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中⽂摘要 

弱監督搜尋在原理上具有以下兩個優點：既能夠在實驗數據上進⾏訓練，⼜能夠學

習到獨特的信號特性。然⽽，由於在弱監督下成功訓練神經網絡可能需要⼤量的信

號，因此這種搜尋策略的實際應⽤性受到嚴重限制。在本研究中，我們嘗試開發更

⾼效和更智能的神經網絡，通過利⽤遷移學習和元學習來從較少的實驗數據信號

中學習。其基本思路是⾸先在模擬數據上訓練神經網絡，學習關鍵概念並成為更⾼

效的學習者。隨後，神經網絡再在實際數據上進⾏訓練，通過利⽤從模擬中獲得的

知識和概念，期望能夠在學習中需要較少的信號。我們發現，遷移學習和元學習可

以顯著提⾼弱監督搜尋的性能。 
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Abstract

Weak supervision searches have in principle the advantages of both being able

to train on experimental data and being able to learn distinctive signal properties.

However, because successfully training a neural network under weak supervision

can require a large amount of signal, the practical applicability of this search

strategy is seriously limited. In this study, we try to develop more efficient and

smarter neural networks that can learn from less signal in the experimental data

by utilizing transfer learning and meta-learning. The general idea is to first train

a neural network on simulations, learning critical concepts and becoming a more

efficient learner. Subsequently, the neural network is trained on real data and,

by exploiting the knowledge and concepts acquired from simulations, should

hopefully require less signals to learn. We find that transfer and meta-learning can

substantially improve the performance of weak supervision searches.

This study is based on our previous work [1].
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Chapter 1

Introduction

Particle physics investigates elementary particles and their interactions. Central

to this field is the Standard Model (SM), a highly successful framework that

explains the behavior of fundamental particles and their interactions through the

SU(3)C × SU(2)L×U(1)Y gauge groups. More precisely, spin-1 gauge particles,

including the massless photon γ, the massless gluon g with eight color states, and

the massive W ±, Z bosons, serve as force carriers of electromagnetism, strong

interaction, and weak interaction, respectively. Additionally, the three generations

of quarks and leptons, comprising both right-handed singlets and left-handed

doublets, collectively constitute the matter observed in our universe. Due to the

mechanism of spontaneous symmetry breaking of the complex Higgs doublet H ,

particles acquire their masses by the vacuum expectation value of H , also leaving

a spin-0 scalar particle h. The other components of the Higgs doublet (A0, H±),

known as Goldstone bosons, are absorbed by the W ± and Z bosons, imparting a

non-zero longitudinal mode to these particles. There are 26 input parameters in the

SM, and physicists measure and predict these parameters by many experiments [2],

especially collider experiments.

Despite the success of the Standard Model, several questions remain unan-

swered. The SM namely fails to answer:

• What is dark matter?

1
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• How can gravity be incorporated into the model?

• What explains the asymmetry between matter and antimatter?

• How can the Higgs mass hierarchy problem be solved?

• What explains the muon’s g − 2 anomaly?

• What mechanism generates neutrino masses?

These issues highlight the limitations of the SM and underscore the importance of

studying its extensions. Experimental research in collider physics and astrophysics

has provided substantial insights into these problems.

In recent years, advances in machine learning have provided many opportunities

in collider physics. We can utilize neural networks (NNs) to distinguish the signal

from the SM background and to search for new particles. In order to create such a

neural network, training is necessary. Three main strategies exist, characterized by

the way of labeling the data:

1. Fully supervised learning: all data are labeled correctly.

2. Unsupervised learning: none of the data is labeled.

3. Weakly supervised learning: the data are labeled imperfectly.

In fully supervised learning, the training data are correctly labeled as signals

and backgrounds. This supervision strategy has been considered and applied

in many studies [3, 4, 5, 6]. However, when the goal is to find a new particle

that has not been observed yet, the training data must come from simulations

instead of experimental data. There are some possible problems with this. First,

simulations inherently include imperfections or artifacts. This can lead to the

neural network learning from these defects, making the neural network sub-optimal

and unpredictable when applied to real data [7]. Second, the reaction of the neural

network to a signal that deviates from the expected signal is uncertain. This could
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limit the sensitivity of the search to a narrow range of models, possibly causing it

to overlook a detectable signal.

Another training strategy is unsupervised learning, where the training data

lacks labels. A common approach has been to use autoencoders trained on pre-

dominantly background events, using the reconstruction error as a test statistic [8].

More precisely, an autoencoder is a type of neural networks that learns to encode

input data into a compressed representation and then decode it back to its original

form, trying to minimize the reconstruction error. Although this neural network

can directly learn properties of experimental data, there are two notable drawbacks

to this method. First, the reconstruction error can sometimes be a weak discrimi-

nator [9, 10]. Second, since autoencoders are trained exclusively on background

data, they will will not be trained to look for unique characteristics of signal events,

hence reducing their discriminative ability.

Weakly supervised learning, using training data with imperfect labels, presents

a promising strategy that tries to address the challenges of both the fully super-

vised and unsupervised learning approaches. In the Classification Without Label

(CWoLa) method [7], two sets of experimental data are considered, each assumed

to have different mixtures of signal and background events. Under the assumption

that the properties of signals (backgrounds) in both mixed datasets are identical,

Ref. [7] demonstrated that the most powerful test statistic for distinguishing be-

tween these datasets is also the most powerful test statistic for distinguishing pure

signals from pure backgrounds. Therefore, a neural network trained to distinguish

these datasets naturally becomes proficient at identifying signal events within the

data. Such neural networks can train exclusively with the specific signal present in

the data and do not need to worry about a difference between the training data and

the actual signal, which can be a problem in fully supervised learning. Hence, the

CWoLa method can combine both benefits of unsupervised learning (data-driven

training) and fully supervised learning (exploiting signal properties). Notably,

weak supervision has been implemented in an experimental search by ATLAS (see
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Ref. [11]).

Although weakly supervised learning combines the advantages of both fully

supervised and unsupervised learning, it faces some practical limitations when the

number of signals is limited [12, 13, 14]. In this case, the neural network cannot

successfully distinguish signals from backgrounds such that the neural network will

indiscriminately cut both signals and backgrounds. At this point, we describe the

amount of signal as being below the learning threshold. Worse still, the threshold

might be greater than what would be necessary for discovery without using neural

networks, and the practical value of such a model is thereby limited. Especially,

this situation can happen when the dimensionality of the input is too large, as noted

in Ref. [15]. To address this issue, Ref. [16] implemented a solution by providing

a simple but effective input to the network. Recent efforts to tackle this challenge

can be found in Refs. [17, 18].

In the hope of addressing the limitations of the CWoLa method, the goal of

this work will be to create neural networks that can learn from less data. The

general idea is for the neural network to use simulations to learn useful concepts

and become a better learner, such that it can learn faster once trained on actual

data. Despite the limited availability of signal data, it can be easy to generate

simulations of it. The neural network can first learn from the simulations and then

understand critical concepts. Subsequently, the neural network can be trained on

real data more efficiently via knowledge obtained from simulations. Hence, the

neural network could learn faster and require less real data in the training. In this

study, we will consider and use transfer learning and meta-learning to address this

issue.

