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Abstract

Weak supervision searches have in principle the advantages of both being able
to train on experimental data and being able to learn distinctive signal properties.
However, because successfully training a neural network under weak supervision
can require a large amount of signal, the practical applicability of this search
strategy is seriously limited. In this study, we try to develop more efficient and
smarter neural networks that can learn from less signal in the experimental data
by utilizing transfer learning and meta-learning. The general idea is to first train
a neural network on simulations, learning critical concepts and becoming a more
efficient learner. Subsequently, the neural network is trained on real data and,
by exploiting the knowledge and concepts acquired from simulations, should
hopefully require less signals to learn. We find that transfer and meta-learning can
substantially improve the performance of weak supervision searches.

This study is based on our previous work [1].
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Chapter 1

Introduction

Particle physics investigates elementary particles and their interactions. Central
to this field is the Standard Model (SM), a highly successful framework that
explains the behavior of fundamental particles and their interactions through the
SU(3)c x SU(2), x U(1)y gauge groups. More precisely, spin-1 gauge particles,
including the massless photon ~, the massless gluon g with eight color states, and
the massive W=, Z bosons, serve as force carriers of electromagnetism, strong
interaction, and weak interaction, respectively. Additionally, the three generations
of quarks and leptons, comprising both right-handed singlets and left-handed
doublets, collectively constitute the matter observed in our universe. Due to the
mechanism of spontaneous symmetry breaking of the complex Higgs doublet H,
particles acquire their masses by the vacuum expectation value of H, also leaving
a spin-0 scalar particle k. The other components of the Higgs doublet (Ay, H*),
known as Goldstone bosons, are absorbed by the 1+ and Z bosons, imparting a
non-zero longitudinal mode to these particles. There are 26 input parameters in the
SM, and physicists measure and predict these parameters by many experiments [2],
especially collider experiments.

Despite the success of the Standard Model, several questions remain unan-

swered. The SM namely fails to answer:

e What is dark matter?
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1. Introduction 2

* How can gravity be incorporated into the model?

* What explains the asymmetry between matter and antimatter?
* How can the Higgs mass hierarchy problem be solved?

* What explains the muon’s g — 2 anomaly?

* What mechanism generates neutrino masses?

These issues highlight the limitations of the SM and underscore the importance of
studying its extensions. Experimental research in collider physics and astrophysics
has provided substantial insights into these problems.

In recent years, advances in machine learning have provided many opportunities
in collider physics. We can utilize neural networks (NNs) to distinguish the signal
from the SM background and to search for new particles. In order to create such a
neural network, training is necessary. Three main strategies exist, characterized by

the way of labeling the data:
1. Fully supervised learning: all data are labeled correctly.
2. Unsupervised learning: none of the data is labeled.
3. Weakly supervised learning: the data are labeled imperfectly.

In fully supervised learning, the training data are correctly labeled as signals
and backgrounds. This supervision strategy has been considered and applied
in many studies [3, 4, 5, 6]. However, when the goal is to find a new particle
that has not been observed yet, the training data must come from simulations
instead of experimental data. There are some possible problems with this. First,
simulations inherently include imperfections or artifacts. This can lead to the
neural network learning from these defects, making the neural network sub-optimal
and unpredictable when applied to real data [7]. Second, the reaction of the neural

network to a signal that deviates from the expected signal is uncertain. This could
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1. Introduction 3

limit the sensitivity of the search to a narrow range of models, possibly causing it
to overlook a detectable signal.

Another training strategy is unsupervised learning, where the training data
lacks labels. A common approach has been to use autoencoders trained on pre-
dominantly background events, using the reconstruction error as a test statistic [8].
More precisely, an autoencoder is a type of neural networks that learns to encode
input data into a compressed representation and then decode it back to its original
form, trying to minimize the reconstruction error. Although this neural network
can directly learn properties of experimental data, there are two notable drawbacks
to this method. First, the reconstruction error can sometimes be a weak discrimi-
nator [9, 10]. Second, since autoencoders are trained exclusively on background
data, they will will not be trained to look for unique characteristics of signal events,
hence reducing their discriminative ability.

Weakly supervised learning, using training data with imperfect labels, presents
a promising strategy that tries to address the challenges of both the fully super-
vised and unsupervised learning approaches. In the Classification Without Label
(CWoLa) method [7], two sets of experimental data are considered, each assumed
to have different mixtures of signal and background events. Under the assumption
that the properties of signals (backgrounds) in both mixed datasets are identical,
Ref. [7] demonstrated that the most powerful test statistic for distinguishing be-
tween these datasets is also the most powerful test statistic for distinguishing pure
signals from pure backgrounds. Therefore, a neural network trained to distinguish
these datasets naturally becomes proficient at identifying signal events within the
data. Such neural networks can train exclusively with the specific signal present in
the data and do not need to worry about a difference between the training data and
the actual signal, which can be a problem in fully supervised learning. Hence, the
CWoLa method can combine both benefits of unsupervised learning (data-driven
training) and fully supervised learning (exploiting signal properties). Notably,

weak supervision has been implemented in an experimental search by ATLAS (see
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1. Introduction 4

Ref. [11]).

Although weakly supervised learning combines the advantages of both fully
supervised and unsupervised learning, it faces some practical limitations when the
number of signals is limited [12, 13, 14]. In this case, the neural network cannot
successfully distinguish signals from backgrounds such that the neural network will
indiscriminately cut both signals and backgrounds. At this point, we describe the
amount of signal as being below the learning threshold. Worse still, the threshold
might be greater than what would be necessary for discovery without using neural
networks, and the practical value of such a model is thereby limited. Especially,
this situation can happen when the dimensionality of the input is too large, as noted
in Ref. [15]. To address this issue, Ref. [16] implemented a solution by providing
a simple but effective input to the network. Recent efforts to tackle this challenge
can be found in Refs. [17, 18].

In the hope of addressing the limitations of the CWoLa method, the goal of
this work will be to create neural networks that can learn from less data. The
general idea is for the neural network to use simulations to learn useful concepts
and become a better learner, such that it can learn faster once trained on actual
data. Despite the limited availability of signal data, it can be easy to generate
simulations of it. The neural network can first learn from the simulations and then
understand critical concepts. Subsequently, the neural network can be trained on
real data more efficiently via knowledge obtained from simulations. Hence, the
neural network could learn faster and require less real data in the training. In this
study, we will consider and use transfer learning and meta-learning to address this
issue.

