
Comprehensive Income per Share

Comprehensive ROA

Income Statement
Income Statement

Income Statement

Balance Sheet
Balance Sheet
Balance Sheet
Balance Sheet
Balance Sheet
Balance Sheet
Balance Sheet
Balance Sheet
Balance Sheet
Balance Sheet
Balance Sheet
Balance Sheet
Balance Sheet
Balance Sheet
Balance Sheet

Cash Flow Statement
Financial Ratios
Financial Ratios
Financial Ratios

Financial Ratios

Reflects overall profitability before taxes.

Affects overall financial health prediction.

Reflects the company's regular profitability excluding one-off items.
Influences cash turnover and short-term debt.

Affects cash flow and turnover.

Reflects liquidity and short-term debt repayment ability.
Reflects short-term financial pressure.

Influences capital expenditure strategies.

Impacts brand value and market competitiveness.
Influences capital utilization and sales potential.
Measures financial health from an investor perspective.
Critical for assessing production capabilities.

Affects short-term liquidity and repayment ability.
Indicates potential for expansion and future revenue implications.
Indicates overall scale and growth potential.

Key to assessing financial stability and risk.

Essential measure of financial stability.

Indicates year-end liquidity and debt repayment ability.
Key for evaluating financial flexibility.

Indicator of ultimate profit efficiency.

Indicates cash flow creation ability.

Reflects total per-share earnings

Assesses overall asset efficiency and profitability.
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41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Comprehensive ROE

Dividend Yield

Earnings per Share (EPS)
Financial Leverage

Fixed Asset Turnover Ratio

Gross Profit Margin

Interest Coverage Ratio

Monthly Revenue per Share

Net Operating Cycle Days
Operating Income per Share
Operating Leverage

Operating Profit per Share
Pre-Tax Profit Margin

Pre-Tax Profit per Share
Quarter-End Common Stock Market Value
ROA (Return on Assets)

ROE (Return on Equity, Post-Tax)
Revenue Variability

Tobin's Q

Total Asset Return Growth Rate

Financial Ratios
Financial Ratios
Financial Ratios
Financial Ratios
Financial Ratios
Financial Ratios
Financial Ratios
Financial Ratios
Financial Ratios
Financial Ratios
Financial Ratios
Financial Ratios
Financial Ratios
Financial Ratios
Financial Ratios
Financial Ratios
Financial Ratios
Financial Ratios
Financial Ratios

Financial Ratios

Indicates total return, covering all aspects.

Assesses shareholder value through dividend return.
Reflects per-share earnings and value.

Reflects financial risk and capital structure.

Indicates revenue generated per unit of fixed asset.
Reflects profit potential and pricing ability.

Evaluates ability to cover interest expenses.

Guides shareholder return assessments.

Essential for cash flow management.

Indicator of stock shares and revenue relationship.
Indicates profit fluctuation in response to revenue changes.
Shows profitability of operating activities.

Key profitability measure.

Helpful in assessing shareholder returns.

Reflects quarter-end market performance.

Measures asset utilization efficiency.

Evaluates shareholder returns and value creation.

Indicates market demand and operational stability.
Indicates growth potential via market value vs. replacement cost.

Reflects asset management efficiency over time.
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Appendix C. Intuitive Explanation of Machine Learning Models

To facilitate understanding for readers less familiar with machine learning techniques,
this appendix provides an intuitive summary of the six models applied in this study.
While the formal definitions and formulas are presented in the main text, this section

explains each method using simplified language and analogies.

Decision Tree
A Decision Tree asks a series of yes/no questions to split the data and make
predictions. It creates branches based on which variable best separates the data at each

step. The model is easy to understand but may overfit the training data.

Random Forest
A Random Forest builds many Decision Trees using random subsets of data and
features, then averages their predictions. Like asking multiple experts and taking the

average answer, it helps reduce overfitting and improve accuracy.

Gradient Boosting
Gradient Boosting builds trees one at a time. Each new tree focuses on fixing the
mistakes made by the previous one, gradually improving the overall prediction. This

step-by-step refinement can lead to highly accurate results.

Neural Networks
Neural Networks mimic how the human brain processes information. They use
multiple layers of "neurons" to transform input data and learn complex patterns. These

models are powerful but require a lot of data and computing power.

Nearest Neighbors
This model predicts outcomes based on similarity. If a company is similar to five
others, its future performance is predicted by averaging those five. It works well for

local patterns but is less efficient when data has many variables.

Elastic Net

Elastic Net combines two regularization techniques—Lasso (which removes
unimportant variables) and Ridge (which keeps coefficients small)—to improve
prediction when many variables are correlated. It’s useful for selecting key predictors

in financial data.
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