The basic idea of transfer learning involves the transfer of knowledge or exper-

tise gained from solving a previous task to improve the learning or performance

of a neural network model on a different but related task. This technique is par-

ticularly useful when there is limited labeled data available for the target task. In

transfer learning, the neural network model is pretrained on a large and general
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dataset, called source data, and is adapted or fine-tuned to a small and specific

dataset, called target data. Usually, the source dataset and the target dataset have

many similarities. Hence, the neural network can first learn the fundamental

concepts in the source dataset, and then reuse the concepts learned previously to

learn more efficiently. This training strategy has been applied in many studies

(see Refs. [13, 14, 19, 20, 21, 22, 23, 24, 25, 26]). In this study, we will utilize

pretraining and finetuning strategies for transfer learning, and the details of the

strategy will be explained in Chap. 4.

The basic idea of meta-learning involves enhancing neural networks by lever-

aging knowledge gained from training with multiple tasks (see Ref. [27] for an

example application in high energy physics and Ref. [28] for a review). Unlike tra-

ditional machine-learning approaches that focus on learning from specific datasets

and then adapting to the target task, meta-learning focuses on equipping models

with the ability to learn how to learn. In meta-learning, the emphasis lies in ac-

quiring higher-level understanding, often referred to as “meta-knowledge”, about

the learning process itself. This meta-knowledge includes insights into various

aspects of learning, such as the characteristics of different tasks, the relationships

between tasks, and the most effective strategies for adapting to new tasks. The

basic approach is to let the neural network learn from multiple tasks. Ideally, the

neural network can gain the meta-knowledge with these tasks, and then become

a more efficient learner and require less data for the target task. In this work, we

use meta-transfer learning as our meta-learning strategy, and the details will be

explained in Chap. 5.

In this study, we find the following results. First, transfer learning successfully

enhances the performance of the neural networks under weak supervision. The

learning thresholds can be reduced significantly and the amount of signal necessary

for discovery can sometimes be several times smaller. Second, meta-transfer

learning can further improve the performance of the neural networks. However,

the improvements between transfer learning and meta-transfer learning are smaller



doi:10.6342/NTU202401831

1. Introduction 6

than the improvements between CWoLa and transfer learning.

This study is organized as follows. Chap. 2 presents the events generations and

the image prepossessing for jet images. Chap. 3 explains the idea of CWoLa and

the difficulties of CWoLa for learning thresholds. Chap. 4 and Chap. 5 presents the

details of the strategies and results for transfer learning and meta-learning. Finally,

Chap. 6 summarizes this study.



doi:10.6342/NTU202401831

Chapter 2

Events generation

2.1 Signal and background generation

In this study, we use the Hidden Valley (HV) model [29, 30] as our benchmark

(see Ref. [31] for a review). It consists of a set of particles charged under a new

confining group and that somehow communicate with the SM sector. If produced

at colliders and relatively light, these particles will shower and create collimated

sprays of dark hadrons. Some of these will in turn decay to SM particles and create

an object that can potentially mimic a QCD jet. These are known as dark showers.

Dark hadrons can provide many potential dark matter candidates [32, 33, 34] and

have been the focus of multiple experimental searches [35, 36, 37, 38].

The Pythia HV module is used for simulating dark showers, providing a

broad range of signals due to its numerous adjustable parameters. This flexibility

makes the module particularly advantageous for transfer learning and meta-learning.

Specifically, the signal process considered is pp→ Z ′ → q̄DqD. The dark quarks

qD are a set of fermions charged under a new confining gauge group SU(3)dark

but neutral under the SM gauge groups SU(3)C × SU(2)L × U(1)Y . These dark

quarks are assumed to be degenerate in mass for simplicity. The Z ′ particle is a

massive Abelian gauge boson that interacts with both SM quarks and dark quarks.

Hence, the signature of the final state is a pair of dark jets with an invariant mass

7
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Mjj consistent with the mass of Z ′ boson.

Once produced, the dark quarks are showered and hadronized by Pythia 8.307.

After dark showering, the resulting dark hadrons are either dark vector mesons ρD

or dark pseudo-scalar mesons πD. We follow the recommendations from Ref. [31],

and the ratio of their masses is set:

mπD

ΛD

= 5.5
√

mqD

ΛD

,
mρD

ΛD

=

√
5.76 + 1.5

m2
πD

Λ2
D

, mqconst = mqD
+ ΛD, (2.1)

where mqD
and mqconst are the current and constituent mass of the dark quarks

respectively and ΛD is the dark confining scale for SU(3)dark. Note that the dark

quark mass in the HV settings of Pythia is the constituent mass. In order to

verify the validity of Eq. (2.1), by assuming the confining scale and quark mass to

be 300 MeV and 3 MeV respectively (which are the values in the SM for the QCD

confining scale and the average of masses of up and down quarks), the masses of

pions and rhos are 160 MeV and 750 MeV respectively. These are close to the

values of the SM. Furthermore, when the relation mρD
≥ 2mπD

holds, the decay

of ρD → πDπD is allowed. From Eq. (2.1), we have

mρD
=

√
5.76Λ2

D + 1.5m2
πD
≥ 2mπD

. (2.2)

Hence, the decay of ρD → πDπD is allowed if mπD
/ΛD < 1.52, and we consider

the two scenarios from the different decay channels of ρD as our benchmarks.

In the first scenario, where mρD
≥ 2mπD

and the decay ρD → πDπD is

permitted, this decay mode dominates with a branching ratio of effectively 1. We

define seven benchmarks within this scenario, each distinguished by different ΛD

values and fixing a constant mass ratio of mπD
/ΛD = 1. The selected values of

ΛD are 1, 5, 10, 20, 30, 40, and 50 GeV, and the corresponding masses of πD, ρD,

qD, and qconst determined by Eq. (2.1). For simplicity, we assume exclusive decay

of the dark pions to SM dd pairs. This scenario is denoted as Indirect Decay (ID).

In the second scenario, where mρD
< 2mπD

and the decay ρD → πDπD is

forbidden, we also define seven benchmarks, each distinguished by different ΛD

values and fixing a constant mass ratio of mπD
/ΛD = 1.8. The selected values
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of ΛD are the same as those of the first scenario: 1, 5, 10, 20, 30, 40, and 50

GeV. Again, the corresponding masses of πD, ρD, qD, and qconst are determined by

Eq. (2.1). We assume, for simplicity, exclusive decay of both the dark pions and

dark rho mesons to SM dd pairs in this scenario, referred to as Direct Decay (DD).

Table 2.1 lists the parameter values for both scenarios.

The additional relevant signal parameters in Pythia are specified as follows:

The mass of Z ′ is set to 5.5 TeV, resulting in an invariant mass of the leading

two jets of approximately 5.2 TeV. The slight discrepancy is attributed to part

of the constituents falling outside the reconstructed jets. Fig. 2.1 illustrates the

distribution of the invariant mass of the two leading jets, denoted as Mjj . The decay

width of Z ′ is set to 10 GeV, ensuring that there is no significant peak broadening

that could negatively impact the search. The settings of the remaining Pythia

parameters are detailed in Table 2.3.

Next, the dominant background is expected to be from the pair production of

QCD jets, denoted as pp→ jj. These background events are generated at parton

level by Madgraph 2.7.3 [39] and subsequently hadronized by Pythia 8.307.

For simplicity, only leading order jet pair production is considered. The initial cuts

listed in Table 2.2 are used in Madgraph to enhance the generating efficiency.

It has been verified that these preliminary cuts are weak enough to avoid any

significant impact on the relevant parts of the distribution. The parton distribution

function adopted for both signal and background event generations is NN23LO1

[40]. Default settings within Pythia are used for the hadronization of background

events.