The basic idea of transfer learning involves the transfer of knowledge or exper-
tise gained from solving a previous task to improve the learning or performance
of a neural network model on a different but related task. This technique is par-
ticularly useful when there is limited labeled data available for the target task. In

transfer learning, the neural network model is pretrained on a large and general
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1. Introduction S

dataset, called source data, and is adapted or fine-tuned to a small and specific
dataset, called target data. Usually, the source dataset and the target dataset have
many similarities. Hence, the neural network can first learn the fundamental
concepts in the source dataset, and then reuse the concepts learned previously to
learn more efficiently. This training strategy has been applied in many studies
(see Refs. [13, 14, 19, 20, 21, 22, 23, 24, 25, 26]). In this study, we will utilize
pretraining and finetuning strategies for transfer learning, and the details of the
strategy will be explained in Chap. 4.

The basic idea of meta-learning involves enhancing neural networks by lever-
aging knowledge gained from training with multiple tasks (see Ref. [27] for an
example application in high energy physics and Ref. [28] for a review). Unlike tra-
ditional machine-learning approaches that focus on learning from specific datasets
and then adapting to the target task, meta-learning focuses on equipping models
with the ability to learn how to learn. In meta-learning, the emphasis lies in ac-
quiring higher-level understanding, often referred to as “meta-knowledge”, about
the learning process itself. This meta-knowledge includes insights into various
aspects of learning, such as the characteristics of different tasks, the relationships
between tasks, and the most effective strategies for adapting to new tasks. The
basic approach is to let the neural network learn from multiple tasks. Ideally, the
neural network can gain the meta-knowledge with these tasks, and then become
a more efficient learner and require less data for the target task. In this work, we
use meta-transfer learning as our meta-learning strategy, and the details will be
explained in Chap. 5.

In this study, we find the following results. First, transfer learning successfully
enhances the performance of the neural networks under weak supervision. The
learning thresholds can be reduced significantly and the amount of signal necessary
for discovery can sometimes be several times smaller. Second, meta-transfer
learning can further improve the performance of the neural networks. However,

the improvements between transfer learning and meta-transfer learning are smaller
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1. Introduction 6

than the improvements between CWoLa and transfer learning.

This study is organized as follows. Chap. 2 presents the events generations and
the image prepossessing for jet images. Chap. 3 explains the idea of CWoLa and
the difficulties of CWolLa for learning thresholds. Chap. 4 and Chap. 5 presents the
details of the strategies and results for transfer learning and meta-learning. Finally,

Chap. 6 summarizes this study.
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Chapter 2

Events generation

2.1 Signal and background generation

In this study, we use the Hidden Valley (HV) model [29, 30] as our benchmark
(see Ref. [31] for a review). It consists of a set of particles charged under a new
confining group and that somehow communicate with the SM sector. If produced
at colliders and relatively light, these particles will shower and create collimated
sprays of dark hadrons. Some of these will in turn decay to SM particles and create
an object that can potentially mimic a QCD jet. These are known as dark showers.
Dark hadrons can provide many potential dark matter candidates [32, 33, 34] and
have been the focus of multiple experimental searches [35, 36, 37, 38].

The Pythia HV module is used for simulating dark showers, providing a
broad range of signals due to its numerous adjustable parameters. This flexibility
makes the module particularly advantageous for transfer learning and meta-learning.
Specifically, the signal process considered is pp — Z’ — ¢qpqp. The dark quarks
gp are a set of fermions charged under a new confining gauge group SU(3) gark
but neutral under the SM gauge groups SU(3)¢ x SU(2)r, x U(1)y. These dark
quarks are assumed to be degenerate in mass for simplicity. The Z’ particle is a
massive Abelian gauge boson that interacts with both SM quarks and dark quarks.

Hence, the signature of the final state is a pair of dark jets with an invariant mass
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2. Events generation 8

M;; consistent with the mass of Z’ boson.

Once produced, the dark quarks are showered and hadronized by Pyt hia 8.307.
After dark showering, the resulting dark hadrons are either dark vector mesons pp
or dark pseudo-scalar mesons 7. We follow the recommendations from Ref. [31],

and the ratio of their masses is set:

m?
"AL’;D = 5.5, /"X‘ZD ”X’;D - \/5.76+1.5 B2 M = My + Ap, 2.1)
D

where m,,, and m,_ . are the current and constituent mass of the dark quarks

respectively and Ap is the dark confining scale for SU (3)4,,1. Note that the dark
quark mass in the HV settings of Pythia is the constituent mass. In order to
verify the validity of Eq. (2.1), by assuming the confining scale and quark mass to
be 300 MeV and 3 MeV respectively (which are the values in the SM for the QCD
confining scale and the average of masses of up and down quarks), the masses of
pions and rhos are 160 MeV and 750 MeV respectively. These are close to the
values of the SM. Furthermore, when the relation m,,, > 2m,,, holds, the decay

of pp — mpmp is allowed. From Eq. (2.1), we have

My = /5760 + 1.5m2, > 2m..,. 2.2)

Hence, the decay of pp — mp7p is allowed if m,, /Ap < 1.52, and we consider
the two scenarios from the different decay channels of pp as our benchmarks.

In the first scenario, where m,,, > 2m,, and the decay pp — mpmp is
permitted, this decay mode dominates with a branching ratio of effectively 1. We
define seven benchmarks within this scenario, each distinguished by different A,
values and fixing a constant mass ratio of m,, /Ap = 1. The selected values of
Ap are 1, 5, 10, 20, 30, 40, and 50 GeV, and the corresponding masses of 7p, pp,
4D, and geonst determined by Eq. (2.1). For simplicity, we assume exclusive decay
of the dark pions to SM dd pairs. This scenario is denoted as Indirect Decay (ID).

In the second scenario, where m,,, < 2m,, and the decay pp — mpmp is
forbidden, we also define seven benchmarks, each distinguished by different A

values and fixing a constant mass ratio of m,,/Ap = 1.8. The selected values

doi:10.6342/NTU202401831



2. Events generation 9

of Ap are the same as those of the first scenario: 1, 5, 10, 20, 30, 40, and 50
GeV. Again, the corresponding masses of 7p, pp, ¢p, and ¢cons; are determined by
Eq. (2.1). We assume, for simplicity, exclusive decay of both the dark pions and
dark rho mesons to SM dd pairs in this scenario, referred to as Direct Decay (DD).
Table 2.1 lists the parameter values for both scenarios.

The additional relevant signal parameters in Pythia are specified as follows:
The mass of Z’ is set to 5.5 TeV, resulting in an invariant mass of the leading
two jets of approximately 5.2 TeV. The slight discrepancy is attributed to part
of the constituents falling outside the reconstructed jets. Fig. 2.1 illustrates the
distribution of the invariant mass of the two leading jets, denoted as M;;. The decay
width of Z’ is set to 10 GeV, ensuring that there is no significant peak broadening
that could negatively impact the search. The settings of the remaining Pythia
parameters are detailed in Table 2.3.

Next, the dominant background is expected to be from the pair production of
QCD jets, denoted as pp — jj. These background events are generated at parton
level by Madgraph 2.7.3 [39] and subsequently hadronized by Pythia 8.307.
For simplicity, only leading order jet pair production is considered. The initial cuts
listed in Table 2.2 are used in Madgraph to enhance the generating efficiency.
It has been verified that these preliminary cuts are weak enough to avoid any
significant impact on the relevant parts of the distribution. The parton distribution
function adopted for both signal and background event generations is NN23LO1
[40]. Default settings within Pythia are used for the hadronization of background
events.

Both signal and background events undergo detector simulation by using
Delphes 3.4.2 [41], and jet reconstruction is dealt with via the anti-k7 clustering
algorithm implemented in FastJet 3.3.2 [42], with a jet radii of R = 0.8. This
choice is different from the default value of 0.5 to accommodate the larger jet
radius characteristic of signal jets originating from dark showers, ensuring that at

least 90% of the constituents are included within the jet. After detector simulations,
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2. Events generation 10

Scenarios | Ap | My | My | Mg
ID 1 1 2.69 1.03
ID 5 5 13.47 | 5.17
ID 10 | 10 | 26.94 | 10.33
ID 20 | 20 | 53.89 | 20.66
ID 30 | 30 | 80.83 | 30.99
ID 40 | 40 | 107.78 | 41.32
ID 50 | 50 | 134.72 | 51.65

Scenarios | Ap | My, | Mpp | Mgons
DD 1 1.8 | 326 | 1.11
DD 5 9 16.29 | 5.54
DD 10 | 18 | 32.59 | 11.07
DD 20 | 36 | 65.18 | 22.14
DD 30 | 54 | 97.77 | 33.21
DD 40 | 72 | 130.35 | 44.28
DD 50 | 90 | 162.94 | 55.36

Table 2.1: Parameters for the different benchmarks in the indirect decaying (ID)

and direct decaying (DD) scenarios. All values are in GeV units.

the selection criteria listed in Table 2.2 are applied. Notably, the Signal Region
(SR) and Sidebands (SB) are defined and used in the later CWoLa procedure. Via
fixing the integrated luminosity, the background in the SR and in the SB contain
20k and roughly 21k events passing the SR and SB selection cuts respectively. The
corresponding integrated luminosity is 147.3 fb~!, which is close to the integrated
luminosity used in Run 2 of the LHC. The cross-section, the cut efficiency, and the
number of events for the background are listed in Table 2.4.

To verify the requirement of CWolLa that the properties of signals (backgrounds)
are identical in both mixed datasets, we consider using the high-level and low-

level physical quantities to examine the requirement. The generalized angularities
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2. Events generation

Preliminary cuts in Madgraph for the SM

Vs =13 TeV

Both P of the leading two jets > 700 GeV
Both 7 of leading two jets |7;| < 2.2

M;; > 3000GeV

Selection criteria after Delphes

Number of jets n; > 2

Both Py of the leading two jets > 750 GeV
Both 7 of leading two jets |n;| < 2

SR = {M;; € [4700, 5500]}

SB = {M;; € [4400,4700] U [5500, 5800] }

11

Table 2.2: Parameters in Madgraph and the selection criteria after Delphes.

HYV parameters in Pythia
HiddenValley: alphaOrder | 1
HiddenValley: nFlav 3
HiddenValley: Ngauge 3
HiddenValley: pTminFSR | 1.1Ap
HiddenValley: separateFlav | on
HiddenValley: alLund 0.1
HiddenValley: bmqv2 1.9
HiddenValley: rFactqv 1.0
HiddenValley: probVector | 0.75
HiddenValley: fragment on
HiddenValley: FSR on

Table 2.3: Parameters for dark showering in Pythia.

(GAs) and the jet images are considered for the high-level and low-level quantities

respectively, and jet images will be discussed in Sec. 2.2 and be our input data in
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Figure 2.1: Dijet invariant mass distributions for the indirect decaying scenario

with Ap = 10 GeV and for the SM background. Distributions are normalized to

unity. Both signal and background satisfy the selection criteria of Table 2.2 except

for the SR or SB conditions.

Efficiency of the cut

o after the cut

number of events

Background in SR 0.020
Background in SB 0.021

135.8 b
142.3 fb

20000
20957

Table 2.4: The cross-section and the efficiency of selection cut listed in Table 2.2

for the SM background. We set the integrated luminosity 147.3 fb~!. The cross-

section of the background in the Madgraph level is 6.8 pb.

neural networks. The generalized angularities are commonly used to discriminate

the gluon and quark jets efficiently (see Refs. [43, 44, 45, 46]). The GAs are

denoted as A§ with different choice of x and 3 and calculated by:

Ny =) 26y,

i€jet
Pr;
?
Ziejet PTJ'

Zi =

(2.3)

(2.4)
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2. Events generation 13

AR;
t0; = o (2.5)
AR; = \/(¢z — Gjet)? + (1M — Njer)?, (2.6)

where the Pr; is the transfer momentum of the jet constituent, AR; is the pseudo-
rapidity/azimuth distance of the jet constituent to the jet-axis, R is the jet re-
construction radius which is set to be 0.8, and ¢;; and 7, are the PT-weighted
pseudo-rapidity and azimuth angles defined in Eq. (2.8). The choices of (k, (3)
are set to be (0,0), (2,0), (1,0.5), (1,1), (1,2), respectively called multiplicity,
(p2)? [47], Les Houches Angularity (LHA) [48, 49], width, and mass.! Fig. 2.2
shows that the distributions of signal (background) in SR and SB are highly similar,
satisfying the requirement of CWoLa mentioned in Sec. 3.1. Fig. 2.3 shows that

the correlation coefficients of GAs between the two leading jets are quite small.

2.2 Image preprocessing

In order to illustrate the power of transfer and meta-learning, we will use jet images
as input to the neural networks. Such high dimensional inputs can be challenging
for weak supervision, but we will show that our procedure still works under these
conditions. The ability to adjust the resolution and therefore the input size will
also prove useful to illustrate certain features.

To use images as input data, the two leading jets in Pr are converted into jet
images according to the following procedure [50, 51, 52]: translation, rotation,

flipping, and pixelization.