Both signal and background events undergo detector simulation by using

Delphes 3.4.2 [41], and jet reconstruction is dealt with via the anti-kT clustering

algorithm implemented in FastJet 3.3.2 [42], with a jet radii of R = 0.8. This

choice is different from the default value of 0.5 to accommodate the larger jet

radius characteristic of signal jets originating from dark showers, ensuring that at

least 90% of the constituents are included within the jet. After detector simulations,
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Scenarios ΛD mπD
mρD

mqconst

ID 1 1 2.69 1.03

ID 5 5 13.47 5.17

ID 10 10 26.94 10.33

ID 20 20 53.89 20.66

ID 30 30 80.83 30.99

ID 40 40 107.78 41.32

ID 50 50 134.72 51.65

Scenarios ΛD mπD
mρD

mqconst

DD 1 1.8 3.26 1.11

DD 5 9 16.29 5.54

DD 10 18 32.59 11.07

DD 20 36 65.18 22.14

DD 30 54 97.77 33.21

DD 40 72 130.35 44.28

DD 50 90 162.94 55.36

Table 2.1: Parameters for the different benchmarks in the indirect decaying (ID)

and direct decaying (DD) scenarios. All values are in GeV units.

the selection criteria listed in Table 2.2 are applied. Notably, the Signal Region

(SR) and Sidebands (SB) are defined and used in the later CWoLa procedure. Via

fixing the integrated luminosity, the background in the SR and in the SB contain

20k and roughly 21k events passing the SR and SB selection cuts respectively. The

corresponding integrated luminosity is 147.3 fb−1, which is close to the integrated

luminosity used in Run 2 of the LHC. The cross-section, the cut efficiency, and the

number of events for the background are listed in Table 2.4.

To verify the requirement of CWoLa that the properties of signals (backgrounds)

are identical in both mixed datasets, we consider using the high-level and low-

level physical quantities to examine the requirement. The generalized angularities
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Preliminary cuts in Madgraph for the SM
√

s = 13 TeV

Both PT of the leading two jets > 700 GeV

Both η of leading two jets |ηj| < 2.2

Mjj > 3000GeV

Selection criteria after Delphes

Number of jets nj ≥ 2

Both PT of the leading two jets > 750 GeV

Both η of leading two jets |ηj| < 2

SR = {Mjj ∈ [4700, 5500]}

SB = {Mjj ∈ [4400, 4700] ∪ [5500, 5800]}

Table 2.2: Parameters in Madgraph and the selection criteria after Delphes.

HV parameters in Pythia

HiddenValley: alphaOrder 1

HiddenValley: nFlav 3

HiddenValley: Ngauge 3

HiddenValley: pTminFSR 1.1ΛD

HiddenValley: separateFlav on

HiddenValley: aLund 0.1

HiddenValley: bmqv2 1.9

HiddenValley: rFactqv 1.0

HiddenValley: probVector 0.75

HiddenValley: fragment on

HiddenValley: FSR on

Table 2.3: Parameters for dark showering in Pythia.

(GAs) and the jet images are considered for the high-level and low-level quantities

respectively, and jet images will be discussed in Sec. 2.2 and be our input data in
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Figure 2.1: Dijet invariant mass distributions for the indirect decaying scenario

with ΛD = 10 GeV and for the SM background. Distributions are normalized to

unity. Both signal and background satisfy the selection criteria of Table 2.2 except

for the SR or SB conditions.

Efficiency of the cut σ after the cut number of events

Background in SR 0.020 135.8 fb 20000

Background in SB 0.021 142.3 fb 20957

Table 2.4: The cross-section and the efficiency of selection cut listed in Table 2.2

for the SM background. We set the integrated luminosity 147.3 fb−1. The cross-

section of the background in the Madgraph level is 6.8 pb.

neural networks. The generalized angularities are commonly used to discriminate

the gluon and quark jets efficiently (see Refs. [43, 44, 45, 46]). The GAs are

denoted as λκ
β with different choice of κ and β and calculated by:

λκ
β =

∑
i∈jet

zκ
i θβ

i , (2.3)

zi = PT,i∑
i∈jet PT,i

, (2.4)
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θi = ∆Ri

R
, (2.5)

∆Ri =
√

(ϕi − ϕjet)2 + (ηi − ηjet)2, (2.6)

where the PT,i is the transfer momentum of the jet constituent, ∆Ri is the pseudo-

rapidity/azimuth distance of the jet constituent to the jet-axis, R is the jet re-

construction radius which is set to be 0.8, and ϕjet and ηjet are the PT-weighted

pseudo-rapidity and azimuth angles defined in Eq. (2.8). The choices of (κ, β)

are set to be (0, 0), (2, 0), (1, 0.5), (1, 1), (1, 2), respectively called multiplicity,

(pD
T )2 [47], Les Houches Angularity (LHA) [48, 49], width, and mass.1 Fig. 2.2

shows that the distributions of signal (background) in SR and SB are highly similar,

satisfying the requirement of CWoLa mentioned in Sec. 3.1. Fig. 2.3 shows that

the correlation coefficients of GAs between the two leading jets are quite small.

2.2 Image preprocessing

In order to illustrate the power of transfer and meta-learning, we will use jet images

as input to the neural networks. Such high dimensional inputs can be challenging

for weak supervision, but we will show that our procedure still works under these

conditions. The ability to adjust the resolution and therefore the input size will

also prove useful to illustrate certain features.

To use images as input data, the two leading jets in PT are converted into jet

images according to the following procedure [50, 51, 52]: translation, rotation,

flipping, and pixelization.

1. Translation: each jet constituent is translated so that the center of the jet

image is along the jet axis. That is

(ηi, ϕi)→ (η′
i, ϕ′

i) = (ηi − ηjet, ϕi − ϕjet), (2.7)

1Strictly speaking, it is not the regular mass. It is the mass-squared over energy-squared in the

soft-collinear limit. We just adopt the same names listed in Ref. [7].
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ηjet =
∑

k ηkPT,k∑
k PT,k

, ϕjet =
∑

k ϕkPT,k∑
k PT,k

, (2.8)

where ηjet and ϕjet are weighted by transverse momenta. After the transla-

tion, the PT-weighted ηjet and ϕjet are zero.

2. Rotation: define the PT-weighted mass matrix M ,

M =

∑
i

PT,iηi

PT,iϕi

(
PT,iηi PT,iϕi

)
∑

i P 2
T,i

= 1∑
i P 2

T,i

 ∑
i P 2

T,iη
2
i

∑
i P 2

T,iηiϕi∑
i P 2

T,iηiϕi

∑
i P 2

T,iϕ
2
i

 .

(2.9)

Because the M matrix is symmetric, there is an orthogonal matrix U which

can diagonalize the matrix M ,

Mdiag = UMU−1 =

M11 0

0 M22

 , (2.10)

where M11 and M22 are the principle values (eigenvalues) of the matrix M .

We choose M11 ≥M22 by convention, such that the leading principle axis is

along the η direction after rotation. Then the new η′
i, ϕ′

i are defined byη′
i

ϕ′
i

 = U

ηi

ϕi

 . (2.11)

3. Flipping: the image is flipped such that the highest PT constituent is in the

first quadrant (upper-right plane).

4. Pixelization: The jet constituents are pixelated with resolutions of either

25× 25, 50× 50 or 75× 75. The range of η and ϕ are both from −1 to 1.