1. Translation: each jet constituent is translated so that the center of the jet

image is along the jet axis. That is

(771'7 sz) — (77;7 QZS;) = (Th — Njet, ¢l - ¢jet)7 (27)

IStrictly speaking, it is not the regular mass. It is the mass-squared over energy-squared in the

soft-collinear limit. We just adopt the same names listed in Ref. [7].
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P P
_ Zk Ne LTk et = Zk PrLr (2.8)

ey = L5 28
7 Yo Pri Yo Pri’
where 7;.; and ¢,.; are weighted by transverse momenta. After the transla-

tion, the PT-weighted 7;.; and ¢;.; are zero.
2. Rotation: define the PT-weighted mass matrix M,

Prn;

> (PT,ini PT,iCbi)

M= Pri¢i 1 > P%,m? > P:I%,mi@'
— - _ .

2 P P\ S Panon X, PR

(2.9

Because the M matrix is symmetric, there is an orthogonal matrix U which

can diagonalize the matrix M,

L [Mao0
Myiay = UMU™" = , (2.10)
0 My

where M, and Ms, are the principle values (eigenvalues) of the matrix M.
We choose M7; > My, by convention, such that the leading principle axis is
along the 7 direction after rotation. Then the new 7, ¢ are defined by

/ .
CAS (2.11)

% i
3. Flipping: the image is flipped such that the highest P, constituent is in the

first quadrant (upper-right plane).

4. Pixelization: The jet constituents are pixelated with resolutions of either

25 x 25,50 x 50 or 75 x 75. The range of 7 and ¢ are both from —1 to 1.

Fig. 2.4 and Fig. 2.5 present the jets before and after preprocessing and the cor-
responding average histograms. The figures also highlight the jet radius R = 0.8
used in the jet reconstruction process. The capability to adjust the resolution will be

beneficial for illustrating specific features and influencing the learning thresholds.
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Last, the average plots show that the average images of signal (background) in SR
and SB are highly similar to each other, satisfying the requirement of CWoLa that
the distribution of signal (background) in SR and SB are identical, mentioned in

Sec. 3.1.
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Figure 2.2: The distributions of five generalized angularities for the first leading

jet. The labels of bgSR, bgSB, sgSR, and sgSB are the 10k events of signals and

backgrounds in the SR and SB. The events are after the cut listed in Table 2.2 and

distributions are normalized to be unity. The benchmark of signals is the indirect

decaying scenario with Ap = 10 GeV.
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Figure 2.3: The correlation coefficient matrix of bgSR, bgSB, sgSR, and sgSB for
the five GAs of the leading two jets. The events are after the cut listed in Table 2.2.
The benchmark of signals is the indirect decaying scenario with Ap = 10 GeV.
Note that the upper-right and lower-left regions in each subplot are the correlation

coefficients between the leading two jets.
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Figure 2.4: (a) A 2D Pr histogram for one signal event in the SR before rotation and
flipping. (b) A 2D Py histogram of the same event after complete preprocessing.
These plots are for the leading jet with 75 x 75 resolution and the ID scenario with

Ap =10 GeV.
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Figure 2.5: (a) The average histogram for 10k background events in the SR after
preprocessing. (b) The average histogram for 10k signal events in the SR after
preprocessing. (c¢) The average histogram for 10k background events in the SB
after preprocessing. (d) The average histogram for 10k signal events in the SB
after preprocessing. These plots are for the leading jet with 75 x 75 resolution and

the ID scenario with Ap = 10 GeV.
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Chapter 3

Classification without labels

(CWolLa)

3.1 Theoretical perspectives

In this section, we briefly review classification without labels (CWoLa) following
Ref. [7]. Let’s define a classifier F' : x — z € R, where x is a vector of observables
used to discriminate signals from backgrounds, and z is a real number. The type
of x can be the high-level physics parameters, like M;;, 1jc, and ¢, or the
low-level physics parameters, like jet images. The higher (lower) values of z mean
the x of the event is more signal-like (background-like). By the Neyman-Pearson
lemma [53], the optimal classifier Fi,;mq is the likelihood ratio: Fpiima(x) =
ps(x)/pp(x), where the pg and pp are the probability density functions of x for
the signal and the background. Hence, optimally training a neural network is to
make an NN approach the optimal classifier F,:;mq as much as possible.

In full supervision, each event carries the correct label y; € {S, B}. Also, the
output z from the classifier is adjusted to be from O to 1 by convention. A neural
network is trained with training data to minimize the loss function to become

a better classifier. One of the common choices of loss functions is the binary

20
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3. Classification without labels (CWoLa) 21

cross-entropy function Lg¢:
1
Loo=—+ Z = 5)log F(x;) + (1 I(y; = 5))log (1 — F(x,)], (3.1)

where | is the indicator function for signals, and /N is the size of the batch in the
training data. Theoretically, given sufficiently large training samples, a flexible
model parameterization, and an appropriate minimization process, the learned
neural network could approach Fipimai.

In weak supervision, we assume there are two mixed samples {2; and 2, con-
taining different mixtures of signals and backgrounds. Label the signal fractions as
f1 and f; respectively, where we can always assume f; > f,. Assume the distribu-
tions of signals pg (backgrounds pp) are identical within both mixed samples €2,
and €2,. The likelihood that an event is from €, is then po, = fips + (1 — f1)ps
and similarly for {2,. Then, €2; and €2y are more signal-like and background-
like respectively. By the Neyman-Pearson lemma, there is an optimal classifier
Fo, 0, = Pa,/pa, for distinguishing €2; and {2,. By the same lemma, there is
also another optimal classifier Fis 5 = ps/pp for distinguishing signals and back-

grounds. Then,

F _ Do :f1PS+(1—f1)PB :leS,B+1—fl
hfre Pa, fops + (1 - fz)pB foFsp+1—fs
_h 1— fi/fs i 1 fi—fo

~h  REat(-F) h hhEsra-f Y

The classifier I, o, 1s a monotonically increasing function of Fg g, 1.e. Fq, o,

(3.2)

has the same ability to distinguish signal from background as Fs 5. Therefore,
if the classifier F, o, is optimal for distinguishing €2; and €, then it is also
optimal for distinguishing signals and backgrounds. More importantly, the neural
network does not require any information about f; or fs, the only requirement
is the two mixed datasets of signals and backgrounds with different fractions. In
practice, the neural network is trained to distinguish with mixed samples and
thereby learns the difference between signals and backgrounds to become the

classifier that distinguishes signals well from backgrounds.
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3.2 The implementation of CWoLa

As discussed in the Introduction and Section 3.1, the CWoLa method requires
two mixed samples containing both signal and background events in different
proportions. In our study, we utilize the resonance peak resulting from the decay
of Z’ shown in Fig. 2.1. The neural network is trained to discriminate the signal
region and sideband regions presented in the figure. This section provides details of
our implementation of this procedure, partially inspired by the approach outlined
in Ref. [16].

On one hand, the background in the signal region consists of 20k events passing
the SR selection cuts listed in Table 2.2. The number of background events in the
sidebands is determined using the same integrated luminosity as the signal region.
On the other hand, the signal amount in the SR is varied throughout the analysis,
resulting in a pre-neural network cut significance ranging from O to 7, while the
signal in the SBs is adjusted accordingly with the integrated luminosity. Four-
fifths of these events are utilized to update neural network parameters, while the
remaining one-fifth serves as validation data to monitor validation loss and prevent
overfitting. This training data is treated as pseudo-experimental data. During
training, the callbacks function is used to save the best model based on validation
loss. To test the performance of the CWoLa method, additional 20k signal events
and 20k backgrounds, both passing the signal region cut.

For the format of training data, we use jet images of the two leading jets. The
distributions of each jet image are independently batch normalized. Each jet image
then passes through a common sub-Convolutional Neural Network (subCNN), with
each returning a single real-valued number between 0 and 1. The final output of
the neural network is the product of these two numbers. The subarchitecture and
training procedures are described in Table 3.1, and Fig. 3.1 illustrates the model
architecture. All neural networks are implemented using Keras [54] with the
TensorFlow [55] backend. We also explored the possibility of using two distinct

networks, but found this alternative typically gave inferior results, as discussed in

doi:10.6342/NTU202401831



3. Classification without labels (CWoLa) 23

Sec. 3.3 and shown in Fig. 3.3. This appears to be due to the lack of signal. The
convolutional part of the neural network is referred to as the feature extractor, and
its weights and biases are collectively labeled as ©. The weights and biases of the
dense layers are collectively labeled as 6.

In order to evaluate the performance of the NN, we use the significance for-

o= \/2 <(Ns + Np) log <% + 1) — NS), (3.4)
b

where N, and N, are respectively the numbers of signal and background before

mula [56]

and after the NN classification. From the receiver operating characteristic (ROC)
curve with testing data after training, we choose specific background efficiencies
of e, = 10%, 1%, 0.1% and calculate the corresponding signal efficiencies ¢,. To
examine the robustness of the neural network, the training is performed 10 times
for each significance value, including resampling new events in each pseudo-
experiment, and averaged. The standard deviations are computed and correspond

to fluctuations from both the training and the sampling.

3.3 Discussion

Fig. 3.2 shows two benchmarks with three different resolutions each. Several
comments are in order. First, the different curves display a threshold below which
the neural network fails to learn from the data. This threshold, discussed in the
Introduction, corresponds to the upward turn of the curves around 2 to 40. Below
this threshold, the NN cuts background and signal indiscriminately, resulting
in worse significance than without employing the NN. Second, increasing the
resolution tends to move the position of the threshold to higher significance. This
is because classifying a higher-resolution image is a more difficult task, requiring
more parameters to be learned by the NN.

Fig. 3.3 shows two benchmarks with 25 x 25 resolutions for different CNN

subarchitectures. As mentioned in Sec. 3.2, since the number of signals is limited
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Figure 3.1: The plot of model architecture. The details of the subCNN is listed in
Table. 3.1.

under weak supervision, the NN containing more parameters may not be trained
effectively. Further optimization of the NN architecture is beyond the scope of this
study.

Fig. 3.4 and Fig. 3.5 show the events score distribution after training for CWoLa
with different significance before the NN cut. Two comments are in order. First,
the distributions of signals (backgrounds) in both the training and testing datasets
are similar. It shows that the NN truly discriminates the signals from backgrounds
in both the training and testing phases under weak supervision. Second, the NN
can give higher scores for signals but similar scores for backgrounds when training

data contains more amounts of signals.
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convolutional 2D layer: 64 filters with 5 x 5 kernel size "9
maxpooling layer: 2 x 2 pool size
convolutional 2D layer: 128 filters with 3 x 3 kernel size
Layers of CNN | maxpooling layer: 2 x 2 pool size
subnetwork | convolutional 2D layer: 128 filters with 3 x 3 kernel size
flatten layer

(dense layer: 128 units) x 3

dense layer (output): 1 unit

convolutional layer padding: same
Layer setting | hidden layer activation function: ReLU

output layer activation function: Sigmoid

loss function: binary cross-entropy

optimizer: Adam

metric: accuracy

Other batch size: 500

learning rate: le-3 (base learning, pretraining)

learning rate: 1e-4 (CWoLa, fine-tuning, meta-learner updating)

patience number: 20 (pretraining, meta-learning)

patience number: 10 (CWoLa, fine-tuning)

Table 3.1: The CNN model subarchitecture and the hyperparameters
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Figure 3.2: The results of CNN CWoLa for the ID (left column) and DD (right
column) scenarios with Ap= 10 GeV for 25 x 25, 50 x 50 and 75 x 75 resolutions.

The dotted line in each plot has a slope of 1.

doi:10.6342/NTU202401831



3. Classification without labels (CWoLa) 27

w

w
w
[

—+ CWwola-,=10% ID for 25x25 res. —— Cwola-,=10% DD for 25x25 res.
30 —— CWola-£,=1% 30 —— CWola-£,=1%
—— CWola-£,=0.1% —— CWola-£,=0.1%

5 --I-- CWola-para-£,=10% 5 --I-- CWola-para-g,=10%
O 25 O 25
= --I-- CWola-para-£,=1% = --I-- CWola-para-£,=1%
f CWola-para-£,=0.1% f CWola-para-£,=0.1%
20 20
& &
© ©
] 8
515 £15
2 2
=] =]
510 510
" (2]

5 5

. e . | . s ;

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Significance before NN cut Significance before NN cut
(a) (b)

Figure 3.3: The results of CNN CWoLa with different model architectures for
the ID (left column) and DD (right column) scenarios with Ap= 10 GeV for
25 x 25. The dotted line in each plot has a slope of 1. The term CWoLa (solid
lines) represents the NN containing a single subCNN, and the term CWoLa-para
(dashed lines) represents the NN containing the two distinct subCNNs for two jet

images. The dotted line in each plot has a slope of 1.
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Figure 3.4: The score distributions of CNN CWoLa for the ID (left column) and
DD (right column) scenarios with Ap= 10 GeV for 25 x 25 resolutions when
the significance before the NN cut is 3.2. The terms te_bg, te_sg, trvl_ SR_bg, and
trvl_SR _sg are the testing background events in SR, testing signal events in SR,
training background events in SR, and training signal events in SR. All distributions

are normalized to unity.
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Figure 3.5: The score distributions of CNN CWoLa for the ID (left column) and
DD (right column) scenarios with Ap= 10 GeV for 25 x 25 resolutions when
the significance before the NN cut is 7.0. The terms te_bg, te_sg, trvl_ SR_bg, and
trvl_SR _sg are the testing background events in SR, testing signal events in SR,
training background events in SR, and training signal events in SR. All distributions

are normalized to unity.

doi:10.6342/NTU202401831



Chapter 4

Transfer learning

As illustrated in the previous chapter, the existence of a learning threshold makes
the use of CWoLa problematic for small amounts of signal. A potential solution to

this problem is transfer learning, which we introduce in this chapter.