Fig. 2.4 and Fig. 2.5 present the jets before and after preprocessing and the cor-

responding average histograms. The figures also highlight the jet radius R = 0.8

used in the jet reconstruction process. The capability to adjust the resolution will be

beneficial for illustrating specific features and influencing the learning thresholds.
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Last, the average plots show that the average images of signal (background) in SR

and SB are highly similar to each other, satisfying the requirement of CWoLa that

the distribution of signal (background) in SR and SB are identical, mentioned in

Sec. 3.1.
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Figure 2.2: The distributions of five generalized angularities for the first leading

jet. The labels of bgSR, bgSB, sgSR, and sgSB are the 10k events of signals and

backgrounds in the SR and SB. The events are after the cut listed in Table 2.2 and

distributions are normalized to be unity. The benchmark of signals is the indirect

decaying scenario with ΛD = 10 GeV.
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Figure 2.3: The correlation coefficient matrix of bgSR, bgSB, sgSR, and sgSB for

the five GAs of the leading two jets. The events are after the cut listed in Table 2.2.

The benchmark of signals is the indirect decaying scenario with ΛD = 10 GeV.

Note that the upper-right and lower-left regions in each subplot are the correlation

coefficients between the leading two jets.



doi:10.6342/NTU202401831

2. Events generation 18

1.0 0.5 0.0 0.5 1.01.0

0.5

0.0

0.5

1.0 Calorimeter PT for j1

10 3

10 2

10 1

100

101

102

103

Ca
lo

rim
et

er
 P

T [
Ge

V]

(a) Before preprocessing

1.0 0.5 0.0 0.5 1.01.0

0.5

0.0

0.5

1.0 Calorimeter PT for j1

10 3

10 2

10 1

100

101

102

103

Ca
lo

rim
et

er
 P

T [
Ge

V]
(b) After preprocessing

Figure 2.4: (a) A 2D PT histogram for one signal event in the SR before rotation and

flipping. (b) A 2D PT histogram of the same event after complete preprocessing.

These plots are for the leading jet with 75× 75 resolution and the ID scenario with

ΛD = 10 GeV.
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(a) Average Hist. of backgrounds in SR
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(b) Average Hist. of signals in SR
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(c) Average Hist. of backgrounds in SB
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(d) Average Hist. of signals in SB

Figure 2.5: (a) The average histogram for 10k background events in the SR after

preprocessing. (b) The average histogram for 10k signal events in the SR after

preprocessing. (c) The average histogram for 10k background events in the SB

after preprocessing. (d) The average histogram for 10k signal events in the SB

after preprocessing. These plots are for the leading jet with 75× 75 resolution and

the ID scenario with ΛD = 10 GeV.
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Chapter 3

Classification without labels

(CWoLa)

3.1 Theoretical perspectives

In this section, we briefly review classification without labels (CWoLa) following

Ref. [7]. Let’s define a classifier F : x→ z ∈ R, where x is a vector of observables

used to discriminate signals from backgrounds, and z is a real number. The type

of x can be the high-level physics parameters, like Mjj , ηjet, and ϕjet, or the

low-level physics parameters, like jet images. The higher (lower) values of z mean

the x of the event is more signal-like (background-like). By the Neyman-Pearson

lemma [53], the optimal classifier Foptimal is the likelihood ratio: Foptimal(x) =

pS(x)/pB(x), where the pS and pB are the probability density functions of x for

the signal and the background. Hence, optimally training a neural network is to

make an NN approach the optimal classifier Foptimal as much as possible.

In full supervision, each event carries the correct label yi ∈ {S, B}. Also, the

output z from the classifier is adjusted to be from 0 to 1 by convention. A neural

network is trained with training data to minimize the loss function to become

a better classifier. One of the common choices of loss functions is the binary

20
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cross-entropy function LBC :

LBC = − 1
N

N∑
j=1

[I(yj = S) log F (xj) + (1− I(yj = S)) log (1− F (xj)] , (3.1)

where I is the indicator function for signals, and N is the size of the batch in the

training data. Theoretically, given sufficiently large training samples, a flexible

model parameterization, and an appropriate minimization process, the learned

neural network could approach Foptimal.

In weak supervision, we assume there are two mixed samples Ω1 and Ω2 con-

taining different mixtures of signals and backgrounds. Label the signal fractions as

f1 and f2 respectively, where we can always assume f1 > f2. Assume the distribu-

tions of signals pS (backgrounds pB) are identical within both mixed samples Ω1

and Ω2. The likelihood that an event is from Ω1 is then pΩ1 = f1pS + (1− f1)pB

and similarly for Ω2. Then, Ω1 and Ω2 are more signal-like and background-

like respectively. By the Neyman-Pearson lemma, there is an optimal classifier

FΩ1,Ω2 = pΩ1/pΩ2 for distinguishing Ω1 and Ω2. By the same lemma, there is

also another optimal classifier FS,B = pS/pB for distinguishing signals and back-

grounds. Then,

FΩ1,Ω2 = pΩ1

pΩ2

= f1pS + (1− f1)pB

f2pS + (1− f2)pB

= f1FS,B + 1− f1

f2FS,B + 1− f2
(3.2)

= f1

f2
+ 1− f1/f2

f2FS,B + (1− f2)
= f1

f2
− 1

f2

f1 − f2

f2FS,B + (1− f2)
. (3.3)

The classifier FΩ1,Ω2 is a monotonically increasing function of FS,B, i.e. FΩ1,Ω2

has the same ability to distinguish signal from background as FS,B. Therefore,

if the classifier FΩ1,Ω2 is optimal for distinguishing Ω1 and Ω2, then it is also

optimal for distinguishing signals and backgrounds. More importantly, the neural

network does not require any information about f1 or f2, the only requirement

is the two mixed datasets of signals and backgrounds with different fractions. In

practice, the neural network is trained to distinguish with mixed samples and

thereby learns the difference between signals and backgrounds to become the

classifier that distinguishes signals well from backgrounds.
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3.2 The implementation of CWoLa

As discussed in the Introduction and Section 3.1, the CWoLa method requires

two mixed samples containing both signal and background events in different

proportions. In our study, we utilize the resonance peak resulting from the decay

of Z ′ shown in Fig. 2.1. The neural network is trained to discriminate the signal

region and sideband regions presented in the figure. This section provides details of

our implementation of this procedure, partially inspired by the approach outlined

in Ref. [16].

On one hand, the background in the signal region consists of 20k events passing

the SR selection cuts listed in Table 2.2. The number of background events in the

sidebands is determined using the same integrated luminosity as the signal region.

On the other hand, the signal amount in the SR is varied throughout the analysis,

resulting in a pre-neural network cut significance ranging from 0 to 7, while the

signal in the SBs is adjusted accordingly with the integrated luminosity. Four-

fifths of these events are utilized to update neural network parameters, while the

remaining one-fifth serves as validation data to monitor validation loss and prevent

overfitting. This training data is treated as pseudo-experimental data. During

training, the callbacks function is used to save the best model based on validation

loss. To test the performance of the CWoLa method, additional 20k signal events

and 20k backgrounds, both passing the signal region cut.

For the format of training data, we use jet images of the two leading jets. The

distributions of each jet image are independently batch normalized. Each jet image

then passes through a common sub-Convolutional Neural Network (subCNN), with

each returning a single real-valued number between 0 and 1. The final output of

the neural network is the product of these two numbers. The subarchitecture and

training procedures are described in Table 3.1, and Fig. 3.1 illustrates the model

architecture. All neural networks are implemented using Keras [54] with the

TensorFlow [55] backend. We also explored the possibility of using two distinct

networks, but found this alternative typically gave inferior results, as discussed in
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Sec. 3.3 and shown in Fig. 3.3. This appears to be due to the lack of signal. The

convolutional part of the neural network is referred to as the feature extractor, and

its weights and biases are collectively labeled as Θ. The weights and biases of the

dense layers are collectively labeled as θ.