4.1 Introduction to transfer learning

The general concept of transfer learning involves having a neural network initially
learn from a related problem with a large amount of data and then transfer some
of this knowledge to the problem of interest. In practice, we use the techniques
of pretraining and fine-tuning. Pretraining involves training NN parameters on a
larger dataset, while fine-tuning refers to subsequent training on a smaller dataset.
These larger and smaller datasets are referred to as the source and target data,
respectively.

Two important remarks about transfer learning are in order:

1. Correlation between source and target tasks: In image classification prob-
lems, a high correlation between target tasks and source tasks is not always
necessary. For instance, in Ref. [20], the pretrained model chosen was
ResNet18 [57], which was initially trained on the ImageNet dataset [58].
This model was then fine-tuned with images of neutrino interactions, despite

30
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the fact that the images in ImageNet are not related to neutrino interaction
images. In the pretraining phase, the feature extractors can recognize and
distinguish geometric features (edges, corners, etc.), which are applicable
to both source and target tasks. This demonstrates transfer learning can still

work when source and target datasets are very different.

2. Finetuning strategies: The specific strategies for fine-tuning depend on

various factors. Two common strategies are:

(a) In the fine-tuning phase, NN models are trained with target data. How-
ever, training on target data may drastically change the parameters in
the NN, causing an almost complete loss of the knowledge obtained
from source data. This problem is called catastrophic forgetting [59].
Therefore, using a lower learning rate or freezing some of the layers
(usually convolutional layers) in the NN can help avoid catastrophic
forgetting. This strategy ensures that the NN can keep the knowledge
from source data and reuse the knowledge when the NN trains with

target data.

(b) Adjusting dense layers: Due to differences between the source and
target datasets or the architecture of the NN model, it may be necessary
to replace the dense layers or randomly reinitialize the # parameters in
the dense layers. This allows the NN to adapt more easily to the target

tasks.

These strategies ensure that the NN can avoid catastrophic forgetting (by
using lower learning rates or freezing layers) and that the NN can better

adapt to the target tasks (by adjusting the dense layers or reinitializing 6).
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4.2 Implementation of Transfer Learning

In this study, rather than directly utilizing a pretrained model such as ResNet18,
we pretrain our model on signals similar to the signal we will ultimately look for.
The pretraining and fine-tuning strategies are implemented as follows:

First, the neural network is pretrained to distinguish a sample of pure back-
ground from a pure combination of different signals. This combination includes
all the models mentioned in Chap. 2, except for the benchmark on which the
model will be tested. In a real experiment, this would correspond to training on
simulations. A total of 250k signal events and 250k background events from the
signal region are used as the source data. It has been verified that increasing the
size of the source data does not further improve performance. Four-fifths of the
sample is used to update the NN parameters, and the remaining one-fifth is reserved
for validation to prevent overfitting, both performed on pure samples.

Second, the neural network is fine-tuned to distinguish the pseudo-experiment
data, mentioned in Sec. 3.2, i.e., the SR and SBs with the target benchmark signal
mixed within the background. In a real experiment, this would represent fine-
tuning on the actual data. The parameters of the feature extractor, denoted as O,
are initialized with the values learned during pretraining, while the parameters of
the dense layers, denoted as 6, are initialized randomly. During the fine-tuning
step, O are frozen, and only ¢ are trained. A summary of the strategy is provided
in Table 4.1.

Several comments on our strategies are in order. First, to fairly and reasonably
compare the results of transfer learning and CWoLa, the choice of signal bench-
marks in pretraining should not be the same as the target benchmark, so the NN will
not directly learn the properties of target signals in advance. Second, to make sure
that the NN can learn sufficient knowledge in the pre-training phase, the range of
benchmarks in pretraining should be as large as possible to cover the properties of
the target benchmark. Hence, the NN can reuse the necessary knowledge and train

with target data. The HV module plays an ideal role in conveniently generating dif-
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training set: (Ng, Ng) C) 0 (S, 5)
TL-pretraining (250k, 250k) in the SR Train Train -
TL-finetuning pseudo-experiment data | Freeze | RI and train -
MTL-pretraining (250k, 250k) in the SR Train Train Freeze

MTL-base learning | (2.5k, 2.5k)x 13 in the SR | Freeze Train Freeze

MTL-meta-learner | (2.5k, 2.5k)x 13 in the SR | Freeze Train Train

MTL-finetuning pseudo-experiment data | Freeze | RI and train | Freeze

Table 4.1: The strategies summary for TL and MTL. For the pretraining phase for
both TL and MTL, the signals of the training set contain all benchmarks listed
in 2.1 except for the target benchmark used in the finetuning phase. In MTL, the
base learning and meta-learning phases also use signal benchmarks from Table 2.1,
excluding the target benchmark, forming 13 meta-tasks for base learning and meta-
learner. The term R/ means randomly initializing neural network parameters. For
all phases except pretraining, the NN parameters will be initialized with values
learned during previous steps unless specified by RI. All training sets, except those
used in fine-tuning with pseudo-experiment data, are under full supervision with

signals labeled as 1 and backgrounds as 0.

ferent benchmarks to enlarge the range of signals. Third, to make pretraining more
effective, the pretraining phase is conducted under full supervision. This allows
the NN to more easily distinguish the differences in properties between source
signals and backgrounds and obtain better feature extractors during pretraining.
Finally, since the NN is under full supervision during the pretraining phase and
weak supervision during the fine-tuning phase, randomly initializing 6 in the dense
layers after pretraining is necessary. As discussed in Ref. [60], NN parameters in
the deeper layers, which are closer to the output layers, are more class-specific, so
randomly initializing 6 can help the fine-tuning phase if the source and target tasks

are considerably different.
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4.3 Discussion

Figure 4.1 compares the performance of pure CWoLa and transfer learning. Trans-
fer learning not only enhances the overall performance of the neural network but
also significantly lowers the learning threshold across all three resolutions for two
target benchmarks. This means that the amount of signal needed to achieve a 50
discovery is reduced by several times, as the neural network can more effectively
identify signals and suppress background noise. Additionally, relative fluctuations
in significance are minimized due to fewer trainable parameters and more effective
learning.

Figure 4.2 compares the performance of transfer learning using different strate-
gies with 25 x 25 resolutions. The results show that randomly initializing param-
eters 6 in the dense layers is necessary and explain that § parameters are more
class-specific. While an optimal strategy can further enhance performance, both
transfer learning results outperform CWoLa significantly.

Figures 4.3 and 4.4 display the event score distributions after fine-tuning with
varying amounts of signals. Compared to Figures 3.4 and 3.5, the neural network
successfully assigns higher scores to signal events even with limited amounts of
signals. Additionally, the distributions of signals (backgrounds) in both training
and testing datasets are similar, as observed in Sec. 3.3.

In summary, these results demonstrate that transfer learning significantly im-
proves the neural network’s ability to distinguish signal from background, even
with limited signal data. Pretraining enables the neural network to develop better
feature extractors, facilitating faster and more effective learning during the fine-
tuning phase. The improved performance is evident in both the overall significance

for different benchmark models and resolutions.
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Figure 4.1: The results of transfer learning (solid curves) and of CWolLa (dashed
curves, same as those in Fig. 3.2) for the ID (left column) and DD (right column)
scenarios with Ap= 10 GeV for 25 x 25, 50 x 50 and 75 x 75 resolutions. The

dotted line in each plot has a slope of 1.
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Figure 4.2: The results of CNN transfer learning with different finetuning strategies

for the ID (left column) and DD (right column) scenarios with Ap= 10 GeV for

25 x 25. The dotted line in each plot has a slope of 1. The term TL (solid lines)

represents the strategy mentioned in the text, and the term TL-same (dashed lines)

represents the the strategy without the randomly initializing the ¢ in dense layers

after pretraining. The dotted line in each plot has a slope of 1.
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Figure 4.3: The score distributions of CNN transfer learning for the ID (left column)
and DD (right column) scenarios with Ap= 10 GeV for 25 x 25 resolutions when
the significance before the NN cut is 3.2. The terms te_bg, te_sg, trvl_ SR_bg, and
trvl_SR _sg are the testing background events in SR, testing signal events in SR,
training background events in SR, and training signal events in SR. All distributions

are normalized to unity.
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Chapter 5

Meta learning

5.1 Introduction to meta-transfer learning

Meta-learning is an alternative approach for creating neural networks that can learn
from less data. The general idea is not to reuse concepts from related tasks but
rather to teach the neural network how to learn tasks more efficiently. Specifically,
we study the use of meta-transfer learning (MTL) [61]. Although many other
techniques exist, we choose MTL because it is closely related to transfer learning,
which has already been shown to be very successful in the previous chapter. We
will present our implementation of MTL, which we simplify and modify somewhat,
and refer to Ref. [61] for more details.

MTL utilizes scaling and shifting parameters to enhance learning efficiency.
Consider a rectangular image A of arbitrary dimensions and M channels, with a
set of N convolutional filters previously created. The filters and their indices are
labeled as

E

ij

S.D

where the index f refers to the label of the filter (running from 1 to V), 7 and j
correspond to the positional arguments of the filter ( and ¢ in our case), and ¢

corresponds to the channel (running from 1 to M). Scaling is applied as
Fl =5IF/ (5.2)

ij )
39
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where S/ are the scaling parameters and F/ are the scaled filters. The scaled filter

F7 is then applied to image A at point (i, 5) as
Bl =g ((F'«A);+b/ +57), (5.3)

where B is the resulting image, ¢ is the activation function, * is the cross-correlation
operation, b/ are the previously determined biases, and S/ are the shifting param-
eters. The indices i’ and ;' are related to the positions 7 and j, though the exact
relation depends on other parameters (stride, padding, etc.). The scaling and shift-
ing parameters are optimized to make the neural network learn faster and are meant
to emphasize more important features. These parameters are crucial to how the

neural network “learns-to-learn”.

5.2 Implementation of meta-transfer learning

The architecture of our neural network remains mostly identical to Table 3.1.
The only modification is the inclusion of scaling and shifting parameters in all
convolutional layers. As before, the NN parameters of the feature extractor are
denoted as O and those of the dense layers as . The training proceeds in three
phases.

First, pretraining is conducted as described in Sec. 4.2. During this phase, the
neural network learns to distinguish between background samples and a mixture
of different signals except the benchmark used in pseudo-experiment data. The
scaling parameters and shifting parameters are kept at 1 and 0, respectively. After
completing the pretraining, the NN model parameters O are fixed permanently.
However, unlike the method in Ref. [61], the # parameters are not initialized
randomly and this way will obtain better results in our case.

Second, a new phase called meta-training is performed. Consider a series
of tasks 7 forming a task-space p(7). For our purposes, the tasks correspond
to different models from Sec. 2.1, excluding the benchmark used for pseudo-

experiment data under weak supervision. The training is schematically represented
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as follows:
for episode do

for 7 in p(T)do
base learning
meta—-learner update
evaluation of L
end for
average L7 over p(T)
test for early
stopping
end for
In detail, an episode in meta-learning is equivalent to an epoch in the regular NN
training. Each possible task in the task-space is considered once per episode. The

first step of each episode involves an inner-loop where the following steps are

executed for each task in the task-space:

* base learning: A series of temporary # parameters labelled as ¢ are

obtained via gradient descent as
0+ 0 — BVeL(0,0,8S,5), (5.4)

where (3 is the learning rate in the base learning step and £+ the loss function.

The training is performed over only 3 epochs to prevent overfitting.

* meta-learner update: The #, scaling S and shifting S parameters are

updated by one step of gradient descent as
0=:0—~vVyLr(0,0,8,8),
S =:8—-9VsLr(0,0,85,5), (5.5)
S=:8—-9VsLr(0,0,85,5),

where -y is the learning rate in the meta-learner updating step. After complet-

ing this step, the temporary parameters 6’ will not be used anymore and can

be discarded.
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* evaluation of Lg: The loss function is evaluated using the updated
parameters: £1(0,6,5,S). This will be used to determine when to stop

meta-training.