In order to evaluate the performance of the NN, we use the significance for-

mula [56]

σ =

√
2
(

(Ns + Nb) log
(

Ns

Nb

+ 1
)
−Ns

)
, (3.4)

where Ns and Nb are respectively the numbers of signal and background before

and after the NN classification. From the receiver operating characteristic (ROC)

curve with testing data after training, we choose specific background efficiencies

of ϵb = 10%, 1%, 0.1% and calculate the corresponding signal efficiencies ϵs. To

examine the robustness of the neural network, the training is performed 10 times

for each significance value, including resampling new events in each pseudo-

experiment, and averaged. The standard deviations are computed and correspond

to fluctuations from both the training and the sampling.

3.3 Discussion

Fig. 3.2 shows two benchmarks with three different resolutions each. Several

comments are in order. First, the different curves display a threshold below which

the neural network fails to learn from the data. This threshold, discussed in the

Introduction, corresponds to the upward turn of the curves around 2 to 4σ. Below

this threshold, the NN cuts background and signal indiscriminately, resulting

in worse significance than without employing the NN. Second, increasing the

resolution tends to move the position of the threshold to higher significance. This

is because classifying a higher-resolution image is a more difficult task, requiring

more parameters to be learned by the NN.

Fig. 3.3 shows two benchmarks with 25 × 25 resolutions for different CNN

subarchitectures. As mentioned in Sec. 3.2, since the number of signals is limited
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Jet1

Jet2

BN1

BN2

Convolutional 
layers Dense layers

x1

x2

x = x1x2

Recognizing the feature

(Feature extrators)

Combining the information to 

make the decision

SubCNN

Figure 3.1: The plot of model architecture. The details of the subCNN is listed in

Table. 3.1.

under weak supervision, the NN containing more parameters may not be trained

effectively. Further optimization of the NN architecture is beyond the scope of this

study.

Fig. 3.4 and Fig. 3.5 show the events score distribution after training for CWoLa

with different significance before the NN cut. Two comments are in order. First,

the distributions of signals (backgrounds) in both the training and testing datasets

are similar. It shows that the NN truly discriminates the signals from backgrounds

in both the training and testing phases under weak supervision. Second, the NN

can give higher scores for signals but similar scores for backgrounds when training

data contains more amounts of signals.
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 convolutional 2D layer: 64 filters with 5× 5 kernel size

maxpooling layer: 2× 2 pool size

× 2

convolutional 2D layer: 128 filters with 3× 3 kernel size

Layers of CNN maxpooling layer: 2× 2 pool size

subnetwork convolutional 2D layer: 128 filters with 3× 3 kernel size

flatten layer

(dense layer: 128 units)× 3

dense layer (output): 1 unit

convolutional layer padding: same

Layer setting hidden layer activation function: ReLU

output layer activation function: Sigmoid

loss function: binary cross-entropy

optimizer: Adam

metric: accuracy

Other batch size: 500

learning rate: 1e-3 (base learning, pretraining)

learning rate: 1e-4 (CWoLa, fine-tuning, meta-learner updating)

patience number: 20 (pretraining, meta-learning)

patience number: 10 (CWoLa, fine-tuning)

Table 3.1: The CNN model subarchitecture and the hyperparameters
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Figure 3.2: The results of CNN CWoLa for the ID (left column) and DD (right

column) scenarios with ΛD= 10 GeV for 25× 25, 50× 50 and 75× 75 resolutions.

The dotted line in each plot has a slope of 1.
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Figure 3.3: The results of CNN CWoLa with different model architectures for

the ID (left column) and DD (right column) scenarios with ΛD= 10 GeV for

25 × 25. The dotted line in each plot has a slope of 1. The term CWoLa (solid

lines) represents the NN containing a single subCNN, and the term CWoLa-para

(dashed lines) represents the NN containing the two distinct subCNNs for two jet

images. The dotted line in each plot has a slope of 1.
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Figure 3.4: The score distributions of CNN CWoLa for the ID (left column) and

DD (right column) scenarios with ΛD= 10 GeV for 25 × 25 resolutions when

the significance before the NN cut is 3.2. The terms te bg, te sg, trvl SR bg, and

trvl SR sg are the testing background events in SR, testing signal events in SR,

training background events in SR, and training signal events in SR. All distributions

are normalized to unity.
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Figure 3.5: The score distributions of CNN CWoLa for the ID (left column) and

DD (right column) scenarios with ΛD= 10 GeV for 25 × 25 resolutions when

the significance before the NN cut is 7.0. The terms te bg, te sg, trvl SR bg, and

trvl SR sg are the testing background events in SR, testing signal events in SR,

training background events in SR, and training signal events in SR. All distributions

are normalized to unity.
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Chapter 4

Transfer learning

As illustrated in the previous chapter, the existence of a learning threshold makes

the use of CWoLa problematic for small amounts of signal. A potential solution to

this problem is transfer learning, which we introduce in this chapter.

4.1 Introduction to transfer learning

The general concept of transfer learning involves having a neural network initially

learn from a related problem with a large amount of data and then transfer some

of this knowledge to the problem of interest. In practice, we use the techniques

of pretraining and fine-tuning. Pretraining involves training NN parameters on a

larger dataset, while fine-tuning refers to subsequent training on a smaller dataset.

These larger and smaller datasets are referred to as the source and target data,

respectively.

Two important remarks about transfer learning are in order:

1. Correlation between source and target tasks: In image classification prob-

lems, a high correlation between target tasks and source tasks is not always

necessary. For instance, in Ref. [20], the pretrained model chosen was

ResNet18 [57], which was initially trained on the ImageNet dataset [58].

This model was then fine-tuned with images of neutrino interactions, despite

30
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the fact that the images in ImageNet are not related to neutrino interaction

images. In the pretraining phase, the feature extractors can recognize and

distinguish geometric features (edges, corners, etc.), which are applicable

to both source and target tasks. This demonstrates transfer learning can still

work when source and target datasets are very different.

2. Finetuning strategies: The specific strategies for fine-tuning depend on

various factors. Two common strategies are:

(a) In the fine-tuning phase, NN models are trained with target data. How-

ever, training on target data may drastically change the parameters in

the NN, causing an almost complete loss of the knowledge obtained

from source data. This problem is called catastrophic forgetting [59].

Therefore, using a lower learning rate or freezing some of the layers

(usually convolutional layers) in the NN can help avoid catastrophic

forgetting. This strategy ensures that the NN can keep the knowledge

from source data and reuse the knowledge when the NN trains with

target data.

(b) Adjusting dense layers: Due to differences between the source and

target datasets or the architecture of the NN model, it may be necessary

to replace the dense layers or randomly reinitialize the θ parameters in

the dense layers. This allows the NN to adapt more easily to the target

tasks.

These strategies ensure that the NN can avoid catastrophic forgetting (by

using lower learning rates or freezing layers) and that the NN can better

adapt to the target tasks (by adjusting the dense layers or reinitializing θ).
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4.2 Implementation of Transfer Learning

In this study, rather than directly utilizing a pretrained model such as ResNet18,

we pretrain our model on signals similar to the signal we will ultimately look for.