During the base learning and meta-learner update, the NN is trained to distin-
guish pure samples of 2.5k signals and 2.5k backgrounds in the SR. Four-fifths
of the sample is used for training and the other one-fifth of the sample is used for
validation. Training is done under full supervision. Different events are used for
each of the three steps in the inner-loop of each episode. Once the inner-loop is
complete, the L7 are averaged and used to test for early stopping. After completing
the whole meta-training phase, the 6 parameters are initialized randomly.

Third, fine-tuning is performed similarly to Sec. 4.2, with the difference being
the presence of scaling and shifting parameters learned during meta-training but
kept fixed in this phase.

Note that our method is simplified compared to the original method in Ref. [61].
The primary difference is that we omitted the hard tasks algorithm, as it was beyond
the scope of this initial study on the applicability of meta-learning to CWoLa.
Additionally, we did not implement meta-batches, the meta-learning equivalent
of a batch, as they were mostly irrelevant without the hard tasks algorithm. A

summary of the strategy is provided in Table 4.1.

5.3 Discussion

Fig. 5.1 shows the comparison between transfer learning and meta-transfer learning.
Meta-transfer learning generally exhibits a slight performance improvement for
the 25 x 25 and 50 x 50 resolutions compared to transfer learning, attributed to
the additional adjustments provided by the scaling and shifting parameters. It
is important to note that the results for transfer learning are already close to the
mathematical upper limits, leaving limited room for further improvement at high

significance levels. However, the relative improvement at low significance levels
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can be substantial. For the 75 x 75 resolution, the difference between transfer and
meta-transfer learning is negligible. Nevertheless, we observe that meta-transfer
learning can slightly outperform transfer learning for the 75 x 75 resolution when
a larger kernel size is employed, as illustrated in Fig. 5.2. A comprehensive study
on kernel size optimization is beyond the scope of this work.

Fig. 5.3, Fig. 5.4 and Fig. 5.5 show the distributions of the scaling and shifting
parameters after meta-learning. Obviously, the scaling and shifting parameters
provide a minor adjustment for feature extractors ©. For the higher resolutions, the
distributions of the scaling and shifting are more centralized at 1 and 0, respectively.
Fig. 5.6 shows the distributions with the larger kernel size. With larger sizes of the
kernel, the distributions are more spread out to provide relatively useful adjustments

to feature extractors.
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Figure 5.1: The results of meta-transfer learning (solid curves) and transfer learning
(dashed curves, same as those in Fig. 4.1) for the ID (left column) and DD (right
column) scenarios with Ap= 10 GeV for 25 x 25, 50 x 50 and 75 x 75 resolutions.

The dotted line in each plot has a slope of 1.
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Figure 5.2: The results of meta-transfer learning (solid curves) and transfer learning

(dashed curves) for the ID (left) and DD (right) scenarios with Ap= 10 GeV for

75 x 75 resolution with a larger size of kernels. The kernel sizes are 10 x 10 and

5 % 5 respectively instead of 5 x 5 and 3 X 3 mentioned in Table 3.1. The dotted

line in each plot has a slope of 1.
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Figure 5.3: The distributions of scaling (left) and shifting (right) parameters 5, S

for ID (upper) and DD (lower) scenarios with A p=10 GeV for 25 x 25 resolution.
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Figure 5.4: The distributions of scaling (left) and shifting (right) parameters 5, S

for ID (upper) and DD (lower) scenarios with A =10 GeV for 50 x 50 resolution.

doi:10.6342/NTU202401831



5. Meta learning 48

sscalr‘ng Sshifting
70

60

50

40

30

20

10

o 0.97 098 0.99 1.00 1.01 1.02 1.03 1.04 0—0.()2 -0.01 . . . 0.03

(a)
sscaling Sshifting

8000 70
7000 60
6000 50
5000 20
4000

30
3000

20
2000
1000 10

0 1

0
—0.015-0.010-0.005 0.000 0.005 0.010 0.015 0.020
(b)

Figure 5.5: The distributions of scaling (left) and shifting (right) parameters .S, S
for ID (upper) and DD (lower) scenarios with A p=10 GeV for 75 x 75 resolution.
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Figure 5.6: The distributions of scaling (left) and shifting (right) parameters S, S
for ID (upper) and DD (lower) scenarios with Ap=10 GeV for 75 x 75 resolution
with a larger size of kernels. The kernel sizes are 10 x 10 and 5 x 5 respectively

instead of 5 x 5 and 3 x 3 mentioned in Table 3.1..
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Chapter 6

Conclusion

Weak supervision searches offer the dual advantages of being able to train on
real data and exploiting distinctive signal properties. However, training a neural
network via weak supervision often demands an impractically large amount of
signal, nearly to the extent that the signal could have been discovered without
the neural network. To address this issue, our work focuses on developing neural
networks that can learn from less signal using transfer and meta-learning. The
primary idea is to first train a neural network on simulations, enabling it to learn
relevant concepts or become a more efficient learner. Subsequently, the neural
network is trained on experimental data, requiring less signal due to its previous
training. Our implementation of this procedure involves transfer learning and
meta-transfer learning.

We find that transfer learning significantly enhances the performance of CWoLa
searches. This improvement is particularly notable at low significance, reducing
the amount of signal needed for discovery by a substantial factor. Meta-transfer
learning further enhances CWolLa searches, though not dramatically.

We emphasize that this work serves as a proof of principle, and several questions
remain unanswered. Specifically, the choice of models for training may influence
the ability to discover signals that differ significantly from them. The extent of this

effect is left for future investigation. However, a small reduction to the scope of
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6. Conclusion 51

model sensitivity seems a fair prize to pay for the magnitude of our improvement
over the regular CWoLa method.

After publication of our work, Ref. [13] by Cheng, Singh and Nachman pro-
posed a search strategy similar to ours which they dubbed Prior-Assisted Weak
Supervision (PAWS). Although differing in some details, PAWS also consists of
pretraining on simulations and performing weak supervision on actual data. They
showed that the combination of pretraining and weak supervision could improve
the sensitivity of searches by a factor of ~ 10. Their figure 2 bears striking similar-
ity with some of our results. Ref. [14] also studied the combination of pretraining
on simulations and weak supervision on data, their technique Sophon. They claim
their method can improve signal sensitivity by a factor of a few.

Finally, it is important to note that transfer and meta-learning are extensive
and rapidly evolving fields. Although we demonstrated their potential, we only
explored two specific techniques. It is likely that more powerful techniques already
exist or could be developed in the future. Additionally, we did not fully optimize
our analysis, and there are clear opportunities for refinement. Given our promising
results, we believe further studies on transfer and meta-learning and developing

other techniques for weak supervision are highly warranted.
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