The pretraining and fine-tuning strategies are implemented as follows:

First, the neural network is pretrained to distinguish a sample of pure back-

ground from a pure combination of different signals. This combination includes

all the models mentioned in Chap. 2, except for the benchmark on which the

model will be tested. In a real experiment, this would correspond to training on

simulations. A total of 250k signal events and 250k background events from the

signal region are used as the source data. It has been verified that increasing the

size of the source data does not further improve performance. Four-fifths of the

sample is used to update the NN parameters, and the remaining one-fifth is reserved

for validation to prevent overfitting, both performed on pure samples.

Second, the neural network is fine-tuned to distinguish the pseudo-experiment

data, mentioned in Sec. 3.2, i.e., the SR and SBs with the target benchmark signal

mixed within the background. In a real experiment, this would represent fine-

tuning on the actual data. The parameters of the feature extractor, denoted as Θ,

are initialized with the values learned during pretraining, while the parameters of

the dense layers, denoted as θ, are initialized randomly. During the fine-tuning

step, Θ are frozen, and only θ are trained. A summary of the strategy is provided

in Table 4.1.

Several comments on our strategies are in order. First, to fairly and reasonably

compare the results of transfer learning and CWoLa, the choice of signal bench-

marks in pretraining should not be the same as the target benchmark, so the NN will

not directly learn the properties of target signals in advance. Second, to make sure

that the NN can learn sufficient knowledge in the pre-training phase, the range of

benchmarks in pretraining should be as large as possible to cover the properties of

the target benchmark. Hence, the NN can reuse the necessary knowledge and train

with target data. The HV module plays an ideal role in conveniently generating dif-
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training set: (NS , NB) Θ θ (S, S)

TL-pretraining (250k, 250k) in the SR Train Train -

TL-finetuning pseudo-experiment data Freeze RI and train -

MTL-pretraining (250k, 250k) in the SR Train Train Freeze

MTL-base learning (2.5k, 2.5k)×13 in the SR Freeze Train Freeze

MTL-meta-learner (2.5k, 2.5k)×13 in the SR Freeze Train Train

MTL-finetuning pseudo-experiment data Freeze RI and train Freeze

Table 4.1: The strategies summary for TL and MTL. For the pretraining phase for

both TL and MTL, the signals of the training set contain all benchmarks listed

in 2.1 except for the target benchmark used in the finetuning phase. In MTL, the

base learning and meta-learning phases also use signal benchmarks from Table 2.1,

excluding the target benchmark, forming 13 meta-tasks for base learning and meta-

learner. The term RI means randomly initializing neural network parameters. For

all phases except pretraining, the NN parameters will be initialized with values

learned during previous steps unless specified by RI. All training sets, except those

used in fine-tuning with pseudo-experiment data, are under full supervision with

signals labeled as 1 and backgrounds as 0.

ferent benchmarks to enlarge the range of signals. Third, to make pretraining more

effective, the pretraining phase is conducted under full supervision. This allows

the NN to more easily distinguish the differences in properties between source

signals and backgrounds and obtain better feature extractors during pretraining.

Finally, since the NN is under full supervision during the pretraining phase and

weak supervision during the fine-tuning phase, randomly initializing θ in the dense

layers after pretraining is necessary. As discussed in Ref. [60], NN parameters in

the deeper layers, which are closer to the output layers, are more class-specific, so

randomly initializing θ can help the fine-tuning phase if the source and target tasks

are considerably different.
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4.3 Discussion

Figure 4.1 compares the performance of pure CWoLa and transfer learning. Trans-

fer learning not only enhances the overall performance of the neural network but

also significantly lowers the learning threshold across all three resolutions for two

target benchmarks. This means that the amount of signal needed to achieve a 5σ

discovery is reduced by several times, as the neural network can more effectively

identify signals and suppress background noise. Additionally, relative fluctuations

in significance are minimized due to fewer trainable parameters and more effective

learning.

Figure 4.2 compares the performance of transfer learning using different strate-

gies with 25× 25 resolutions. The results show that randomly initializing param-

eters θ in the dense layers is necessary and explain that θ parameters are more

class-specific. While an optimal strategy can further enhance performance, both

transfer learning results outperform CWoLa significantly.

Figures 4.3 and 4.4 display the event score distributions after fine-tuning with

varying amounts of signals. Compared to Figures 3.4 and 3.5, the neural network

successfully assigns higher scores to signal events even with limited amounts of

signals. Additionally, the distributions of signals (backgrounds) in both training

and testing datasets are similar, as observed in Sec. 3.3.

In summary, these results demonstrate that transfer learning significantly im-

proves the neural network’s ability to distinguish signal from background, even

with limited signal data. Pretraining enables the neural network to develop better

feature extractors, facilitating faster and more effective learning during the fine-

tuning phase. The improved performance is evident in both the overall significance

for different benchmark models and resolutions.
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Figure 4.1: The results of transfer learning (solid curves) and of CWoLa (dashed

curves, same as those in Fig. 3.2) for the ID (left column) and DD (right column)

scenarios with ΛD= 10 GeV for 25 × 25, 50 × 50 and 75 × 75 resolutions. The

dotted line in each plot has a slope of 1.



doi:10.6342/NTU202401831

4. Transfer learning 36

0 1 2 3 4 5 6 7
Significance before NN cut

0

10

20

30

40

50

60

70

80

Si
gn

ifi
ca

nc
e 

af
te

r N
N 

cu
t

ID for 25×25 res.TL- b=10%
TL- b=1%
TL- b=0.1%
TL-same- b=10%
TL-same- b=1%
TL-same- b=0.1%

(a)

0 1 2 3 4 5 6 7
Significance before NN cut

0

10

20

30

40

50

60

70

80

Si
gn

ifi
ca

nc
e 

af
te

r N
N 

cu
t

DD for 25×25 res.TL- b=10%
TL- b=1%
TL- b=0.1%
TL-same- b=10%
TL-same- b=1%
TL-same- b=0.1%

(b)

Figure 4.2: The results of CNN transfer learning with different finetuning strategies

for the ID (left column) and DD (right column) scenarios with ΛD= 10 GeV for

25 × 25. The dotted line in each plot has a slope of 1. The term TL (solid lines)

represents the strategy mentioned in the text, and the term TL-same (dashed lines)

represents the the strategy without the randomly initializing the θ in dense layers

after pretraining. The dotted line in each plot has a slope of 1.
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Figure 4.3: The score distributions of CNN transfer learning for the ID (left column)

and DD (right column) scenarios with ΛD= 10 GeV for 25× 25 resolutions when

the significance before the NN cut is 3.2. The terms te bg, te sg, trvl SR bg, and

trvl SR sg are the testing background events in SR, testing signal events in SR,

training background events in SR, and training signal events in SR. All distributions

are normalized to unity.
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Figure 4.4: The score distributions of CNN transfer learning for the ID (left column)

and DD (right column) scenarios with ΛD= 10 GeV for 25× 25 resolutions when

the significance before the cut is 7.0. The terms te bg, te sg, trvl SR bg, and

trvl SR sg are the testing background events in SR, testing signal events in SR,

training background events in SR, and training signal events in SR. All distributions

are normalized to unity.
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Chapter 5

Meta learning

5.1 Introduction to meta-transfer learning

Meta-learning is an alternative approach for creating neural networks that can learn

from less data. The general idea is not to reuse concepts from related tasks but

rather to teach the neural network how to learn tasks more efficiently. Specifically,

we study the use of meta-transfer learning (MTL) [61]. Although many other

techniques exist, we choose MTL because it is closely related to transfer learning,

which has already been shown to be very successful in the previous chapter. We

will present our implementation of MTL, which we simplify and modify somewhat,

and refer to Ref. [61] for more details.

MTL utilizes scaling and shifting parameters to enhance learning efficiency.

Consider a rectangular image A of arbitrary dimensions and M channels, with a

set of N convolutional filters previously created. The filters and their indices are

labeled as

F cf
ij , (5.1)

where the index f refers to the label of the filter (running from 1 to N ), i and j

correspond to the positional arguments of the filter (η and ϕ in our case), and c

corresponds to the channel (running from 1 to M ). Scaling is applied as

F̄ cf
ij = ScfF cf

ij , (5.2)

39
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where Scf are the scaling parameters and F̄ f are the scaled filters. The scaled filter

F̄ f is then applied to image A at point (i, j) as

Bf
i′j′ = g

(
(F̄ f ⋆ A)ij + bf + S̄f

)
, (5.3)

where B is the resulting image, g is the activation function, ⋆ is the cross-correlation

operation, bf are the previously determined biases, and S̄f are the shifting param-

eters. The indices i′ and j′ are related to the positions i and j, though the exact

relation depends on other parameters (stride, padding, etc.). The scaling and shift-

ing parameters are optimized to make the neural network learn faster and are meant

to emphasize more important features. These parameters are crucial to how the

neural network “learns-to-learn”.

5.2 Implementation of meta-transfer learning

The architecture of our neural network remains mostly identical to Table 3.1.

The only modification is the inclusion of scaling and shifting parameters in all

convolutional layers. As before, the NN parameters of the feature extractor are

denoted as Θ and those of the dense layers as θ. The training proceeds in three

phases.

First, pretraining is conducted as described in Sec. 4.2. During this phase, the

neural network learns to distinguish between background samples and a mixture

of different signals except the benchmark used in pseudo-experiment data. The

scaling parameters and shifting parameters are kept at 1 and 0, respectively. After

completing the pretraining, the NN model parameters Θ are fixed permanently.

However, unlike the method in Ref. [61], the θ parameters are not initialized

randomly and this way will obtain better results in our case.

Second, a new phase called meta-training is performed. Consider a series

of tasks T forming a task-space p(T ). For our purposes, the tasks correspond

to different models from Sec. 2.1, excluding the benchmark used for pseudo-

experiment data under weak supervision. The training is schematically represented
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as follows:
for episode do

for T in p(T ) do

base learning

meta-learner update

evaluation of LT

end for

average LT over p(T )

test for early

stopping

end for

In detail, an episode in meta-learning is equivalent to an epoch in the regular NN

training. Each possible task in the task-space is considered once per episode. The

first step of each episode involves an inner-loop where the following steps are

executed for each task in the task-space:

• base learning: A series of temporary θ parameters labelled as θ′ are

obtained via gradient descent as

θ′ ← θ − β∇θLT (Θ, θ, S, S̄), (5.4)

where β is the learning rate in the base learning step and LT the loss function.

The training is performed over only 3 epochs to prevent overfitting.

• meta-learner update: The θ, scaling S and shifting S̄ parameters are

updated by one step of gradient descent as

θ =: θ − γ∇θLT (Θ, θ′, S, S̄),

S =: S − γ∇SLT (Θ, θ′, S, S̄),

S̄ =: S̄ − γ∇S̄LT (Θ, θ′, S, S̄),

(5.5)

where γ is the learning rate in the meta-learner updating step. After complet-

ing this step, the temporary parameters θ′ will not be used anymore and can

be discarded.



doi:10.6342/NTU202401831

5. Meta learning 42

• evaluation of LT : The loss function is evaluated using the updated

parameters: LT (Θ, θ, S, S̄). This will be used to determine when to stop

meta-training.

During the base learning and meta-learner update, the NN is trained to distin-

guish pure samples of 2.5k signals and 2.5k backgrounds in the SR. Four-fifths

of the sample is used for training and the other one-fifth of the sample is used for

validation. Training is done under full supervision. Different events are used for

each of the three steps in the inner-loop of each episode. Once the inner-loop is

complete, the LT are averaged and used to test for early stopping. After completing

the whole meta-training phase, the θ parameters are initialized randomly.

Third, fine-tuning is performed similarly to Sec. 4.2, with the difference being

the presence of scaling and shifting parameters learned during meta-training but

kept fixed in this phase.

Note that our method is simplified compared to the original method in Ref. [61].

The primary difference is that we omitted the hard tasks algorithm, as it was beyond

the scope of this initial study on the applicability of meta-learning to CWoLa.

Additionally, we did not implement meta-batches, the meta-learning equivalent

of a batch, as they were mostly irrelevant without the hard tasks algorithm. A

summary of the strategy is provided in Table 4.1.

5.3 Discussion

Fig. 5.1 shows the comparison between transfer learning and meta-transfer learning.

Meta-transfer learning generally exhibits a slight performance improvement for

the 25 × 25 and 50 × 50 resolutions compared to transfer learning, attributed to

the additional adjustments provided by the scaling and shifting parameters. It

is important to note that the results for transfer learning are already close to the

mathematical upper limits, leaving limited room for further improvement at high

significance levels. However, the relative improvement at low significance levels
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can be substantial. For the 75× 75 resolution, the difference between transfer and

meta-transfer learning is negligible. Nevertheless, we observe that meta-transfer

learning can slightly outperform transfer learning for the 75× 75 resolution when

a larger kernel size is employed, as illustrated in Fig. 5.2. A comprehensive study

on kernel size optimization is beyond the scope of this work.

Fig. 5.3, Fig. 5.4 and Fig. 5.5 show the distributions of the scaling and shifting

parameters after meta-learning. Obviously, the scaling and shifting parameters

provide a minor adjustment for feature extractors Θ. For the higher resolutions, the

distributions of the scaling and shifting are more centralized at 1 and 0, respectively.

Fig. 5.6 shows the distributions with the larger kernel size. With larger sizes of the

kernel, the distributions are more spread out to provide relatively useful adjustments

to feature extractors.
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Figure 5.1: The results of meta-transfer learning (solid curves) and transfer learning

(dashed curves, same as those in Fig. 4.1) for the ID (left column) and DD (right

column) scenarios with ΛD= 10 GeV for 25× 25, 50× 50 and 75× 75 resolutions.

The dotted line in each plot has a slope of 1.
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Figure 5.2: The results of meta-transfer learning (solid curves) and transfer learning

(dashed curves) for the ID (left) and DD (right) scenarios with ΛD= 10 GeV for

75× 75 resolution with a larger size of kernels. The kernel sizes are 10× 10 and

5× 5 respectively instead of 5× 5 and 3× 3 mentioned in Table 3.1. The dotted

line in each plot has a slope of 1.
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Figure 5.3: The distributions of scaling (left) and shifting (right) parameters S, S̄

for ID (upper) and DD (lower) scenarios with ΛD=10 GeV for 25× 25 resolution.
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Figure 5.4: The distributions of scaling (left) and shifting (right) parameters S, S̄

for ID (upper) and DD (lower) scenarios with ΛD=10 GeV for 50× 50 resolution.
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Figure 5.5: The distributions of scaling (left) and shifting (right) parameters S, S̄

for ID (upper) and DD (lower) scenarios with ΛD=10 GeV for 75× 75 resolution.



doi:10.6342/NTU202401831

5. Meta learning 49

0.900 0.925 0.950 0.975 1.000 1.025 1.050 1.075 1.1000

2000

4000

6000

8000

10000

12000

14000

Sscaling

0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.080

20

40

60

80

Sshifting

(a)

0.94 0.96 0.98 1.00 1.02 1.040

2000

4000

6000

8000

10000

12000

14000

16000
Sscaling

0.03 0.02 0.01 0.00 0.01 0.02 0.030

10

20

30

40

50

Sshifting

(b)

Figure 5.6: The distributions of scaling (left) and shifting (right) parameters S, S̄

for ID (upper) and DD (lower) scenarios with ΛD=10 GeV for 75× 75 resolution

with a larger size of kernels. The kernel sizes are 10× 10 and 5× 5 respectively

instead of 5× 5 and 3× 3 mentioned in Table 3.1..
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Conclusion

Weak supervision searches offer the dual advantages of being able to train on

real data and exploiting distinctive signal properties. However, training a neural

network via weak supervision often demands an impractically large amount of

signal, nearly to the extent that the signal could have been discovered without

the neural network. To address this issue, our work focuses on developing neural

networks that can learn from less signal using transfer and meta-learning. The

primary idea is to first train a neural network on simulations, enabling it to learn

relevant concepts or become a more efficient learner. Subsequently, the neural

network is trained on experimental data, requiring less signal due to its previous

training. Our implementation of this procedure involves transfer learning and

meta-transfer learning.

We find that transfer learning significantly enhances the performance of CWoLa

searches. This improvement is particularly notable at low significance, reducing

the amount of signal needed for discovery by a substantial factor. Meta-transfer

learning further enhances CWoLa searches, though not dramatically.

We emphasize that this work serves as a proof of principle, and several questions

remain unanswered. Specifically, the choice of models for training may influence

the ability to discover signals that differ significantly from them. The extent of this

effect is left for future investigation. However, a small reduction to the scope of

50
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model sensitivity seems a fair prize to pay for the magnitude of our improvement

over the regular CWoLa method.

After publication of our work, Ref. [13] by Cheng, Singh and Nachman pro-

posed a search strategy similar to ours which they dubbed Prior-Assisted Weak

Supervision (PAWS). Although differing in some details, PAWS also consists of

pretraining on simulations and performing weak supervision on actual data. They

showed that the combination of pretraining and weak supervision could improve

the sensitivity of searches by a factor of ∼ 10. Their figure 2 bears striking similar-

ity with some of our results. Ref. [14] also studied the combination of pretraining

on simulations and weak supervision on data, their technique Sophon. They claim

their method can improve signal sensitivity by a factor of a few.

Finally, it is important to note that transfer and meta-learning are extensive

and rapidly evolving fields. Although we demonstrated their potential, we only

explored two specific techniques. It is likely that more powerful techniques already

exist or could be developed in the future. Additionally, we did not fully optimize

our analysis, and there are clear opportunities for refinement. Given our promising

results, we believe further studies on transfer and meta-learning and developing

other techniques for weak supervision are highly warranted.
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interacting dark sectors in the early Universe and at the LHC through a

simplified portal, JHEP 01 (2020) 162 [1907.04346]. 7

[34] H. Beauchesne and G. Grilli di Cortona, Classification of dark pion

multiplets as dark matter candidates and collider phenomenology, JHEP 02

(2020) 196 [1910.10724]. 7

[35] CMS collaboration, Search for new particles decaying to a jet and an

emerging jet, JHEP 02 (2019) 179 [1810.10069]. 7

https://doi.org/10.1103/PhysRevD.105.094030
https://arxiv.org/abs/2111.06047
https://doi.org/10.1109/TPAMI.2021.3079209
https://doi.org/10.1109/TPAMI.2021.3079209
https://doi.org/10.1007/JHEP04(2011)091
https://arxiv.org/abs/1102.3795
https://doi.org/10.1007/JHEP09(2010)105
https://arxiv.org/abs/1006.2911
https://doi.org/10.1140/epjc/s10052-022-11048-8
https://arxiv.org/abs/2203.09503
https://doi.org/10.1007/JHEP04(2019)118
https://doi.org/10.1007/JHEP04(2019)118
https://arxiv.org/abs/1809.10152
https://doi.org/10.1007/JHEP01(2020)162
https://arxiv.org/abs/1907.04346
https://doi.org/10.1007/JHEP02(2020)196
https://doi.org/10.1007/JHEP02(2020)196
https://arxiv.org/abs/1910.10724
https://doi.org/10.1007/JHEP02(2019)179
https://arxiv.org/abs/1810.10069


doi:10.6342/NTU202401831

REFERENCE 56

[36] CMS collaboration, Search for resonant production of strongly coupled dark

matter in proton-proton collisions at 13 TeV, JHEP 06 (2022) 156

[2112.11125]. 7

[37] ATLAS collaboration, Search for non-resonant production of semi-visible

jets using Run 2 data in ATLAS, Phys. Lett. B 848 (2024) 138324

[2305.18037]. 7

[38] ATLAS collaboration, Search for Resonant Production of Dark Quarks in

the Dijet Final State with the ATLAS Detector, 2311.03944. 7

[39] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al.,

The automated computation of tree-level and next-to-leading order

differential cross sections, and their matching to parton shower simulations,

JHEP 07 (2014) 079 [1405.0301]. 9

[40] R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867

(2013) 244 [1207.1303]. 9

[41] DELPHES 3 collaboration, DELPHES 3, A modular framework for fast

simulation of a generic collider experiment, JHEP 02 (2014) 057

[1307.6346]. 9

[42] M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C

72 (2012) 1896 [1111.6097]. 9

[43] A.J. Larkoski, J. Thaler and W.J. Waalewijn, Gaining (Mutual) Information

about Quark/Gluon Discrimination, JHEP 11 (2014) 129 [1408.3122]. 12

[44] C.F. Berger, T. Kucs and G.F. Sterman, Event shape / energy flow

correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051]. 12

[45] L.G. Almeida, S.J. Lee, G. Perez, G.F. Sterman, I. Sung and J. Virzi,

Substructure of high-pT Jets at the LHC, Phys. Rev. D 79 (2009) 074017

[0807.0234]. 12

https://doi.org/10.1007/JHEP06(2022)156
https://arxiv.org/abs/2112.11125
https://doi.org/10.1016/j.physletb.2023.138324
https://arxiv.org/abs/2305.18037
https://arxiv.org/abs/2311.03944
https://doi.org/10.1007/JHEP07(2014)079
https://arxiv.org/abs/1405.0301
https://doi.org/10.1016/j.nuclphysb.2012.10.003
https://doi.org/10.1016/j.nuclphysb.2012.10.003
https://arxiv.org/abs/1207.1303
https://doi.org/10.1007/JHEP02(2014)057
https://arxiv.org/abs/1307.6346
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://arxiv.org/abs/1111.6097
https://doi.org/10.1007/JHEP11(2014)129
https://arxiv.org/abs/1408.3122
https://doi.org/10.1103/PhysRevD.68.014012
https://arxiv.org/abs/hep-ph/0303051
https://doi.org/10.1103/PhysRevD.79.074017
https://arxiv.org/abs/0807.0234


doi:10.6342/NTU202401831

REFERENCE 57

[46] S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet Shapes and

Jet Algorithms in SCET, JHEP 11 (2010) 101 [1001.0014]. 12

[47] CMS collaboration, Search for a Higgs Boson in the Decay Channel

H → ZZ∗ → qq̄ℓ−ℓ+ in pp Collisions at
√

s = 7 TeV, JHEP 04 (2012) 036

[1202.1416]. 13
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